characterizinghalf heuslerthermoelectric...

1
Results 0 20 40 60 80 100 120 140 0 100 200 300 400 Tensile Stress [MPa] Applied Brazing Pressure [MPa] IncusilABA 1 6 9 12 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 12 Number of Cycles [#] Sample Number [#] CusilABA Cusil Materials and Methods Background FabricaDon ObjecDves Strong bond between halfHeusler and conducDng material Consistent braze joints Desired electrical and thermal properDes of braze High efficiency unicouples and devices High electrical conducDvity across braze Low thermal conducDvity Half-Heusler Material Braze Foil Direct Bonded Copper Acknowledgements Emily Johnson 1 , Nicholas Kempf 2 , Yanliang Zhang 2 1 Department of Physics, St. Olaf College, Northfield, MN; 2 Department of Mechanical & Biomedical Engineering, Boise State University, Boise, ID References 1. Adapted from Snyder et al., 2008 Nature Materials, 105114 2. GMZ Energy, Inc., Voltage Measurement Characterizing HalfHeusler Thermoelectric Unicouple ProperDes Increase material uniformity to create more consistent devices Decrease variability in part sizes during fabricaDon Increase braze consistency to overall leg performance Improve braze fixture to streamline braze process Apply pressure uniformly throughout braze cycle Higher quanDty fabricaDon yield Develop beZer tensile tesDng apparatus to aZach TE legs for tesDng Improve resistance measurement technique across joint Test material limits with current fixtures and fabricaDon techniques Implement efficiency measurements, thermal cycling tests, and thermoelectric generator (TEG) tesDng to determine power output and lifeDme of TE devices for various applicaDons Future DirecDons Seebeck Effect Applied temperature difference creates a current Temperature gradient across the TE material causes higher energy charge carriers to diffuse toward colder side ConDnuously applied heat keeps charge carriers moving Thermoelectric Figure of Merit (ZT) Provides a measure of the thermoelectric performance of the TE material Efficiency Percent energy output from TE device α = ΔV ΔΤ ZT = α 2 σ κ T η max = T Hot T Cold T Hot 1 + ZT Mean 1 1 + ZT Mean + T Cold / T Hot " # $ $ % & ' ' PelDer Effect Applied current causes a temperature difference Charge carriers have different heat carrying capaciDes in different materials Charge carries moving between materials cause heat to be absorbed or rejected η = Power Output Heat Input α = Seebeck coefficient σ = electrical conducDvity κ = thermal conducDvity ΔV = Seebeck voltage ΔT = temperature difference Heat Sink Heat Source ntype ptype Power Output Cooling ntype ptype Heat Rejected Current Source Assembly and Joint Brazing Procedure Sand parts to appropriate size (approximately 2×2×3 mm) Clean components in sonicaDon process Assemble halfHeusler legs, braze foil, and direct bonded copper (DBC); or copper, braze foil, and copper in brazing fixture Braze components in vacuum furnace (approximately 0.010.06 mbar at highest vacuum) IntroducDon Increases in global energy usage have created a growing need for new, efficient energy technologies Thermal energy losses pose many problems in current technologies Thermoelectric (TE) materials provide a method to convert waste heat directly into energy, making them a strong contender for energy producDon Diagram of TE module internal structure 1 Most current TE generators and materials are costly and inefficient In order to improve feasibility of thermoelectric energy generaDon we need to improve modules OpDmizing fabricaDon methods will help improve TE module efficiency Braze Alloy Incusil TM ABA Cusil TM Cusil TM ABA ComposiDon (%wt.) Silver 59 72 63 Copper 27.25 28 35.25 Titanium 1.25 1.75 Indium 12.5 Solidus(°C) 605 779 779 Liquidus (°C) 715 779 816 CTE (×10 6 K 1 ) 18.2 19.6 18.5 a) Tensile stress test results from Copper – Incusil TM ABA – Copper joints brazed at 825°C for 5 minutes with various pressures applied to legs; and b) completely reversed bending test results from Copper – Cusil TM – Copper and Copper – Cusil TM ABA – Copper joints brazed at 825°C for 5 minutes (samples from data points marked red can be seen below) This research was supported by the Boise State University REU in Materials for Energy and Sustainability and sponsored by NaDonal Science FoundaDon grant 1359344. ~ 6 mm Braze Fixture TesDng Process Tensile tests performed on brazed legs using homemade tesDng fixture Completely reversed bending cycle test with a full cycle across a maximum angle of approximately ± 24° ~ 2 mm DBC HalfHeusler Brazed halfHeusler, DBC leg ~ 3 mm Brazed Copper leg Copper b) a) c) Copper leg braze interface aqer c) tensile; and d) bending tests for various numbered samples shown in red on graphs above (leg dimensions ~2×2 mm) d) #1 #6 #9 # 12 #3 #5 #7 #9 IncusilABA CusilABA Cusil f) e) 250 μm e) SEM images of Copper – Cusil TM – Copper braze joint interface; and f) GMZ Energy example voltage measurement across braze joint 2 to measure contact resistance PosiDon (mm) 30 25 20 15 10 Measured Contact Resistance: 0.827 μΩcm 2 0.3 0.4 0.5 0.6 0.7 0.2 5 Voltage (μV) Heat Flow Heat Flow Braze Process ConsideraDons Material preparaDon and assembly Atmosphere, applied pressure, surface roughness, and cleanliness Braze temperature and Dme for different materials Diffusion bonding, joint coverage, and braze foil dimensions Materials SelecDon HalfHeusler compound Nanostructured alloys increase ZT Braze alloy Diffusion bonding influences joint strength Similar thermal expansion coefficients are ideal Braze foil thickness changes joint properDes ConducDve material Copper provides high conducDvity electrical connecDon Direct Bonded Copper (DBC) provides insulaDon 0 100 200 300 400 500 600 700 800 900 0 30 60 90 120 150 180 210 240 Temperature [°C] Time [min] Typical Furnace Braze Cycle

Upload: hathu

Post on 20-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Results  

0  

20  

40  

60  

80  

100  

120  

140  

0   100   200   300   400  

Tensile  Stress  [MPa

]  

Applied  Brazing  Pressure  [MPa]  

Incusil-­‐ABA  

1  

6  

9  

12  

0  

0.5  

1  

1.5  

2  

2.5  

3  

0   2   4   6   8   10   12  

Num

ber  o

f  Cycles  [#]  

Sample  Number  [#]  

Cusil-­‐ABA  Cusil  

Materials  and  Methods  

Background  

FabricaDon  ObjecDves  •  Strong  bond  between  half-­‐Heusler  and  conducDng  material  •  Consistent  braze  joints    •  Desired  electrical  and  thermal  properDes  of  braze  •  High  efficiency  unicouples  and  devices  

¡  High  electrical  conducDvity  across  braze  ¡  Low  thermal  conducDvity  

Half-Heusler Material

Braze Foil

Direct Bonded Copper

 Acknowledgements  

Emily  Johnson  1,  Nicholas  Kempf  2,  Yanliang  Zhang  2  1  Department  of  Physics,  St.  Olaf  College,  Northfield,  MN;  2  Department  of  Mechanical  &  Biomedical  Engineering,  Boise  State  University,  Boise,  ID  

 References  1.  Adapted  from  Snyder  et  al.,  2008  Nature  Materials,  105-­‐114  2.  GMZ  Energy,  Inc.,  Voltage  Measurement  

Characterizing  Half-­‐Heusler  Thermoelectric  Unicouple  ProperDes  

•  Increase  material  uniformity  to  create  more  consistent  devices  ¡  Decrease  variability  in  part  sizes  during  fabricaDon    ¡  Increase  braze  consistency  to  overall  leg  performance  

•  Improve  braze  fixture  to  streamline  braze  process  ¡  Apply  pressure  uniformly  throughout  braze  cycle  ¡  Higher  quanDty  fabricaDon  yield  

•  Develop  beZer  tensile  tesDng  apparatus  to  aZach  TE  legs  for  tesDng  •  Improve  resistance  measurement  technique  across  joint  •  Test  material  limits  with  current  fixtures  and  fabricaDon  techniques  •  Implement  efficiency  measurements,  thermal  cycling  tests,  and  thermoelectric  generator  (TEG)  tesDng  to  determine  power  output  and  lifeDme  of  TE  devices  for  various  applicaDons  

Future  DirecDons  

Seebeck  Effect  •  Applied  temperature  difference  creates  a  current  •  Temperature  gradient  across  the  TE  material  causes  higher  energy  charge  carriers  to  diffuse  toward  colder  side  •  ConDnuously  applied  heat  keeps  charge  carriers  moving  

Thermoelectric  Figure  of  Merit  (ZT)  •  Provides  a  measure  of  the  thermoelectric  performance  of  the  TE  material  

                                                                       

Efficiency  •  Percent  energy  output  from  TE  device  

α = −ΔVΔΤ

ZT=α2σκT

ηmax =THot −TCold

THot

1+ ZTMean −11+ ZTMean +TCold /THot

"

#$$

%

&''

PelDer  Effect  •  Applied  current  causes  a  temperature  difference  •  Charge  carriers  have  different  heat  carrying  capaciDes  in  different  materials  •  Charge  carries  moving  between  materials  cause  heat  to  be  absorbed  or  rejected  

 

η =PowerOutputHeat Input

α  =  Seebeck  coefficient                                                                σ  =  electrical  conducDvity  κ  =  thermal  conducDvity  ΔV  =  Seebeck  voltage  ΔT  =  temperature  difference  

Heat  Sink  

Heat  Source  

n-­‐type   p-­‐type  

Power  Output  Cooling  

n-­‐type   p-­‐type  

Heat  Rejected  

Current  Source  

Assembly  and  Joint  Brazing  Procedure  •  Sand  parts  to  appropriate  size  (approximately  2×2×3  mm)  •  Clean  components  in  sonicaDon  process  •  Assemble  half-­‐Heusler  legs,  braze  foil,  and  direct  bonded  copper  (DBC);  or  copper,  braze  foil,  and  copper  in  brazing  fixture  •  Braze  components  in  vacuum  furnace  (approximately  0.01-­‐0.06  mbar  at  highest  vacuum)  

IntroducDon  •  Increases  in  global  energy  usage  have  created  a  growing  need  for  new,  efficient  energy  technologies  •  Thermal  energy  losses  pose  many  problems  in  current  technologies  •  Thermoelectric  (TE)  materials  provide  a  method  to  convert  waste  heat  directly  into  energy,  making  them  a  strong  contender  for  energy  producDon  

Diagram  of  TE  module  internal  structure1  

• Most  current  TE  generators  and  materials  are  costly  and  inefficient  •  In  order  to  improve  feasibility  of  thermoelectric  energy  generaDon  we  need  to  improve  modules  •  OpDmizing  fabricaDon  methods  will  help  improve  TE  module  efficiency  

Braze  Alloy   IncusilTM-­‐ABA   CusilTM   CusilTM-­‐ABA  ComposiDon  (%wt.)              Silver   59   72   63              Copper   27.25   28   35.25              Titanium   1.25   -­‐-­‐-­‐   1.75              Indium   12.5   -­‐-­‐-­‐   -­‐-­‐-­‐  Solidus(°C)   605   779   779  Liquidus  (°C)   715   779   816  CTE  (×10-­‐6K-­‐1)   18.2   19.6   18.5  

a)  Tensile  stress  test  results  from  Copper  –  IncusilTM-­‐ABA  –  Copper  joints  brazed  at  825°C  for  5  minutes  with  various  pressures  applied  to  legs;  and  b)  completely  reversed  bending  test  results  from  Copper  –  CusilTM  –  Copper  and  Copper  –  CusilTM-­‐ABA  –  Copper  joints  brazed  at  825°C  for  5  minutes  (samples  from  data  points  marked  red  can  be  seen  below)  

This  research  was  supported  by  the  Boise  State  University  REU  in  Materials  for  Energy  and  Sustainability  and  sponsored  by  NaDonal  Science  FoundaDon  grant  1359344.  

~  6  mm  

Braze  Fixture  

TesDng  Process  •  Tensile  tests  performed  on  brazed  legs  using  homemade  tesDng  fixture  •  Completely  reversed  bending  cycle  test  with  a  full  cycle  across  a  maximum  angle  of  approximately  ±  24°  

~  2  mm  

DBC  

Half-­‐Heusler  

Brazed  half-­‐Heusler,  DBC  leg    

~  3  mm  

Brazed  Copper  leg    

Copper  

b)  a)  

c)  

Copper  leg  braze  interface  aqer  c)  tensile;  and  d)  bending  tests  for  various  numbered  samples  shown  in  red  on  graphs  above  (leg  dimensions  ~2×2  mm)  

d)  

#  1  

#  6  

#  9  

#  12  

 #  3  

#  5  

#  7  

#  9  

Incusil-­‐ABA   Cusil-­‐ABA   Cusil  

f)  e)  

250  μm  

e)  SEM  images  of  Copper  –  CusilTM  –  Copper  braze  joint  interface;  and  f)  GMZ  Energy  example  voltage  measurement  across  braze  joint2  to  measure  contact  resistance  

PosiDon  (mm)    

30  

25  

20  

15  

10  

Measured  Contact  Resistance:    0.827  μΩcm2  

0.3   0.4   0.5   0.6   0.7  0.2  5  

Volta

ge  (μ

V)    

Heat  Flow  

Heat  Flow  

Braze  Process  ConsideraDons  • Material  preparaDon  and  assembly  •  Atmosphere,  applied  pressure,  surface  roughness,  and  cleanliness  •  Braze  temperature  and  Dme  for  different  materials  •  Diffusion  bonding,  joint  coverage,  and  braze  foil  dimensions  

 

Materials  SelecDon  •  Half-­‐Heusler  compound  

¡  Nanostructured  alloys  increase  ZT  •  Braze  alloy  

¡  Diffusion  bonding  influences  joint  strength  ¡  Similar  thermal  expansion  coefficients  are  ideal  ¡  Braze  foil  thickness  changes  joint  properDes  

•  ConducDve  material  ¡  Copper  provides  high  conducDvity  electrical  connecDon  ¡  Direct  Bonded  Copper  (DBC)  provides  insulaDon  

 

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

0   30   60   90   120   150   180   210   240  

Tempe

rature  [°C]  

Time  [min]  

Typical  Furnace  Braze  Cycle