chemical imaging of polymers in real- and reciprocal spaceh. ade et al., nsls-ii_ade_march2004.ppt...

43
H. Ade et al., NSLS H. Ade et al., NSLS - - II_ade_march2004.ppt II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II Workshop March 15, 2004 H. Ade Department of Physics North Carolina State University http://www.physics.ncsu.edu/stxm/ Thanks to J. Stoehr, G. Mitchell, J. Genzer, G. Cody for their viewgraphs/data and many other colleagues, collaborators, and users Thanks to NSLS-II organizers for invitation and NSF, DOE, Dow Chemical for financial support over the years

Upload: others

Post on 16-Jan-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Chemical Imaging of Polymers in Real- and Reciprocal Space

NSLS-II WorkshopMarch 15, 2004

H. AdeDepartment of Physics

North Carolina State Universityhttp://www.physics.ncsu.edu/stxm/

Thanks to J. Stoehr, G. Mitchell, J. Genzer, G. Cody for their viewgraphs/dataand many other colleagues, collaborators, and users

Thanks to NSLS-II organizers for invitationand NSF, DOE, Dow Chemical for financial support over the years

Page 2: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

X-ray Microscopy:X-rays have come a long way!

(Examples “biased” towards polymers/magnetic materials)NEXAFS microscopy XMCD microscopy

1895

1992 1993

XLD microscopy XMLD microscopy Dynamics

19961 µm

1993

2003

Page 3: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Outline

Chemical Imaging = SpectromicroscopyBeamson and Turner (early 1980’s) coined the (unwieldy) term “spectromicroscopy”

Near Edge X-ray Absorption Fine Structure (NEXAFS): The BasicsOrganic materials as examples. Magnetic materials also important class of materials

Microscopy: BasicsNEXAFS Microscopy of Polymers

Some examples that exemplify applications.Resonant Scattering. NEXAFS “microscopy” in reciprocal spaceFuture Perspective

Page 4: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

C 1s edge ~ 290 eVN 1s edge ~ 405 eVO 1s edge ~ 540 eV

CH2 CH2

n[ ]

[ ]C C

n

CH2C

CH3

C

O

O

CH3

n[ ]

N

H

CC

C

C

CC N C

H

C

O

C

C

C

CC C

O][n

Unoccupied Molecular Orbital

Near Edge X-ray Absorption Fine Structure (NEXAFS) SpectroscopyExample: “”Richness” of Polymer NEXAFS Spectra

e-

Page 5: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Photon Energy / eV285 290

C OO

73O

C

O

27

vectra

CH3

CH3

O CO

O n

PC

PAR

CH3

CH3

O CO C O

O

n

CCO O

NH

NH

n

Kevlar™

CCO

OO

O (CH2)4 n

PBT

PNIC

O

O

CH2 CH3

CH3

CH3

CH2 *CO

O*

n

CCO

OO

O (CH2)2 n

PET

Photon Energy / eV285 290

PS

PBrS

SAN

n

78

Br

22

n

*

C N

m

CH2 NH CO

NHNH ** n

MDI polyurea

CH2 NH CO

ONHCO

OCH2 4* *n

MDI polyurethane

CH3

N

HN

H

C

O

n

TDI polyurea

CH3

NH

NH

CO

OC

O*

O

(CH2)4 *n

TDI polyurethane

Photon Energy / eV285 290

CH2 CC

CH3

OO

CH3(CH2)3

n PBMA

CH2 CC

CH3

OO

CH3

n PMMA

* NH

C *

O

n

On PEO

Nylon-6

EPRCH3

* n

PP *CH3

n

PE * n

Fingerpt.ppt 8 May 1998

Data: Stony Brook STXM at NSLS

Some Polymer NEXAFS Spectra Dhez, Ade, and UrquhartJ. Electron Spectrosc. 128, 85 (2003)

Page 6: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Types of X-ray

Microscopes

Sample

MagnifiedImage

X-ray Beam

Objective LensProjective Lens

Screen

MCP

Aperture

X-Photoemission Electron MicroscopePEEM

STXM

TXM

Also Scanning Photoemission X-ray Microscope (SPEM) Ade et al. 1992

Page 7: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

X-ray imaging of polypropylene/styrene-acrylonitrileFirst NEXAFS imaging in transmission (1992)

π* of styrene (C=C, 285.5 eV) (286.2 eV)

Based on the Stony Brook X1A-STXM (1989-present)

J. Kirz, H. Ade, et al., Rev. Sci. Instrum. 63 (1) (1992). C. Jacobsen, S. Williams, et al., Opt. Commun. 86, 351 (1991).

X1A-STXM not explicitly built to perform spectroscopy, but proved flexible enough to perform carbon NEXAFS.

Polymer Science was “enabled”

π* of acrylonitrile (286.8 eV) σ* C-H (287.9 eV)

H. Ade, X. Zhang, S. Cameron et al., Science 258, 972 (1992)Data: Stony Brook STXM at NSLS

Page 8: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

X-Linear Dichroism Microscopy

Kevlar 149 fibers, 200 nm thick, imaged at 285.5 eV

Pattern rotates with rotation of polarization due to radial orientation of phenyl groupsPhenyl and carbonyl groups point (on average) radially outwardπ* and σ* resonances show complementary dichroism

Photon Energy (eV)

280 285 290 295 300 305 310 315 320O

ptic

al D

ensi

ty0

1

2

3

4

5

6

7

Kevlar® 149

Kevlar® 49

N N C C

OO

HH][

n

EE

Spectra with horizontal polarization in locations indicated

-30°

38°

Determine degree of orientational order

H. Ade and B. Hsiao, Science 262, 1427 (1993)

A. P. Smith and H. Ade. Appl. Phys. Lett. 69, 3833 (1996)

Data: Stony Brook STXM at NSLS

Page 9: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

NEXAFS Microscopy:A number of examples for organic materials

Bilayers of thin polymer films. Can mixing be induced by physical means, i.e confinement? - e.g. Zhu et al., Nature 40, 49 (1999)

Super-absorbent polymers, gels G. Mitchell et al. Macromol 35, 1336 (2002)

Organic geological materialsPolymer surfaces

Composition of macrophases in polyurethanesPolymer compatibilization with clays (ongoing)

Semi-crystalline polymersMeteoritesDiamond like carbon filmsBiofilmsBiology……...

Page 10: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

PS/PMMA/clay nano-compositesA universal and less expensive method of polymer compatibilization?

H. Ade, A.L.D. Kilcoyne, A. Winesett, O. Dhez, W. Zhang, X. Hu, M. Lin,M. Rubinstein, M. Rafailovich, J. Sokolov

Page 11: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Polymer Clay Composites:PS/PMMA

~400K

PMMA

~375K. PS

398K

389K375K

One Tgwith clay

Two Tg’swithout clay

DSC suggest formation of “single” phase in the presence of clay

Clay works better than use of block copolymer to “compatibilize” the blendObserve the same in bi-layer geometry

PS/PMMA/Clay 45/45/10PS/PMMA/P(S-b-MMA) 45/45/10PS/PMMA 70/30

H. Ade, A.L.D. Kilcoyne, A. Winesett, O. Dhez, W. Zhang, X. Hu, M. Lin, M. Rubinstein, M. Rafailovich, J. SokolovData: Polymer STXM at ALS

Page 12: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Compatibilizationmechanism?

STXM

5% Cloisite6a

10% Cloisite 6a

PMMA preannealedat 170° for 24 hrs

annealed after bilayer was created for 72 hrs at 170°

No preannealing

DSC

Why NEXAFS microscopy? • Lots of characterization for than tertiary

and more complicated blends• Quantitative analysis of domains

Data: Polymer STXM at ALS

TEM

Formation of polymer-clay grafts. Process is not diffusion controlled, but absorption controlled

Page 13: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

PS/PMMA/PEP and PS/PMMA/PVC ternary blendsWhere are all the components? – Ongoing projects!

PS/PMMA/PEPPS/PMMA/PVC

Energy (eV)280 285 290 295 300

Abso

rptio

n co

effic

ient

(µm

-1)

0

5

10

15

20

25PMMAPS PEP

“PS” dark

“PMMA” dark

“PEP” dark

RGB color composite image PS (red), PMMA (green) and PVC (blue) clearly delineating each component. Black areas are holes.

Mixtures of PS/PMMA/PEP w/ clay would benefit from better spatial resolution

Data: Polymer STXM at ALS

Page 14: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Organic geochemistry, solid phase biomaterials(G. Cody et al. Geophysical Laboratory, Carnegie Inst.)

4 µm E=285.5 eV E=289.5 eV

Energy (eV)284 286 288 290 292 294

S2 secondary cell wall

S1 secondary cell wall

Primary cell wall

Middle Lamelae

Map lignin and carbohydrate distributionand characterize their thermal/time evolution

Eocene Wood40 million year old

Also, spectacular data on evolution of coke metallurgical coke, steel productionFollowed evolution of sporopollenin in coal may address mechanism/timing of oil generationMore recent wood: Some fungus rot attacks lignin selectivelyOrganic sediments

Data: Stony Brook STXM

Page 15: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Why are copolymers so “cool”?Patterning, selfassembly

Diblock copolymers

Courtesy of G. H. Fredrickson (UCSB)Courtesy of J. Genzer, Chem. E, NCSU

Webster’s dictionary:co·pol·y·mer (kō-pŏl’∂-mer) n. “A polymer of two or more different monomers.”

Triblock copolymers

Page 16: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Nanolithography for quantum dots, magnetic storage

M. Park, C. Harrison, P. M. Chaikin, R.A. Register, D. H. Adamson, Science 276, 1401(1997)

Semi-regular Arrays of ~1011 holes in 1 cm2 4.5 µm

Graphoepitaxy of Spherical Domain Block Copolymer FilmsR A. Segalman, H. Yokoyama, E. J. Kramer, Adv. Mater.13, 1154 (2001)

Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates , T. Thurn-Albrecht, et al. Science 290: 2126 (2000)

Markedly enhanced coercivity

Page 17: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Blockcopolymer/homopolymermixtures:

Important class of materials, templating

Blockcopolymers: First attempts with ALS 5.3.2 Polymer

STXM

STXM images at 285.1 eV of 90k-PS-b-PEO. Hexagonally arranged PEO cylindrical microdomains are about 50 nm in size. Larger features are thickness variations.

200 nm

Morphologies could be highly complexWhere does the homopolymer go?

Higher resolution, higher intensity needed!!!

Data: Polymer STXM at ALS

Page 18: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

NEXAFS microscopy of organic materials

NEXAFS microscopy is a powerful characterization tool for any organic nanomaterial

Quantitative compositional analysis (surfaces and transmission)Orientational analysis (surfaces and transmission)Wet (solvated) samples (special cell in transmission)Relatively low radiation dose/damage

Oxygen and nitrogen K edge NEXAFS can provide additional information if O and N presentStill a lot of room for instrument/methodology/source improvements

STXM50-250 nm thick samples ideal for best S/Nfew minutes for images or good spectralower damage than TXM

Page 19: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

RESONANT X-RAY SCATTERING Ensemble-average “NEXAFS Microscopy”: Size, shape, distribution

Gary Mitchell,B. Landes, J. Lyons, B. Kern, M. Devon, I. Koprinarov, J. Kortright

Complex atomic scattering factors for carbon in the forward scattering direction

λσ

e

a

rf

22 =εεεσε

πd

EhcrZf a

e∫∞

−+=

022

2

1)(1

1E7 1E8

1E-3

0.01

0.1

1

10

100

285.1 eV 281.9 eV

I/Io

q (1/m)

Tuning to the certain energies will switch on/off the scattering.

~1e8

~100 79 nm PS

1E7 1E81E-4

1E-3

0.01

0.1

1

10

285.6 eV 288.6 eV

I/Io

q (1/m)

300 nm PMMA

Page 20: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

The Future:Ingredient #1: Better spectroscopy/understanding

PE x-tal structure

c axis

c axis

Sample: tetracontane

E parallel to c-axisEperpendicular to c-axis

Sign of Dichroism: Molecule is “standing” up on surface, i.e. c-axis of orthorombic cell is normal to surface (Appel, Koprinarov, Ade,

unpublished. ALS 7.0 STXM)

Page 21: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

The Future:Ingredient #2: Better instruments

L L I

O L L

S D

X E

SM

M

L

DL

L

DA L

Aberration corrected Photoemission MicroscopeAnticipated 2 nm spatial resolution

Top view

Detector

OSA mount Sample mount

X-interferometer mirrors

Interferometer based STXM’s ready for 10 nm zone plates

Page 22: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

The future:Ingredient #3:

New tools

Imaging by Coherent X-Ray Scattering

Technique of choice for dynamics

TransmissionX-ray

Microscope

Reconstructionfrom

Speckle Intensities

∅ 5 µm(different areas)

S. Eisebitt, M. Lörgen, J. Lüning, J. Stöhr, W. Eberhardt, E. Fullerton (unpublished)

Figure courtesy J. Stohr

Phase problem can be solved by “oversampling” speckle image

Page 23: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Incoherent vs. Coherent X-Ray ScatteringSmall Angle ScatteringCoherence length larger than domains,but smaller than illuminated area

SpeckleCoherence lengthlarger than illuminated area

log (intensity)40

-20

-40

0

20

-40 -20 0 20 40-40

-20

0

20

40

scattering vector q (µm-1)

scat

terin

g ve

ctor

q(µ

m-1

)

log (intensity)40

-20

-40

0

20

-40 -20 0 20 40-40

-20

0

20

40

scattering vector q (µm-1)

scat

terin

g ve

ctor

q(µ

m-1

)

information

about domainstatistics

trueinformatio

nabout

domainstructureFigure courtesy J. Stohr

Resonant scattering and resonant speckle should be excellent tools for organic materials !!!!

Page 24: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

The future:Ingredient #4: New sources;

NSLS-II main characteristics

Bending magnet STXM as work-horse.

If optimized, >10x performance of Stony Brook STXM at X1A. (ALS 5.3.2 “Polymer” STXM is benchmark.)

Undulator STXM, correlative microscopy

polarization control150-2000 eV, many elementsFluorescence detection, low concentrations

SPEMWork on surfaces benefit most from increased brightness

Page 25: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

The future:Opportunities

Technology: STXM, PEEM, SPEM, dynamic speckleClearly all these techniques will benefit tremendously

SciencePolymers! Yes, but radiation damage might set a limitPolymer-inorganic bybrids♦ Templating

Electronic structure of single carbon nanotube (sorry, no cartoon)♦ Robust and important material♦ Back of the envelop calculations show this should be doable in

transmission and/or in TEY-mode♦ Due to significantly increased S/N requirements, source stability

requirements are very high

Page 26: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Thank you for your attention!!!!

Page 27: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

PBrS/PS blends in thin films1000A thick films spun on Si (HF stripped oxide), annealed at 170°C for 12 hrs.

40/60 PBrS/PS 70/30 PBrS/PS

PBrSPS

Si-H

thickness image, topogra-phy

SIMS

γPS/vac = 30.5 dyn/cm and γPBrS/vac

= 33.7 dyn/cm

dispersive contribution of PBrS

surface found to be γPBrS/Si-Hd <

20 dyn/cm

Surface tension of PBrS is about

39% polar3 µm

PBrS mass thicknessmap

D. Slep, J. Asselta, M. H. Rafailovich et al., Langmuir 14, 4860 (1998)

Data: Stony Brook STXM

Page 28: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Dewetting of polymer bilayers 30 nm of PBrS on top of 50 nm PS

H. Ade et al. Appl. Phys. Lett. 73, 3775 (1998)

STXM (or other technique) can not tell for sure which polymer is on surfaceSurface NEXAFS spectra via X-PEEM

2-10 nm surface sensitivity, here about 200 nm spatial resolution1 week at 180° C, spectra show only PS peak, no PBrS signature

Could monitor dynamics and deduce pathwaysPBrS gets encapsulated via plug flow, not PS diffusion through PBrS

PBrSPS

280 285 290 295 300energy (eV)

No PBrS peak

10 µm

Deduced cross sectional composition: PS on top everywhere

NEXAFS spectra PEEM image

Si substrate

Apparent contactangle

Data: PEEM-I, ALS BL8.0

Page 29: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Copolymer becomes trapped

in micelles

Addition of PA/PMMA diblock copolymer

PMMA

PMMA

Compatibilization of PS/PMMA thin film

bilayers/blends

Reality in many cases

Preferred/ideal case

Copolymer locates to the interface to reduce interfacial energy.

Confinement (small r) increases the critical micelle concentration, φcmc

Consequently, micelle size (η) is reduced whichsignificantly increases the chemical potential of micelle formationWith high degree of confinement, (r < ηbulk), the creation of micelles becomes energetically unfavorable

Increasing confinement

Effects of Confinement

Theory by D. Gersappe, et al

S. Zhu, Y. Liu, M. H. Rafailovich et al., Nature 40, 49 (1999)

Page 30: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Compositional mapping.Samples annealed 4 days at 170° C.Results

78 nm Top Diblock layer

1.0 µmMicelle formation

2.0 µm

30 nm Top Diblock layer

PS PMMA PS + PMMA

Micro-emulsion

S. Zhu, Y. Liu, M. H. Rafailovich et al., Nature 40, 49 (1999)Data: Stony Brook STXM

Page 31: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Lateral position (µm)0 2 4 6 8

Thic

knes

s (µ

m)

0.00

0.05

0.10

0.15

PS PMMA PS + PMMA

PMMA thickness

Total thickness

2.0 µm

PS and PMMA phases extend through entire film

Micro-emulsion phase is two dimensional

Our approach, based on a physical phenomenon, removes limitation on the kind of polymers that can be used for thin film blends

30 nm Top PS/Diblocklayer, 80 nm lower layer

Annealed for 4 days

Quantitative compositional mapping with NEXAFS

microscopy reveals:

S. Zhu, Y. Liu, M. H. Rafailovich et al., Nature 40, 49 (1999)Data: Stony Brook STXM, NSLS

Page 32: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

X-ray Microscopy of Superabsorbent Polymers (SAP)G. Mitchell, E. Rightor, et. al (Dow), S. Urquhart, H. Ade (NCSU), A. Hitchcock (McMaster) et al.

Superabsorbent polymers absorb up to 60x their weight in water (~30x in salt water). Primarily medical and cosmetic applications3rd generation SAP technology provides enhanced properties using structured crosslinkingNo conventional tool to measure surface crosslink density

Lightly Crosslinked Core

Highly Crosslinked Shell

2nd Gen.

3rd Gen.

No Shell

STXM has visualized crosslink density in 3rd generation superabsorbent polymersUnderstanding the actual crosslink density will help to design improved SAPs and to tailor them to particular applicationsThese experiments will also provide insight into competitive processes and economics

This is actually High-Tech !

G. Mitchell et al. Macromol 35, 1336-1341 (2002).

Page 33: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Characterize and Compare Different Surface Crosslink Processes

Are

al P

olym

er D

ensi

ty

50 40 30 20 10 0 -10Position (µm)

Are

al P

olym

er D

ensi

ty

20100-10Position (µm)

1x

2X

AMOUNT OF SURFACE CROSSLINKER ADDED

Process I: “Diffusion Controlled” Process II: “Reaction controlled”

40 30 20 10 0

Distance from edge (µm)

PolymerDensity

Very different crosslink density profile

G. Mitchell and E. Rightor received ALS ShirelyScience Award in 2001

G. Mitchell et al. Macromol 35, 1336-1341 (2002).Data: BL7.0 STXM

Page 34: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

NEXAFS Quantitation: AdditivityB

indi

ng E

nerg

y 284

285

286

287

Orb

ital E

nerg

y ( ε

)

-4

-3

-2

CN

A B

Energy (eV)285 290 295

CN

BA

NEXAFS Spectrum ofpoly(styrene-r-acrylonitrile)

Spectral features are “additive” if there is no change in the electronic structure due to chemical, i.e. bonding, or matrix interactionsGenerally, there are no matrix effects between molecules or polymer chains

Exceptions in PE and maybe all semi-crystalline polymers

Page 35: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Polymer STXM “community” in North AmericaNCSU: A. P. Smith, D. A. Winesett (now EXXON), O. Dhez, G. Appel, A. Garcia, R. Spontak, R. Fornes, R. Gilbert, D. Kilcoyne, ... McMaster: A. P. Hitchcock, Ivo Koprinarov, Tolek Tyliszczak (now ALS), et al. Univ. of Saskatchewan at Saskatoon: S. Urquhart et al. SUNY@Stony Brook: M. Rafailovich, J. Sokolov, et al. .. Geophysical Laboratory, Carnegie Institution: G. CodyDow Chemical: G. Mitchell, E. Rightor, ...EXXON: J. Das, D. A. Winesett, P. Stevens, S. Cameron, ...DuPont, GE, AlliedSignal, IBMPhotons Unlimited: C. ZimbaUMASS: T. Russel et al.

Instruments: S. Anders, T. Warwick, C. Jacobsen, J. Kirz, S. Wirick, etc.

Funding at NCSU (Research and 5.3.2 Polymer STXM)): • NSF-NYI (DMR-9458060), NSF (DMR-9975694, DMR-0071743)• DOE (DE-FG-02-98ER45737), Dow Chemical, DuPont, NCSU.

Page 36: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Zone Plates: Diffractive Optics for X-raysDeveloped by groups in Goettingen, LBNL, Stony Brook/Lucent, a few others

1975: Modern Area X-ray Microscopy starts: First TXM at DESSY. B. Niemann, D. Rudolph and G. Schmahl

1978: Move to ACO1982: Move to BESSY-I

1982: First STXM at NSLS: Rarbackand Kirz

Circular Au, Ni, or Ge structuresNanofabrication with E-beam lithography (early on it was holography)Spatial resolution approx. outermost zone widthFocal length is proportional to energy

Image from http://www-cxro.lbl.gov/microscopy/diffractive.html

Diameter: 50-200 micronsZone widths presently as small as 20 nm

Page 37: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

120x103

100

80

60

40

20

0

µ(c

m2 /g

)

320310300290280

Photon Energy (eV)

H2O

Sodium polyacrylate

Crosslink density about 0.1%hard to detect spectroscopically

Flory-Rehner equation relates swelling and crosslink density:

Vsdp (Φp1/3 - Φp )

(Ln (1 - Φp) + Φp + χΦp)MWc =

Cro

sslin

k de

nsity

(~1/

MW

c)

P. Flory, and J. Rehner, Journal of Physical Chemistry, 11(1943) 512Polymer

Data: BL7.0 STXM G. Mitchell et al. Macromol 35, 1336-1341 (2002).

Resulting Density Maps:

waterDegree of swell

Page 38: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Images: Quantitative Analysis

0

0.5

1

1.5

2

2.5

280 285 290 295 300 305 310 315 320

Energy / eV

norm

. Int

.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

284 286 288 290 292 294 296 298 300

Energy / eV

Opt

ical

Den

sity

Spectrum of a single pixel

OD(E, x, y) = toct(x,y)*Roct(E) + tbut(x,y)*Rbut(E)+ constant(x,y)

Component MapsEO BO constant

•Average over undisturbed regions of the matrix and the minority phase.

•Normalize to get the composition of these phases:

butoct

octoct tt

t+

We assume “ideal” behavior: The spectra of mixed phases are fitted by a linear-combination of

the reference spectra and a constant:

Reference Spectra

“Stack” Fit*)

*) Hitchcock A.P., AXIS 2000(Analysis of X-ray microscopy

Images and Spectra, Version 2.0).

Page 39: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Some close-up views of 5.3.2 hardwareOblique side-view Fine X,Y piezo stage

OSA mount

Mini flange viewportto view upstream side of Si3N4 exit

window

X-interferometer mirrors

Detector

Top view

10-20 micron reproducible mounting. - VLM pre-indexing in the future with absolute coordinate system

Zone plate mount

OSA Sample mount

Detector

Close-up side -view

Sample mountOSA mount

Page 40: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Page 41: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Magnetic Spectroscopy and Microscopy

(courtesy J. Stohr)

Page 42: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Page 43: Chemical Imaging of Polymers in Real- and Reciprocal SpaceH. Ade et al., NSLS-II_ade_march2004.ppt NC STATE University Chemical Imaging of Polymers in Real- and Reciprocal Space NSLS-II

H. Ade et al., NSLSH. Ade et al., NSLS--II_ade_march2004.pptII_ade_march2004.ppt

NC STATE University

Dichroism in tetracontane:transverse to C-C backbone

11° 88°

Angles of crystals correspond to unit cell if crystal terminates as (1,1,0), etc.

Solution cast single crystals randomly oriented on Si3N4 membrane