chemistry 102(001) fall 2012

57
18-1 CHEM 102, Spring 2012 LA TECH CTH 328 10:00-11:15 am Instructor: Dr. Upali Siriwardane e-mail: [email protected] Office: CTH 311 Phone 257-4941 Office Hours: M,W 8:00-9:00 & 11:00-12:00 am; Tu, Th, F 8:00 - 10:00am.. Exams: 10:00-11:15 am, CTH 328. September 27, 2012 (Test 1): Chapter 13 October 18, 2012 (Test 2): Chapter 14 &15 November 13, 2012 (Test 3): Chapter 16 &18 Optional Comprehensive Final Exam : November 15, 2012 : Chapters 13, 14, 15, 16, 17, and 18 Chemistry 102(001) Fall 2012

Upload: quon-cash

Post on 01-Jan-2016

34 views

Category:

Documents


3 download

DESCRIPTION

Chemistry 102(001) Fall 2012. CTH 328 10:00-11:15 am Instructor : Dr. Upali Siriwardane e-mail : [email protected] Office : CTH 311 Phone 257-4941 Office Hours : M,W 8:00-9:00 & 11:00-12:00 am; Tu , Th , F 8:00 - 10:00am.. Exams: 10 :00-11:15 am, CTH 328. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chemistry 102(001) Fall 2012

18-1CHEM 102, Spring 2012 LA TECH

CTH 328 10:00-11:15 am

Instructor: Dr. Upali Siriwardane

e-mail: [email protected]

Office: CTH 311 Phone 257-4941

Office Hours: M,W 8:00-9:00 & 11:00-12:00 am;

Tu, Th, F 8:00 - 10:00am..

Exams: 10:00-11:15 am, CTH 328.

September 27,  2012 (Test 1): Chapter 13

October 18, 2012 (Test 2): Chapter 14 &15

November 13, 2012 (Test 3): Chapter 16 &18

Optional Comprehensive Final Exam: November 15, 2012 :

Chapters 13, 14, 15, 16, 17, and 18

Chemistry 102(001) Fall 2012

Page 2: Chemistry 102(001) Fall 2012

18-2CHEM 102, Spring 2012 LA TECH

Review of Chapter 6. Energy and Chemical Reactions 6.1 The Nature of Energy

6.2 Conservation of Energy

6.3 Heat Capacity

6.4 Energy and Enthalpy

6.5 Thermochemical Equations

6.6 Enthalpy change for chemical Rections

6.7 Where does the Energy come from?

6.8 Measuring Enthalpy Changes: Calorimetry

6.9 Hess's Law

6.10 Standard Enthalpy of Formation

6.11 Chemical Fuels for Home and Industry

6.12 Food Fuels for Our Bodies

Page 3: Chemistry 102(001) Fall 2012

18-3CHEM 102, Spring 2012 LA TECH

Chapter 18. Thermodynamics: Directionality of Chemical Reactions

18.1 Reactant-Favored and Product-Favored Processes

18.2 Probability and Chemical Reactions18.3 Measuring Dispersal or Disorder: Entropy18.4 Calculating Entropy Changes18.5 Entropy and the Second Law of

Thermodynamics18.6 Gibbs Free Energy18.7 Gibbs Free Energy Changes and Equilibrium Constants18.8 Gibbs Free Energy, Maximum Work, and

Energy Resources18.9 Gibbs Free Energy and Biological Systems18.10 Conservation of Gibbs Free Energy18.11 Thermodynamic and Kinetic Stability

Page 4: Chemistry 102(001) Fall 2012

18-4CHEM 102, Spring 2012 LA TECH

What is Hess's Law of Summation of Heat?To heat of reaction for new reactions.

Two methods?

1st method: new DH is calculated by adding DHs of other reactions.

2nd method: Where DHf ( DH of formation) of reactants and products are used to calculate DH of a reaction.

Page 5: Chemistry 102(001) Fall 2012

18-5CHEM 102, Spring 2012 LA TECH

Method 1: Calculate DH for the reaction:

SO2(g) + 1/2 O2(g) + H2O(g) ----> H2SO4(l) DH = ?

Other reactions:

SO2(g) ------> S(s) + O2(g) ; DH = 297kJ

H2SO4(l)------> H2(g) + S(s) + 2O2(g); DH = 814

kJ

H2(g) +1/2O2(g) -----> H2O(g); DH = -242 kJ

Page 6: Chemistry 102(001) Fall 2012

18-6CHEM 102, Spring 2012 LA TECH

SO2(g) ------> S(s) + O2(g); DH1 = 297 kJ - 1

H2(g) + S(s) + 2O2(g) ------> H2SO4(l); DH2 = -814 kJ - 2

H2O(g) ----->H2(g) + 1/2 O2(g) ; DH3 = +242 kJ - 3

______________________________________

SO2(g) + 1/2 O2(g) + H2O(g) -----> H2SO4(l); DH = ?

DH = DH1+ DH2+ DH3

DH = +297 - 814 + 242

DH = -275 kJ

Calculate DH for the reaction

Page 7: Chemistry 102(001) Fall 2012

18-7CHEM 102, Spring 2012 LA TECH

1) Calculate entropy change for the reaction:

2 C(s) + 1/2 O2(g) + 3 H2(g) --> C2H6O(l); ∆H = ? (ANS -277.1 kJ/mol)Given the following thermochemical equations:

C2H6O(l) + 3 O2(g) ---> 2 CO2(g) + 3 H2O(l); ∆H = - 1366.9 kJ/mol

1/2 O2(g) + H2(g) ----> H2O(l); ∆H = -285.8 kJ/mol

C(s) + O2(g) ----> CO2(g); ∆H = -393.3 kJ/mol

Page 8: Chemistry 102(001) Fall 2012

18-8CHEM 102, Spring 2012 LA TECH

Calculate Heat (Enthalpy) of Combustion: 2nd method C7H16(l) + 11 O2(g) -----> 7 CO2(g) + 8 H2O(l) ; DHo = ?

DHf (C7H16) = -198.8 kJ/mol

DHf (CO2) = -393.5 kJ/mol

DHf (H2O) = -285.9 kJ/mol

DHf O2(g) = 0 (zero)

What method?DHo = S n DHf

o products – S n DHfo reactants

n = stoichiometric coefficients2nd method

Page 9: Chemistry 102(001) Fall 2012

18-9CHEM 102, Spring 2012 LA TECH

DH = [Sn ( DHof) Products] - [Sn (DHo

f) reactants]

DH = [ 7(- 393.5 + 8 (- 285.9)] - [-198.8 + 11 (0)]

= [-2754.5 - 2287.2] - [-198.8]

= -5041.7 + 198.8

= -4842.9 kJ = -4843 kJ

Calculate DH for the reaction

Page 10: Chemistry 102(001) Fall 2012

18-10CHEM 102, Spring 2012 LA TECH

Why is DHof of elements is zero?

DHof, Heat formations are for compounds

Note: DHof of elements is zero

Page 11: Chemistry 102(001) Fall 2012

18-11CHEM 102, Spring 2012 LA TECH

2) Calculate entropy change given the

∆Hfo[SO2(g)] = -297 kJ/mole and

∆Hfo [SO3(g)] = -396 kJ/mole

2SO2 (g) + O2 (g) -----> 2 SO3(g); ∆H= ? ANS -198 kJ/mole)

Page 12: Chemistry 102(001) Fall 2012

18-12CHEM 102, Spring 2012 LA TECH

What is relation of DH of a reaction to covalent bond energy?

DH = S½bonds broken½- S ½bonds formed½

How do you calculate bond energy from DH?

How do you calculate DH from bond energy?

Page 13: Chemistry 102(001) Fall 2012

18-13CHEM 102, Spring 2012 LA TECH

Page 14: Chemistry 102(001) Fall 2012

18-14CHEM 102, Spring 2012 LA TECH

3) Use the table of bond energies to find the ∆Ho for the reaction:

H2(g) + Br2(g) 2 HBr(g);

H-H = 436 kJ, Br-Br= 193 kJ, H-Br = 366 kJ

Page 15: Chemistry 102(001) Fall 2012

18-15CHEM 102, Spring 2012 LA TECH

Example.

Calculate the DSo

rxn at 25 o

C for the following reaction.

CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g)

Substance So

(J/K.mol)

CH4 (g) 186.2

O2 (g) 205.03

CO2 (g) 213.64

H2O (g) 188.72

Calculation of standard entropy changes

Page 16: Chemistry 102(001) Fall 2012

18-16CHEM 102, Spring 2012 LA TECH

Calculate the DS for the following reactions using D So

= S D So (products) - S D S o(reactants)a) 2SO2 (g) + O2 (g) ------> 2SO 3(g) D So [SO2(g)] = 248 J/K mole ; D So [O2(g)] = 205 J/K mole; D So [SO3(g)] = 257 J/K mole

b) 2NH 3 (g) + 3N2O (g) --------> 4N2 (g) + 3 H2O (l) D So[ NH3(g)] = 193 J/K mole ; D So [N2(g)] = 192 J/K mole;

D So [N2O(g)] = 220 J/K mole; D S[ H2O(l)] = 70 J/K mole

Page 17: Chemistry 102(001) Fall 2012

18-17CHEM 102, Spring 2012 LA TECH

a) 2SO2 (g) + O2 (g------> 2SO 3(g) D So [SO2(g)] = 248 J/K mole ; D So [O2(g)] = 205 J/K mole; D So [SO3(g)] = 257 J/K mole

DSo 496 205 514

DSo = S DSo (products) - S DS o(reactants)

DSo = [514] - [496 + 205]

DSo = 514 - 701

DSo = -187 J/K mole

Page 18: Chemistry 102(001) Fall 2012

18-18CHEM 102, Spring 2012 LA TECH

2 H2(g) + O2(g) 2 H2O(liq)

DSo = 2 So (H2O) - [2 So (H2) + So (O2)]

DSo = 2 mol (69.9 J/K•mol) – [2 mol (130.7 J/K•mol) + 1 mol (205.3 J/K•mol)]

DSo = -326.9 J/K

There is a decrease in S because 3 mol of gas give 2 mol of liquid.

Calculating DS for a Reaction Based on Hess’s Law second method:

DSo

= So

(products) - So

(reactants)

Based on Hess’s Law second method:

DSo

= So

(products) - So

(reactants)

Page 19: Chemistry 102(001) Fall 2012

18-19CHEM 102, Spring 2012 LA TECH

4) Calculate the ∆S for the following reaction using:

a) 2SO2 (g) + O2 (g) ----> 2SO3(g)

So [SO2(g)] = 248 J/K mole ;

So [O2(g)] = 205 J/K mole;

So [SO3(g)] = 257 J/K mole

Page 20: Chemistry 102(001) Fall 2012

18-20CHEM 102, Spring 2012 LA TECH

The sign of DG indicates whether a reaction will occur spontaneously.

+ Not spontaneous

0 At equilibrium

- Spontaneous

The fact that the effect of DS will vary as a function of temperature is important.

This can result in changing the sign of DG.

Free energy, DG

Page 21: Chemistry 102(001) Fall 2012

18-21CHEM 102, Spring 2012 LA TECH

DGfo

Free energy change that results when one mole of a substance if formed from

its elements will all substances in their standard states.

DG values can then be calculated from:

DGo

= S npDGfo

products – S nrDGfo

reactants

Standard free energy of formation, DGfo

Page 22: Chemistry 102(001) Fall 2012

18-22CHEM 102, Spring 2012 LA TECH

Substance DGfo

Substance DGfo

C (diamond) 2.832 HBr (g) -53.43

CaO (s) -604.04 HF (g) -273.22

CaCO3 (s) -1128.84 HI (g) 1.30

C2H2 (g) 209 H2O (l) -237.18

C2H4 (g) 86.12 H2O (g) -228.59

C2H6 (g) -32.89 NaCl (s) -384.04

CH3OH (l) -166.3 O (g) 231.75

CH3OH (g) -161.9 SO2 (g) -300.19

CO (g) -137.27 SO3 (g) -371.08

All have units of kJ/mol and are for 25 oC

Standard free energy of formation

Page 23: Chemistry 102(001) Fall 2012

18-23CHEM 102, Spring 2012 LA TECH

How do you calculate DG

There are two ways to calculate DG

for chemical reactions.

i) DG = DH - TDS.

ii) DGo = S DGof (products) - S DG o

f (reactants)

Page 24: Chemistry 102(001) Fall 2012

18-24CHEM 102, Spring 2012 LA TECH

Calculating DGorxn

Calculating DGorxn

Method (a) : From tables of thermodynamic data we find

DHorxn = +25.7 kJ

DSorxn = +108.7 J/K or +0.1087 kJ/K

DGorxn = +25.7 kJ - (298 K)(+0.1087 J/K)

= -6.7 kJReaction is product-favored in spite of negative DHo

rxn.

Reaction is “entropy driven”

NH4NO3(s) + heat NH4NO3(aq)

Page 25: Chemistry 102(001) Fall 2012

18-25CHEM 102, Spring 2012 LA TECH

Calculating DGorxn

Calculating DGorxn

Combustion of carbon

C(graphite) + O2(g) --> CO2(g)

Method (b) :

DGorxn = DGf

o(CO2) - [DGfo(graph) + DGf

o(O2)]

DGorxn = -394.4 kJ - [ 0 + 0]

Note that free energy of formation of an element in its standard state is 0.

DGorxn = -394.4 kJ

Reaction is product-favored

DGo

rxn = S DGfo

(products) - S DGfo

(reactants)DGo

rxn = S DGfo

(products) - S DGfo

(reactants)

Page 26: Chemistry 102(001) Fall 2012

18-26CHEM 102, Spring 2012 LA TECH

We can calculate DGo

values from DHo and DSo

values at a constant temperature

and pressure.

Example.

Determine DGo

for the following reaction at 25o

C

Equation N2 (g) + 3H2 (g) 2NH3 (g)

DHfo

, kJ/mol 0.00 0.00 -46.11

So

, J/K.mol 191.50 130.68 192.3

Calculation of DGo

Page 27: Chemistry 102(001) Fall 2012

18-27CHEM 102, Spring 2012 LA TECH

Predict the spontaneity of the following processes from DH and DS at various temperatures.

a)DH = 30 kJ, DS = 6 kJ, T = 300 Kb)DH = 15 kJ,DS = -45 kJ,T = 200 K

Page 28: Chemistry 102(001) Fall 2012

18-28CHEM 102, Spring 2012 LA TECH

a) DH = 30 kJ DS = 6 kJ T = 300 K DG = DHsys-TDSsys or DG = DH - TDS.DH = 30 kJDS = 6 kJ T = 300 K DG = 30 kJ - (300 x 6 kJ) = 30 -1800 kJDG = -1770 kJ

b) DH = 15 kJ DS = -45 kJ T = 200 KDG = DHsys-TDSsys or DG = DH - TDS.DH = 15 kJDS = -45 kJ T = 200 K DG = 15 kJ -[200 (-45 kJ)] = 15 kJ -(-9000) kJDG = 15 + 9000 kJ = 9015 kJ

Page 29: Chemistry 102(001) Fall 2012

18-29CHEM 102, Spring 2012 LA TECH

5) Predict the spontaneity of the following processes from ∆H and ∆S at various temperatures.

a) ∆H = 30 kJ ∆S = 6 kJ T = 300 K

b) ∆H = 15 kJ ∆S = -45 kJ T = 200 K

Page 30: Chemistry 102(001) Fall 2012

18-30CHEM 102, Spring 2012 LA TECH

6) Calculate the ∆Go for the following chemical reactions using given ∆Ho values, ∆So calculated above and the equation ∆G = ∆H - T∆S.2SO2 (g) + O2 (g) > 2 SO 3(g) ; ∆Go=∆Ho = -198 kJ/mole; ∆So = -187 J/K mole; T = 298 K

∆Go

system ∆Ho

system ∆So

system T

Page 31: Chemistry 102(001) Fall 2012

18-31CHEM 102, Spring 2012 LA TECH

7) Which of the following condition applies to a particular chemical reaction, the value of ∆H° = 98.8 kJ and ∆S° = 141.5 J/K. This reaction is

∆G system ∆H system ∆S system T       

a) Negative always Negative (exothermic) Positive Yes

a) Negative at low T Positive at high T

Negative (exothermic)

Negative ∆G =- ,at low T; ∆G= +, at high T

a) Positive at low T Negative at high T

Positive (endothermic)

Positive ∆G = + ,at low T; ∆G= -, at high T

a) Positive always Positive (endothermic)

Negative∆G= +, at any T

Page 32: Chemistry 102(001) Fall 2012

18-32CHEM 102, Spring 2012 LA TECH

Effect of Temperature on Reaction Spontaneity

Page 33: Chemistry 102(001) Fall 2012

18-33CHEM 102, Spring 2012 LA TECH

DGo = DHo - TDSo

Page 34: Chemistry 102(001) Fall 2012

18-34CHEM 102, Spring 2012 LA TECH

8) At what temperature a particular chemical reaction, with the value of ∆H° = 98.8 kJ and ∆S° = 141.5 J/K becomes

a) Equilibrium:

b) Spontaneous:

Page 35: Chemistry 102(001) Fall 2012

18-35CHEM 102, Spring 2012 LA TECH

How do you calculate DG at different T and P

DG = DGo + RT ln Q

Q = reaction quotient

at equilibrium DG = 00 = DGo + RT ln K

DGo = - RT ln K

If you know DGo you could calculate K

Page 36: Chemistry 102(001) Fall 2012

18-36CHEM 102, Spring 2012 LA TECH

Concentrations, Free Energy, and the Equilibrium Constant

Equilibrium Constant and Free Energy

DG = DGo + RT ln Q

Q = reaction quotient

0 = DGo + RT ln Keq

DGo = - RT ln Keq

Page 37: Chemistry 102(001) Fall 2012

18-37CHEM 102, Spring 2012 LA TECH

9) Calculate the non standard ∆G for the following equilibrium reaction and predict the direction of the change using the equation:

∆G= ∆Go + RT ln Q

Given ∆Gfo[NH3(g)] = -17 kJ/mole

N2 (g) + 3H2(g) → 2NH3(g); ∆G=? at 300K, PN2= 300, PNH3 = 75 and PH2 = 300

Page 38: Chemistry 102(001) Fall 2012

18-38CHEM 102, Spring 2012 LA TECH

10) The Ka expression for the dissociation of acetic acid in water is based on the following equilibrium at 25°C:

HC2H3O2(l) + H2O ⇄ H+(aq) + C2H3O2 -(aq)

What is ∆G° if Ka=1.8 x 10-5?

Page 39: Chemistry 102(001) Fall 2012

18-39CHEM 102, Spring 2012 LA TECH

Calculate the DG value for the following reactions using: D Go = S D Go

f (products) - S D Gof (reactants)

N2O5 (g) + H2O(l) ------> 2 HNO3(l) ; DGo = ? D Gf

o[ N2O5 (g) ] = 134 kJ/mole ; D Gfo [H2O(g)] = -237 kJ/mole;

DGfo[ HNO3(l) ] = -81 kJ/mole

N2O5 (g) + H2O(l) ------> 2 HNO3(l) ; DGo = ?DGf

o 1 x 134 1 x (-237) 2 (-81) 134 -237 -162 DGo = DGo

f (products) - 3 DGof (reactants)

DGo = [-162] - [134 + (-237)]DGo = -162 + 103DGo = -59 kJ/mole The reaction have a negative DG and the reaction is spontaneous or will take place as written.

Page 40: Chemistry 102(001) Fall 2012

18-40CHEM 102, Spring 2012 LA TECH

Free Energy and Temperature

2 Fe2O3(s) + 3 C(s) ---> 4 Fe(s) + 3 CO2(g)

DHorxn = +467.9 kJ DSo

rxn = +560.3 J/K

DGorxn = +300.8 kJ

Reaction is reactant-favored at 298 K

At what T does DGorxn change from (+) to (-)?

Set DGorxn = 0 = DHo

rxn - TDSorxn

K 835.1 = kJ/K 0.5603

kJ 467.9 =

S

H = T

rxn

rxn

Page 41: Chemistry 102(001) Fall 2012

18-41CHEM 102, Spring 2012 LA TECH

Keq is related to reaction favorability and so to Gorxn.

The larger the (-) value of DGorxn the larger the value

of K.

DGorxn = - RT lnK

where R = 8.31 J/K•mol

Thermodynamics and Keq

Page 42: Chemistry 102(001) Fall 2012

18-42CHEM 102, Spring 2012 LA TECH

For gases, the equilibrium constant for a reaction can be related to DGo

by:

DGo

= -RT lnK

For our earlier example,

N2 (g) + 3H2 (g) 2NH3 (g)

At 25oC, DGo was -32.91 kJ so K would be:

ln K = =

ln K = 13.27; K = 5.8 x 105

DGo

-RT

-32.91 kJ

-(0.008315 kJ.K-1mol-1)(298.2K)

Free energy and equilibrium

Page 43: Chemistry 102(001) Fall 2012

18-43CHEM 102, Spring 2012 LA TECH

Calculate the D G for the following equilibrium reaction and predict the direction of the change using the equation: DG = D Go + RT ln Q ; [ D Gf

o[ NH3(g) ] = -17 kJ/mole

N2 (g) + 3 H2 (g) 2 NH3 (g); D G = ? at 300 K, PN2 = 300, PNH3 = 75 and PH2 = 300

N2 (g) + 3 H2 (g) 2 NH3 (g); DG = ?

Page 44: Chemistry 102(001) Fall 2012

18-44CHEM 102, Spring 2012 LA TECH

To calculate DGo

Using DGo = S DGof (products) - S DGo

f (reactants)

DGfo[ N2(g)] = 0 kJ/mole; DGf

o[ H2(g)] = 0

kJ/mole; DGfo[ NH3(g)] = -17 kJ/mole

Notice elements have DGfo = 0.00 similar to DHf

o

N2 (g) + 3 H2 (g) 2 NH3 (g); DG = ?DGf

o 0 0 2 x (-17) 0 0 -34 DGo = S DGo

f (products) - S DGof (reactants)

DGo = [-34] - [0 +0]DGo = -34DGo = -34 kJ/mole

Page 45: Chemistry 102(001) Fall 2012

18-45CHEM 102, Spring 2012 LA TECH

To calculate QEquilibrium expression for the reaction in terms of partial pressure:N2 (g) + 3 H2 (g) 2 NH3 (g) p2

NH3

K = _________ pN2 p3

H2

p2NH3

Q = _________ ; pN2 p3

H2

Q is when initial concentration is substituted into the equilibrium expression 752

Q = _________ ; p2NH3= 752; pN2 =300; p3

H2=3003

300 x 3003

Q = 6.94 x 10-7

Page 46: Chemistry 102(001) Fall 2012

18-46CHEM 102, Spring 2012 LA TECH

To calculate DGo

DG = DGo + RT ln Q

DGo= -34 kJ/mole

R = 8.314 J/K mole or 8.314 x 10-3kJ/Kmole

T = 300 K

Q= 6.94 x 10-7

DG = (-34 kJ/mole) + ( 8.314 x 10-3 kJ/K mole) (300 K) ( ln

6.94 x 10-7)

DG = -34 + 2.49 ln 6.94 x 10-7

DG = -34 + 2.49 x (-14.18)

DG = -34 -35.37

DG = -69.37 kJ/mole

Page 47: Chemistry 102(001) Fall 2012

18-47CHEM 102, Spring 2012 LA TECH

Calculate K (from G0)

N2O4 --->2 NO2 DGorxn = +4.8 kJ

DGorxn = +4800 J = - (8.31 J/K)(298 K) ln K

DGo

rxn = - RT lnK

1.94- = K)J/K)(298 (8.31

J 4800 - = ln K

K = 0.14

DGorxn > 0 : K < 1

DGorxn < 0 : K > 1

K = 0.14

DGorxn > 0 : K < 1

DGorxn < 0 : K > 1

Thermodynamics and Keq

Page 48: Chemistry 102(001) Fall 2012

18-48CHEM 102, Spring 2012 LA TECH

Concentrations, Free Energy, and the Equilibrium Constant

The Influence of Temperature on Vapor Pressure

H2O(l) => H2O(g)

Keq = pwater vapor

pwater vapor = Keq = e- G'/RT

Page 49: Chemistry 102(001) Fall 2012

18-49CHEM 102, Spring 2012 LA TECH

DG as a Function of theExtent of the Reaction

Page 50: Chemistry 102(001) Fall 2012

18-50CHEM 102, Spring 2012 LA TECH

DG as a Function of theExtent of the Reactionwhen there is Mixing

Page 51: Chemistry 102(001) Fall 2012

18-51CHEM 102, Spring 2012 LA TECH

Maximum WorkDG = wsystem = - wmax

(work done on the surroundings)

Page 52: Chemistry 102(001) Fall 2012

18-52CHEM 102, Spring 2012 LA TECH

Coupled ReactionsHow to do a reaction that is not

thermodynamically favorable?

Find a reaction that offset the (+) DG

Thermite Reaction

Fe2O3(s) => 2Fe(s) + 3/2O2(g)

2Al(s) + 3/2O2(g) Al2O3(s)

Page 53: Chemistry 102(001) Fall 2012

18-53CHEM 102, Spring 2012 LA TECH

ADP and ATP

Page 54: Chemistry 102(001) Fall 2012

18-54CHEM 102, Spring 2012 LA TECH

Acetyl Coenzyme A

Page 55: Chemistry 102(001) Fall 2012

18-55CHEM 102, Spring 2012 LA TECH

Gibbs Free Energy and Nutrients

Page 56: Chemistry 102(001) Fall 2012

18-56CHEM 102, Spring 2012 LA TECH

Photosynthesis: Harnessing Light Energy

Page 57: Chemistry 102(001) Fall 2012

18-57CHEM 102, Spring 2012 LA TECH

Using Electricity for reactions with (+) DG: Electrolysis

Non spontaneous reactions could be made to take place by coupling with energy source: another reaction or electric current

Electrolysis

2NaCl(l) => 2Na(s) + 2Cl2(g)