characterization of permanent deformation mondher neifar, hervé di benedetto, berthe dongmo...

22
Characterization of Permanent deformation her Neifar, Hervé Di Benedetto, Berthe Dongm Berthe-Julienne DONGMO-ENGELAND NABin Conferense - 26. october 2004 .

Upload: zechariah-angel

Post on 14-Dec-2015

223 views

Category:

Documents


2 download

TRANSCRIPT

Characterization of

Permanent deformation

Mondher Neifar, Hervé Di Benedetto, Berthe Dongmo

Berthe-Julienne DONGMO-ENGELAND

NABin Conferense - 26. october 2004 .

2

Evolution in the production of bitumen

Rutting in France: milestones

Apparition of ruttingThe problem is solved

Rutting reappears

Evolution of axle loads configuration

1950

1960 1980

1970 1990

3

Bituminous layers

Origins of rutting in bituminous roads

Arase de terrassementPlate –forme support de chaussée Accotement

Partie supérieure des terrassements

1m

RoulementLiaison

Base

Fondation

Couches de surface

Couches d’assise

Couche de forme

Sol support

Unbound layers

15 to 50 cm

4

Homogeneous test rheological model Measure both “large” (10-2) permanent

deformation and “small” (10-6) cyclic deformation

complex modulus

Aim

5

Triaxial test on bituminous mixesTest developed

h=12cm d=8cm

6

Triaxial test on bituminous mixes

High resolution

A mechanical system to move axial targets

Test developed

Temperature regulation

7

Stress path history

8

Type of loading

Cycles & rest periods

max

t

Time (s)

Stress

9

)N( sin*)N()N( (N))N,( 0 axaxttt av

axaxax

0,340

0,345

0,350

0,355

0,360

0,365

0,370

0,375

0,380

0,385

0 0,5 1 1,5 2

Time (s)

Axi

al s

trai

n (%

)

approched signal measured signal

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 0,5 1 1,5 2

Time (s)

Stre

ss (M

Pa) 1

Great strain evolution

Possible to obtain Complex modulus

0<t<2/fr

Experimental

Cycle N & N+1

10

0

0,5

1

1,5

2

2,5

3

3,5

0 100000 200000 300000 400000 500000 600000

Time (s)

Axia

l str

ain

(%

)

Compression and

tension type tests

Experimental

max

t

T = 25°C; max = 0,4 Mpa; f = 1Hz

Stress

Time (s)

Rest periods

Cyclic loading periods

11

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000

Number of cycles

Ax

ial s

tra

in (

%)

0.3%

Cumulated number of cycles

0

0.5

1

1.5

2

2.5

3

3.5

0 100000 200000 300000 400000 500000 600000

Equiv alent number of cycles

Ax

ial

str

ain

(%

)

T = 25°C - f = 1 Hz max = 0,4 MPa

Strain-number of cycles Experimental

T = 25°C; max = 0,4 Mpa; f = 1Hz

12

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0 20000 40000 60000 80000 100000 120000

Cycle number

Per

man

ent d

efor

mat

ion

(%)

Phase I Phase II Phase III

General curve for continuous loading

max

t

Experimental

Information in the linear domain (LVE)

Small strainmeasured

T = 35°C; max = 0,4 Mpa; f = 1Hz

13

Tests

Compression Extension

3 temperatures 15°C, 25°C and 35°C

2 temperatures 15°C and 25°C

3 stress amplitudes

0.1 MPa, 0.2MPa and

0.3MPa

2 stress amplitudes

0.05MPa and 0.1MPa

2 frequencies 1Hz and 10Hz 1 frequency 1Hz

0/14 Bituminous mixes 35/50 bitumen at 6.8 ppc

14

Results

15

0.000.501.001.502.002.503.003.504.00

0 5000 10000 15000Time (s)

Axi

al s

trai

n (%

)

1 Hz 10 Hz S 0,4MPa

Influence of frequencyExperimental

Stress

Time (s)

T = 25°C

max = 0,4 MPa

VEL or classical VP laws

not adapted

)( fvp

16

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0 50000 100000 150000 200000 250000 300000 350000 400000

Number of Cycles

Axi

al s

tra

in (

%)

15°C-1Hz-0,1MPa 15°C-10Hz-0,1MPa 15°C-1Hz-0,2MPa

15°C-10Hz-0,2MPa 15°C-1Hz-0,3MPa 15°C-10Hz-0,3MPa

25°C-10Hz-0,1MPa 25°C-1Hz-0,2MPa 25°C-10Hz-0,2MPa

25°C-1Hz-0,3MPa 35°C-10Hz-0,1MPa 35°C-1Hz-0,2MPa

35°C-10Hz-0,2MPa 35°C-1Hz-0,3MPa 35°C-10Hz-0,3MPa

Experimental

Tests in compression

17

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000

Number of Cycles

n

orm

15°C-1Hz-0,1MPa 15°C-10Hz-0,1MPa 15°C-1Hz-0,2MPa

15°C-10Hz-0,2MPa 15°C-1Hz-0,3MPa 15°C-10Hz-0,3MPa

25°C-10Hz-0,1MPa 25°C-1Hz-0,2MPa 25°C-10Hz-0,2MPa

25°C-1Hz-0,3MPa 35°C-10Hz-0,1MPa 35°C-1Hz-0,2MPa

35°C-10Hz-0,2MPa 35°C-1Hz-0,3MPa 35°C-10Hz-0,3MPa

Phase 3

Type : = f(N) 0

FrequencyTemperatureStress level

Experimental

Cyclic compression tests

norm = 58.59N0.1951

cycles small0 )(

)()(

N

NN

averagenorm

perm= f(jmax)

18

CompressionTraction

-20

-15

-10

-5

0

5

-10 -5 0 5 10 15 20 25

v(%

)

q(%)

avrad

avaxq

Volume variation

avrad

avaxv 2

Tension Compression

-0.1

-0.05

0

0.05

0.1

0.15

0.00 0.20 0.40 0.60 0.80 1.00

q(%)

19

0

2000

4000

6000

8000

10000

0 5000 10000 15000 20000

Number of cycles

lE*l

(MPa

)

15°C 25°C 35°C

2300

2800

3300

4600 5600 6600

Complex modulus evolution

f = 1Hz max = 0,4 MPa

cycles small0

max

)(NE

20

Conclusion New test

Permanent deformation Small cycle properties

Results for compression and extension tests Classical laws not adapted

Cyclic effect Suitable developments

Prediction

21

THANK YOU

Modelling