chemistry of aromatic compounds electrophilic aromatic substitution directing effects side-chain...

69
Chemistry of Aromatic Compounds Electrophilic Aromatic Substitution Directing Effects Side-chain Reactions Synthesis Nucleophilic Aromatic Substitution

Upload: dominick-holt

Post on 22-Dec-2015

481 views

Category:

Documents


3 download

TRANSCRIPT

Chemistry of Aromatic Compounds

Electrophilic Aromatic Substitution

Directing Effects

Side-chain Reactions

Synthesis

Nucleophilic Aromatic Substitution

Electrophilic Aromatic Substitution

HE

E

HE

+ H-base:base

EAS Reactions of Benzene

Br

NO2

SO3H

CR

O

Cl

IR

CHO

Bromination / Chlorination

H BrBr2, FeBr3

+ HBr

H ClCl2, FeCl3

+ HCl

Bromination Mechanism

Reaction Profile

Nitration

HNO3, H2SO4NO2

+ H2O

HNO3 + H2SO4 NO2+ + H2O + HSO4

-

Formation of electrophile

Nitration Mechanism

Nitration of Toluene

Sulfonation is Reversible

HSO3, H2SO4

SO3Hfuming sulfuric acid

S

O

OO H OSO3H

SO3H

HOSO3H

Desulfonation

Friedel-Crafts Acylation

RCCl, AlCl3

O C

O

R+ HCl

1st, Formaton of Electrophile

C

O

R Cl AlCl3

+ -

RC

O

R C O AlCl4

acylium ion

Acylation Mechanism

C

O

R

C

O

RH Cl AlCl3

CR

O

+ HCl

Intermediate is Resonance-Stabilized

C

O

RH

C

O

RH

C

O

RH

An Acylation

CH3

CH3

CH3CH2CH2CH2CCl

O

TiCl4 in CH2Cl2

CCH2CH2CH2CH3

OCH3

CH3

+ HCl

Friedel-Crafts Alkylationmany more limitations

RX, AlCl3R

+ HCl

Mechanism

CH3 C

CH3

CH3

Cl AlCl3 C

CH3

CH3

CH3

t-butyl carbocation

AlCl4

CH3 C

CH3

CH3

(CH3)3C

H

(CH3)3C (CH3)3C

resonance stabilized intermediate

Cl AlCl3 (CH3)3C

+ HCl(+ AlCl3)

Carbocation Generated From Alkene

Unexpected Product?

CH3CH2CH2CH2Cl, AlCl 3

CH2CH2CH2CH3

CHCH2CH3

CH3

minor product

major product

Carbocations Rearrange…

CH3CH2CH2CH2 Cl AlCl3 CH3CH2CHCH2

H

CH3CH2CHCH3

hydride shift

2o

1o

1o RX Typically Undergoes Shift

Side Chain Reactions

O

H2, Pd/C

in ethanol

1) Reduction of Aromatic Ketones

Straight-chain Alkylation can be Accomplished in 2 steps:

Acylation, then Reduction

CH2CH2CH3

CCH2CH3

O

CH3CH2CH2Cl

AlCl3 minor

CH(CH3)2

+

CH3CH2CCl

AlCl3

O

major

H2, Pd/C

2) Oxidation of Alkyl SubstituentsCH3

KMnO4, H2O

COH

O

KMnO4

H2O

CO2H

CH3

CH(CH3)2

KMnO4, H2OCO2H

CO2H

3) Benzylic Bromination with NBS

H

NBS, CCl4, h

Br

NBr

O

O

NBS

benzylic hydrogen

4) Alkali Fusion of Sulfonic Acids

phenol

SO3H1) NaOH, 300 C

2) H3O+

OHo

5) Reduction of Nitro Groups

NO21) SnCl2, HCl2) NaOH

or H2 on Pt

NH2

Directing Effects

EDG EWG

electron donating groups electron withdrawing groups activate ring deactivate ring

atom attached isusually sp3

atom attached isusually sp or sp2

ortho/para-Directing Activating Groups

OCH3 OCH3 OCH3 OCH3

OCH3

+

- -

-

Nitration of Anisole

Nitration Affords ortho and para Products

OCH3

HNO3, H2SO4

OCH3

NO2

OCH3

NO2

+

ortho para

Activating ortho/para directors

Nitration of Toluene

meta-Directing Deactivating Groups

CH

O

CH

O

CH

O

CH

O

CH

O

+

+ +

-

ortho and para positions

are deactivated toward

EAS

Electron-Withdrawing Nitro Group Directs meta

meta Directors

Comparison

CH3

CF3

Br2, FeBr3

ortho meta para

Brominated product

63 3 34

6 91 3

ortho meta para

rel. rate

25

0.000025

rate rel. to benzene

More Limitations with Friedel Crafts Reactions

Cl

Ring must be at least as activated (reactive) as

NO2 ClCCH3, AlCl3

O

No Reaction

Cl

CH2CH3

+ orthoCH3CH2Cl, TiCl4

Substituent Summary

Halogens are the AnomolyDeactivators and o,p-Directors

Br

CH3CH2Cl

AlCl3

Br

CH2CH3

CH2CH3

Br

+

rel. rate = 0.5

Inductively withdrawing, hence deactivatingResonance donation causes o,p directing

Reactions of Rings With Two or More Substituents

NO2

OCH3 OCH3

NO2

ClCl2, FeCl3

Activating Group Controls Reaction

The (More) Activated Ring Reacts

CO

OH2SO4

SO3

CO

O

SO3H

deactivated activated(+ some ortho)

*

Mixtures with Conflicting Directing Effects

Provide the Reagents

NH2

C(CH3)3

Br

Must Acylate FirstNH2

ClCCH2CH2CH2CH3

O

AlCl3

O meta director

HNO3

H2SO4

O

NO2

H2, Pt/C

Sulfonic Acid Blocks para Position C(CH3)3

Br

H(CH3)3CBr

AlCl3

C(CH3)3

SO3, H2SO4

SO3H

C(CH3)3

Br2, FeBr3

C(CH3)3

SO3H

Br

H3O+

blocks para

Give the Reagents

CO2H

O

CH3Cl

Provide the Reagents

CH2CH3

OHBr

CH2CH3

OHBr

1) ClCCH3, AlCl3

O

2) SO3, H2SO4

3) Br2, FeBr3

4) H2 Pd/C5) NaOH, 300 C

o

6) H3O+

O O

SO3H

O

SO3HBr SO3HBr

1)

2) 3) 4)

5,6)

Provide the Reagents

HO2C

HO2C1)

Cl

AlCl3

2) Cl

O AlCl33) KMnO4, H2O

4) H2, Pd/C

5) NBS, h6) NaOCH3 in CH3OH, heat

(E2 elim of HBr)

1)

O

2)

O

HO2C3)

HO2C

HO2C

Br

4)

5)

6) workup w/ H3O+

Nucleophlic Aromatic Substitution

Not an SN1

Not an SN2

“SNA” criteria:

• Strongly deactivated ring

• Leaving group

• Deactivating group(s) ortho &/or para to leaving group (preferably)

• Strong base (nucleophile) such as RO-, NH2-

Methoxide as a nucleophile

MechanismCl

O

OOCH3

Cl

O

O OCH3Cl

O

O OCH3

OCH3

O

O

+ Cl

With no EWG, reaction conditions are more extreme

Elimination/Addition Mechanism

“Benzyne” Intermediate

Carbons are sp2 (not a second bond)

Benzyne can be trapped by a Diene: Undergoes a Diels-Alder rxn

Benzyne intermediate has 2 reactive sites

Mixture of Regioisomers

Br

OCH3

NaNH2, NH3

NH2

OCH3

+

OCH3

H2N

majorminor

+ NaBr