che354 statics

32
7/27/2019 ChE354 Statics http://slidepdf.com/reader/full/che354-statics 1/32 Fluid Statics

Upload: modat

Post on 14-Apr-2018

268 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 1/32

Fluid Statics

Page 2: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 2/32

Fluid Statics

The word “statics” is derived from Greek word“statikos”= motionless 

For a fluid at rest or moving in such a manner that

there is no relative motion between particles thereare no shearing forces present:

Rigid body approximation

Page 3: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 3/32

Definition of Pressure

Pressure is defined as the amount of force exerted on aunit area of a substance:

 Pam

 N 

area

 force

 P  2

Page 4: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 4/32

Pascal’s Laws 

Pascals’ laws:  – Pressure acts uniformly in all directions

on a small volume (point) of a fluid

 – In a fluid confined by solid boundaries,

pressure acts perpendicular to the

boundary – it is a normal force.

Page 5: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 5/32

Direction of fluid pressure on

boundaries

Furnace duct Pipe or tube

Heat exchanger 

Dam

Pressure is a Normal Force

(acts perpendicular to surfaces)

It is also called a Surface Force

Page 6: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 6/32

 Absolute and Gage Pressure

•  Absolute pressure: The pressure of a fluid is expressed

relative to that of vacuum (=0)

• Gage pressure: Pressure expressed as the difference

between the pressure of the fluid and that of thesurrounding atmosphere.

Usual pressure gages record gage pressure. To

calculate absolute pressure:

 gageatmabs P  P  P 

Page 7: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 7/32

Units for Pressure

Unit Definition or Relationship

1 pascal (Pa) 1 kg m-1 s-2

1 bar 1 x 105 Pa

1 atmosphere (atm) 101,325 Pa

1 torr 1 / 760 atm

760 mm Hg 1 atm

14.696 pounds per 

sq. in. (psi)

1 atm

Page 8: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 8/32

Measurement of Pressure

Mechanical and electronic pressure measuring devices:

When a pressure acts on an elastic structure it will deform. This

deformation can be related to the magnitude of the pressure.

 – Bourdon pressure gage

Pressure transducers convert pressure into an electrical output

Strain-gage pressure transducers are suitable for rapid changes in

pressure and cover big ranges of pressure values

Page 9: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 9/32

Pressure distribution for a fluid at rest

Let’s determine the pressure

distribution in a fluid at rest

in which the only body force

acting is due to gravityThe sum of the forces acting 

on the fluid must equal zero

Page 10: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 10/32

mg  zg S   

x

y

zLet Pz and Pz+z denote the

pressures at the base and

top of the cube, where the

elevations are z and z+z

respectively.

What are the z-direction forces?

 z  PS 

 z  z  PS 

Page 11: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 11/32

Pressure distribution for a fluid at rest

 zg S  PS  PS  F  z  z  z  z   0

 g  z 

 P  P  z  z  z    

 A force balance in the z direction gives:

For an infinitesimal element (z0)

 g dz dP    

Page 12: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 12/32

Incompressible fluidLiquids are incompressible i.e. their density is assumed to

be constant:

PghP o

By using gage pressures we can simply write:

ghP

)zz(gPP 1212

Po is the pressure at the

free surface (Po=Patm)

When we have a liquid with a free surface the pressure P

at any depth below the free surface is:

Page 13: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 13/32

Pascal’s principle 

(The hydrostatic paradox)

• The pressure in a homogeneous, incompressible fluid atrest depends on the depth of the fluid relative to some

reference plane, and it is not influenced by the size or 

shape of the tank or container 

Fluid is the same in all containers

Pressure is the same at the bottom of all containers

h

Page 14: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 14/32

Vertical plane surfaces

Vert ical rectangu lar wal l (wal l wid th = W) 

H

h

Here the pressure varies

linearly with depth: P=gh

P

The lock gate of a canal is rectangular, 20 m wide and 10m high. One side is exposed to the atmosphere and the

other side to the water. What is the net force on the lock

gate?

Page 15: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 15/32

Vertical plane surfaces

• For an infinitesimal area dA the normal force due to the

pressure is

dF = p dA

• Find resultant force acting on a finite surface by

integration

Whd h g    

dA P  F 

  For vertical rectangular wall: F = ½ g W H2

 

dhh gW   

Page 16: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 16/32

Buoyancy•  A body immersed in a fluid experiences a vertical buoyant

force equal to the weight of the fluid it displaces•  A floating body displaces its own weight in the fluid in

which it floatsFree liquid surface

The upper surface of the body is

subjected to a smaller force thanthe lower surface

A net force is acting upwards

F1

F2

h1

h2

H

Page 17: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 17/32

Buoyancy

The net force due to pressure in the vertical direction is:

FB = F2- F1 = (Pbottom - Ptop) (xy)

The pressure difference is:

Pbottom  – Ptop = g (h2-h1) = g H

Combining:

FB = g H (xy)

Thus the buoyant force is:

FB = g V

Page 18: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 18/32

Measurement of Pressure

The atmospheric pressure can be measured with a barometer.

 – For mercury barometers atmospheric pressure

(101.33kPa) corresponds to h=760 mmHg (= 29.2 in)

 – If water is used h = 10.33 m H2O (= 34 ft)

vapor atm pgh p

Page 19: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 19/32

Measurement of Pressure

Manometers are devices in which one or 

more columns of a liquid are used to

determine the pressure difference

between two points.

 – U-tube manometer 

 – Inclined-tube manometer 

Page 20: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 20/32

Measurement of Pressure Differences

mambb

mmba

 gR Z  g  P  P 

 R Z  g  P  P 

    

  

)(

)(

3

2

 Apply the basic equation of static

fluids to both legs of manometer,

realizing that P2=P3.

)( bamba gR P  P     

Page 21: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 21/32

Inclined Manometer 

• To measure small pressure differences need to magnifyRm some way.

      sin)(1 baba gR P  P 

Page 22: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 22/32

Compressible fluid• Gases are compressible i.e. their density varies with

temperature and pressure = P M /RT 

 – For small elevation changes (as in engineering

applications, tanks, pipes etc) we can neglect the

effect of elevation on pressure

 – In the general case start from:

o

o

 RT 

 z  z  M  g  P  P 

T   for )(

exp

 :constT

1212

 g dz 

dP   

Page 23: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 23/32

CompressibleLinear Temperature Gradient

)( 00 z  z T T   

 z 

 z 

 p

 p z  z T 

dz 

 R

 g 

 p

dp

00)( 00  

 R g 

 z  z T 

 p z  p

  

0

00

0

)(

)(

Page 24: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 24/32

 Atmospheric Equations

•  Assume linear 

 R

 g 

T  z  z T  p z  p   

0

000 )()(

• Assume constant

0

0 )(

0)(RT 

 z  z  g 

e p z  p

Temperature variation with altitude

for the U.S. standard atmosphere

Page 25: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 25/32

Compressible Isentropic

v

 p

 P constant 

 P 

  

        

1

1

 y

 P  P 

T T 

1

11

  

  

  

 

  

   

  

 

 

  

   

  

 

1

12

1

1

12

11

11

 RT 

 z  gM T T 

 RT 

 z  gM  P  P 

  

  

  

      

 Application: bottom hole conditions in gas wells

Page 26: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 26/32

Gravity Decanter 

 A A A Ab B Z  Z  Z 

 Balancec Hydrostati

       21

 A

 B

 A

 BT  A

 A

 Z  Z 

 Z 

  

  

  

  

 

 

 

 

1

2

1

When ρB≈ρ A interface location is very sensitive to height of heavy liquid overflow leg. This leg is often has adjustable

height to give the best separation. 

Page 27: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 27/32

Hydrostatic Equilibrium

in a Centrifugal Field

2

2

60

  

 N 

mr mr  F c 

 

mg  F  g 

2

60

  

 N 

 g 

 F 

 F 

 g 

c  

Typically N≈1000 and r≈1m. Fc/Fg≈110. Neglect g. 

Page 28: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 28/32

Hydrostatic Equilibrium

in Centrifugal Field

dmr dF 

r at dr element on Force

2  dr rbdm  2

dr r bdF 22

2   

2

1

2

2

2

12

2

2

2

r r  P  P 

dr r rb

dF dP 

   

    

Page 29: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 29/32

Centrifugal decanters

When the density difference between two immiscible liquidsis small gravitation forces may be too weak to separate

them in a reasonable time. In this case we can use

centrifugal forces to amplify the forces exerted on the

liquids.

Centrifugal separations are important in many food

industries such a breweries, vegetable oil processing, fruit

 juice processing. They are also used to separate emulsionsinto their components.

Page 30: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 30/32

Continuous Centrifugal Decanter 

?Why

 P  P  P  P   Bi Ai

 A

 B

 B A

 B A

i

r r 

    

  

  

  

  

1

22

Page 31: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 31/32

Continuous Centrifugal Decanter 

Consequences:

•ρ AρB within 3% r i unstable

•r B constant r  A increased r i

shifted toward bowl wall

•In commercial units r  A and

r B are usually adjustable

Page 32: ChE354 Statics

7/27/2019 ChE354 Statics

http://slidepdf.com/reader/full/che354-statics 32/32

Example

Consider a 90˚ elbow in a 2 in. pipe. A pipe tap is drilled

through the wall of the elbow on the inside curve, and

another though the outer wall directly across from the first.

The radius of curvature of the inside bend is 2 in. and that

of the outside of the bend is 4 in. The pipe is carrying

water, and a manometer containing an immiscible oil withS.G. of 0.90 is connected across the two taps. If the

reading of the manometer is 7 in., what is the average

velocity of the water in the pipe?