chemistry databook_2005

Upload: adam-butterworth

Post on 28-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Chemistry DataBook_2005

    1/18

    Department of Chemistry

    Data Book(revised October 2005)

    Contents

    Periodic table of the elements inside front cover

    Physical constants and conversion factors 1Greek alphabet 3

    Series 3

    Stirling's formula 3

    Determinants 3

    Integrals 4

    Integration by parts 4Trigonometrical formulae 4

    Cosine formula 4Spherical polar coordinates 5

    Laplacian 5

    Spherical harmonics 5

    Ladder operators 5

    Character tables 6 11

    Selected tables for descent in symmetry 11

    Reduction of a representation 12

    Projection operators 12

    Direct products 12

    Antisymmetrized squares 12

    Flow chart for determining molecular point groups 13

    Space groups (GEPs and SEPs) 14

    Parameters for selected magnetic nuclei 15

    Amino acids 16

    Nucleotide bases 17

  • 7/25/2019 Chemistry DataBook_2005

    2/18

    H1

    1.008

    He2

    4.003

    Li3

    6.94

    Be4

    9.01

    symbolatomic number

    mean atomic mass

    B5

    10.81

    C6

    12.01

    N7

    14.01

    O8

    16.00

    F9

    19.00

    Ne10

    20.18

    Na11

    22.99

    Mg12

    24.31

    Al13

    26.98

    Si14

    28.09

    P15

    30.97

    S16

    32.06

    Cl17

    35.45

    Ar18

    39.95

    K19

    39.102

    Ca20

    40.08

    Sc21

    44.96

    Ti22

    47.90

    V23

    50.94

    Cr24

    52.00

    Mn25

    54.94

    Fe26

    55.85

    Co27

    58.93

    Ni28

    58.71

    Cu29

    63.55

    Zn30

    65.37

    Ga31

    69.72

    Ge32

    72.59

    As33

    74.92

    Se34

    78.96

    Br35

    79.904

    Kr36

    83.80

    Rb37

    85.47

    Sr38

    87.62

    Y39

    88.91

    Zr40

    91.22

    Nb41

    92.91

    Mo42

    95.94

    Tc43

    Ru44

    101.07

    Rh45

    102.91

    Pd46

    106.4

    Ag47

    107.87

    Cd48

    112.40

    In49

    114.82

    Sn50

    118.69

    Sb51

    121.75

    Te52

    127.60

    I53

    126.90

    Xe54

    131.30

    Cs55

    132.91

    Ba56

    137.34

    La*57

    138.91

    Hf72

    178.49

    Ta73

    180.95

    W74

    183.85

    Re75

    186.2

    Os76

    190.2

    Ir77

    192.2

    Pt78

    195.09

    Au79

    196.97

    Hg80

    200.59

    Tl81

    204.37

    Pb82

    207.2

    Bi83

    208.98

    Po84

    At85

    Rn86

    Fr87

    Ra88

    Ac + 89

    *Lanthanides Ce58

    140.12

    Pr59

    140.91

    Nd60

    144.24

    Pm61

    Sm62

    150.4

    Eu63

    151.96

    Gd64

    157.25

    Tb65

    158.93

    Dy66

    162.50

    Ho67

    164.93

    Er68

    167.26

    Tm69

    168.93

    Yb70

    173.04

    Lu71

    174.97

    +Actinides Th90

    232.01

    Pa91

    U92

    238.03

    Np93

    Pu94

    Am95

    Cm96

    Bk97

    Cf98

    Es99

    Fm100

    Md101

    No102

    Lr103

    Text

  • 7/25/2019 Chemistry DataBook_2005

    3/18

    Constants

    Symbol and ValueName denition (uncertainty) Unit

    ! 3 141592653589e 2 718281828459ln 10 1 log10 e 2 302585092994

    Speed of light c 2 99792458 108 ms 1

    Plancks constant h 6 6260693 11 10 34 Js h h 2! 1 05457168 18 10 34 Js

    Avogadros constant N A 6 0221415 10 1023 mol 1

    Elementary charge e 1 60217653 14 10 19 CElectron rest mass me 0 91093826 16 10 30 kgAtomic mass unit mu 1gmol 1 N A 1 66053886 28 10 27 kgProton rest mass m p 1 67262171 29 10 27 kgNeutron rest mass mn 1 67492728 29 10 27 kgFaraday constant F N Ae 9 64853383 83 104 Cmol 1

    Boltzmann constant k B 1 3806505 24 10 23 JK 1

    Molar Gas constant R N Ak B 8 314472 15 J mol 1 K 1

    Permeability of vacuum 0 4! 10 7 Hm 1

    Permittivity of vacuum "0 1 0 c2 8 8541878 10 12 Fm 1

    4!" 0 1 1126501 10 10 Fm 1

    Bohr magneton B e h 2me 9 27400949 80 10 24 JT 1

    Nuclear magneton N e h 2m p 5 05078343 43 10 27 JT 1

    Stefan-Boltzmann constant # 2!5

    k 4 B 15h

    3

    c2

    5 670400 40 10 8

    Wm 2

    K 4

    Bohr radius a0 4!" 0 h2 mee2 0 5291772108 18 10 10 mHartree energy E h e2 4!" 0 a 0 4 35974417 75 10 18 JFine structure constant $ e2 4!" 0 hc 7 297352568 24 10 3

    $ 1 137 035986

    CODATA recommended values, December 2002http://physics.nist.gov/constants

    The estimated standard uncertainty, in parentheses after the value,applies to the least signicant digits of the value.

    Energy Conversion Factors

    J kJmol 1 cm 1 K

    1 J 1 6 0221 1020 5 0341 1022 7 2429 1022

    1hartree 4 35974 10 18 2625 5 219475 315773

    1 eV 1 60218 10 19 96 485 8065 54 11604

    1kJmol 1 1 66054 10 21 1 83 5935 120 27

    1 cm 1 1 98645 10 23 11 963 10 3 1 1 43881 K 1 38065 10 23 8 3145 10 3 0 69504 1

    1 Hz 6 62607 10 34 3 9903 10 13 3 3356 10 11 4 7992 10 11

    Note: the energy of a photon with reciprocal wavelength (wavenumber) 1 % andfrequency& is hc % h&. The energy corresponding to a temperature T is k BT .

    Other conversion factors

    Length 10 10 mEnergy cal 4 184JPressure atm = 760 Torr 101 325 Pa

    Torr = mm Hg 133 3 Pabar 105 Pa

    Radioactivity becquerel, Bq 1s 1

    curie, Ci 3 7 1010 BqCharge esu 3 33564 10 10 CDipole moment debye 10 18 esucm 3 33564 10 30 Cm

    a u ea 0 8 478358 10 30 CmTemperature C 0 C 273 15K

    The entropy unit (e.u.) used for entropies of activation is usually the c.g.s. unitcal/mol/ C. Howeversome authors use the same symbol for the SI unit, Jmol 1 K 1 .

    2

  • 7/25/2019 Chemistry DataBook_2005

    4/18

    Greek Alphabet

    A ! alpha H " eta N # nu T $ tauB % beta & ' ( theta ) * xi + , upsilon- . gamma I / iota O o omicron 0 1 2 phi3 4 delta K 5 kappa 6 7 pi X 8 chi

    E 9 epsilon : ; lambda P < rho = > psiZ ? zeta M mu @ A sigma B C omega

    Series

    Geometrical progression

    S n a az az2 az n 1 a

    1 zn

    1 z S !

    a1 z

    when z 1

    Power series

    exp z 1 z z2

    2! z3

    3! zn

    n!

    cos z eiz e iz

    2 1

    z2

    2! z4

    4! z6

    6!

    sin z eiz e iz

    2i z

    z3

    3! z5

    5! z7

    7!

    1 z p 1 pz p p 1

    2! z2

    p p 1 p 23!

    z3 z 1

    ln 1 z z z2

    2 z3

    3 z n

    n z 1

    Stirlings formula

    ln n! n ln n n for large n

    Determinants

    a bc d

    ad bc

    In general,

    det A ! j Ai j C ji (i xed at any value)

    where the cofactor C ji is 1 i j times the determinant of the matrix obtained by deleting the ith rowand the j th column of A . For example,

    a 11 a12 a13a 21 a22 a23a 31 a32 a33

    a 11a 22 a23a 32 a33

    a 12a 21 a23a 31 a33

    a 13a 21 a22a 31 a32

    a 11 a 22 a 33 a11 a 23 a 32 a12 a 23 a 31 a12 a 21 a 33 a13 a 21 a 32 a13 a 22 a 31

    3

  • 7/25/2019 Chemistry DataBook_2005

    5/18

    Integrals

    !

    !exp ax2 dx 7 a a 0

    !

    ! x2 n exp ax2 dx 1 3 5 2n 1

    7 a

    2a n n 1; a 0

    !

    0r n exp ar dr

    n!a n 1

    n 0; a 0

    " 2

    0sinm ' cos n ' d '

    m 1m n

    " 2

    0sinm 2 ' cosn ' d '

    n 1m n

    " 2

    0sinm ' cos n 2 ' d '

    so that

    " 2

    0sinm ' cos n ' d ' m 1 m 3 n 1 n 3

    m n m n 2 m n 4 C

    where C 7 2 if m and n are both even , and C 1 otherwise. E.g.:

    " 2

    0sin ' cos 3 ' d '

    24 2

    14

    ;" 2

    0sin 2 ' cos 2 ' d '

    1 14 2

    72

    716

    Integration by partsb

    au

    dd x

    d x u bab

    a

    dud x

    d x

    Trigonometrical formulae

    sin A B sin Acos B cos Asin B

    cos A B cos Acos B sin Asin B

    cos Acos B 12 cos A B cos A B

    sin Asin B 12 cos A B cos A B

    sin Acos B 12 sin A B sin A B

    sin A sin B 2sin A B

    2cos

    A B2

    sin A sin B 2cos A B

    2sin

    A B2

    cos A cos B 2cos A B

    2 cos

    A B2

    cos A cos B 2sin A B

    2 sin

    A B2

    Cosine formulaa 2 b2 c2 2bc cos A

    4

  • 7/25/2019 Chemistry DataBook_2005

    6/18

    Spherical Polar Coordinates

    Relationship with Cartesian coordinates

    x r sin ' cos 2 r x2 y2 z2

    y r sin ' sin 2 ' arccos z r

    z r cos ' 2 arctan y x

    Integration

    dV !

    r 0

    "

    # 0

    2 "

    $ 0r 2 sin ' dr d ' d 2

    z

    x y

    r'

    2

    Laplacian

    D2 > E2 >

    E x2E2 >E y2

    E2 >E z2

    1r 2

    EEr

    r2E>Er

    1r 2 sin '

    EE'

    sin 'E>E'

    1r 2 sin 2 '

    E2 >E22

    Spherical Harmonics

    Y lm ' 2 2l 1

    47 C lm ' 2

    where

    C lm ' 2 l m !

    l m !

    12

    P ml cos ' eim$ 1

    m for m 0,1 for m 0.

    Here P ml is an associated Legendre polynomial. In particular,

    C 00 1

    C 10 cos ' z r

    C 1 1 12 sin ' e i$ 1

    2 x iy r

    C 20 12 3cos2 ' 1 12 3 z

    2 r 2 r 2

    C 2 1 32 cos ' sin ' e i$ 3

    2 zx izy r2

    C 2 2 38 sin2 ' e 2 i$ 38 x

    2 y2 2ixy r2

    Ladder Operators J J x i J y; J J M J J 1 M M 1 J M 1

    5

  • 7/25/2019 Chemistry DataBook_2005

    7/18

    Character tables for some important symmetry groups

    C i E i

    Ag 1 1 R x; R y; R z x2 ; y2 ; z2 ; xy; xz; yz Au 1 1 x; y; z

    C s E #h

    A 1 1 x; y R z x2 ; y2 ; z2 ; xy A 1 1 z R x; R y xz; yz

    C 2 E C z2

    A 1 1 z R z x2 ; y2 ; z2 ; xy B 1 1 x; y R x; R y xz; yz

    2

    C 2 v E C z2 # xz # yz

    A1 1 1 1 1 z x2 ; y2 ; z2 A2 1 1 1 1 R z xy B1 1 1 1 1 x R y xz B2 1 1 1 1 y R x yz

    C 2 h E C z2 i # xy

    Ag 1 1 1 1 R z x2 ; y2 ; z2 ; xy Bg 1 1 1 1 R x; R y xz; yz Au 1 1 1 1 z Bu 1 1 1 1 x; y

    D 2 E C z2 C y2 C x2

    A 1 1 1 1 x2 ; y2 ; z2 B1 1 1 1 1 z R z xy B2 1 1 1 1 y R y xz B3 1 1 1 1 x R x yz

    D 2 d E 2S 4 C z2 2C 2 2# d

    A1 1 1 1 1 1 x2 y2 ; z2 A2 1 1 1 1 1 R z B1 1 1 1 1 1 x2 y2 B2 1 1 1 1 1 z xy E 2 0 2 0 0 x y R x R y xz yz

    6

  • 7/25/2019 Chemistry DataBook_2005

    8/18

    D 2 h E C z2 C y2 C x2 i # xy # xz # yz

    Ag 1 1 1 1 1 1 1 1 x2 ; y2 ; z2 B1 g 1 1 1 1 1 1 1 1 R z xy B2 g 1 1 1 1 1 1 1 1 R y xz B3 g 1 1 1 1 1 1 1 1 R x yz Au 1 1 1 1 1 1 1 1 B1 u 1 1 1 1 1 1 1 1 z B2 u 1 1 1 1 1 1 1 1 y B3 u 1 1 1 1 1 1 1 1 x

    C 3 E C 3 C 23 ' exp 2! i 3

    A 1 1 1 z R z x2 y2 ; z21 ' ' 2 x i y R x i R y xz i yz; x2 2i xy y2 E 1 ' 2 ' x i y R x i R y xz i yz; x2 2i xy y2

    3

    C 3 v E 2C z3 3# v

    A1 1 1 1 z x2 y2 ; z2 A2 1 1 1 R z E 2 1 0 x y R x R y xz yz ; x2 y2 2 xy

    D 3 E 2C z3 3C 2

    A1 1 1 1 x2 y2 ; z2 A2 1 1 1 z R z E 2 1 0 x y R x R y xz yz ; x2 y2 2 xy

    D 3 d E 2C 3 3C 2 i 2S 6 3# d

    A1 g 1 1 1 1 1 1 x2 y2 ; z2 A2 g 1 1 1 1 1 1 R z E g 2 1 0 2 1 0 R x R y xz yz ; x2 y2 2 xy A1 u 1 1 1 1 1 1 A2 u 1 1 1 1 1 1 z E u 2 1 0 2 1 0 x y

    D 3 h E 2C 3 3C 2 #h 2S 3 3# v

    A1 1 1 1 1 1 1 x2 y2 ; z2 A2 1 1 1 1 1 1 R z E 2 1 0 2 1 0 x y x2 y2 2 xy A1 1 1 1 1 1 1 A2 1 1 1 1 1 1 z E 2 1 0 2 1 0 R x R y xz yz

    7

  • 7/25/2019 Chemistry DataBook_2005

    9/18

    C 4 v E 2C 4 C 24 2# v 2# d

    A1 1 1 1 1 1 z x2 y2 ; z2 A2 1 1 1 1 1 R z B1 1 1 1 1 1 x2 y2 B2 1 1 1 1 1 xy E 2 0 2 0 0 x y R x R y xz yz

    4

    Note: The # v planes in C 4 v coincide with the xz and yz planes.

    D 4 h E 2C 4 C 24 2C 2 2C 2 i 2S 4 #h 2# v 2# d

    A1 g 1 1 1 1 1 1 1 1 1 1 x2 y2 ; z2 A2 g 1 1 1 1 1 1 1 1 1 1 R z B1 g 1 1 1 1 1 1 1 1 1 1 x2 y2 B2 g 1 1 1 1 1 1 1 1 1 1 xy E g 2 0 2 0 0 2 0 2 0 0 R x R y xz yz A1 u 1 1 1 1 1 1 1 1 1 1 A2

    u 1 1 1 1 1 1 1 1 1 1 z

    B1 u 1 1 1 1 1 1 1 1 1 1 B2 u 1 1 1 1 1 1 1 1 1 1 E u 2 0 2 0 0 2 0 2 0 0 x y

    Note: TheC 2 axes in D 4 h coincide with the x and y axes, and the # v planes with the xz and yz planes.

    Note that the quantities( 12 5 1 satisfy ( 2 1 ( and ( ( 1.

    C 5 v E 2C 5 2C 25 5# v ( 12 5 1

    A1 1 1 1 1 z x2 y2 ; z2 A2 1 1 1 1 R z E 1 2 ( ( 0 x y R x R y xz yz E 2 2 ( ( 0 x2 y2 2 xy

    5

    D 5 E 2C 5 2C 25 5C 2 ( 12 5 1

    A1 1 1 1 1 x2 y2 ; z2 A2 1 1 1 1 z R z E 1 2 ( ( 0 x y R x R y xz yz E 2 2 ( ( 0 x2 y2 2 xy

    D 5d

    E 2C 5 2C 25

    5C 2 i 2S 310

    2S 10 5#d

    ( 12

    5 1

    A1 g 1 1 1 1 1 1 1 1 x2 y2 ; z2 A2 g 1 1 1 1 1 1 1 1 R z E 1 g 2 ( ( 0 2 ( ( 0 R x R y xz yz E 2 g 2 ( ( 0 2 ( ( 0 x2 y2 2 xy A1 u 1 1 1 1 1 1 1 1 A2 u 1 1 1 1 1 1 1 1 z E 1 u 2 ( ( 0 2 ( ( 0 x y E 2 u 2 ( ( 0 2 ( ( 0

    8

  • 7/25/2019 Chemistry DataBook_2005

    10/18

    D 5 h E 2C 5 2C 25 5C 2 #h 2S 5 2S 35 5# v ( 12 5 1

    A1 1 1 1 1 1 1 1 1 x2 y2 ; z2 A2 1 1 1 1 1 1 1 1 R z E 1 2 ( ( 0 2 ( ( 0 x y E 2 2 ( ( 0 2 ( ( 0 x2 y2 2 xy A1 1 1 1 1 1 1 1 1 A2 1 1 1 1 1 1 1 1 z E 1 2 ( ( 0 2 ( ( 0 R x R y xz yz E 2 2 ( ( 0 2 ( ( 0

    C 6 v E 2C 6 2C 26 C 36 3# v 3# d

    A1 1 1 1 1 1 1 z x2 y2 ; z2 A2 1 1 1 1 1 1 R z B1 1 1 1 1 1 1 B2 1 1 1 1 1 1 E 1 2 1 1 2 0 0 x y R x R y xz yz E 2 2 1 1 2 0 0 x2 y2 2 xy

    6

    D 6 E 2C 6 2C 26 C 36 3C 2 3C 2

    A1 1 1 1 1 1 1 x2 y2 ; z2 A2 1 1 1 1 1 1 z R z B1 1 1 1 1 1 1 B2 1 1 1 1 1 1 E 1 2 1 1 2 0 0 x y R x R y xz yz E 2 2 1 1 2 0 0 x2 y2 2 xy

    D 6 h E 2C 6 2C 26 C 36 3C 2 3C 2 i 2S 3 2S 6 #h 3# d 3# v

    A1 g 1 1 1 1 1 1 1 1 1 1 1 1 x2 y2 ; z2 A2 g 1 1 1 1 1 1 1 1 1 1 1 1 R z B1 g 1 1 1 1 1 1 1 1 1 1 1 1 B2 g 1 1 1 1 1 1 1 1 1 1 1 1 E 1 g 2 1 1 2 0 0 2 1 1 2 0 0 R x R y xz yz E 2 g 2 1 1 2 0 0 2 1 1 2 0 0 x2 y2 2 xy A1 u 1 1 1 1 1 1 1 1 1 1 1 1 A2 u 1 1 1 1 1 1 1 1 1 1 1 1 z B1 u 1 1 1 1 1 1 1 1 1 1 1 1 B2 u 1 1 1 1 1 1 1 1 1 1 1 1 E 1 u 2 1 1 2 0 0 2 1 1 2 0 0 x y

    E 2 u 2 1 1 2 0 0 2 1 1 2 0 0

    9

  • 7/25/2019 Chemistry DataBook_2005

    11/18

    T E 4C 3 4C 23 3C 2 ' exp 2! i 3

    A1 1 1 1 1 x2 y2 z2

    E 1 ' ' 2 1 z2 ' 2 x2 ' y2

    1 ' 2 ' 1 z2 ' x2 ' 2 y2T 2 3 0 0 1 x y z R x R y R z yz xz xy

    Cubic

    T d E 8C 3 3C 2 6S 4 6# d

    A1 1 1 1 1 1 x2 y2 z2 A2 1 1 1 1 1 E 2 1 2 0 0 2 z2 x2 y2 3 x2 y2T 1 3 0 1 1 1 R x R y R zT 2 3 0 1 1 1 x y z yz xz xy

    O E 8C 3 3C 24 6C 4 6C 2

    A1 1 1 1 1 1 x2

    y2

    z2

    A2 1 1 1 1 1 E 2 1 2 0 0 2 z2 x2 y2 3 x2 y2T 1 3 0 1 1 1 x y z R x R y R zT 2 3 0 1 1 1 xz xy yz

    O h E 8C 3 3C 24 6C 4 6C 2 i 8S 6 3# h 6S 4 6# d

    A1 g 1 1 1 1 1 1 1 1 1 1 x2 y2 z2 A2 g 1 1 1 1 1 1 1 1 1 1 E g 2 1 2 0 0 2 1 2 0 0 2 z2 x2 y2 3 x2 y2T 1 g 3 0 1 1 1 3 0 1 1 1 R x R y R zT 2 g 3 0 1 1 1 3 0 1 1 1 xz xy yz A1 u 1 1 1 1 1 1 1 1 1 1 A2 u 1 1 1 1 1 1 1 1 1 1 E u 2 1 2 0 0 2 1 2 0 0T 1 u 3 0 1 1 1 3 0 1 1 1 x y zT 2 u 3 0 1 1 1 3 0 1 1 1

    IcosahedralI h E 12C 5 12C 25 20C 3 15C 2 i 12S 310 12S 10 20S 6 15# ( 12 5 1

    Ag 1 1 1 1 1 1 1 1 1 1 x2

    y2

    z2

    T 1 g 3 ( ( 0 1 3 ( ( 0 1 R x R y R zT 2 g 3 ( ( 0 1 3 ( ( 0 1Gg 4 1 1 1 0 4 1 1 1 0 H g 5 0 0 1 1 5 0 0 1 1 112 2 z2 x2 y2

    12 x

    2 y2 xz xy yz Au 1 1 1 1 1 1 1 1 1 1T 1 u 3 ( ( 0 1 3 ( ( 0 1 x y zT 2 u 3 ( ( 0 1 3 ( ( 0 1Gu 4 1 1 1 0 4 1 1 1 0 H u 5 0 0 1 1 5 0 0 1 1

    10

  • 7/25/2019 Chemistry DataBook_2005

    12/18

    C ! v E 2C z $ )# v

    * A1 1 1 1 z x2 y2 ; z2* A2 1 1 1 R z+ E 1 2 2cos$ 0 x y R x R y xz yz, E 2 2 2cos2$ 0 x2 y2 2 xy- E 3 2 2cos3$ 0

    Linear

    D ! h E 2C z $ )# v i 2S z $ ) C 2

    * g A1 g 1 1 1 1 1 1 x2 y2 ; z2

    * g A2 g 1 1 1 1 1 1 R z+ g E 1 g 2 2 cos$ 0 2 2 cos$ 0 R x R y xz yz, g E 2 g 2 2 cos 2$ 0 2 2cos2$ 0 x2 y2 2 xy- g E 3 g 2 2 cos 3$ 0 2 2cos3$ 0

    * u A1 u 1 1 1 1 1 1 z

    * u A2 u 1 1 1 1 1 1+ u E 1 u 2 2 cos$ 0 2 2 cos$ 0 x y, u E 2 u 2 2 cos 2$ 0 2 2cos2$ 0- u E 3 u 2 2 cos 3$ 0 2 2cos3$ 0

    Selected tables for descent in symmetry

    C 2 v C 2 C s C s

    E # xz E # yz

    A1 A A A A2 A A A

    B1 B A A

    B2 B A A

    D 3 h C 3 v C 2 v C s C s

    # h # yz E #h E #v

    A1 A1 A1 A A A2 A2 B2 A A

    E E A1 B2 2 A A A A1 A2 A2 A A

    A2 A1 B1 A A

    E E A2 B1 2 A A A

    D ! h C 2 v

    x y z x z y

    * g A1

    * g B1

    + g A2 B2, g A1 B1

    * u B2

    * u A2+ u A1 B1

    , u A2 B2

    O 3 O h T d

    S g A1 g A1

    Pg T 1 g T 1

    Dg E g T 2 g E T 2

    F g A2 g T 1 g T 2 g A2 T 1 T 2

    Gg A1 g E g T 1 g T 2 g A1 E T 1 T 2

    S u A1 u A2

    Pu T 1 u T 2

    Du E u T 2 u E T 1

    F u A2 u T 1 u T 2 u A1 T 2 T 1

    Gu A1 u E u T 1 u T 2 u A2 E T 2 T 1

    11

  • 7/25/2019 Chemistry DataBook_2005

    13/18

    Reduction of a representationIf . a1 . 1 a 2 . 2 a n. n , then

    a k 1h ! R

    / k R */ R

    where / R is the character of the operation R in the rep-resentation. , / k R is the character of the operation R inthe representation. k , and h is the number of elements inthe group.

    Projection operatorsThe projection operator for representation. k is

    P k nk

    h ! R/ k R * R

    The projected function P k f obtained by applyingP k to

    any function f is either zero or a component of a basis forrepresentation. k .

    Direct ProductsGenerally,

    / " " R / " R / " R

    and if the resulting representation is reducible it can be re-duced in the usual way. Alternatively the following rulescan be applied.

    Treat g u and symmetry separately. For groups withan inversion centre,

    g g u u g and g u u

    For groups with a horizontalplane# h but no inversion cen-tre, single and double primes, and , are used to denotesymmetry and antisymmetry with respect to # h . Then

    and

    Direct products involving nondegenerate representa-tions are easily worked out from the character table. Theproduct of any A or B with any E is an E , and the productof any A or B with any T is a T .

    In the cubic groupsT d , O and O h ,

    E E A1 A2 E

    E T 1 E T 2 T 1 T 2

    T 1 T 1 T 2 T 2 A1 E T 1 T 2

    T 1 T 2 A2 E T 1 T 2

    For products of E i with E j in the axial groups the rulesare complicated. If there is only one E representation,apart from g u or labels, it should be considered as E 1 .We need the order n of the principal axis, which is usuallyobvious e.g. n 5 forD 5 h but forD md with m even ,n 2m (becauseD md has an S 2 m axis when m is even).a For E i E i:

    (i) If E 2 i exists, then

    E i E i A1 A2 E 2 i

    (ii) Otherwise, if 4i n then

    E i E i A1 A2 B1 B2

    (iii) Otherwise

    E i E i A1 A2 E 2 i n

    b For E i E j with i j :(i) If E i j exists, then

    E i E j E i j E i j

    (ii) If 2 i j n, then

    E i E j E i j B1 B2

    (iii) Otherwise E i E j E i j E i j n

    If there is only one A representation, apart from g u orlabels, read A1 and A2 above as A; similarly for B.

    Examples

    For E E in C 4 v: there is only one E representation, sotreat it as E 1 . Rule a (i) doesnt apply, because E 2 doesntexist, but a(ii) applies, so E E A1 A2 B1 B2 .

    For E 1

    g E 2

    u in D 5

    d , note rst that g u u

    . Then weneed E 1 E 2 , for which rule b(iii) applies, with n 5, sothe result is E 1 g E 2 u E 1 u E 2 u.

    Antisymmetrized SquaresThe antisymmetric component of E E or E i E i is al-ways A2 . In the cubic groups, the antisymmetric part of T 1 T 1 and T 2 T 2 is T 1 .

    12

  • 7/25/2019 Chemistry DataBook_2005

    14/18

    nC 2 ! C n ?

    n " v?

    C nv

    " h?

    C nh

    S 2n C n ?

    S 2n C n

    i?

    C # v

    D # h

    i?C i

    " ?

    C s

    C 1

    i?

    I h I

    i?

    O h O

    i?

    " ?

    T h T d

    Linear?

    Are there any C n properrotation axes, with n $ 2?

    Find the order n of the highest-orderproper rotation axis C n .

    Is there more than one such axis?

    Value of n ?

    5 (6C 5) 4 (3C 4) 3 (4C 3) 2 (3C 2)

    T

    " h?

    n " d?

    D nh D nd D n

    YesYes

    Yes

    Yes

    Yes Yes

    Yes

    Yes

    Yes

    Yes Yes

    YesYes

    Yes

    Yes

    No

    No

    No

    No

    No

    No

    No

    No

    No

    No

    No NoNoNo

    No

    No

    Yes

    A.J.S. 1991

    13

  • 7/25/2019 Chemistry DataBook_2005

    15/18

    Space GroupsGeneral Equivalent Positions (GEPs) and Special Equivalent Positions (SEPs)

    Space group P 21

    GEPs:

    2 @ xn yn zn xn12 yn zn

    SEPs:None

    Space group P 21 /c

    GEPs:

    4 @ xn yn zn xn12 yn

    12 zn xn

    12 yn

    12 zn xn yn zn

    SEPs:4 pairs:

    2 @ 0 0 0 and 0 1212

    2 @ 0 0 12 and 0 1

    2 0

    2 @ 12 0 0 and 1

    212

    12

    2 @ 1212 0 and

    12 0

    12

    Space group P 21 21 21

    GEPs:

    4 @ xn yn zn xn12 yn

    12 zn

    12 xn

    12 yn zn

    12 xn yn

    12 zn

    SEPs:None

    14

  • 7/25/2019 Chemistry DataBook_2005

    16/18

    15

    Parameters for selected magnetic nuclei*

    isotope natural abundance (%) spin, I 1H 100 12 2

    H 1.5 ! 102

    13H 0 12 6Li 7 17Li 93 32 10B 20 311B 80 32 13C 1 12 14

    N 100 115N 0.4 12 17O 3.7 ! 10 2 52 19F 100 12

    23Na 100 32 27Al 100 52 29Si 5 12 31

    P 10012

    51V 100 72 57Fe 2 12 77Se 8 12

    103Rh 100 12 107Ag 52 12 109Ag 48 12 113

    Cd 121

    2 119Sn 9 12 129Xe 26 12 195Pt 34 12 203Tl 30 12 205Tl 70 12 207Pb 23 12

    *The list is not exhaustive.

  • 7/25/2019 Chemistry DataBook_2005

    17/18

    16

    Amino acids H3 N O O

    HR

    Name Three-letter code Single-letter code Side chain, R =

    Serine Ser S CH2 OH Threonine Thr T CH(CH 3 )OH Cysteine Cys C CH2SH

    Methionine Met M CH2 CH2 SMe Aspartic acid Asp D CH2 COO Asparagine Asn N CH2 CONH 2

    Glutamic acid Glu E CH2CH2 COO

    Glutamine Gln QCH

    2CH

    2CONH

    2 Lysine Lys K CH2 CH2CH2 CH2 NH3+

    Arginine Arg R CH2 CH2 CH2 NHNH2

    NH2+

    Glycine Gly G H

    Alanine Ala A Me

    Leucine Leu L CH2 CHMe 2 Isoleucine Ile I CH(Me)CH 2 Me

    Valine Val V CHMe 2

    Histidine His H

    N

    HNCH2

    Phenylalanine Phe F

    CH2

    Tyrosine Tyr Y

    CH2

    OH

    Tryptophan Trp W

    NH

    CH2

    Proline* Pro P N

    H

    COO HH

    *For proline the complete structure of the amino acid is shown.

  • 7/25/2019 Chemistry DataBook_2005

    18/18

    17

    Nucleotide bases

    Name Abbreviation Structure

    Guanine G NH

    N

    N

    N

    O

    NH2

    Adenine A N

    N

    N

    N

    NH2

    Cytosine C

    N

    N

    NH2

    O

    Thymine T

    N

    NH

    O

    O

    Me

    Uracil U

    N

    NH

    O

    O