chem!356:!introductory!quantum!mechanics -...

8

Upload: ngocong

Post on 31-Aug-2018

315 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

 

Page 2: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  to  Quantum  Mechanics:  Syllabus   2    

 Introduction  to  Quantum  Mechanics:  Syllabus  ...........................................................................................  2  

Introduction  and  History  .............................................................................................................................  3  

Introduction  to  Quantum  Mechanics  ......................................................................................................  3  

Historical  Background  ..............................................................................................................................  4  

A  little  digression  on  relativity  theory  .....................................................................................................  5  

 

Introduction  to  Quantum  Mechanics:  Syllabus    Lectures:     M  W  F     12:30  –  1:20   PHY  313  Tutorials:     Friday       1:30  –  2:20   RCH  306  Website:     science.uwaterloo.ca/~nooijen      

Grading:     20%     Assignments  (Biweekly)         40%     Midterm         40%     Final  Exam  

 Book:     Quantum  Chemistry  2nd  Ed.  By  Donald  A.  McQuarrie       ISBN:  978-­‐1-­‐8913890-­‐50-­‐4    

Problems  and  Solutions  for  McQuarrie’s  Quantum  Chemistry  2nd  Ed.  By  Helen  O.  Leung,  Mark  D.  Marshall  ISBN:  9781891389528  

                           *Lecture  notes,  to  be  provided    Some  Fridays,  we  will  do  MathCad  sessions  and  use  computers  to  solve  problems    For  Midterm  and  Exam:  you  may  bring  a  summary  sheet  (must  write  yourself  however)  

• Website:      enabled,  see  nooijen  waterloo;  teaching;  chem356  • Lectures  will  focus  on  concepts,  this  can  be  somewhat  abstract  • Tutorials:     You  ask  questions  • Solving  Problems  (sometimes  extended  problems):  digest  material,  learn  by  practice  

   

Page 3: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   3    

Introduction  and  History    Introduction  to  Quantum  Mechanics  

 Quantum  Mechanics:     fundamental  theory  of  chemistry,  together  with  statistical  

mechanics  (Chem  350)  forms  the  microscopic  theories  of  matter    Very  few  fundamental  postulates;  Derive  all  the  rest.  Everything  we  derive  (correctly)  should  be  possible  to  be  confirmed  by  experiment  (Popper,  a  philosopher  of  science).  This  is  what  we  call  a  fundamental  theory.    

Today:      Quantum  Chemistry  programs  (eg.  Gaussian)  are  very  powerful  tools  to  obtain    -­‐ Molecular  structure  -­‐ Spectroscopic  data,  IR,  NMR,  CD,  UV-­‐vis,  Resonance  Raman  -­‐ Thermochemical  data      ΔH,  ΔG,   SΔ  

Calculations  work  very  well  for  gas  phase  chemistry,  and  reasonably  well  for  the  solid  state.  Liquids  are  the  most  time-­‐consuming  to  calculate.  Simulations  depend  partly  on  classical  mechanics,  not  purely  quantum  mechanics.      If  one  combines  with  molecular  simulations  

-­‐ Properties  of  liquids  -­‐ ΔG  for  complicated  reactions  -­‐ Kinetics,  reaction  rates    

 In  quantum  mechanics,  the  equations  are  simple,  BUT  hard  to  solve  →  Huge  effort  to  develop  software  that  can  solve  equations  efficiently    To  be  expected:    

Simple  equation  “HΨ  =  EΨ ”  describes  bewildering  set  of  microscopic  phenomena    

The  concepts  underlying  Quantum  Mechanics  are  strange,  puzzling,  even  today    

So  how  do  we  deal  with  and  study,  “simple  equations”,  “difficult  solutions”  yet  “funny  concepts”?      

Page 4: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   4    

 →  study  model  problems:  

-­‐ ‘easy’  solution  -­‐ Insight  into  solution  -­‐ Phenomenological  rule  

 Quantum  Mechanics  is  old  by  now,  started  seriously  in  1926  Current  Frontiers  /  Applications  include  

• Quantum  Computing  (exploiting  the  weirdness)  • Nanotechnology  :  Make  materials  that  start  to  ‘use’  quantum  mechanics  • Solid  state  devices  (computer  hardware,  based  on  quantum  mechanics)  • Lasers  (quantum  properties  of  light)  

 Our  focus  will  be  Quantum  Mechanics  as  the  fundamental  theory  of  chemistry.    

 Historical  Background    (Classical)  Physics  around  1900  

-­‐ Newtonian  mechanics,  Hamilton/Lagrange  formulations  (elegant)  -­‐ Maxwell  equations,  optics,  electro-­‐magnetism  -­‐ Thermodynamics:    

o Heat,  work,  energy,  entropy  -­‐ Statistical  Mechanics    

o Boltzmann/Gibbs    Power  of  theoretical  description:  Derive  equations  from  the  fundamental  theory.  Predicted  phenomena  should  be  verified  experimentally  and  conversely.  Theory  can  “in  principle”  describe  everything.    

Any  (reproducible)  experimental  fact  that  does  not  fit  the  theory  is  a  disaster,  and  theory  would  not  be  universally  valid;  would  need  a  change….  →  But  in  practice  our  theories  (fairly  simple,  really)  work  very  well  (so  far  so  good).      In  1900,  most  people  thought  everything  is  understood,  just  dotting  the  I’s,  as  far  as  theory  goes    

Page 5: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   5    

  Things  that  did  not  fall  into  place      

a. Velocity  of  light  is  constant  b. Gravitational  mass  =  inertial  mass  

• special  and  general  theory  of  relativity  (Einstein)    

   

c. Black  body  radiation  (Planck)  d. Specific  heat  of  solids  (Einstein)  e. Photoelectric  effect  (Einstein)  f. Atomic  spectra  (Bohr)  ..understanding  chemistry!  

 Quantum  mechanics!  

 Other  new  phenomena    

 a. X-­‐rays  (Roentgen)  b. Radioactivity  (Becquerel,  Curie)  c. Super-­‐conductivity,  Super-­‐fluidity  (Kamerling  Onnes)  d. Discovery  of  electron  1898  (Thompson),  nucleus  1911  (Rutherford)  

 Something  MORE  than  just  ‘dotting  the  i’s’!!  

 A  little  digression  on  relativity  theory    

(A  prime  example  of  logical  thought)  

 Situation:            Go  back  to  kids  time,  you  are  biking  to  the  soccer  field  and  throw  a  ball  in  the  air  with  both  hands.  (no  hands  to  steer!)    Do  you:  

    Throw  the  ball  slightly  forward  (anticipating  where  you  will  be)?  OR  Throw  the  ball  straight  up  as  if  you  were  not  cycling  as  all?  

Page 6: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   6    

OR       Throw  the  ball  backwards?                What  is  the  answer?    

Let’s  change  the  question.       You  are  in  a  steady  moving  train.  How  do  you  throw?       You  are  running.  How  do  you  throw?    

Answer:  We  should  throw  straight  up.          WHY?        Because  the  ball  already  has  the  velocity  in  the  forward  direction,  we  should  throw  straight  up.  

   Let’s  Draw  a  Picture    

 If  you  toss  a  bottle  from  a  moving  car,  it  will  fly  with  huge  velocity  (of  the  car).  Velocity  depends  on  perspective….But…  

 this  is  not  true  for  light!  

    →  the  velocity  of  light  is  vacuum  is  constant,  independent  of  perspective.    

What  does  this  mean?  Before  we  can  answer  this,  let  us  consider  the  ball  a  bit  more.  

 

Page 7: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   7    

Question:  if  the  boy  on  the  bicycle,  and  the  on  the  ground,  measure  the  time  of  flight,  do  they  get  equal  answers?  Yes.    

Questions  &  Answers  regarding  ball  on  train  (slow)    

From  the  boy  on  bicycle/train  perspective:        the  distance  travelled  by  the  ball,  2h  

 the  (average)  velocity  of  the  ball,   yv    

 time  of  flight,   tΔ    

From  the  ground’s  perspective:            distance  travelled  is  longer   "2h+ Δt ⋅vx ", details are cumbersome  

         the  (average)  velocity    of  the  ball,   2 2y xv v+    

         time:  the  same   tΔ    Angle  of  throwing  the  ball:    

o Straight  from  biking  perspective  o Angled  from  ground  perspective  

 Now  shine  a  flashlight  to  a  (far  away)  mirror,  on  a  moving  train  

   

Page 8: Chem!356:!Introductory!Quantum!Mechanics - scienide2scienide2.uwaterloo.ca/~nooijen/Chem356/Chem+356+pdf/Ch_0.pdf · Problems’and’Solutions’for’McQuarrie’s’Quantum’Chemistry’2nd’Ed.’By’Helen’O

Winter  2013   Chem  356:  Introductory  Quantum  Mechanics    

Introduction  and  History   8    

          Speed  of  light  is   c  always  

            ( )l ltc+Δ′Δ =  

 Observation:      My  own  light  (standing  still)  bounces  back  quicker  than  light  on  moving  train.    For  the  same  reason:    person  on  train  says  their  light  has  returned  before  mine!      *note:      

It  would  also  take  some  time  to  observe  the  distant  event.  This  can  be  taken  into  account  and  corrected  for.  The  math  involved  is  a  bit  involved,  no  need  for  our  purpose.    It  is  a  consequence  of  the  constancy  of  light  that  time  is  not  absolute.  Like  distance  which  depends  on  perspective,  time  duration  also  depends  on  perspective.    The  detailed  equations  of  special  relativity  are  not  so  hard  to  derive.      The  consequences  are  hard  to  accept,  and  it  is  pretty  hard  to  get  an  intuitive  feel  for  it.    

Another  consequence/Example.         c =  signal  velocity   (eg.  Velocity  of  mail)            →  For  regular  mail:  world  traveler  sends  postcards  from  Honolulu,  New  York,  Tokyo:    they  might  all  arrive  at  the  same  time    Compare  receiving  3  phone  calls  from  the  same  person  at  the  same  time:  One  from  Honolulu,  one  from  New  York,  one  from  Tokyo      

Cannot  happen  because  we  cannot  travel  faster  than  the  speed  of  light  c .