charged lepton flavour violation at collidersbased on work in collaboration with tong li 1809.07924,...

85
based on work in collaboration with Tong Li 1809.07924, 1907.06963 Yi Cai 1510.02486; Yi Cai, German Valencia 1802.09822 Charged lepton flavour violation at colliders Michael A. Schmidt 17 January 2020 3rd FCC Physics and Experiments Workshop

Upload: others

Post on 28-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • based on work in collaboration with

    Tong Li 1809.07924, 1907.06963

    Yi Cai 1510.02486; Yi Cai, German Valencia 1802.09822

    Charged lepton flavour violation at colliders

    Michael A. Schmidt

    17 January 2020

    3rd FCC Physics and Experiments Workshop

    http://www.arxiv.org/abs/1809.07924http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1802.09822

  • Motivation

    The Standard Model is very successful. . .

    . . . but incomplete

    In particular neutrinos are massive

    many different possibilities – see Cai, Herrero-Garcia, MS, Vicente, Volkas 1706.08524

    1

    http://www.arxiv.org/abs/1706.08524

  • Motivation

    The Standard Model is very successful. . .

    . . . but incomplete

    In particular neutrinos are massive

    many different possibilities – see Cai, Herrero-Garcia, MS, Vicente, Volkas 1706.08524

    1

    http://www.arxiv.org/abs/1706.08524

  • Motivation

    The Standard Model is very successful. . .

    . . . but incomplete

    In particular neutrinos are massive

    many different possibilities – see Cai, Herrero-Garcia, MS, Vicente, Volkas 1706.08524

    → need way to discriminate models

    Lepton flavour is not conserved (← ν oscillations)• in SM+mν suppressed by unitarity, A ∼ GFm2ν ' 10−26• many neutrino mass models have large charged LFV

    due to non-unitarity or new contributions,

    e.g. inverse seesaw, radiative mass models

    • LFV processes a good probe to discriminate mν models• could be completely unrelated to neutrino mass, e.g. SUSY

    3

    http://www.arxiv.org/abs/1706.08524

  • Motivation

    The Standard Model is very successful. . .

    . . . but incomplete

    In particular neutrinos are massive

    many different possibilities – see Cai, Herrero-Garcia, MS, Vicente, Volkas 1706.08524

    → need way to discriminate models

    Lepton flavour is not conserved (← ν oscillations)• in SM+mν suppressed by unitarity, A ∼ GFm2ν ' 10−26• many neutrino mass models have large charged LFV

    due to non-unitarity or new contributions,

    e.g. inverse seesaw, radiative mass models

    • LFV processes a good probe to discriminate mν models• could be completely unrelated to neutrino mass, e.g. SUSY

    3

    http://www.arxiv.org/abs/1706.08524

  • Motivation

    Energy Frontier

    Intensity

    Frontier Cosmi

    cFrontier

    Origin of Mass

    Neutrinos

    Proton Decay

    Dark Matter

    Dark Energy

    Origin of

    Universe

    Unification

    of Forces

    Charged

    Lepton

    Flavour

    Violation

    Can high-energy colliders compete with the intensity frontier?4

  • Motivation

    Energy Frontier

    Intensity

    Frontier Cosmi

    cFrontier

    Origin of Mass

    Neutrinos

    Proton Decay

    Dark Matter

    Dark Energy

    Origin of

    Universe

    Unification

    of Forces

    Charged

    Lepton

    Flavour

    Violation

    Can high-energy colliders compete with the intensity frontier?4

  • cLFV at colliders

    Future lepton colliders: e+e− → ``′

    Future lepton colliders: e+e− → ``′ + X

    LHC: qq̄, gg → ``′

    Conclusions

    5

  • Future lepton colliders: e+e− → ``′

  • cLFV scattering processes at a future lepton collider

    Consider simplified models with bileptons X

    Off-shell production:

    e+e− → ``′e+

    e−

    `′−

    `+

    X

    e+

    e−

    `+

    `′−X

    On-shell production:

    e+e− → ``′ + Xe+

    e−

    `′−

    `+

    X

    `′+γ/Z

    e+

    e−

    X

    `+

    e−

    e+

    γ/Z

    3 2-body final state

    7 depends on product of

    couplings

    7 phase space suppression

    3 depends on single LFV

    coupling

    6

  • Bileptons - seven simplified models [Li,MS 1809.07924 1907.06963]

    ∆L = 0complex scalar H2 ∼ (2, 12 )

    L = y ij2 H2L̄iPR`j + h.c .

    LH singlet vector H1 ∼ (1, 0)

    L = y ij1 H1µL̄iγµPLLj

    LH triplet vector H3 ∼ (3, 0)

    L = y ij3 L̄iγµ~σ · H3µPLLj

    right-handed vector H ′1 ∼ (1, 0)

    L = y ′ij1 H ′1µ ¯̀iγµPR`j

    ∆L = 2right-handed scalar ∆1 ∼ (1, 2)

    L = λij1 ∆1`Ti CPR`j + h.c .

    left-handed scalar ∆3 ∼ (3, 1)

    L = − λij3√2LTi Ciσ2~σ · ~∆3PLLj + h.c .

    vector ∆2 ∼ (2, 32 )

    L = λij2 ∆2µαLTiβγµPR`j�αβ + h.c .

    assumption: CP conservation,

    symmetric Yukawa couplings (H2, ∆2)

    related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

    7

    http://www.arxiv.org/abs/1809.07924http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/1711.08430http://www.arxiv.org/abs/1712.03642http://www.arxiv.org/abs/1803.11167

  • Bileptons - seven simplified models [Li,MS 1809.07924 1907.06963]

    ∆L = 0complex scalar H2 ∼ (2, 12 )

    L = y ij2 H2L̄iPR`j + h.c .

    LH singlet vector H1 ∼ (1, 0)

    L = y ij1 H1µL̄iγµPLLj

    LH triplet vector H3 ∼ (3, 0)

    L = y ij3 L̄iγµ~σ · H3µPLLj

    right-handed vector H ′1 ∼ (1, 0)

    L = y ′ij1 H ′1µ ¯̀iγµPR`j

    ∆L = 2right-handed scalar ∆1 ∼ (1, 2)

    L = λij1 ∆1`Ti CPR`j + h.c .

    left-handed scalar ∆3 ∼ (3, 1)

    L = − λij3√2LTi Ciσ2~σ · ~∆3PLLj + h.c .

    vector ∆2 ∼ (2, 32 )

    L = λij2 ∆2µαLTiβγµPR`j�αβ + h.c .

    assumption: CP conservation,

    symmetric Yukawa couplings (H2, ∆2)

    related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

    7

    http://www.arxiv.org/abs/1809.07924http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/1711.08430http://www.arxiv.org/abs/1712.03642http://www.arxiv.org/abs/1803.11167

  • Bileptons - seven simplified models [Li,MS 1809.07924 1907.06963]

    ∆L = 0complex scalar H2 ∼ (2, 12 )

    L = y ij2 H2L̄iPR`j + h.c .

    LH singlet vector H1 ∼ (1, 0)

    L = y ij1 H1µL̄iγµPLLj

    LH triplet vector H3 ∼ (3, 0)

    L = y ij3 L̄iγµ~σ · H3µPLLj

    right-handed vector H ′1 ∼ (1, 0)

    L = y ′ij1 H ′1µ ¯̀iγµPR`j

    ∆L = 2right-handed scalar ∆1 ∼ (1, 2)

    L = λij1 ∆1`Ti CPR`j + h.c .

    left-handed scalar ∆3 ∼ (3, 1)

    L = − λij3√2LTi Ciσ2~σ · ~∆3PLLj + h.c .

    vector ∆2 ∼ (2, 32 )

    L = λij2 ∆2µαLTiβγµPR`j�αβ + h.c .

    assumption: CP conservation,

    symmetric Yukawa couplings (H2, ∆2)

    related work: Dev, Mohapatra, Zhang 1711.08430, also 1712.03642, 1803.11167

    7

    http://www.arxiv.org/abs/1809.07924http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/1711.08430http://www.arxiv.org/abs/1712.03642http://www.arxiv.org/abs/1803.11167

  • Off-shell production H1µ: e+e− → e±µ∓(e±τ∓) [Li,MS 1809.07924]

    L = y ij1 H1µL̄iγµPLLj

    e+

    e−

    e−

    `+

    H1

    e+

    e−

    `+

    e−H1

    Basic cuts: pT > 10 GeV and |η| < 2.5

    Four collider configurations:

    CEPC: 5 ab−1 at 240 GeV

    FCC-ee: 16 ab−1 at 240 GeV

    ILC500: 4 ab−1 at 500 GeV

    CLIC: 5 ab−1 at 3 TeV

    LFV trilepton decays, `− → `−1 `+2 `−3

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.

    |y1e

    e y 1

    eµ|,

    |y1e

    e y 1

    eτ|

    mH1 (GeV)same result for H ′1µ/H3µ

    τ efficiency not included in figure

    60% τ eff. ⇒ 77% sensitivity reduction for 1 τ8

    http://www.arxiv.org/abs/1809.07924

  • H1µ: e+e− → µ±τ∓ [Li,MS 1809.07924]

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC

    FCC-eeILC500CLIC

    τ- →µ

    - e+ e

    - →µ

    - e+ e

    - pro

    j.

    mH1 (GeV)

    |y1e

    e y 1

    µτ|

    rel. couplings |y ee1 yµτ1 |e+

    e−

    µ±

    τ∓H1

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500CLIC

    τ- →µ

    + e- e

    -τ- →

    µ+ e

    - e- p

    roj.

    mH1 (GeV)

    |y1e

    µ y 1

    eτ|

    rel. couplings |y eµ1 y eτ1 |e+

    e−

    µ+

    τ−H1

    e+

    e−τ+

    µ−H1

    9

    http://www.arxiv.org/abs/1809.07924

  • Same-sign lepton collider - ∆1: e−e− → `−`′− [Li,MS 1809.07924]

    e−

    e−

    `−

    `′−∆−−1

    relevant couplings

    |λee1 λe`1 | and |λee1 λµτ1 |

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC, FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.τ- →

    µ+ e

    - e-

    τ- →µ

    + e- e

    - pro

    j.

    |λ1e

    e λ 1

    eµ|,

    |λ1e

    e λ 1

    eτ|,

    |λ1e

    e λ 1

    µτ|

    m∆1 (GeV)

    same centre of mass energies

    smaller integrated luminosity

    L = 500 fb−1

    10

    http://www.arxiv.org/abs/1809.07924

  • Future lepton colliders:

    e+e− → ``′ + X

  • Other observables [Li,MS 1907.06963]

    • anomalous magnetic moments, a`

    • Muonium antimuonium conversion,µ+e− → µ−e+

    • lepton flavour universality, `→ `′νν̄

    • shift of GF : sin2 θW , mW , CKM unitarity

    • non-standard interactions, e.g. KARMEN:ν oscillation at L = 0: ν̄µ → ν̄e

    • LEP/LHC searches

    • neutrino trident prod’n: νµN → νµN`+`−

    `− `′−`′′−

    H02

    γ

    µ+

    e−

    µ−

    e+

    H02

    `

    ν

    ν̄

    `′

    h+2

    e+

    e−

    `+

    `−H02

    11

    http://www.arxiv.org/abs/1907.06963

  • Anomalous magnetic moment [Li,MS 1907.06963]

    `− `′−`′′−

    H02

    γ

    ∆aµ = (2.74± 0.73)× 10−9 → > 3σ∆ae = (−0.88± 0.36)× 10−12 → > 2σ

    • definite signsH

    (′0)1µ ,∆1,∆3 : ∆a` ≥ 0

    ∆2µ : ∆a` ≤ 0H3µ and H2 can have either sign

    • generally suppressed by lepton masses: ∆a` ∼ O(1) y2

    12π2m2`m2X

    with exception of H2:

    ∆a`(H2) =−(y†2 y2 + y2y

    †2 )``

    96π2

    (m2`m2h2

    +m2`m2a2

    )+

    (y†2 y2)``

    96π2m2`m2

    H+2

    +∑k

    Re[y k`2 y`k2 ]

    mkm`16π2

    ln(

    m2km2

    h2

    )+ 3

    2

    m2h2−

    ln

    (m2km2a2

    )+ 3

    2

    m2a2

    12

    http://www.arxiv.org/abs/1907.06963

  • Muonium-antimuonium oscillation [Li,MS 1907.06963]

    µ+

    e−

    µ−

    e+

    H02

    P(B = 0.1T ) ≤ 8.3× 10−11Willmann et al hep-ex/9807011

    factor > 100 improvement possibleBernstein, Schöning (2019)

    • in QM muonium M = (µ+e−) described byH = H0 + Hhf + HZeeman → |↑↓〉 and |↓↑〉 states mix

    • bileptons induce muonium-antimuonium mixing HMM̄

    HMM̄ ∼1

    πa3B

    1

    ∗ ∗∗ ∗

    1

    using basis of energy eigen-

    states of (anti)muonium

    |λ1〉 ≡ |↑↑〉, |λ2,3〉, |λ4〉 ≡ |↓↓〉

    • reevaluated under assumption of HMM̄ � H• magnetic fields suppress conversion probability by

    0.36 (H(′)01µ , H3µ, ∆1,3),

    0.79 (∆2, H2 : mh2 = ma2), and 0.5 (H2 : mh2 � ma2)13

    http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/hep-ex/9807011

  • Muonium-antimuonium oscillation [Li,MS 1907.06963]

    µ+

    e−

    µ−

    e+

    H02

    P(B = 0.1T ) ≤ 8.3× 10−11Willmann et al hep-ex/9807011

    factor > 100 improvement possibleBernstein, Schöning (2019)

    • in QM muonium M = (µ+e−) described byH = H0 + Hhf + HZeeman → |↑↓〉 and |↓↑〉 states mix• bileptons induce muonium-antimuonium mixing HMM̄

    HMM̄ ∼1

    πa3B

    1

    ∗ ∗∗ ∗

    1

    using basis of energy eigen-

    states of (anti)muonium

    |λ1〉 ≡ |↑↑〉, |λ2,3〉, |λ4〉 ≡ |↓↓〉

    • reevaluated under assumption of HMM̄ � H• magnetic fields suppress conversion probability by

    0.36 (H(′)01µ , H3µ, ∆1,3),

    0.79 (∆2, H2 : mh2 = ma2), and 0.5 (H2 : mh2 � ma2)13

    http://www.arxiv.org/abs/1907.06963http://www.arxiv.org/abs/hep-ex/9807011

  • Lepton flavour universality [Li,MS 1907.06963]

    `

    ν

    ν̄

    `′

    h+2L = −2

    √2GF [ν̄iγµPLνj ][¯̀kγ

    µ(g ijklLL PL+gijklLR PR`)]

    Consider LFU ratios

    Rµe =Γ(τ → ντµν̄µ)Γ(τ → ντeν̄e)

    RexpµeRSMµe

    = 1.0034± 0.0032

    Rτµ =Γ(τ → ντeν̄e)Γ(µ→ νµeν̄e)

    RexpτµRSMτµ

    = 1.0022± 0.0028

    H1µ, H3µ and ∆3: Contribution to gLL,NP → interference with SMH2, ∆2: Contribution to gLR,NP → no interference

    gijklLL,NP

    = −yij1 y

    kl1

    2√

    2GFm2H0

    1

    −ykj3 y

    il3√

    2GFm2

    H+3

    −λjl3λ

    ik∗3

    2√

    2GFm2

    ∆+3

    gijklLR,NP

    =y il2 y

    jk∗2

    4√

    2GFm2

    H+2

    −λil2λ

    jk∗2

    2√

    2GFm2

    ∆+2

    14

    http://www.arxiv.org/abs/1907.06963

  • Lepton flavour universality [Li,MS 1907.06963]

    `

    ν

    ν̄

    `′ L = −2√

    2GF [ν̄iγµPLνj ][¯̀kγµ(g ijklLL PL+g

    ijklLR PR`)]

    Consider LFU ratios

    Rµe =Γ(τ → ντµν̄µ)Γ(τ → ντeν̄e)

    RexpµeRSMµe

    = 1.0034± 0.0032

    Rτµ =Γ(τ → ντeν̄e)Γ(µ→ νµeν̄e)

    RexpτµRSMτµ

    = 1.0022± 0.0028

    H1µ, H3µ and ∆3: Contribution to gLL,NP → interference with SMH2, ∆2: Contribution to gLR,NP → no interference

    gijklLL,NP

    = −yij1 y

    kl1

    2√

    2GFm2H0

    1

    −ykj3 y

    il3√

    2GFm2

    H+3

    −λjl3λ

    ik∗3

    2√

    2GFm2

    ∆+3

    gijklLR,NP

    =y il2 y

    jk∗2

    4√

    2GFm2

    H+2

    −λil2λ

    jk∗2

    2√

    2GFm2

    ∆+2

    14

    http://www.arxiv.org/abs/1907.06963

  • New contributions to muon decay and GF ,µ [Li,MS 1907.06963]

    µ

    ν

    ν̄

    eGF = GF ,µ(1 + δGF )

    δGF = −Re(gµeeµLL,NP)−1

    2

    ∑α,β

    (|gαβeµLL,NP |2 + |gαβeµLR,NP |2)

    A shift in the Fermi constant measured in muon decays induces

    shifts in

    • Weinberg angle δs2W

    s2W=

    c2Ws2W−c2W

    δGF

    • W boson mass δm2W

    m2W=

    s2Ws2W−c2W

    δGF

    • CKM unitarity |V expud |2 + |Vexpus |2 + |V expub |2 = 1 + 2δGF

    Caveat: analysis based on PDG 2018, does not include the

    recent determination of Vud and Vus

    15

    http://www.arxiv.org/abs/1907.06963

  • On-shell production H2: e+e− → e±µ∓ + h2/a2 [Li,MS 1907.06963]

    L =y ij2 H2αL̄αi PR`j + h.c .

    e+

    e−

    e−

    `+

    h2/a2

    e+γ/Z

    e+

    e−

    h2/a2

    `+

    e−

    e+

    γ/Z

    Cuts: pT > 10 GeV and |η| < 2.5100% h/a reconstruction efficiency

    Five collider configurations:

    CEPC: 5 ab−1 at 240 GeV

    FCC-ee: 16 ab−1 at 240 GeV

    ILC (500 GeV): 4 ab−1 at 500 GeV

    ILC (1TeV): 1 ab−1 at 1 TeV

    CLIC: 5 ab−1 at 3 TeV

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mh2 (GeV)

    |y 2eμ | a μ(mh 2=ma 2≪m

    H 2+ )

    a μ(mh 2=ma

    2=mH 2+ )

    ae(mh2≪ma2

    ,mH 2+ )

    muoniumosc.

    muoniumosc. (proj.)

    LEP ee→μμDUNE

    (H 2+ )

    16

    http://www.arxiv.org/abs/1907.06963

  • On-shell production H2: e+e− → e±µ∓ + h2/a2 [Li,MS 1907.06963]

    L =y ij2 H2αL̄αi PR`j + h.c .

    e+

    e−

    e−

    `+

    h2/a2

    e+γ/Z

    e+

    e−

    h2/a2

    `+

    e−

    e+

    γ/Z

    Cuts: pT > 10 GeV and |η| < 2.510% h/a reconstruction efficiency

    Five collider configurations:

    CEPC: 5 ab−1 at 240 GeV

    FCC-ee: 16 ab−1 at 240 GeV

    ILC (500 GeV): 4 ab−1 at 500 GeV

    ILC (1TeV): 1 ab−1 at 1 TeV

    CLIC: 5 ab−1 at 3 TeV

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mh2 (GeV)

    |y 2eμ | a μ(mh 2=ma 2≪m

    H 2+ )

    a μ(mh 2=ma

    2=mH 2+ )

    ae(mh2≪ma2

    ,mH 2+ )

    muoniumosc.

    muoniumosc. (proj.)

    LEP ee→μμDUNE

    (H 2+ )

    16

    http://www.arxiv.org/abs/1907.06963

  • On-shell production H2: e+e− → `±`′∓ + H2 [Li,MS 1907.06963]

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mh2 (GeV)

    |y 2eμ | a μ(mh 2=ma 2≪m

    H 2+ )

    a μ(mh 2=ma

    2=mH 2+ )

    ae(mh2≪ma2

    ,mH 2+ )

    muoniumosc.

    muoniumosc. (proj.)

    LEP ee→μμDUNE

    (H 2+ )

    e+

    e−

    e−

    `+

    h2/a2

    e+γ/Z

    e+

    e−

    h2/a2

    `+

    e−

    e+

    γ/Z

    L = y ij2 H2αL̄αi PR`j + h.c.

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mh2 (GeV)

    |y 2eτ |

    a μ(mh 2=ma

    2≪mH 2+ )

    a μ(mh 2=ma

    2=mH 2+ )

    ae(mh2≪ma2

    ,mH 2+ )

    LEP ee→ττ

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mh2 (GeV)

    |y 2μτ |a μ(mh 2=

    ma2≪mH 2+ )

    a μ(mh 2=ma

    2=mH 2+ )

    aμ(mh 2≪ma

    2,mH 2

    + )

    60% τ efficiency included 17

    http://www.arxiv.org/abs/1907.06963

  • On-shell production H1,3µ: e+e− → `±`′∓ + H1,3 [Li,MS 1907.06963]

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mH1 (3)(,)0 (GeV)

    |y 1(3)

    eμ|

    a μ(mH 1,mH

    3≪mH 3+ )

    a μ(mH 3=mH

    3+ )

    muoniumosc.

    muoniumosc. (proj.)LEP ee→μμ

    DUNE

    (H 3+ )

    LFU(H 1)

    GF(H 1)

    e+

    e−

    e−

    `+

    H1,3

    e+γ/Z

    e+

    e−

    H1,3

    `+

    e−

    e+

    γ/Z

    L = y ij1 H1µL̄iγµPLLj + y

    ij3 L̄iγ

    µ~σ · H3µPLLj

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mH1 (3)(,)0 (GeV)

    |y 1(3)

    eτ|

    a μ(mH 1,mH

    3≪mH 3+ )

    a μ(mH 3=mH

    3+ )LEP ee→ττ

    LFU(H 1)

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-4

    0.001

    0.010

    0.100

    1

    mH1 (3)(,)0 (GeV)

    |y 1(3)μτ|

    a μ(mH 1,mH

    3≪mH 3+ )

    a μ(mH 3=mH

    3+ )

    LFU(H 1)

    60% τ efficiency included 18

    http://www.arxiv.org/abs/1907.06963

  • On-shell production ∆1,3: e+e− → `±`′∓ + ∆1,3 [Li,MS 1907.06963]

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-5

    10-4

    0.001

    0.010

    0.100

    1

    mΔ1 (3)++ (GeV)

    |λ 1(3)

    eμ|

    aμ(mΔ 1++ ,mΔ 3++≪mΔ 3

    + )aμ(mΔ 3++ =

    mΔ 3+ )

    DUNE

    (Δ 3+ )LEP ee→μμ

    LFU(Δ 3+ )

    GF(Δ 3+ )

    e+

    e−

    e−

    `−

    ∆++1,3

    e+γ/Z

    e+

    e−

    ∆++1,3

    `−

    e−

    e+

    γ/Z

    L = λij1 ∆++1 `

    Ti CPR`j +

    λij3√2LTi Ciσ2~σ · ~∆3PLLj + h.c.

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-5

    10-4

    0.001

    0.010

    0.100

    1

    mΔ1 (3)++ (GeV)

    |λ 1(3)

    eτ|

    aμ(mΔ 1++ ,mΔ 3++≪mΔ 3

    + )aμ(mΔ 3++ =

    mΔ 3+ )

    LEP ee→ττLFU

    (Δ 3+ )

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-5

    10-4

    0.001

    0.010

    0.100

    1

    mΔ1 (3)++ (GeV)

    |λ 1(3)μτ|

    aμ(mΔ1++,mΔ3++≪mΔ3+)

    aμ(mΔ 3++ =mΔ 3+ ) LFU(Δ 3+ )

    60% τ efficiency included 19

    http://www.arxiv.org/abs/1907.06963

  • On-shell production ∆2µ: e+e− → `±`′∓ + ∆2 [Li,MS 1907.06963]

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-6

    10-5

    10-4

    0.001

    0.010

    0.100

    1

    mΔ2++ (GeV)

    |λ 2eμ | aμ(mΔ2++≪mΔ2+ )

    aμ(mΔ2++ =mΔ2+ )

    DUNE(Δ 2+ )

    e+

    e−

    e−

    `−

    ∆++2

    e+γ/Z

    e+

    e−

    ∆++2

    `−

    e−

    e+

    γ/Z

    L = λij2 ∆2µαLTiβCγ

    µPR`j�αβ + h.c.

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-6

    10-5

    10-4

    0.001

    0.010

    0.100

    1

    mΔ2++ (GeV)

    |λ 2eτ |

    aμ(mΔ2++≪mΔ2+ )

    aμ(mΔ2++ =mΔ2+ )

    CEPCFCC-eeILC (500 GeV)ILC (1 TeV)CLIC

    5 10 50 100 500 100010-610-510-40.001

    0.010

    0.100

    1

    mΔ2++ (GeV)

    |λ 2μτ |

    aμ(mΔ2++≪mΔ2+ )

    aμ(mΔ2++ =mΔ2+ )

    60% τ efficiency included 20

    http://www.arxiv.org/abs/1907.06963

  • LHC: qq̄, gg → ``′

  • cLFV at the Large Hadron Collider (LHC) [Cai, MS 1510.02486]

    Processes at LHC: pp → `i`j + jets

    q

    q

    `i

    `j

    q

    q

    `i

    `j

    g

    g

    q

    q

    `i

    `j

    qg

    q

    q

    `i

    `j

    q

    Signal: opposite-sign different flavour pair of leptons → existing searches:

    • ATLAS 7 TeV: LFV heavy neutral particle decay to eµ ATLAS 1103.5559• CMS 8 TeV: LFV heavy neutral particle decay to eµ CMS-PAS-EXO-13-002• ATLAS 7 TeV, 2.1 fb−1, exclusive:

    LFV in eµ continuum in�R SUSYATLAS 1205.0725

    • ATLAS 8 TeV, 20.3 fb−1, inclusive:LFV heavy neutral particle decayATLAS 1503.04430

    • CMS 8 TeV: LFV heavy neutral particle decay to eµ CMS 1604.05239• ATLAS 13 TeV, 3.2 fb−1: LFV heavy neutral particle decay ATLAS 1607.08079• ATLAS 13 TeV, 36.1 fb−1 ATLAS 1807.06573

    21

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1103.5559http://www.arxiv.org/abs/1205.0725http://www.arxiv.org/abs/1503.04430http://www.arxiv.org/abs/1604.05239http://www.arxiv.org/abs/1607.08079http://www.arxiv.org/abs/1807.06573

  • cLFV at hadron colliders: quarks

    ēµ µ̄e ēττ̄ e µ̄τ τ̄µ10−1

    100

    101

    102

    103

    Λ[T

    eV]

    ūu, d̄d, s̄s, c̄c, b̄bτ → `Mτ → `f0

    µ− eM → `ν

    LHC8LHC14

    Cai, MS 1510.02486

    ATLAS 8TeV 1503.04430; ATLAS 14 TeV, 300 fb−1 projection

    Qledq = (L̄α`)(d̄Qα) , Q(1)lequ = (L̄α`)�αβ(Q̄βu)LHC more interesting for vector operators with right-handed quark

    currents due to weaker constraints from intensity frontier

    [q̄γµPRq][¯̀γµPR,L`] 22

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1503.04430

  • cLFV at hadron colliders: quarks

    ēµ µ̄e ēττ̄ e µ̄τ τ̄µ10−1

    100

    101

    102

    103

    Λ[T

    eV]

    ūu, d̄d, s̄s, c̄c, b̄bτ → `Mτ → `f0

    µ− eM → `ν

    LHC8LHC14

    Cai, MS 1510.02486

    ATLAS 8TeV 1503.04430; ATLAS 14 TeV, 300 fb−1 projection

    Qledq = (L̄α`)(d̄Qα) , Q(1)lequ = (L̄α`)�αβ(Q̄βu)LHC more interesting for vector operators with right-handed quark

    currents due to weaker constraints from intensity frontier

    [q̄γµPRq][¯̀γµPR,L`] 22

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1503.04430

  • cLFV at hadron colliders: gluons

    OX , ŌX 2.541.631.17

    O′X , Ō′X 1.631.17eµ

    OY ,Z 1.640.98

    OX , ŌX 1.030.610.42

    O′X , Ō′X 1.030.610.44eτ

    OY ,Z 1.060.47

    OX , ŌX 1.230.900.43

    O′X , Ō′X 1.230.900.46µτ

    OY ,Z 1.230.67 low-energy

    LHC

    LHC (unitarised)

    Λ [TeV]0.1 0.5 1 1.5 2 2.5 3

    coupling → form factorC → C

    1+ŝ

    Λ2Baur, Zeppenfeld hep-ph/9309227

    Cai, MS, Valencia 1802.09822

    OijX = αsG aµνG aµν(ēRiLj · φ∗ + L̄j · φeRi

    )O′ijX = i αsG aµνG̃ aµν

    (ēRiLj · φ∗ − L̄j · φeRi

    )ŌijX = i αsG aµνG aµν

    (ēRiLj · φ∗ − L̄j · φeRi

    )Ō′ijX = αsG aµνG̃ aµν

    (ēRiLj · φ∗ + L̄j · φeRi

    )OijY = i αsG aµρG aσνηρσL̄iγµDνLjOijZ = i αsG aµρG aσνηρσ ēRiγµDνeRj

    OX , ŌX : µN → eN, τ → `M+M−O′X , Ō′X : τ → `M0

    LHC searches: ATLAS 13 TeV, 3.2 fb−1 (eµ, eτ , µτ) 1607.08079, CMS 13 TeV, 35.9 fb−1 (eµ) 1802.01122

    23

    http://www.arxiv.org/abs/hep-ph/9309227http://www.arxiv.org/abs/1802.09822http://www.arxiv.org/abs/1607.08079http://www.arxiv.org/abs/1802.01122

  • Searches for cLFV in decays of Z and Higgs boson

    Z→eµ

    Z→eτ

    Z→µτ

    10−12

    10−9

    10−6

    10−3

    BR

    (Z→` 1` 2

    )

    CEPC current

    Z → eµ: ATLAS 1408.5774, CMS EXO-13-005Z → `τ : DELPHI (µτ), OPAL (eτ)similar sensitivity as LFV τ decays

    → complementary probe

    | τµ

    |Y5−10 4−10 3−10 2−10 1−10

    |

    µ τ|Y

    5−10

    4−10

    3−10

    2−10

    1−10

    (13 TeV)-136.0 fbCMS

    B

  • Conclusions

  • Conclusions

    colliders provide complementary way to search for charged LFV

    Off-shell production/EFT

    • µ↔ e flavour: stringent limits from low-energy precision exp.• τ ↔ ` flavour complementary sensitivity at colliders

    On-shell production

    • possibly no constraints from LFV decays• µ↔ τ flavour: constraints from LFU [H1,∆3] and aµ [H2]• e ↔ ` flavour complementary sensitivity at colliders

    EFT

    • colliders test more Lorentz structures• best for operators which are difficult to constrain at low energy

    25

  • Conclusions cont.

    Energ

    y Frontier

    IntensityFrontier Cosm

    icFr

    onti

    er

    Higgs physics

    Neutrinos

    Proton Decay

    Dark Matter

    Dark Energy

    Unifica-tion ofForces

    cLFV

    Than

    kyo

    u!

    26

  • Conclusions cont.

    Energ

    y Frontier

    IntensityFrontier Cosm

    icFr

    onti

    er

    Higgs physics

    Neutrinos

    Proton Decay

    Dark Matter

    Dark Energy

    Unifica-tion ofForces

    cLFV

    Than

    kyo

    u!

    26

  • Conclusions cont.

    Energ

    y Frontier

    IntensityFrontier Cosm

    icFr

    onti

    er

    Higgs physics

    Neutrinos

    Proton Decay

    Dark Matter

    Dark Energy

    Unifica-tion ofForces

    cLFV

    Than

    kyo

    u!

    26

  • Backup slides

    26

  • cLFV Z boson decays

    Z→eµ

    Z→eτ

    Z→µτ

    10−12

    10−9

    10−6

    10−3

    BR

    (Z→` 1` 2

    )CEPC current

    Z → eµ: ATLAS 1408.5774, CMS EXO-13-005Z → `τ : DELPHI (µτ), OPAL (eτ)ATLAS, 13 TeV, 36.1 fb−1 1804.09568

    almost same sensitivity for µτ

    No tree-level FCNC in SM

    induced at 1 loop in SM +mν

    Z

    `−1

    `+2

    W

    W

    ν ∝ GFm2ν

    16π2' 10−28

    Observation clear sign of new physics

    e.g. due to a leptoquark

    Z

    `−1

    `+2

    q

    q′

    φ

    today typically less stringent as low-energy

    precision experiments

    but will be more interesting with new Z

    boson factory

    or if there is a signal to disentangle physics

    27

    http://www.arxiv.org/abs/1408.5774http://www.arxiv.org/abs/1804.09568

  • cLFV Z boson decays

    Z→eµ

    Z→eτ

    Z→µτ

    10−12

    10−9

    10−6

    10−3

    BR

    (Z→` 1` 2

    )CEPC current

    Z → eµ: ATLAS 1408.5774, CMS EXO-13-005Z → `τ : DELPHI (µτ), OPAL (eτ)ATLAS, 13 TeV, 36.1 fb−1 1804.09568

    almost same sensitivity for µτ

    No tree-level FCNC in SM

    induced at 1 loop in SM +mν

    Z

    `−1

    `+2

    W

    W

    ν ∝ GFm2ν

    16π2' 10−28

    Observation clear sign of new physics

    e.g. due to a leptoquark

    Z

    `−1

    `+2

    q

    q′

    φ

    today typically less stringent as low-energy

    precision experiments

    but will be more interesting with new Z

    boson factory

    or if there is a signal to disentangle physics

    27

    http://www.arxiv.org/abs/1408.5774http://www.arxiv.org/abs/1804.09568

  • cLFV Z boson decays

    Z→eµ

    Z→eτ

    Z→µτ

    10−12

    10−9

    10−6

    10−3

    BR

    (Z→` 1` 2

    )CEPC current

    Z → eµ: ATLAS 1408.5774, CMS EXO-13-005Z → `τ : DELPHI (µτ), OPAL (eτ)ATLAS, 13 TeV, 36.1 fb−1 1804.09568

    almost same sensitivity for µτ

    No tree-level FCNC in SM

    induced at 1 loop in SM +mν

    Z

    `−1

    `+2

    W

    W

    ν ∝ GFm2ν

    16π2' 10−28

    Observation clear sign of new physics

    e.g. due to a leptoquark

    Z

    `−1

    `+2

    q

    q′

    φ

    today typically less stringent as low-energy

    precision experiments

    but will be more interesting with new Z

    boson factory

    or if there is a signal to disentangle physics

    27

    http://www.arxiv.org/abs/1408.5774http://www.arxiv.org/abs/1804.09568

  • cLFV Higgs decay

    Dimension-6 SMEFT operators Grzadkowski et al 1008.4884

    L =[Yij +

    cijΛ2

    (H†H)]L̄iPR`jH+h.c .→

    [mijv

    +cij√

    2

    v2

    Λ2

    ]h ¯̀iPR`j+h.c .

    9 Results

    The best-fit branching ratios and upper limits are computed under the assumption of B(H → µτ) = 0for the H → eτ search and B(H → eτ) = 0 for the H → µτ search, respectively. The best-fit values ofthe LFV Higgs boson branching ratios are equal to 0.15+0.18−0.17% and −0.22 ± 0.19% for the H → eτ andH → µτ search, respectively. In the absence of any significant excess, upper limits on the LFV branchingratios are set for a Higgs boson with mH = 125GeV. The observed (median expected) 95% CL upper limitsare 0.47% (0.34+0.13−0.10 %) and 0.28% (0.37

    +0.14−0.10 %) for the H → eτ and H → µτ searches, respectively.

    These limits are significantly lower than the corresponding Run 1 limits of Refs. [7, 8]. The breakdown ofcontributions from different signal regions is shown in Fig. 4.

    ) in %τ e→ H(Β95% CL upper limit on 0 1 2 3 4 5 6

    ATLAS Preliminary Observedσ 1±Expected

    σ 2±Expected

    -1 = 13 TeV, 36.1 fbs

    VBFµτe

    1.59 (exp)1.69 (obs)

    -1.24

    +1.72 = 0.07µ

    µτe

    0.58 (exp)0.81 (obs)

    -0.31

    +0.31 = 0.30µ

    hadτe

    0.54 (exp)0.72 (obs)

    -0.26

    +0.27 = 0.23µ

    non-VBFhad

    τe

    0.65 (exp)1.00 (obs)

    -0.32

    +0.33 = 0.42µ

    non-VBFµτe

    0.61 (exp)0.80 (obs)

    -0.31

    +0.31 = 0.25µ

    τe

    0.34 (exp)0.47 (obs)

    -0.17

    +0.18 = 0.15µ

    VBFhad

    τe

    0.97 (exp)0.84 (obs)

    -0.58

    +0.60 = -0.35µ

    ) in %τµ → H(Β95% CL upper limit on 0 1 2 3 4 5 6

    ATLAS Preliminary Observedσ 1±Expected

    σ 2±Expected

    -1 = 13 TeV, 36.1 fbs

    VBFe

    τµ

    1.64 (exp)1.08 (obs)

    -0.89

    +0.89 = -1.28µ

    eτµ

    0.66 (exp)0.44 (obs)

    -0.31

    +0.31 = -0.38µ

    hadτµ

    0.44 (exp)0.41 (obs)

    -0.23

    +0.23 = -0.07µ

    non-VBFhad

    τµ

    0.57 (exp)0.49 (obs)

    -0.32

    +0.31 = -0.21µ

    non-VBFe

    τµ

    0.72 (exp)0.57 (obs)

    -0.35

    +0.35 = -0.24µ

    τµ

    0.37 (exp)0.28 (obs)

    -0.19

    +0.19 = -0.22µ

    VBFhad

    τµ

    0.96 (exp)0.94 (obs)

    -0.58

    +0.58 = -0.09µ

    Figure 4: 95% CL upper limits on the LFV branching ratios of the Higgs boson, H → eτ (left) and H → µτ (right).Best-fit values of the branching ratios (µ̂) are also given, in %. The limits are computed under the assumption thateither B(H → µτ) = 0 (left) or B(H → eτ) = 0 (right). Results of the fit when only the data of an individualchannel or of an individual category are used, are also shown; in these cases the signal and control regions from allother channels/categories are removed from the fit.

    The branching ratio of the LFV Higgs decay is related to the non-diagonal Yukawa coupling matrixelements [84] by the formula

    √|Ỳ τ |2 + |Yτ` |2 = 8πmH

    B(H → `τ)1 − B(H → `τ) ΓH (SM), (1)

    where ΓH (SM) stands for the Higgs boson width as predicted by the Standard Model. Thus, theobserved limits on the branching ratio correspond to the following limits on the matrix elements:√|Yτe |2 + |Yeτ |2 < 0.00197, and

    √|Yτµ |2 + |Yµτ |2 < 0.00152. Figure 5 shows the limits on the individual

    matrix elements Yτ` and Ỳ τ together with the limits from the ATLAS Run 1 analysis and from τ → `γsearches [84, 85].

    14

    ATLAS-CONF-2019-013BR(h→ eτ) < 0.47% ), %τµ→(HΒ95% CL limit on

    0 2 4 6 8 10 12 14

    0.25% (0.25%)

    τµ→H

    1.79% (1.62%) , VBF

    eτµ

    2.27% (1.98%) , 2 Jets

    eτµ

    1.34% (1.19%) , 1 Jet

    eτµ

    1.30% (0.83%) , 0 Jets

    eτµ

    0.51% (0.58%) , VBF

    hτµ

    0.56% (0.94%) , 2 Jets

    hτµ

    0.53% (0.56%) , 1 Jet

    hτµ

    0.51% (0.43%) , 0 Jets

    hτµ

    : BDT fitτµ→h

    Observed

    Median expected

    68% expected

    95% expected

    (13 TeV)-135.9 fbCMS

    CMS 1712.07173BR(h→ µτ) < 0.25%

    h

    τ

    `

    28

    http://www.arxiv.org/abs/1008.4884http://www.arxiv.org/abs/1712.07173

  • cLFV Higgs decay cont.

    √|Y`τ |2 + |Yτ`|2 =

    8πΓH(SM)

    mH

    BR(H → `τ)1− BR(H → `τ)

    4−10 3−10 2−10 1−10

    |τe

    |Y

    4−10

    3−10

    2−10

    1−10| e τ

    |Y

    γ e → τ

    < 1

    0%

    Β

    < 1

    < 0

    .1%

    Β

    < 0

    .01%

    Β

    < 5

    0%

    Β

    | < n.l.

    Yτe

    |Y

    -1=13 TeV, 36.1 fbs

    PreliminaryATLAS Observedσ 1±Expected

    σ 2±Expected

    ATLAS Run 1

    4−10 3−10 2−10 1−10|

    τ µ|Y

    4−10

    3−10

    2−10

    1−10| µ τ

    |Y

    γ µ → τ

    < 1

    0%

    Β

    < 1

    < 0

    .1%

    Β

    < 0

    .01%

    Β

    < 5

    0%

    Β

    | < n.l.

    µ τ

    Yτ µ

    |Y

    -1=13 TeV, 36.1 fbs

    PreliminaryATLAS Observedσ 1±Expected

    σ 2±Expected

    ATLAS Run 1

    Figure 5: Upper limits on the absolute value of the couplings Yτ` and Ỳ τ together with the limits from the ATLASRun 1 analysis (light grey line) and the most stringent indirect limits from τ → `γ searches (dark purple region).Indicated are also limits corresponding to different branching ratios (0.01%, 0.1%, 1%, 10% and 50%) and thenaturalness limit (denoted n.l.) |Yτ`Ỳ τ | . mτm`v [84] where v is the vacuum expectation value of the Higgs field.

    10 Conclusions

    Direct searches for H → eτ and H → µτ are performed with the pp collisions recorded by the ATLASdetector at the LHC corresponding to an integrated luminosity of 36.1 fb−1 at a centre-of-mass energy of√

    s = 13TeV. No significant excess was observed above the expected background from SM processes. Theobserved (expected) 95% CL upper limits on the branching ratios of H → eτ and H → µτ are 0.47%(0.34+0.13−0.10 %) and 0.28% (0.37

    +0.14−0.10 %), respectively. These limits represent an improvement by a factor 2

    (5) over the corresponding Run 1 limits for the H → eτ (H → µτ) decay.

    References

    [1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgsboson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv: 1207.7214 [hep-ex](cit. on p. 2).

    [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment atthe LHC, Phys. Lett. B 716 (2012) 30, arXiv: 1207.7235 [hep-ex] (cit. on p. 2).

    [3] A. Arhrib, Y. Cheng and O. C. Kong, Comprehensive analysis on lepton flavor violating Higgsboson to µ∓τ± decay in supersymmetry without R parity, Phys. Rev. D 87 (2013) 015025, arXiv:1210.8241 [hep-ph] (cit. on p. 2).

    [4] K. Agashe and R. Contino, Composite Higgs-mediated flavor-changing neutral current, Phys. Rev.D 80 (2009) 075016, arXiv: 0906.1542 [hep-ph] (cit. on p. 2).

    15

    ATLAS-CONF-2019-013

    τ

    h

    ττ

    γ

    µY ∗ττPL + YττPR Y

    ∗τµPL + YµτPR

    h

    µτ

    γ

    µY ∗τµPL + YµτPR Y

    ∗µµPL + YµµPR

    µ

    h γ, Z

    tt

    τ

    γ

    µµ

    h γ, Z

    WW

    τ

    γ

    µ

    µ

    h γ, Z

    W W

    τ

    γ

    µ

    µ

    h

    µ

    Z

    µτ

    γ

    µHarnik et al 1209.1397

    | τµ

    |Y5−10 4−10 3−10 2−10 1−10

    |

    µ τ|Y

    5−10

    4−10

    3−10

    2−10

    1−10

    (13 TeV)-136.0 fbCMS

    B

  • General (type-III) 2 Higgs doublet model

    EFT

    L =[mivδij +

    cij√2

    v 2

    Λ2

    ]h ¯̀iPR`j

    two neutral CP even Higgs

    Φi = (vi + φi )/√

    2v2v1

    = tβ

    SM Higgs: h = −sαφ1 + cαφ2with Yukawa couplings

    Yij = −sαcβ

    mivδij +

    cos(β − α)cβ

    √mimj

    vχ`ij

    Not suppressed by v 2/Λ2 → large contribution

    BR(h→ µτ) ∝(|χ`23|2 + |χ`32|2

    )cos2(β−α)(1+tan2 β)

    Benbrik, Chen, Nomura 1511.08544

    EWPO

    Higgs decay channels

    30

    http://www.arxiv.org/abs/1511.08544

  • Example: Zee model

    • Non-zero neutrino masses

    • generated at loop level Zee 1980

    • Simplest model with 2 Higgs doublets andcharged singlet scalar h+

    L

    Φi

    Φi

    L

    h+ Φi

    L ē

    -10 -8 -6 -4 -2log10(Br(h→ τe))

    -8

    -6

    -4

    -2

    log 1

    0(Br(h→

    τµ

    ))

    2σ region

    1σ region

    Normal orderingm1 < m2 < m3

    -10 -8 -6 -4 -2log10(Br(h→ τe))

    -8

    -6

    -4

    -2

    log 1

    0(Br(h→

    τµ

    ))

    2σ region

    1σ region

    Inverted orderingm3 < m1 < m2

    Herrero-Garcia et al 1701.05345

    [see Herrero-Garcia et al 1605.06091 for Higgs cLFV in other neutrino mass models] 31

    http://www.arxiv.org/abs/1701.05345http://www.arxiv.org/abs/1605.06091

  • Future lepton collider

    e−

    e+

    Z

    h

    Z ∗

    LHC

    ILC

    CEPC(FCC-ee)

    yeμ yeτ yμτ

    5.×10-5

    1.×10-4

    5.×10-4

    10-3

    Qin et al 1711.07243

    LHC CMS-PAS-HIG-16-005, CMS 1607.03561

    ILC√s = 250 GeV, 4 polarizations, L = 2 ab−1

    CEPC√s = 240 GeV, L = 5 ab−1

    32

    http://www.arxiv.org/abs/1711.07243http://www.arxiv.org/abs/1607.03561

  • Future lepton collider

    e−

    e+

    Z

    h

    Z ∗

    LHC

    ILC

    CEPC(FCC-ee)

    yeμ yeτ yμτ

    5.×10-5

    1.×10-4

    5.×10-4

    10-3

    Qin et al 1711.07243

    LHC CMS-PAS-HIG-16-005, CMS 1607.03561

    ILC√s = 250 GeV, 4 polarizations, L = 2 ab−1

    CEPC√s = 240 GeV, L = 5 ab−1

    LHCILCCEPC(FCC-ee)H→bb (λb=1)

    -1.0 -0.5 0.0 0.5 1.00.10.5

    1

    5

    10

    50

    cos(α-β)

    λ μτ

    Qin et al 1711.07243

    LHCILCCEPC(FCC-ee)H→bb (λb=0.5)

    -1.0 -0.5 0.0 0.5 1.00.10.5

    1

    5

    10

    50

    cos(α-β)

    λ μτ

    32

    http://www.arxiv.org/abs/1711.07243http://www.arxiv.org/abs/1607.03561http://www.arxiv.org/abs/1711.07243

  • Scalar Operators

    Qledq = (L̄α`)(d̄Qα) Q(1)lequ = (L̄α`)�αβ(Q̄βu)

    Relevant Wilson coefficients Ξu,d of SM EFT

    − L = Ξdij ,kk (Qledq)ij ,kk + Ξuij ,kk(Q(1)lequ

    )ij ,kk

    + h.c. .

    Effective four fermion Lagrangian

    L4f = ΞCdij ,kl(ν̄Li`Rj)(d̄RkuLl) + ΞNdij ,kl(¯̀Li`Rj)(d̄RkdLl)+ ΞCuij ,kl(ν̄Li`Rj)(d̄LkuRl) + Ξ

    Nuij ,kl(¯̀Li`Rj)(ūLkuRl) .

    We do not consider top quark because of different phenomenology.

    33

  • Scalar Operators

    Qledq = (L̄α`)(d̄Qα) Q(1)lequ = (L̄α`)�αβ(Q̄βu)

    Relevant Wilson coefficients Ξu,d of SM EFT

    − L = Ξdij ,kk (Qledq)ij ,kk + Ξuij ,kk(Q(1)lequ

    )ij ,kk

    + h.c. .

    Effective four fermion Lagrangian

    L4f = ΞCdij ,kl(ν̄Li`Rj)(d̄RkuLl) + ΞNdij ,kl(¯̀Li`Rj)(d̄RkdLl)+ ΞCuij ,kl(ν̄Li`Rj)(d̄LkuRl) + Ξ

    Nuij ,kl(¯̀Li`Rj)(ūLkuRl) .

    Thus the most general four fermion coefficients are

    ΞNdij ,kl = U`∗ii ′ V

    dlk Ξ

    dij ,kk Ξ

    Cdij ,kl = U

    ν∗ii ′ V

    ulk Ξ

    di ′j ,kk

    ΞNuij ,kl = −U`∗ii ′ V u∗kl Ξuij ,ll ΞCuij ,kl = Uν∗ii ′ V d∗kl Ξui ′j ,llIn general there is quark flavour violation.

    We do not consider top quark because of different phenomenology.33

  • Scalar Operators

    Qledq = (L̄α`)(d̄Qα) Q(1)lequ = (L̄α`)�αβ(Q̄βu)Relevant Wilson coefficients Ξu,d of SM EFT

    − L = Ξdij ,kk (Qledq)ij ,kk + Ξuij ,kk(Q(1)lequ

    )ij ,kk

    + h.c. .

    Effective four fermion Lagrangian

    L4f = ΞCdij ,kl(ν̄Li`Rj)(d̄RkuLl) + ΞNdij ,kl(¯̀Li`Rj)(d̄RkdLl)+ ΞCuij ,kl(ν̄Li`Rj)(d̄LkuRl) + Ξ

    Nuij ,kl(¯̀Li`Rj)(ūLkuRl) .

    Choose basis in which charged lepton mass matrix is diagonal as

    well as ΞN?ij ,kk

    ΞNdij ,kl = δklΞdij ,kk Ξ

    Cdij ,kl = U

    ∗ii ′ V

    ∗kl Ξ

    di ′j ,kk

    ΞNuij ,kl = −δklΞuij ,kk ΞCuij ,kl = U∗ii ′ V ∗kl Ξui ′j ,ll⇒ No tree-level FCNC processes.We do not consider top quark because of different phenomenology.

    33

  • Scalar Operators

    Qledq = (L̄α`)(d̄Qα) Q(1)lequ = (L̄α`)�αβ(Q̄βu)Relevant Wilson coefficients Ξu,d of SM EFT

    − L = Ξdij ,kk (Qledq)ij ,kk + Ξuij ,kk(Q(1)lequ

    )ij ,kk

    + h.c. .

    Effective four fermion Lagrangian

    L4f = ΞCdij ,kl(ν̄Li`Rj)(d̄RkuLl) + ΞNdij ,kl(¯̀Li`Rj)(d̄RkdLl)+ ΞCuij ,kl(ν̄Li`Rj)(d̄LkuRl) + Ξ

    Nuij ,kl(¯̀Li`Rj)(ūLkuRl) .

    Choose basis in which charged lepton mass matrix is diagonal as

    well as ΞN?ij ,kk

    ΞNdij ,kl = δklΞdij ,kk Ξ

    Cdij ,kl = U

    ∗ii ′ V

    ∗kl Ξ

    di ′j ,kk

    ΞNuij ,kl = −δklΞuij ,kk ΞCuij ,kl = U∗ii ′ V ∗kl Ξui ′j ,ll⇒ No tree-level FCNC processes.We do not consider top quark because of different phenomenology.

    33

  • Renormalization Group Corrections

    • Main effect are QCD corrections

    q q

    q

    q

    `i

    `j

    • Following the standard discussion at NLOBuchalla,Buras, Lautenbacher hep-ph/9512380

    Ξ(µ) = Ξ(µ0)

    (αs(µ)

    αs(µ0)

    ) γ02β0

    with coefficients

    β0 = 11− 2nF/3 and γ0 = 6C2(3) = 8

    • Wilson coefficients become larger at smaller scales.⇒ Increases reach of precision experiments

    34

    http://www.arxiv.org/abs/hep-ph/9512380

  • Renormalization Group Corrections

    • Main effect are QCD corrections

    q q

    q

    q

    `i

    `j

    • Following the standard discussion at NLOBuchalla,Buras, Lautenbacher hep-ph/9512380

    Ξ(µ) = Ξ(µ0)

    (αs(µ)

    αs(µ0)

    ) γ02β0

    with coefficients

    β0 = 11− 2nF/3 and γ0 = 6C2(3) = 8

    • Wilson coefficients become larger at smaller scales.⇒ Increases reach of precision experiments

    34

    http://www.arxiv.org/abs/hep-ph/9512380

  • Precision Experiments

    µ− e−

    N N

    µ− e conversion in nuclei

    τ−

    `−

    M0

    τ → `M0

    `−j

    `+i

    M0

    M0 → `+i `−j

    ν

    `+i

    M+

    M+ → `+i ν

    35

  • µ− e Conversion

    • Agnostic about mediation mechanism

    • Following discussion inGonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

    µ− e−

    N N

    Dimensionless µ− e conversion rate

    R(A,Z)µe ≡

    Γ(µ− + (A,Z )→ e− + (A,Z ))Γ(µ− + (A,Z )→ νµ + (A,Z − 1))

    with muon conversion rate

    Γ(µ−+(A,Z )→ e−+(A,Z )) =∣∣∣ΞNu,Ndij ,kl ∣∣∣2×F×peEe (Mp +Mn)22π

    F depends on mediation mechanismNo dependence on phase of Ξ if there is only one operator.

    Strongest limit for first generation quarks,

    but non-negligible for other quarks if pure direct nuclear mediation36

    http://www.arxiv.org/abs/1303.0596

  • µ− e Conversion

    • Agnostic about mediation mechanism

    • Following discussion inGonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

    µ− e−

    N N

    48Ti 197Au 208Pb

    Rmaxµe 4.3× 10−11 7.0× 10−13 4.6× 10−11

    ūu 1100 [870] 2100 [1700] 760 [610]

    d̄d 1100 [930] 2200 [1900] 780 [680]

    s̄s 480 [-] 950 [-] 340 [-]

    c̄c 150 [-] 290 [-] 110 [-]

    b̄b 84 [-] 170 [-] 61 [-]

    Direct nuclear mediation [Meson mediation]

    Strongest limit for first generation quarks,

    but non-negligible for other quarks if pure direct nuclear mediation36

    http://www.arxiv.org/abs/1303.0596

  • µ− e Conversion

    • Agnostic about mediation mechanism

    • Following discussion inGonzalez, Gutsche, Helo, Kovalenko, Lyubovitskij, Schmidt 1303.0596

    µ− e−

    N N

    48Ti 197Au 208Pb

    Rmaxµe 4.3× 10−11 7.0× 10−13 4.6× 10−11

    ūu 1100 [870] 2100 [1700] 760 [610]

    d̄d 1100 [930] 2200 [1900] 780 [680]

    s̄s 480 [-] 950 [-] 340 [-]

    c̄c 150 [-] 290 [-] 110 [-]

    b̄b 84 [-] 170 [-] 61 [-]

    Direct nuclear mediation [Meson mediation]

    Strongest limit for first generation quarks,

    but non-negligible for other quarks if pure direct nuclear mediation36

    http://www.arxiv.org/abs/1303.0596

  • LFV Semileptonic τ Decays

    • Only light quarks u,d,s• Weak dependence on phase• f0: ϕm parameterises quark content• Quark FCNC parameterised by λ

    Ξuij,kl = λΞuij,llVkl Ξ

    dij,kl = λΞ

    dij,kkVkl

    τ−

    `−

    M0

    decay Brmaxi cutoff scale Λ [TeV]

    Ξuij ,uu Ξdij ,dd Ξ

    dij ,ss

    τ− → e−π0 8.0× 10−8 10 10 -τ− → e−η 9.2× 10−8 34 34 7.9τ− → e−η′ 1.6× 10−7 42 42 12τ− → e−K 0S 2.6× 10−8 - 7.8

    √λ 7.8

    √λ

    τ− → e−(f0(980)→ π+π−) 3.2× 10−8 13√

    sinϕm 13√

    sinϕm 16√

    cosϕm

    τ− → µ−π0 1.1× 10−7 9.0− 9.6 9.0− 9.6 -τ− → µ−η 6.5× 10−8 36− 38 36− 38 8.4− 8.9τ− → µ−η′ 1.3× 10−7 42− 46 42− 46 12− 13τ− → µ−K 0S 2.3× 10−8 - (7.8− 8.3)

    √λ (7.8− 8.3)

    √λ

    τ− → µ−(f0(980)→ π+π−) 3.4× 10−8 (12− 14)√

    sinϕm (12− 14)√

    sinϕm (15− 16)√

    cosϕm

    37

  • Leptonic Neutral Meson Decays M0 → `+i `−j

    Quark FCNC parameterised by λ

    Ξuij,kl = λΞuij,llVkl Ξ

    dij,kl = λΞ

    dij,kkVkl

    For λ = 0 only constraints from π0, η(′) decays

    decay Brmaxi cutoff scale Λ [TeV]

    Ξuij ,uu Ξdij ,dd Ξ

    dij ,ss Ξ

    uij ,cc Ξ

    dij ,bb

    π0 → µ+e− 3.8× 10−10 2.2 2.2 - - -π0 → µ−e+ 3.4× 10−9 1.2 1.2 - - -π0 → µ+e− + µ−e+ 3.6× 10−10 2.6 2.6 - - -η → µ+e− + µ−e+ 6× 10−6 0.52 0.52 0.12 - -η′ → eµ 4.7× 10−4 0.091 0.091 0.026 - -

    K 0L → e±µ∓ 4.7× 10−12 - 86√λ 86

    √λ - -

    D0 → e±µ∓ 2.6× 10−7 6.4√λ - - 6.4

    √λ -

    B0 → e±µ∓ 2.8× 10−9 - 10√λ - - 6.6

    √λ

    B0 → e±τ∓ 2.8× 10−5 - 0.97√λ - - 0.62

    √λ

    B0 → µ±τ∓ 2.2× 10−2 - 0.18√λ - - 0.12

    √λ

    `−j

    `+i

    M0

    38

  • Leptonic Charged Meson Decays M+ → `+i ν

    • RM = Br(M+→e+ν)

    Br(M+→µ+ν)

    • Theoretical error for Rπ (RK ) about 5%• Improvement by factor 20 (2) possible••X indicates constraints• Second index of Λ corresponds to charged lepton

    decay constraint cutoff scale Λ [TeV] Wilson coefficients

    Λµe,eµ,eτ Λτe,τµ,µτ Ξuij ,uu Ξ

    dij ,dd Ξ

    dij ,ss Ξ

    uij ,cc Ξ

    dij ,bb

    Rπ Rexpπ ± 5% 25− 280 25− 260 •X •X - - -

    RK RexpK ± 5% 24− 160 24− 150 X - •X - -

    Br(D+ → e+ν) < 8.8× 10−6 2.8− 2.9 2.9 - X - X -Br(D+s → e+ν) < 8.3× 10−5 3.2− 3.3 3.2− 3.3 - - X •X -Br(B+ → e+ν) < 9.8× 10−7 2.0 2.0 X - - - •XBr(π+ → µ+ν) Brexp ± 5% 1.9− 7.4 1.9− 9.4 •X •X - - -Br(K+ → µ+ν) Brexp ± 5% 1.7− 5.8 1.7− 7.4 X - •X - -Br(D+ → µ+ν) (3.82± 0.33)× 10−4 1.1− 2.7 1.1− 3.4 - X - X -Br(D+s → µ+ν) (5.56± 0.25)× 10−3 1.3− 4.3 1.3− 5.3 - - X •X -Br(B+ → µ+ν) < 1.0× 10−6 1.9− 2.7 1.7− 3.0 X - - - •XBr(D+ → τ+ν) < 1.2× 10−3 0.21− 0.78 0.23− 0.73 - •X - X -Br(D+s → τ+ν) (5.54± 0.24)× 10−2 0.33− 1.2 0.33− 1.1 - - •X •X -Br(B+ → τ+ν) (1.14± 0.27)× 10−4 0.49− 1.3 0.49− 1.2 •X - - - •X

    ν

    `+i

    M+

    39

  • Invariant Mass Distribution of eµ Pair for Different Quarks

    0 500 1000 1500 2000M(eµ) [GeV]

    0

    1000

    2000

    3000

    4000

    5000

    Arb

    itrar

    yun

    itsudscb

    Production cross section normalised to same value for each quark.

    • Sea quarks s, c, b peaked at low invariant mass

    • Valence quarks u, d shifted towards larger invariant mass40

  • Interesting ATLAS searches [Cai, MS 1510.02486]

    Recast limits of most sensitive previous searches

    ATLAS 1503.04430 ATLAS 1205.0725

    8 TeV 7 TeV

    20.3 fb−1 2.1 fb−1

    eµ, eτ , µτ eµ

    inclusive exclusive

    including arbitrary number of jets separated by number of jets

    Projection to 14 TeV

    • Assume 300 fb−1

    • Follow searching strategy of exclusive 7 TeV search41

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1503.04430http://www.arxiv.org/abs/1205.0725

  • Interesting ATLAS searches [Cai, MS 1510.02486]

    Recast limits of most sensitive previous searches

    ATLAS 1503.04430 ATLAS 1205.0725

    8 TeV 7 TeV

    20.3 fb−1 2.1 fb−1

    eµ, eτ , µτ eµ

    inclusive exclusive

    including arbitrary number of jets separated by number of jets

    Projection to 14 TeV

    • Assume 300 fb−1

    • Follow searching strategy of exclusive 7 TeV search41

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1503.04430http://www.arxiv.org/abs/1205.0725

  • Interesting ATLAS searches [Cai, MS 1510.02486]

    Recast limits of most sensitive previous searches

    ATLAS 1503.04430 ATLAS 1205.0725

    8 TeV 7 TeV

    20.3 fb−1 2.1 fb−1

    eµ, eτ , µτ eµ

    inclusive exclusive

    including arbitrary number of jets separated by number of jets

    Projection to 14 TeV

    • Assume 300 fb−1

    • Follow searching strategy of exclusive 7 TeV search41

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1503.04430http://www.arxiv.org/abs/1205.0725

  • ATLAS Searches [Cai, MS 1510.02486]

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    = 95 GeV)t~Signal (m

    Total Background

    Top

    τ τ →* γZ/Fake Background

    Diboson

    ATLAS

    -1 Ldt = 2.1 fb∫

    [GeV]µe m0 100 200 300 400 500 600 700 800 9001000D

    ata

    / S

    M

    0.5

    1

    1.5

    ATLAS 7TeV 1205.0725

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ττ →Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    µe

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ll→Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    τe

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    ATLAS 8TeV 1503.04430

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ll→Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbsATLAS

    τµ

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    ATLAS 8TeV 1503.04430 42

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1205.0725http://www.arxiv.org/abs/1503.04430http://www.arxiv.org/abs/1503.04430

  • ATLAS Searches [Cai, MS 1510.02486]

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    = 95 GeV)t~Signal (m

    Total Background

    Top

    τ τ →* γZ/Fake Background

    Diboson

    ATLAS

    -1 Ldt = 2.1 fb∫

    [GeV]µe m0 100 200 300 400 500 600 700 800 9001000D

    ata

    / S

    M

    0.5

    1

    1.5

    ATLAS 7TeV 1205.0725

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ττ →Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    µe

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    ATLAS 8TeV 1503.04430• Main backgrounds: tt̄, WW , Z/γ∗ → ττalso W /Z plus jets, WZ/ZZ , single top and W /Z + γ

    ⇒ Efficiently reduced in exclusive 7 TeV analysisby rejecting jets and EmissT < 20 GeV

    • Modelling of main background agrees with ATLAS• Fake background estimated from data⇒ Use background from ATLAS publications

    43

    http://www.arxiv.org/abs/1510.02486http://www.arxiv.org/abs/1205.0725http://www.arxiv.org/abs/1503.04430

  • SM Background

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    = 95 GeV)t~Signal (m

    Total Background

    Top

    τ τ →* γZ/Fake Background

    Diboson

    ATLAS

    -1 Ldt = 2.1 fb∫

    [GeV]µe m0 100 200 300 400 500 600 700 800 9001000D

    ata

    / S

    M

    0.5

    1

    1.5

    ATLAS 7TeV 1205.0725

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ττ →Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    µe

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    ATLAS 8TeV 1503.04430• Main backgrounds: tt̄, WW , Z/γ∗ → ττalso W /Z plus jets, WZ/ZZ , single top and W /Z + γ

    ⇒ Efficiently reduced in exclusive 7 TeV analysisby rejecting jets and EmissT < 20 GeV

    • Modelling of main background agrees with ATLAS• Fake background estimated from data⇒ Use background from ATLAS publications

    44

    http://www.arxiv.org/abs/1205.0725http://www.arxiv.org/abs/1503.04430

  • SM Background

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    0 100 200 300 400 500 600 700 800 900 1000

    Eve

    nts

    / 2

    5 G

    eV

    1

    10

    210

    310

    = 95 GeV)t~Signal (m

    Total Background

    Top

    τ τ →* γZ/Fake Background

    Diboson

    ATLAS

    -1 Ldt = 2.1 fb∫

    [GeV]µe m0 100 200 300 400 500 600 700 800 9001000D

    ata

    / S

    M

    0.5

    1

    1.5

    ATLAS 7TeV 1205.0725

    Eve

    nts

    / 20

    GeV

    1−10

    1

    10

    210

    310

    410

    510 Data (1 TeV)τν∼

    ττ →Z Others

    Z' (0.75 TeV)

    Jet fake

    tt

    Total SM

    -1 = 8 TeV, 20.3 fbs

    ATLAS

    µe

    Dilepton Mass [GeV]0 200 400 600 800 1000 1200

    Dat

    a/S

    M

    12

    ATLAS 8TeV 1503.04430• Main backgrounds: tt̄, WW , Z/γ∗ → ττalso W /Z plus jets, WZ/ZZ , single top and W /Z + γ

    ⇒ Efficiently reduced in exclusive 7 TeV analysisby rejecting jets and EmissT < 20 GeV

    • Modelling of main background agrees with ATLAS• Fake background estimated from data⇒ Use background from ATLAS publications

    44

    http://www.arxiv.org/abs/1205.0725http://www.arxiv.org/abs/1503.04430

  • Selection Criteria

    Same selection criteria as in ATLAS 7 and 8 TeV analyses.

    • oppositely charged leptons

    • Electrons: ET > 25 GeV, |η| < 1.37 or 1.52 < |η| < 2.47, tightidentification criteria

    • Muons: pT > 25 GeV, |η| < 2.4

    • Tau: ET > 25 GeV, 0.03 < |η| < 2.47

    • Lepton isolation: scalar sum of lepton pT within cone of ∆R = 0.2(0.4)is less than 10% (6%) of lepton pT for 7 (8) TeV search

    • Jets reconstructed anti-kT algorithm with radius parameter 0.4

    • 7 TeV analysis: jets rejected if pT > 30 GeV or EmissT < 25 GeV

    • Invariant mass of lepton pair: > 100(200) GeV in 7(8) TeV analysis

    • azimuthal angle difference ∆φ > 3(2.7) in 7 (8) TeV analysis

    14 TeV projection

    Same as 7 TeV exclusive analysis and pT (`) > 300 GeV and EmissT < 20 GeV

    45

  • Limits from LHC on Cutoff Scale in TeV

    HHHH

    HHHq̄q

    ¯̀i`j

    ēµ ēτ µ̄τ

    7 TeV 8 TeV 14 TeV 8 TeV 8 TeV

    ūu 2.6 2.9 8.9 2.4 2.2

    d̄d 2.3 2.3 8.0 2.1 1.9

    s̄s 1.1 1.4 4.0 0.95 0.88

    c̄c 0.97 1.3 3.6 0.82 0.78

    b̄b 0.74 1.0 2.7 0.63 0.61

    • 8 TeV analysis gives only a slight improvement compared to 7 TeVdespite 10 times more data because of large background

    • eτ and µτ limits weaker than eµ because of low τ -tagging rate andhigher fake background

    • 14 TeV projection: same search strategy as 7 TeV exclusive search46

  • cLFV D8 operator with 2 gluons and 2 leptons

    process exp. limit operator Λ [TeV]

    Br(µ− 4822Ti→ e− 4822Ti) < 4.3× 10−12 OX , ŌX 2.11Br(µ− 19779Au→ e− 19779Au) < 7× 10−13 OX , ŌX 2.54

    Br(τ+ → e+π+π−) < 2.3× 10−8 OX , ŌX 0.42Br(τ− → e−K+K−) < 3.4× 10−8 OX , ŌX 0.37Br(τ− → e−η) < 9.2× 10−8 O′X , Ō′X 0.40Br(τ− → e−η′) < 1.6× 10−7 O′X , Ō′X 0.44

    µτ

    Br(τ− → µ−π+π−) < 2.1× 10−8 OX , ŌX 0.43Br(τ− → µ−K+K−) < 4.4× 10−8 OX , ŌX 0.36Br(τ− → µ−η) < 6.5× 10−8 O′X , Ō′X 0.42Br(τ− → µ−η′) < 1.3× 10−7 O′X , Ō′X 0.46

    47

  • cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

    Processes at LHC: pp → `i`jg

    g

    `i

    ¯̀j

    Signal:

    opposite-sign different flavour pair of leptons

    Most sensitive searches

    ATLAS 1607.08079 CMS-PAS-EXO-16-058 1802.01122

    13 TeV 13 TeV

    3.2 fb−1 35.9 fb−1

    eµ, eτ , µτ eµ

    inclusive inclusive

    newer ATLAS search: 13 TeV, 36.1 fb−1 1807.06573

    EFT scattering amplitudes

    A(s) ' sΛ2

    s→∞−→ ∞

    Solutions:

    • UV-complete models/simplified models

    • apply unitarization procedure, e.g.K-matrix unitarization

    Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

    Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

    • couplings → form factorBaur, Zeppenfeld hep-ph/9309227

    C → C1 + ŝ

    Λ2⇒ Violation of perturbative unitarity48

    http://www.arxiv.org/abs/1802.09822http://www.arxiv.org/abs/1607.08079http://www.arxiv.org/abs/1802.01122http://www.arxiv.org/abs/1807.06573http://www.arxiv.org/abs/1606.02722http://www.arxiv.org/abs/hep-ph/9309227

  • cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

    Processes at LHC: pp → `i`jg

    g

    `i

    ¯̀j

    Signal:

    opposite-sign different flavour pair of leptons

    Most sensitive searches

    ATLAS 1607.08079 CMS-PAS-EXO-16-058 1802.01122

    13 TeV 13 TeV

    3.2 fb−1 35.9 fb−1

    eµ, eτ , µτ eµ

    inclusive inclusive

    newer ATLAS search: 13 TeV, 36.1 fb−1 1807.06573

    EFT scattering amplitudes

    A(s) ' sΛ2

    s→∞−→ ∞

    Solutions:

    • UV-complete models/simplified models

    • apply unitarization procedure, e.g.K-matrix unitarization

    Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

    Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

    • couplings → form factorBaur, Zeppenfeld hep-ph/9309227

    C → C1 + ŝ

    Λ2⇒ Violation of perturbative unitarity48

    http://www.arxiv.org/abs/1802.09822http://www.arxiv.org/abs/1607.08079http://www.arxiv.org/abs/1802.01122http://www.arxiv.org/abs/1807.06573http://www.arxiv.org/abs/1606.02722http://www.arxiv.org/abs/hep-ph/9309227

  • cLFV at the Large Hadron Collider (LHC): gluons [Cai, MS, Valencia 1802.09822]

    Processes at LHC: pp → `i`jg

    g

    `i

    ¯̀j

    Signal:

    opposite-sign different flavour pair of leptons

    Most sensitive searches

    ATLAS 1607.08079 CMS-PAS-EXO-16-058 1802.01122

    13 TeV 13 TeV

    3.2 fb−1 35.9 fb−1

    eµ, eτ , µτ eµ

    inclusive inclusive

    newer ATLAS search: 13 TeV, 36.1 fb−1 1807.06573

    EFT scattering amplitudes

    A(s) ' sΛ2

    s→∞−→ ∞

    Solutions:

    • UV-complete models/simplified models

    • apply unitarization procedure, e.g.K-matrix unitarization

    Wigner 1964; Wigner, Eisenbud 1947; Gupta 1950

    Recent application to monojets: Bell, Busoni, Kobakhidze, Long, MS 1606.02722

    • couplings → form factorBaur, Zeppenfeld hep-ph/9309227

    C → C1 + ŝ

    Λ2⇒ Violation of perturbative unitarity48

    http://www.arxiv.org/abs/1802.09822http://www.arxiv.org/abs/1607.08079http://www.arxiv.org/abs/1802.01122http://www.arxiv.org/abs/1807.06573http://www.arxiv.org/abs/1606.02722http://www.arxiv.org/abs/hep-ph/9309227

  • H1µ: e+e− → e±µ∓(e±τ∓)

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.

    |y1e

    e y 1

    eµ|,

    |y1e

    e y 1

    eτ|

    mH1 (GeV)

    L = y ij1 H1µ ¯̀iγµPL`j

    e+

    e−

    e−

    `+

    H1

    e+

    e−

    `+

    e−H1

    same result for

    right-handed H ′1µ

    τ efficiency not included in figure60% τ eff. ⇒ 77% (60%) sensitivity reduction for 1 (2) τ leptons

    49

  • H2: e+e− → e±µ∓(e±τ∓)

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC

    FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.

    |y2e

    e y 2

    eµ|,

    |y2e

    e y 2

    eτ|

    mh2=ma2 (GeV)

    L = y ij2 H02 ¯̀iPR`j + h.c .

    e+

    e−

    e−

    `+

    H2

    e+

    e−

    `+

    e−H2

    50

  • H1µ,H2: e+e− → µ±τ∓

    e+

    e−

    µ±

    τ∓X 0

    rel. couplings

    |y eeyµτ |10

    -6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC

    FCC-eeILC500CLIC

    τ- →µ

    - e+ e

    - →µ

    - e+ e

    - pro

    j.

    mH1 (GeV)

    |y1e

    e y 1

    µτ|

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC

    FCC-eeILC500CLIC

    τ- →µ

    - e+ e

    -τ- →

    µ- e

    + e- p

    roj.

    mh2=ma2 (GeV)

    |y2e

    e y 2

    µτ|

    e+

    e−

    µ+

    τ−X 0

    e+

    e−τ+

    µ−X 0

    rel. couplings

    |y eµy eτ |10

    -6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500CLIC

    τ- →µ

    + e- e

    -τ- →

    µ+ e

    - e- p

    roj.

    mH1 (GeV)

    |y1e

    µ y 1

    eτ|

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500

    CLIC

    τ- →µ

    + e- e

    -

    τ- →µ

    + e- e

    - pro

    j.

    mh2=ma2 (GeV)

    |y2e

    µ y 2

    eτ|

    51

  • ∆1, ∆2µ: e+e− → `+`′−

    e+

    e−

    `−

    `′+X−−

    relevant couplings

    |λeeλe`| and |λeµλeτ |

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC

    FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.

    τ- →µ

    - e+ e

    -

    τ- →µ

    - e+ e

    - pro

    j.

    |λ1e

    e λ 1

    eµ|,

    |λ1e

    e λ 1

    eτ|,

    |λ1e

    µ λ 1

    eτ|

    m∆1 (GeV)

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPCFCC-eeILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.

    τ- →µ

    - e+ e

    -

    τ- →µ

    - e+ e

    - pro

    j.

    |λ2e

    e λ 2

    eµ|,

    |λ2e

    e λ 2

    eτ|,

    |λ2e

    µ λ 2

    eτ|

    m∆2 (GeV)

    52

  • H1µ, H2: e−e− → `−`′−

    e−

    e−

    `−

    `′−X 0

    relevant couplings

    |y eey e`| and |y eµy eτ |

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC, FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.τ- →

    µ+ e

    - e-

    τ- →µ

    + e- e

    - pro

    j.

    |y1e

    e y 1

    eµ|,

    |y1e

    e y 1

    eτ|,

    |y1e

    µ y 1

    eτ|

    mH1 (GeV)

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC, FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.τ→

    3eτ→

    3e p

    roj.τ

    - →µ

    + e- e

    -

    τ- →µ

    + e- e

    - pro

    j.

    |y2e

    e y 2

    eµ|,

    |y2e

    e y 2

    eτ|,

    |y2e

    µ y 2

    eτ|

    mh2=ma2 (GeV)

    53

  • ∆1, ∆2µ: e−e− → `−`′−

    e−

    e−

    `−

    `′−X−−

    relevant couplings

    |λeeλe`| and |λeeλµτ |

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC, FCC-ee

    ILC500

    CLIC

    µ→3e

    µ→3e

    pro

    j.

    τ→3e

    τ→3e

    pro

    j.τ- →

    µ+ e

    - e-

    τ- →µ

    + e- e

    - pro

    j.

    |λ1e

    e λ 1

    eµ|,

    |λ1e

    e λ 1

    eτ|,

    |λ1e

    e λ 1

    µτ|

    m∆1 (GeV)

    10-6

    10-5

    10-4

    10-3

    10-2

    10 102

    103

    CEPC, FCC-ee

    ILC500CLIC

    µ→3e

    µ→3e

    pro

    j.τ→3e

    τ→3e

    pro

    j.τ- →µ

    + e- e

    -

    τ- →µ

    + e- e

    - pro

    j.

    |λ2e

    e λ 2

    eµ|,

    |λ2e

    e λ 2

    eτ|,

    |λ2e

    e λ 2

    µτ|

    m∆2 (GeV)

    54

    Future lepton colliders: e+ e- Future lepton colliders: e+ e- +XLHC: q, gg Conclusions