chemical monitoring and management ash morgan

19
1 HSC STUDY BUDDY ‘Much of the work of chemists involves monitoring the reactants and products of reactions and managing reaction conditions’ 1.1: outline the role of a chemist employed in a named industry or enterprise, identifying the branch of chemistry undertaken by the chemist and explaining a chemical principle that the chemist uses. 1.4: present information about the work of practicing scientists identifying the variety of chemical occupations, and a specific chemical occupation for detailed study. Analytical Chemist Works for Sydney Water Monitoring Services Environmental and water monitoring services to protect the environment and public health. Monitoring includes : monitoring all influent into wastewater, stormwater, effluent from those systems and the measure of impacts on receiving environments. Water monitoring of raw water, treated water and recycled water Chemists role : routine monitoring for hundreds of potential contaminant in the water, eg. Carbon compounds, viruses, bacteria, microorganisms. Equipment: AAS, gas chromatography, emission and mass spectroscopy precise/ sensitive readings of level of contaminants. Results are reported to a senior analytical chemist, who monitors the water as a matter of urgency, and informs the government/ Environmental Protection authority if contamination is harmful. Polymer Chemist Work in industry manufacturing synthetic fibres, packaging materials, agricultural chemicals, rubber, biodegradable polymers. They produce new products/ materials. Synthesise/ study physical and chemical properties of polymers. They also must ensure that the product meets the customers’ requirements. Use analytical methods such as: Xray diffraction, mass spectroscopy (chemical/ structural characteristics), strength/ hardness tests, reactivity with acids/ bases, biocompatibility, mp bp. Case study: use of gas liquid chromatography to test for volatile material. Chemical principle used= each volatile substance has a unique retention time in the GLC column 1.2: identify the need for collaboration between chemists as they collect and analyse data Different types of chemists have specialised skills and expertise, and can bring different information into problem solving/ understanding. Increases the accuracy/ validity of data as chemists share their outcomes Chemists keep up to date with new developments in the field via communicating 1.3: describe an example of a chemical reaction such as combustion, where reactants form different products under different conditions, and thus would need monitoring Reasons for Monitoring and Management: Efficiency Minimal pollution, few pollutants produced Limited damage to the environment/ society’s health Maximise the amount of desired product/ optimum yield is achieved Reactions are energy efficient Note: In combustion reactions, the process must be monitored to ensure that combustion is COMPLETE, as this releases the largest amount of energy, produces CO2 instead of CO (toxic). If not monitored a number of results could occur COMPLETE: 2C8H18(l) + 25O2(g) 16CO2(g) + 18H2O(l) INCOMPLETE: o 2C8H18(l) + 17O2(g) 16CO (g) + 18H2O(l) o 2C8H18(l) + 9O2(g) 16C(s) + 18H2O(l) [yellow flame + soot]

Upload: tommy

Post on 09-Apr-2016

227 views

Category:

Documents


0 download

DESCRIPTION

Chem

TRANSCRIPT

Page 1: Chemical Monitoring and Management Ash Morgan

 1   HSC  STUDY  BUDDY  

‘Much  of  the  work  of  chemists  involves  monitoring  the  reactants  and  products  of  reactions  and  managing  reaction  conditions’  

1.1:  outline  the  role  of  a  chemist  employed  in  a  named  industry  or  enterprise,  identifying  the  branch  of  chemistry  undertaken  by  the  chemist  and  explaining  a  chemical  principle  that  the  chemist  uses.    1.4:  present  information  about  the  work  of  practicing  scientists  identifying  the  variety  of  chemical  occupations,  and  a  specific  chemical  occupation  for  detailed  study.  Analytical  Chemist    Works  for  Sydney  Water  Monitoring  Services  

-­‐ Environmental  and  water  monitoring  services  to  protect  the  environment  and  public  health.  -­‐ Monitoring  includes:  monitoring  all  influent  into  wastewater,  stormwater,  effluent  from  

those  systems  and  the  measure  of  impacts  on  receiving  environments.  -­‐ Water  monitoring  of  raw  water,  treated  water  and  recycled  water  -­‐ Chemists  role:  routine  monitoring  for  hundreds  of  potential  contaminant  in  the  water,  eg.  

Carbon  compounds,  viruses,  bacteria,  micro-­‐organisms.    -­‐ Equipment:  AAS,  gas  chromatography,  emission  and  mass  spectroscopy    precise/  sensitive  

readings  of  level  of  contaminants.  -­‐ Results  are  reported  to  a  senior  analytical  chemist,  who  monitors  the  water  as  a  matter  of  

urgency,  and  informs  the  government/  Environmental  Protection  authority  if  contamination  is  harmful.  

Polymer  Chemist  -­‐ Work  in  industry  manufacturing  synthetic  fibres,  packaging  materials,  agricultural  

chemicals,  rubber,  biodegradable  polymers.    -­‐ They  produce  new  products/  materials.  Synthesise/  study  physical  and  chemical  properties  

of  polymers.  They  also  must  ensure  that  the  product  meets  the  customers’  requirements.    -­‐ Use  analytical  methods  such  as:  X-­‐ray  diffraction,  mass  spectroscopy  (chemical/  structural  

characteristics),  strength/  hardness  tests,  reactivity  with  acids/  bases,  biocompatibility,  mp  bp.  

-­‐ Case  study:  use  of  gas  liquid  chromatography  to  test  for  volatile  material.  Chemical  principle  used=  each  volatile  substance  has  a  unique  retention  time  in  the  GLC  column  

 1.2:  identify  the  need  for  collaboration  between  chemists  as  they  collect  and  analyse  data  

-­‐ Different  types  of  chemists  have  specialised  skills  and  expertise,  and  can  bring  different  information  into  problem  solving/  understanding.    

-­‐ Increases  the  accuracy/  validity  of  data  as  chemists  share  their  outcomes  -­‐ Chemists  keep  up  to  date  with  new  developments  in  the  field  via  communicating    

 1.3:  describe  an  example  of  a  chemical  reaction  such  as  combustion,  where  reactants  form  different  products  under  different  conditions,  and  thus  would  need  monitoring  Reasons  for  Monitoring  and  Management:  

-­‐ Efficiency  -­‐ Minimal  pollution,  few  pollutants  produced  -­‐ Limited  damage  to  the  environment/  society’s  health  -­‐ Maximise  the  amount  of  desired  product/  optimum  yield  is  achieved  -­‐ Reactions  are  energy  efficient  

Note:  In  combustion  reactions,  the  process  must  be  monitored  to  ensure  that  combustion  is  COMPLETE,  as  this  releases  the  largest  amount  of  energy,  produces  CO2  instead  of  CO  (toxic).  If  not  monitored  a  number  of  results  could  occur  

• COMPLETE:  2C8H18(l)  +  25O2(g)    16CO2(g)  +  18H2O(l)  • INCOMPLETE:    

o 2C8H18(l)  +  17O2(g)    16CO  (g)  +  18H2O(l)  o 2C8H18(l)  +  9O2(g)    16C(s)  +  18H2O(l)  [yellow  flame  +  soot]  

Page 2: Chemical Monitoring and Management Ash Morgan

 2   HSC  STUDY  BUDDY  

o 2C8H18(l)  +  13O2(g)    8CO(g)  +  8C(s)  +  18H2O(l)  [yellow  +  blue  flame]  • Incomplete  combustion=  a  problem  for  the  environment,  as  it  produces  CO  and  C.    

o CO=  toxic  gas,  bonds  with  haemoglobin,  therefore  starving  the  body  of  oxygen.    o C=  doesn’t  look  appealing,  when  inhaled  cause  respiratory  problems  

• Incomplete  combustion  produces  less  energy  than  complete,  therefore  it  isn’t  as  energy  efficient.  Therefore  it  needs  to  be  monitored!!  

 Monitoring  and  Management  of:  Dehydration/  Hydration  of  Ethylene/  Ethanol:  

-­‐ C2H4(g)  +  H2O(l)    C2H5OH(aq)  EXO  -­‐ To  achieve  highest  yield  of  desired  product:  

o Increase  yield=  concentration/  amount  of  reactants  need  to  be  increased  o Concentrated  H2SO4  is  used  as  a  catalyst  to  speed  up  the  reaction,  creating  a  more  

efficient  process  o Need  to  manage:  temperature,  concentration,  pressure  and  catalyst  depending  on  

which  reaction  is  used.     Eg.  To  move  reaction  forward  (hydration),  decrease  temp  slightly,  increase  

pressure,  increase  concentration,  use  a  catalyst.  LINK  TO  LE  CHATELIERS  PRINCIPLE  

Esterification  -­‐ Any  example!  Eg.  CH3COOH9G)  +  CH3OH(g)    CH3CH2COOCH3(g)  +  H2O(l)  ENDO  -­‐ To  achieve  maximum  yield  

o Control  heat  to  speed  up  reaction.  Heat  is  required  to  change  reactants  to  gases  in  order  to  react  

o Increase  concentration  of  reactants  o Catalyst  is  required  to  absorb  water  and  force  reaction  forwards  o Higher  temp=  greater  yield  

 ‘Chemical  processes  in  industry  require  monitoring  and  management  to  maximise  production’  2.1:  identify  and  describe  the  industrial  uses  of  ammonia  -­‐  Fertilisers  (ammonium  sulphate,  ammonium  nitrate  and  urea)  -­‐  Plastics  (rayon,  acrylics,  nylon)  -­‐  Nitric  acid  (can  be  used  to  make  explosives  TNT  -­‐  Dyes  -­‐  House  cleaners  -­‐  Detergents  Therefore  it  is  widely  used  in  industry    2.2:  identify  that  ammonia  can  be  synthesised  from  its  component  gases  nitrogen  and  hydrogen  

      Magnetite  (Fe3O4)  2.3:  describe  that  synthesis  of  ammonia  occurs  as  a  reversible  reaction  that  will  reach  equilibrium  2.4:    identify  the  reaction  of  hydrogen  with  nitrogen  is  exothermic    

 Magnetite  (Fe3O4)  

The  Haber  Process  (producing  ammonia  through  the  use  of  a  catalyst-­‐  iron)  With  metal  catalysts,  reactant  particles  collide  with  the  surface  of  the  metal,  and  some  may  become  attached.  These  molecular  rearrangements  make  it  more  likely  that  following  collisions  will  be  

successful.  A  catalyst  such  as  iron  is  used  to  speed  up  reactions  by  lowering  the  activation  energy,  so  that  bonds  can  be  broken.    

Page 3: Chemical Monitoring and Management Ash Morgan

 3   HSC  STUDY  BUDDY  

 The  Process:  This  process  combines  nitrogen  (from  air),  with  hydrogen  (from  natural  gas-­‐  methane),  to  form  a  yield  of  approximately  (10-­‐20%)  ammonia  under  conditions  of  optimum  temperature  and  pressure.  This  is  a  reversible  (equilibrium)  and  exothermic  reaction.  A  mixture  of  nitrogen  and  hydrogen  are  put  into  a  reactor  in  a  ratio  of  1:3,  this  means  that  there  is  1  molecule  of  N  to  3  molecules  of  H.  The  temperature  in  the  reactor  is  raised  to  400-­‐450˚  to  speed  up  the  reaction  in  order  to  produce  higher  proportions  of  ammonia  in  a  shorter  period  of  time.  The  pressure  is  also  raised  to  200  atm.  This  brings  the  molecules  closer  together,  and  increases  the  chances  of  molecules  hitting  and  sticking  to  the  iron  where  they  can  react  (increased  rate  of  reaction).  The  hydrogen  and  nitrogen  pass  over  beds  of  iron  oxide  (which  is  prepared  by  reducing  magnetite  Fe3O4),  where  some  are  bound  to  the  surface  of  the  iron  as  separate  atoms.  The  broken  bonds  are  then  reformed  into  NH3.  The  temperature  is  then  cooled  so  that  the  ammonia  can  be  liquefied,  and  leftover  gases  are  reused.  As  a  result  this  reaction  releases  92.4  kJ/mol  of  energy  at  298K  (25˚C).    

N2(g) nitrogen

+ 3H2(g) hydrogen

heat, pressure, catalyst <------------------------------------->

2NH3(g) ammonia

Optimum  Temp:  400-­‐500˚C  Optimum  pressure:  200  atm  Importance  of  process:  Ammonia  is  difficult  to  produce  on  an  industrial  scale,  but  is  extremely  important  as  it  generates  fertilizer  that  is  responsible  for  sustaining  1/3  of  the  Earth’s  population.  Using  a  catalyst  means  that  production  is  quicker,  easier  and  cheaper.      2.5:  explain  why  the  rate  of  reaction  is  increased  by  higher  temperatures  

-­‐ Increasing  the  temperature  speeds  up  the  reaction  by  giving  the  particles  greater  kinetic  energy,  so  they  move  faster  and  collide  with  greater  energy.  Therefore  lowering  the  activation  energy.  

-­‐  however  if  the  temp  is  too  high  the  catalyst  will  be  damaged    2.6:  explain  why  the  yield  of  product  in  the  Haber  process  is  reduced  at  higher  temperatures  using  Le  Chatelier’s  principle  Le  chatelier’s  principle:  if  a  system  in  equilibrium  is  disturbed,  the  system  will  adjust  itself  to  minimise  the  disturbance  

-­‐ Due  to  the  reaction  being  exothermic,  if  heat  is  increased  the  reaction  will  be  forced  to  the  left  (reverse),  therefore  favouring  the  products  side  and  decreasing  the  yield  produced.  Therefore  increased  temp=  decreased  yield  

 2.7:  explain  why  the  Haber  process  is  based  on  a  delicate  balancing  act  involving  reaction  energy,  reaction  rate  and  equilibrium  

-­‐ The  Haber  process  needs  to  be  monitored/  managed  in  order  to  promote  the  most  efficient  process  that  will  produce  the  most  yield  on  an  industrial  scale,  with  limited  resources  

-­‐ To  create  an  efficient  process,  heat  can  be  used  to  speed  up  the  reaction  by  increasing  the  kinetic  energy  and  in  turn  particle  collisions.  This  in  turn  would  increase  the  reaction  rate  

-­‐ However,  the  Haber  process  is  an  exothermic  reaction.  If  heat  is  increased,  the  reaction  will  be  forced  in  reverse,  favouring  a  higher  proportion  of  reactants  

-­‐ Therefore  increasing  the  temp  may  help  to  increase  the  rate  of  reaction,  however  due  to  equilibrium,  it  doesn’t  increase  the  yield.    

Page 4: Chemical Monitoring and Management Ash Morgan

 4   HSC  STUDY  BUDDY  

-­‐ In  order  to  create  an  efficient  industrial  process,  whereby  the  reaction  proceeds  at  a  fast  rate,  and  a  high  yield  is  produced,  the  process  must  be  monitored,  and  a  number  of  factors  balanced.  

-­‐ COMPROMISE:  o  use  of  a  catalyst,    o high  pressure  250atm,    o medium  temp  500  degrees  

 2.8:  explain  that  the  use  of  a  catalyst  will  lower  the  reaction  temperature  required  and  identify  the  catalysts  used  in  the  Haber  process  Catalyst  in  Haber  process=  magnetite  (Fe3O4)  or  Osmium  Catalysts  lower  the  activation  energy  and  in  turn  increase  the  reaction  rate.  It  allows  the  N  and  H  bonds  to  be  more  easily  broken,  allowing  it  to  occur  at  lower  temps  and  thus  favours  the  forward  reaction.      2.9:  Analyse  the  impact  of  increased  pressure  on  the  system  involved  in  the  Haber  process  

• For  every  4  moles,  2  moles  of  NH3  are  produced  • Increasing  pressure  forces  the  reactants  into  a  smaller  volume,  pushing  the  moles  closer  

together  and  increasing  the  chance  of  collisions  • Therefore  increasing  pressure  will  favour  the  forward  reaction,  as  a  result  of  the  equilibrium,  

and  so  will  increase  the  yield  • This  will  also  increase  the  reaction  rate,  as  more  collisions  will  be  occurring  at  a  faster  rate.    • However  increasing  pressure  is  an  expensive  industrial  process.    

 2.10:  explain  why  monitoring  of  the  reaction  vessel  used  in  the  Haber  process  is  crucial  and  discuss  the  monitoring  required    

-­‐ The  Haber  process  needs  to  be  constantly  monitored  and  managed  for  effective  and  optimal  production  of  ammonia.  If  it  isn’t  monitored,  a  change  in  the  reaction  could  result  in  decreased  yield  or  a  slow  reaction  which  in  turn  will  affect  productivity  and  cost  the  firm  money  and  time  

-­‐ Monitoring:  o Feedstock  (N  +H)  must  be  pure,  otherwise  it  will  impact  on  yield  and  ruin  catalyst  o Ratio  of  N:H  (1:3),  avoid  build  up  of  one  decrease  production  o Temp  +  Pressure  optimum  production.  Too  high  temp=  damage  catalyst.  Too  high  

pressure=  damage  vessel  o Build  up  of  gases  in  plant  o Remove  ammonia,  ensure  no  impurities  o Structural  integrity  of  vessel  

 2.11:  describe  the  conditions  under  which  Haber  developed  the  industrial  synthesis  of  ammonia,  and  evaluate  its  significance  at  that  time  in  world  history      

-­‐ His  first  experiments  produced  small  yields  of  ammonia,  when  nitrogen  and  hydrogen  were  combined  at  1000˚C  over  an  iron  catalyst  

-­‐ He  tested  numerous  catalysts,  osmium  was  the  best  but  was  expensive  -­‐ Further  experiments  showed  that  pressure  needed  to  be  raised,  but  temp  lowered  to  

increase  yield.    -­‐ He  could  synthesise  100g  of  ammonia  -­‐ Carl  Bosch  modified  this  process  to  an  industrial  level    (500˚,  200atm)  -­‐ Significance  of  process  at  the  time:  production  of  fertilisers  needed  for  agriculture,  and  to  

sustain  the  growing  population.  Used  for  gunpowder  and  explosives  for  WWI,  sustained  troops.    It  prolonged  the  war  by  assisting  Germany’s  efforts.    

Page 5: Chemical Monitoring and Management Ash Morgan

 5   HSC  STUDY  BUDDY  

‘Manufactured  products,  including  food,  drugs  and  household  chemicals,  are  analysed  to  determine  or  ensure  their  chemical  composition’  

3.1:  deduce  the  ions  present  in  a  sample  from  the  results  of  tests  3.3:  first  hand  investigation  to  test/  identify  phosphate,  sulphate,  carbonate,  chloride,  barium,  calcium,  lead,  copper,  iron  Anions  (negative)                                                        

 

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  CO3  2-­‐  +  2H+    CO2  +  H2O  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  2PO4  3-­‐  +  3Ba2+    Ba3(PO4)2  (s)  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  SO4  2-­‐  +  Ba  2+    BaSO4  (s)  

 

Cl-­‐  +  Ag+    AgCl  (s)  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

Page 6: Chemical Monitoring and Management Ash Morgan

 6   HSC  STUDY  BUDDY  

Cations  (positive)                                                                                                      

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  Pb  2+  +  2Cl-­‐    PbCl2  (s)  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Ba  2+  +  SO4  2-­‐    BaSO4  (s)  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐Ca2+  +  SO4  2-­‐    CaSO4  (s)  

Cu  2+  +  2OH-­‐    Cu(OH)s  (s)-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

Fe  2+  +  2OH-­‐    Fe(OH)2  (s)-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

Fe  3+  +  3OH-­‐    Fe(OH)23  (s)-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  

Page 7: Chemical Monitoring and Management Ash Morgan

 7   HSC  STUDY  BUDDY  

3.2:  describe  the  use  of  atomic  absorption  spectroscopy  (AAS)  in  detecting  concentrations  of  metal  ions  in  solutions  and  assess  its  impact  on  scientific  understanding  of  the  effects  of  trace  elements  

                     

• This  technique  is  very  sensitive  and  can  measure  in  ppm  Uses:  test  purity  of  mined  samples,  monitor  pollution,  detect  harmful  levels,  quality  control  Steps:  

1. A  sample  thought  to  contain  a  metal  atom  is  heated  in  a  flame  2. Species  in  this  sample  are  converted  to  gases  in  the  flame  3. If  light  of  a  frequency  known  to  be  absorbed  by  this  chemical  passed  from  the  light  source  

through  the  heated  sample,  the  element  in  the  sample  will  absorb  some  of  the  light  4. The  proportion  of  light  energy  absorbed  by  the  sample  (absorbance)  is  proportional  to  the  

concentration  of  the  substance  How  AAS  can  be  used  to  determine  which  metal  ions  are  in  a  solution  and  their  concentration  

-­‐ A  separate  light  source  must  be  used  for  each  metal  ion  to  be  tested  (each  metal  ion  has  its  own  unique  emission  and  absorption  spectrum)  

-­‐ A  frequency  which  is  characteristic  and  unique  for  the  element  to  be  tested  must  pass  through  the  heated  sample,  and  the  proportion  of  light  absorbed  can  be  measured  

-­‐ Concentration  is  determined  by  comparing  the  absorbance  of  the  sample  with  absorbance  of  standard  solutions  of  known  concentrations.    

Trace  Elements  -­‐ Elements  required  by  living  things  in  very  small  quantities  (1-­‐100ppm)  -­‐ In  humans:  

o Zinc  (needed  to  help  enzymes  function),  cobalt,  nickel,  iodine,  selenium  -­‐ In  plants:  

o Manganese,  copper,  boron,  zinc  -­‐ Selenium:  in  animals  (protect  against  harmful  exposure  to  mercury,  regulate  male  

hormones,  support  prostategland,  enhances  immune  function,  anti-­‐cancer  nutrient  -­‐ Zinc:  Animals  (metabolism  of  amino  acids  and  in  energy  production  (homeostasis),  immune  

response,  oxidative  stress).  Plants  (regulates  plant  growth  hormones)  Impact  of  AAS  on  scientific  understanding  of  the  effects  of  trace  elements  

-­‐ Before  AAS,  scientists  used  techniques  such  as  gravimetric/  volumetric  analysis,  which  was  an  invalid  method  as  it  cannot  measure  very  small  concentrations  (ppm)  of  trace  elements.  Therefore  it  wasn’t  accurate.    

-­‐ Assessment:  The  development  of  AAS  has  allowed  scientists  to  understand  the  effects  of  trace  elements,  has  furthered  our  understanding,  and  is  more  accurate  and  valid.  Allowed  the  impact  of  deficiencies  in  metal  ions  to  be  investigated  and  allowed  the  testing  of  foods  to  determine  the  levels  of  essential  vitamins/  minerals.  

     

Page 8: Chemical Monitoring and Management Ash Morgan

 8   HSC  STUDY  BUDDY  

3.4:  describe  and  explain  evidence  for  the  need  to  monitor  levels  of  one  of  the  above  ions  in  substances  used  in  society  

-­‐ It  is  important  to  monitor  levels  of  ions  as  some  in  high  concentrations  are  harmful  to  humans.  

-­‐ Lead  ions-­‐  cations  o Lead  is  a  poison  o Effects:  retard  intellectual  development  in  young  children,  brain/  neurological  

disorders  o Lead  was  originally  used  in  petrol  and  paint.    o Due  to  their  original  use,  there  is  still  some  lead  compounds  in  the  soil,  around  

industrial  sites,  paint  factories  etc.  lead  compounds  in  petrol  were  released  into  the  atmosphere  

o AAS  is  used  to  monitor  soil  samples,  and  is  more  efficient  and  sensitive  then  previous  techniques.  Pollution  and  manufacturing  of  goods  containing  lead  is  illegal,  so  it  is  important  that  monitoring  of  lead  ion  concentrations  are  conducted.    

-­‐ Phosphate  ions-­‐  anions  o Found  in  waterways  (naturally)  o Essential  for  normal  aquatic  growth.  o If  concentration  becomes  too  high=  algal  bloom  make  water  unusable,  

degradation  of  lake.  Loss  of  oxygen  results  in  death  of  fish  etc,  build  up  of  sediments.  EUTROPHICATION  

o Phosphate  ions  are  derived  from  sewage,  fertilisers,  detergents.    o Monitoring  is  required  as  a  predictor  of  Eutrophication.  o Colorimetric  method  is  used  (very  sensitive),  molybdenum  blue  test,  

spectrophotometer.      3.5:  first  hand  investigation  to  measure  sulphate  content  of  lawn  fertiliser.  Explain  the  chemistry  involved.    Ba  2+(aq)  +  SO4  2-­‐  (aq)    BaSO4  (aq)  See  separate  sheet!  3.6:  evaluate  the  reliability  of  the  results  of  the  above  investigation  and  propose  solutions  to  problems  encountered  in  the  procedure  

-­‐ Heating  will  coagulate  the  precipitate,  ensuring  it  is  collected  -­‐ Use  samples  of  fertiliser  with  a  greater  mass  will  lessen  %  error  in  accuracy  -­‐ Quantitative  filter  paper  has  very  fine  pores,  no  solid  will  escape  -­‐ Improve  reliability  by  repeating  or  using  a  glass  filter.    -­‐ Experiment  assumes  that  ppt  is  only  barium  sulphate,  without  any  impurities  like  ions/  

water    3.7:  interpret  secondary  data  from  AAS  measurements  and  evaluate  the  effectiveness  of  this  in  pollution  control  See  bronwyns  book!  And  sheet  

-­‐ Detect  presence  of  heavy  metals  and  concentrations  eg.  mercury,  lead,  cadmium,  arsenic  -­‐ EPA  monitors  and  evaluates  levels  protects  environment  by  controlling  and  minimising  

pollution/  waste.    -­‐ AAS  is  quantitative,  and  can  determine  concentrations.  Without  it  pollution  would  go  

undetected.    -­‐ However  it  has  limitations,  it  tests  for  a  range  of  metals  but  must  be  done  separately.    

   

Page 9: Chemical Monitoring and Management Ash Morgan

 9   HSC  STUDY  BUDDY  

‘Human  activity  has  caused  changes  in  the  composition  and  the  structure  of  the  atmosphere.  Chemists  monitor  these  changes  so  that  further  damage  can  be  limited’  

4.1:  describe  the  composition  and  layered  structure  of  the  atmosphere  

   Layers  of  the  Earth  This  Module  Sucks  Terribly                  4.2:  identify  the  main  pollutants  found  in  the  lower  atmosphere  and  their  sources  

                                                 

Page 10: Chemical Monitoring and Management Ash Morgan

 10   HSC  STUDY  BUDDY  

4.3:  describe  ozone  as  a  molecule  able  to  act  both  as  an  upper  atmosphere  UV  radiation  shield  and  a  lower  atmosphere  pollutant  

         

Why  does  concentration  of  gases  (oxygen  and  nitrogen)  decrease  as  altitude  increases:  force  of  gravity  pulls  gases  towards  the  earth’s  surface,  therefore  concentration  decreases  as  altitude  increases    Why  is  there  more  ozone  in  the  stratosphere  than  there  is  in  the  troposphere?  

-­‐ Ozone  is  made  when  oxygen  is  broken  into  free  radials  using  energy  from  Uv  light.  Intensity  of  short  wave  length  UV  light,  needed  to  break  up  O  molecules  is  greater  in  the  stratosphere  than  in  the  troposphere.  

-­‐ O2  (g)  2O.  (g)            O2  (g)  +  O.  (g)    O3  (g)    Ozone  concentration  is  low/  stable  in  the  troposphere.  Why  is  this  so?  

UV 1. O2 (g) → 2O• (g) 2. O2 (g) + O• (g) → O3 (g)  3. O3 (g) → O2 (g) + O• (g) 4. 2O• (g) → O2 (g)

The overall equation: 1. 2O3 3O2    -­‐ Oxygen  free  radicals  react  with  O  to  form  ozone  -­‐ Ozone  decomposes  to  form  O  -­‐ Reverse  reactions  keep  concentration  of  ozone  fairly  stable  in  the  stratosphere,  unless  

pollution  caused  by  high  temp  combustion  to  form  NO2  increases  -­‐ O  free  radicals  are  formed  by  Uv  or  O  or  NO2  

Presence  of  pollutants  eg.  NO2  in  lower  atmosphere  promotes  the  formation  of  ozone.    UV  

NO2  (g)    NO  (g)  +  O•  (g)  O2  (g)  +  O•  (g)  O3  (g)    Ozone  in  troposphere=  BAD  Ozone  in  stratosphere=  GOOD  

-­‐ In  troposphere:  (electrical  energy  from  storms  provide  energy  for  decomposing  O2).  Ozone  is  poisonous,  causing  the  breakdown  of  biological  molecules  due  to  ozone  reacting  with  carbon  compounds.  In  turn  causing  respiratory  problems,  fatigue,  lowers  resistance  to  infection,  disrupts  biochemical  reactions  (strong  oxidising  agent).  Therefore  it  is  a  pollutant  

-­‐ In  stratosphere:  (provides  energy  to  decompose  O2  ozone),  ozone  protects  the  earth  from  radiation  by  absorbing  high  energy  UV,  allowing  low  energy  UV  to  reach  earth.  High  energy  UV,  could  cause  cancer  (skin).  Want  to  trap  UVB  and  UVC  

 4.4:  describe  the  formation  of  a  coordinate  covalent  bond  Coordinate  covalent  bond:  formed  by  non-­‐metal  atoms  sharing  electrons,  when  one  atom  (donor  atom)  contributes  both  electrons  into  the  pair  of  electrons  holding  the  atom  together  

-­‐ Every  acid-­‐base  reaction  involves  the  formation  of  a  co-­‐ordinate  covalent  bond,  since  hydrogen  ion  does  not  contribute  any  electrons  when  it  bonds  to  the  non-­‐bonding  pair  on  the  base.    

Page 11: Chemical Monitoring and Management Ash Morgan

 11   HSC  STUDY  BUDDY  

4.5:  demonstrate  the  formation  of  coordinate  covalent  bonds  using  Lewis  electron  dot  structures  Hydronium  ion          Ammonium  ion          

 Ozone      

 Carbon  monoxide        

 4.6:  compare  the  properties  of  the  oxygen  allotropes  O2  and  O3  and  account  for  them  on  the  basis  of  molecular  structure  and  bonding  Allotrope:  different  forms  of  the  same  element.  They  have  the  same  atoms,  but  different  bonding  

                             

Differences  in  physical  properties:  ozone  is  bigger,  heavier,  with  more  electrons.  Therefore  greater  molecular  interaction.  Ozone  has  stronger  dispersion  forces  therefore  higher  mp/bp.  Greater  mass=  greater  density.      4.7:  compare  the  properties  of  the  gaseous  forms  of  oxygen  and  the  oxygen  free  radical  Oxygen  molecule:  stable  form  of  the  element.  All  electrons  are  paired  and  stable.    Oxygen  free  radical:  can  be  formed  when  UV  splits  oxygen.  It  is  very  reactive,  unstable,  2  unpaired  electrons.  They  want  to  from  covalent  bonds  therefore  doesn’t  stay  as  a  free  radical  for  long.  Combines  to  form  ozone,  NO  NO2.          

Page 12: Chemical Monitoring and Management Ash Morgan

 12   HSC  STUDY  BUDDY  

4.8:  identify  the  origins  of  CFCs,  and  halons  in  the  atmosphere  Haloalkanes:  an  alkane  in  which  one  or  more  H  atoms  are  substituted  by  halogen  atoms.    Chlorofluorocarbons  (CFCs):  Haloalkanes,  when  all  Hs  are  replaced  by  F  or  Cl.  Compounds  containing  only  Cl,  F  or  C.  

-­‐ Features  :  Odourless,  non-­‐toxic,  non-­‐flammable,  inert  substances  -­‐ Origin  :  developed  as  a  replacement  for  ammonia  in  refrigeration,  used  as  aerosol  spray  

propellants,  foaming  agents.    -­‐ Example:  CCl3F  (trichlorofluoromethane),  CCl2F2  (dichlorodifluoromethane)  

Halons:  haloalkanes  where  all  Hs  are  replaced  by  Cl,  F  or  Br  (Carbon,  bromine  and  other  halogens)  -­‐ Features:  dense,  non-­‐flammable  liquids  -­‐ Origin:  fire  extinguishers  -­‐ Example:  CBrClF2  (bromochlorodifluoromethane)  or  CBrF3  

CFCs  are  no  longer  produced.  However  CFCs  used  in  air  conditions  prior  to  1987  still  release  CFCs.      4.9:  identify  and  name  examples  of  isomers  of  haloalkanes  up  to  8  carbons  long  

                                             

4.10:  discuss  the  problems  associated  with  the  use  of  CFCs  and  assess  the  effectiveness  of  steps  taken  to  alleviate  these  problems  

-­‐ In  the  troposphere,  CFCs  are  inert,  non-­‐toxic,  insoluble.  They  are  dense  and  slowly  diffuse  into  the  stratosphere  stability  causes  them  to  persist  for  decades  

-­‐ In  Stratosphere,  problems=  CFCs  are  broken  down  by  UV  to  produce  Chlorine  free  radicals,  which  react  with  ozone  and  remove  it  from  the  atmosphere.  Depletion  of  ozone=  increased  levels  of  UV  

-­‐ Compounds  which  break  down  in  troposphere  (HCFCs)  or  have  no  Cl  (CFCs)  can  be  used  as  a  replacement  

       

Page 13: Chemical Monitoring and Management Ash Morgan

 13   HSC  STUDY  BUDDY  

4.11:  analyse  information  that  indicates  changes  in  atmospheric  ozone  concentrations,  describe  the  changes  observed  and  explain  how  this  information  was  obtained  

-­‐ graph  shows  a  decrease  in  levels  of  CFCs,  and  has  begun  to  stabilize  

-­‐ level  of  ozone  concentration  was  obtained  by  instruments  in  satellites  such  as  UV  spectrophotometers  

o these  measure  the  intensity  of  light  received  at  a  wavelength  at  which  ozone  absorbs  and  then  at  wavelengths  either  side  of  this,  that  ozone  doesn’t  absorb  -­‐-­‐.  Comparison  gives  total  concentration  

o measured  in  Dobson  units  o balloons  can  be  used  to  carry  

instruments  into  the  atmosphere    4.12:  write  equations  to  show  the  reactions  involving  CFCs  and  ozone  to  demonstrate  the  removal  of  ozone  from  the  atmosphere  

UV 1. CCl3F → Cl• + CCl2F•

2. Cl• + O3 → ClO• + O2 (breaks down ozone)

3. ClO• + O• → Cl• + O2  Steps  2  and  3  can  continue  again  and  again  to  form  a  chain  reaction  The  net  result  of  these  last  2  reactions  is  the  conversion  of  O3    O2    4.13:  model  isomers  of  haloalkanes  using  simulations,  molecular  model  kits  or  pictorial  representations    4.14:  identify  alternative  chemicals  used  to  replace  CFCs  and  evaluate  the  effectiveness  of  their  use  as  a  replacement  for  CFCs  Uses  of  CFCs:  refrigerants  solvents,  propellants  in  aerosol  cans  Reasons:  non-­‐toxic,  inert  Problems  with  use:  stable  CFCs  reacg  upper  atmosphere  where  they  destroy  ozone  

1. HCFCs  (hydrochlorofluorcarbons)  -­‐ More  reactive  than  CFCs  due  to  higher  reactivity  of  C-­‐H  bonds,  therefore  majority  

are  destroyed  in  troposphere  -­‐ Temporary  substitute  for  CFCs  until  better  compounds  are  found  long  term  

toxicity  to  humans  is  unknown  2. HFCs  (hydrofluorocarbons)  

-­‐ Contain  no  Cl  -­‐ More  expensive  and  less  effective  as  refrigerants,  but  don’t  react  with  ozone  

3. Hydrocarbons  to  a  lesser  extent  eg.  Butane  -­‐ Used  as  aerosol  propellants  -­‐ Problems-­‐  flammable,  release  hydrocarbons  into  atmosphere  -­‐ React  to  form  photochemical  smog  

     

Page 14: Chemical Monitoring and Management Ash Morgan

 14   HSC  STUDY  BUDDY  

Why  it  is  unlikely  ozone  concentration  in  stratosphere  will  change  significantly  in  the  next  few  years  

-­‐ CFCs=  inert,  non-­‐toxic,  insoluble.  Relatively  dense  gas  molecules  and  diffse  slowly  into  stratosphere.    

-­‐ Stability  n  troposphere  means  they  aren’t  destroyed  and  persist  for  decades  -­‐ Steps  to  alleviate  problems  with  CFCs  appear  to  be  effective  as  levels  of  ozone  have  

stabilized  -­‐ Decades  before  CFCs/  halons  are  eliminated  as  one  Cl  free  radical  can  cause  

breakdown  of  1000  ozone  molecules.    Why  ozone  concentration  in  stratosphere  is  at  its  lowest  in  spring  over  polar  regions.  Explain  processes  which  contribute  to  the  ozone  holes  at  these  times  The  chain  reaction  of  chlorine  free  radicals  with  ozone  can  be  terminated  by  2  different  reactions.  

-­‐ The  chlorine  free  radical  can  react  with  methane  to  form  hydrogen  chloride  gas  and  a  CH3.  

Neither  of  these  products  reacts  with  ozone.  Cl•  +  CH4  → HCl  +  CH3  

 

-­‐ The  ClO•  reacts  with  nitrogen  dioxide  gas  in  the  stratosphere  to  remove  the  free  radical.  The  product  does  not  release  the  Cl•  on  exposure  to  UV  light.  ClO•  +  NO2  → ClONO2  

-­‐ In  winter,  at  the  poles,  atmosphere  is  cold/  dark  and  the  air  patterns  do  not  allow  mixing  of  the  air  over  the  poles  with  other  air.  Under  these  conditions,  the  products  of  the  termination  reaction  can  react  and  release  chlorine  into  the  atmosphere.  HCl  +  ClONO2  → Cl2  +HNO3  

-­‐ During  winter,  the  chlorine  in  the  stratosphere  has  no  effect  on  the  ozone  level.  However,  in  spring,  when  sunlight  returns  to  the  pole,  there  is  a  dramatic  breakdown  of  the  chlorine  molecules  into  chlorine  free  radicals.  The  concentration  of  ozone  drops  dramatically,  creating  an  ozone  hole  over  the  polar  regions  in  spring  (October  –  November)  in  the  southern  hemisphere.  

 ‘Human  activity  also  impact  on  waterways.  Chemical  monitoring  and  mgmt  assists  in  providing  safe  

water  for  human  use  and  to  protect  the  habits  of  other  organisms’  5.1:  identify  that  water  quality  can  be  determined  by  considering:  concentration  of  common  ions,  total  dissolved  solids,  hardness,  turbidity,  acidity,  dissolved  oxygen  and  biochemical  oxygen  demand  

Factor   Definition   Causes     How  it  is  measured  Common  ions   Chlorine,  sulfate  salinity  of  water  

Carbonate:  cause  pH  to  increase  (carbonates=  bases),  may  affect  plant  growth  Ca  and  Mg:  indicate  hardness  of  water  Phosphate:  excessive=  can  cause  algal  blooms,  predictor  of  algal  blooms  Nitrate:  indication  of  sewage/  fertilisers  

  AAS  for  metals,  gravimetric  analysis    

Turbidity     Degree  of  transparency  of  water.  Determined  by  the  presence  of  suspended  solids  

Presence  of  suspended  solids  that  can’t  be  filtered.  Eg.  Clay,  silt,  industrial  solids,  bacteria,  faecal  matter,  

Gravimetric  analysis  Meter  tube  Secchi  disk  Turbidity  meter  

Page 15: Chemical Monitoring and Management Ash Morgan

 15   HSC  STUDY  BUDDY  

algae  TDS  (total  dissolved  solids)  

Total  amount  of  dissolved  solids,  mass  of  solids  dissolved  per  unit  of  volume  

Presence  of  dissolved  solids  eg  salt  Rocks  minerals  in  soil  

Gravimetric  chemical  analysis  (ppt  then  separate)  Conductivity  meter  

DO  (dissolved  oxygen)  

Amount  of  oxygen  dissolved  in  water  

Depend  on  salinity,  temp,  conc  of  dissolved/  suspended  pollutants.  High  temp=  low  O  Rate  of  flow  Amount  of  O  used  in  respiration  

Calibrated  oxygen  sensor  electrode  titration  

BOD  (biochemical  oxygen  demand)  

Quantity  of  oxygen  needed  by  aerobic  bacteria  to  break  down  all  the  organic  matter  in  a  water  sample  

Pollution/  waste.  Higher  the  pollution=  higher  the  BOD  

DO  sensor    Seal/  incubate  5  days  Measure  DO  Calculate  BOD  

pH   Acidity  of  water   Presence  of  CO2/  pollution  

pH  meter  indicator  

hardness   Hard  water=  wont  lather  with  soap.  Contains  Ca,  Mg  

Presence  of  Ca,  Mg   Titration  (stoichiometry)  

 5.2:  identify  factors  that  affect  the  concentrations  of  a  range  of  ions  in  solution  in  natural  bodies  of  water  such  as  rivers/  oceans  1.  Pathways  from  rain  to  water  body  

-­‐  if  rain  passes  quickly  to  water  body,  TDS  will  generally  be  small  and  main  ions  will  b  NO3,  PO4,  CO3,  Ca,  Mg.  if  rain  soaks  in  underground  water,  it  will  contain  increased  ions  -­‐  if  water  flows  into  deep  aquifers  contain  heavy  metals  (Fe,  Mn  Cu,  Zn)  

2.  pH  of  rain     -­‐  more  acidic  the  rain,  more  likely  it  is  that  ions/  minerals  will  dissolve  in  it  from  rocks/  soil  3.  Nature  of  human  activity  in  catchment  area  

-­‐  Agriculture.  Land  clearing  increase  run  off  of  sediments  and  therefore  increase  the  amount  of  material  that  is  able  to  dissolve  in  water  

4.  Effluent  discharged  into  water  bodies     -­‐  includes  sewage,  stormwater  run  off,  and  industrial  effluents  5.  Leaching  from  rubbish  dumps     -­‐  heavy  metals  eg.  Cadmium,  Hg,  Pb,  Zn,  NO3,  PO4  (Eutrophication  in  excessive  amounts).      5.3:  describe  and  assess  the  effectiveness  of  methods  used  to  purify  and  sanitize  mass  water  supplies    

Page 16: Chemical Monitoring and Management Ash Morgan

 16   HSC  STUDY  BUDDY  

Screening  aeration  Flocculation  Sedimentation  Filtration  chlorination  pH  adjustment(stabilization)  fluoriationstorage  reservoir    Treating  waste  water    Primary  treatment:  screened,  solids  removed,  chlorinated  Secondary:  treated  further,  remove  organic  solids  Tertiary:  colloidal  particles/  mineral  ions  are  removed.                  

Page 17: Chemical Monitoring and Management Ash Morgan

 17   HSC  STUDY  BUDDY  

5.4:  describe  the  design/  composition  of  microscopic  membrane  filters  and  explain  how  they  purify  contaminated  water  

-­‐ thin  film  of  synthetic  polymer,  which  has  small  pores  of  uniform  size  

-­‐ Prose  sizes  range  from  0.2-­‐  0.5  micrometers  (10^-­‐6).  These  pore  sizes  are  big  enough  for  water  molecules  to  pass  through  but  small  enough  to  trap  microorganism  and  some  viruses  

-­‐ Membrane  filters  are  used  in  industries-­‐  bottle  water,  soft  drink  ,beer    Advantages:  

o Filter  smaller  particles  than  other  filters  

o A  thin-­‐liquid  flows  through  them  rapidly  

o Strong,  can  withstand  pressure  o Can  be  cleaned  and  reused  

-­‐ Microfiltration  membranes:  remove  microscopic  parasites  Giardia,  viruses  -­‐ Ultrafiltration  membranes:  remove  particles  from  100  nanometers  to  2  nanometers.  Paint  

particles,  organic  molecules  -­‐ Nanofiltration  membranes:  less  than  1  nanometer,  remove  ions  from  water.    

 5.5:  first  hand  investigation  to  use  qualitative/  quantitative  tests  to  analyse  and  compare  quality  of  water  samples  Qualitative:  description/  use  of  words  Quantitative:  use  of  numbers  and  statistics  Test   Method   Qualitative/  Quantitative  Concentration  of  ions   AAS  

Flame  test  ppt  

Quantitative  Qualitative  Quantitative  

Insoluble  solids   Filter  measured  sample,  dry  and  weigh  residue  

Quantitative  

TDS   Filter,  evaporate  a  measured  amount,  dry  and  weigh  residue  

Quantitative  

Hardness   Ppt  tests  to  determine  Ca  Ability  to  lather  with  soap  

Quantitative  Qualitative  

Turbidity   %  light  transmitted  through  depth  at  which  lines  can  be  seen  

Quantitative  

Acidity   Indicators  Data  logger  with  probe  

Qualitative  Quantitative    

DO   Data  logger  with  O  probe   Quantitative  BDO   Difference  between  initial  and  

final  DO  after  5  days  in  dark  Quantitative  

Phosphate   Colorimetric-­‐  add  ammonium  molybdite,  measure  depth  of  colour  when  a  blue  compound  forms  

Quantitative    

SEE  PRAC  SHEET  

Page 18: Chemical Monitoring and Management Ash Morgan

 18   HSC  STUDY  BUDDY  

5.6:  information  on  the  range  and  chemistry  of  the  tests  used  to  identify  heavy  metal  pollution  of  water,  monitor  possible  Eutrophication  of  waterways  Nitrogen-­‐to-­‐phosphorus  ratio:  measurement  associated  with  water  quality  

-­‐ Conc  of  NO3  and  PO4  ions  are  important  predictors  of  algal  blooms.  Both  these  are  essential  nutrients  for  algal  growth  but  in  excess  can  lead  to  Eutrophication  and  degradation  of  water  

-­‐ Ratio  o  N  to  P  has  an  impact  on  algal  growth  -­‐ Diff  species  require  diff  ratios  -­‐ High  N:P  promotes  blue-­‐green  algae  -­‐ Low  N:P  promotes  green  algae  -­‐ To  avoid  algal  blooms,  EPA  has  recommended  levels.  Total  N=  0.1-­‐1ppm,  Total  P=  0.001-­‐

0.1ppm    Heavy  Metals:  transition  metals  and  lead,  Arsenic.  

-­‐ In  water,  heavy  metals  can  be  damaging  to  health.  Monitoring  conc  is  vital  -­‐ AAS  can  be  used  -­‐ Lead:  poison,  retards  intellectual  development  in  children,  brain  damage,    -­‐ Mercury:  pollutant,  toxic,  bioaccumulative.  Damages  nervous  system,  death  in  fish/  animals.  

Unborn  children  are  affected  if  mothers  eat  contaminated  fish.      Algal  Blooms:  excessive  growth  of  algae  which  covers  streams/  dams  with  geen  sludge  unstable  for  people  

-­‐ Factors:  temp  (warm),  rate  of  flow  (still),  level  of  UV  (high),  concentration  of  nutrients  (high)  fertilizers,  sewage  

Eutrophication:  process  by  which  a  water  body  becomes  enriched  by  nutrients  eg.  PO4,  NO3,  making  algal  blooms  highly  likely.  

-­‐ Tests  for  monitoring  Eutrophication:  o Monitoring  presence  of  PO4,  in  waterways  is  used  as  a  predictor  o Colourimetric  method  needs  to  be  very  sensitive  to  pick  up  low  concentrations  o Molybdenum  blue  test  o Spectrophotometer,  which  measures  the  absorbance  of  light  at  a  particular  

frequency  .  o Absorbance  test  of  the  sample  is  compared  with  absorbance  of  standard  phosphate  

solutions    5.7:  information  on  features  of  the  local  town  water  supply  in  terms  of:  catchment  area,  possible  sources  of  contamination  in  this  catchment,  chemical  tests  available  to  determine  levels/  types  of  contaminants,  physical  and  chemical  processes  used  to  purify  water,  chemical  additives  in  the  water  and  the  reasons  for  the  presence  of  these  additives    SEE  SHEET  Catchment  area:  

-­‐ 5  major  systems  form  the  Sydney  catchment  area  -­‐ 16000  sq  km.  to  south  and  west  of  Sydney  -­‐ Warragamba  system  -­‐ Upper  nepean  -­‐ Woronora  system  -­‐ Blue  Mountains  system  -­‐ Shoalhaven  system  -­‐ All  have  rivers,  lakes,  dams,  reservoirs,  pumping  stations,  filtration  plants,  pipes  

Contamination:  -­‐ Turbidity:  rub  off  from  bushland,  grazing  land  -­‐ High  levels  of  iron/  manganese:high  natural  levels  leached  from  the  soil  and  rock  

Page 19: Chemical Monitoring and Management Ash Morgan

 19   HSC  STUDY  BUDDY  

-­‐ Treated/  untreated  sewage  -­‐ Microbes  -­‐ Pesticides  -­‐ Mining:  zinc,  copper,  lead  -­‐ Grazing/  native/  feral  animals  

Chemical  tests  for  contaminants  -­‐ Contamination  with  acids  and  bases:  pH  meter  -­‐ Metal  ions:  EDTA  titration,  lather  with  soap(hardness)  -­‐ Salt:  AAS,  flame  photometry,  volumetric  analysis  -­‐ Nitrogen/  phosphorus:  colourimetrically    

Purifying  water  Physical  processes:  screening,  coagulation,  sedimentation,  filtration  Chemical  processes:  aeration  to  oxidize  iron,  manganese,  oxidation,  lime  softening  to  ppt,  CaOH  addition  (raise  pH),  pH  adjustment,  addition  of  Cl  and  NH3  to  kill  microbes,  addition  of  F  (dental  health)