characterization of complex polymer systems by maldi mass

71
Characterization of complex polymer systems by MALDI Mass Spectrometry” Concetto Puglisi National Research Council Institute of Polymers, Composites and Biomaterials Catania, Italy

Upload: others

Post on 18-Mar-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Characterization of complex polymer systems by MALDI Mass Spectrometry”

Concetto Puglisi

National Research Council Institute of Polymers, Composites and Biomaterials

Catania, Italy

Mass Spectrometry

Ions Separation Ions Production

Ions Detection

Ions Separation Magnetic/Electric Field Time of Flight Quadrupole Ion Trap FT Ions-cyclotron resonance

Ion Detectors Electron Multiplier Array Detector

Ions Production Gas Phase Techniques (EI,CI,NCI) Desorption Techniques

Mass Spectrometry

Analytical Techniques based on the production of ions in the high vacuum of the MS source, separation as a function of mass to

charge ratio (m/z) and detection.

Before  MALDI,    MS    analysis  of  polymers  was  restricted  to  addi:ves  or  low  molecular  mass  products  obtained  from  pyrolisis  or  other    degrada:on  

methods.    (DP-­‐MS,  PY  GC/MS,  FAB/MS).  

Chemistry Nobel Prize 2001

John B. Fenn Koichi Tanaka

R.Abate,  A.  Ballistreri,  G.  Montaudo,  D.  Garozzo,  G.  Impallomeni,  G.  Critchley,    K.  Tanaka,    Rapid  Communica>on  in    Mass  Spectrometry,  vol.  7,  1033-­‐1036  (1993)  

Mass Spectrometry

Ions Separation Ions Production

Ions Detection

Ions Separation Magnetic/Electric Field Time of Flight Quadrupole Ion Trap FT Ions-cyclotron resonance

Ion Detectors Electron Multiplier Array Detector

Ions Production Gas Phase Techniques (EI,CI,NCI) Desorption Techniques

MALDI

WITH MALDI MACROMOLECULES ARE DESORBED INTACT

MALDI/TOF  HAS  ALLOWED  THE  MASS  JUMP.  A  REVOLUTION  IN  THE  ANALYTICAL  CHEMISTRY  OF  MACROMOLECULES.  

TIME  OF  FLIGHT  (TOF)  

Matrix Assisted Laser Desorption Ionization (MALDI)

Matrix Assisted Laser Desorption Ionization (MALDI)

The MALDI process consists of the intimate mixing of the sample with a high molar excess (up to 104 fold) of a low molecular mass organic matrix compound;

Conversion of this mixture to a solid deposit;

Introduction to a high vacuum chamber;

Bombardment with a pulsed UV laser light; and

Collection and measurement of the ions desorbed by the laser.

Separation and identification of the ions produced by a Time Of Flight (TOF) tube

Each laser pulse generates a plume of particles, including ions and neutrals, matrix and analyte, which expand at supersonic speed from the surface of the probe and particularly at right angles to the surface.

The ionization of polymer occurs by the formation of adducts ions with H+ or with alcaline ions (litium, sodium or potassium) even they are not added to the solution

Most  Used  MALDI  Matrices  

Malononitrile DHB HABA

IAA

Ditranolo CHCA

DEA-CHCA

The triple role of the matrix is to incorporate and isolate the analyte molecules, absorb and transfer the laser energy to form the microplasma, and finally, assisting in the formation of the macromolecular ions.

Modern Mass Spectrometry in Polymer Chemistry

MALDI-TOF OF POLYMERS

Ø  Detection of Intact Molecules

Ø  Very High Sensitivity

Ø  High Resolution (> 20000 ppm)

q  Molar Mass Determination

q  Copolymer Analysis

q  End Groups Determination/Structure

v Mechanisms of Polymer Degradation

v Mechanisms of Synthesis

Main APPLICATIONS

Main FEATURES

MALDI-TOF OF POLYMERS

Ø  Detection of Intact Molecules

Ø  Very High Sensitivity

Ø  High Resolution

q  Molar Mass Determination

q  Copolymer Analysis

q  End Groups Determination

v Mechanisms of Polymer Degradation

v Mechanisms of Synthesis

Main APPLICATIONS

Main FEATURES

Polystyrene, Narrow Distribution Mw 330,000; 600,000; 900,000

,  

0  

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

coun

ts/1000  

m/z  

79160  

156970  

312530  

Osmometry Mn= 153600

Viscosometry Mv=159770

Light Scattering Mw=158180 GPC (SEC) Mn= 152350

Mw= 156050 MALDI Mn = 152350

Mw= 156450

Polystyrene (D=1.001)

Very Narrow Distribution

M+

M++

2M+

0

200

400

600

800

1000

1200

1400

1600

1800

Counts

2000 4000 6000 8000 10000 12000 14000 16000 18000m/z

4000 4500m/z

CH3

CH3O

OO COn

CH3

CH3

CH3CH3

CH3O

O CCH3A=

CH3

CH3O

OO COn

CH3

CH3

CH3HB=

CH3

CH3O

OO COn

H

CH3

CH3

OHC=

CH3

CH3O

OO COn

D=

D14 D15

D16 D17 A13 A14

A15

A16

B14 B15 B16

B17 C14 C16

D9

A17

D12

D8

D15

A14 A21

A25

A33

1

A42

A50

Bisphenol  A  Polycarbonate,  Mw  50.000  by  SEC  

Coupling «off-line» SEC with MALDI MALDI as absolute mass detector for GPC

A.U

0 10 20 30 40 Vr  (ml)

m/z

m/z m/z

m/z

310000

190000 49000

2400

3.5

4.0

4.5

5.0

5.5

log(

Mw

)

20 21 22 23 24 25 26 27 28 29 30 31Ve (mL)

Mw PMMA standards by MALDIMw PMMA Standards by SupplierMw of PMMA Fractions by MALDI

3.5

4.0

4.5

5.0

5.5

log(

Mw

)

20 21 22 23 24 25 26 27 28 29 30 31Ve (mL)

Mw PMMA standards by MALDIMw PMMA Standards by SupplierMw of PMMA Fractions by MALDI

3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8

log  Mw

28 29 30 31 32 33 34 35 36 37 38 39 Ve(mL)

Y  =  13.99  -­‐  0.4498X  +  0.004456X 2

01020304050607080

Arb

itrar

y U

nits

0 10 20 30 40 50Ve(ml)

ULTEM 1000

Determinazione di pesi molecolari assoluti

Ve (mL) Mw Log Mw

28.8 52500 4.72016

29.03 49150 4.69152

29.5 40500 4.60745

29.74 5700 4.55267

30.44 26900 4.42975

31.38 19000 4.27875

32.08 14000 4.14613

33 10250 4.01072

33.254 8950 3.95182

33.72 7920 3.89873

34.43 6620 3.82086

35.56 3780 3.57634

36.77 2970 3.47276

37.7 2360 3.37291

38.64 1890 3.27646

Volume di eluizione e Mw di ciascuna frazione analizzata mediante MALDI

TABLE 1 Molar Mass Distribution of PC calculated from SEC curves obtanined at

different concentrations (wt%).

SEC/MALDI Polystyrene

Conc.

Solvent Mwa Mn

a Mpa Mw

b Mnb Mp

b

0.3 CHCl3 22200 10300 22400 55800 23600 58400

0.5 CHCl3 22000 10200 21900 55600 23400 56700

1 CHCl3 18350 10250 18500 50150 21850 22400

2 CHCl3 17500 9700 17000 46100 20000 42100

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

log

Mw

0

50

100

arbi

trary

uni

ts

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40Ve (mL)

PC

Polycarbonate

MALDI-TOF OF POLYMERS

Ø  Detection of Intact Molecules

Ø  Very High Sensitivity

Ø  High Resolution

q  Molar Mass Determination

q  Copolymer Analysis

q  End Groups Determination

v Mechanisms of Polymer Degradation

v Mechanisms of Synthesis

APPLICATIONS

FEATURES

Structure Characterization of Copolymers

NMR (1H – 13C)

MALDI Mass Spectrometry

Copolymers microstructure

§  Copolymer Composition

§ Average sequence length

§  Degree of randomness

§  The weight fraction of copolymers with respect to homopolymers

MODELING PROCESS BASED ON CHAIN STATISTICS

1. CHOICE OF DISTRIBUTION MODELS A NUMBER OF DIFFERENT DISTRIBUTION MODELS CAN BE CONSIDERED, OLIGOMERS ABUNDANCES CAN BE GENERATED ACCORDING TO EACH MODEL (BERNOULLIAN, MARKOFFIAN 1° AND 2°, SEQUENTIAL)

2 THEORETICAL NMR OR MASS SPECTRA GENERATE THEORICAL NMR OR MASS SPECTRA FOR A SPECIFIC

COPOLYMER SEQUENCE BY ASSUMING PEAKS INTENSITIES EQUAL TO RELATIVE OLIGOMER ABUNDANCES, AND APPLYING THE APPROPRIATE CONVOLUTION AND MULTIPLICITY RULES

3 ITERATION AND BEST FIT MINIMIZATION A SERIES OF THEORETICAL MASS SPECTRA ARE ORIGINATED AND,

COMPARING THE EXPERIMENTAL MS INTENSITIES WITH THOSE CALCULATED FOR A SPECIFIC MODEL, THE MOST LIKELY COPOLYMER MICROSTRUCTURE AND COMPOSITION CAN BE DETERMINED

IAmBn = f(PAA, PAB, PBA, PBB)

AF = qΣi(Iiexp - Ii

calcd)2

inte

ns. (

arb.

u.)

300 400 500 600 700 800 900 1000 1100m/z

AB

AB4A4B

Number of MS peaks (n+1)random AB copolymer (1:1)

A2 B2

A3 B3

A4

AB2

B4

A2B

A2B3

A2B2

A3B

A5

AB3

A3B2

B5

Oligomers

Formula

Monomers

C1A

I(A) / { I(A) + I(B) }

Dimers 

C2A

{2I(A2) + I(AB)} / {2I(A2) + 2I(AB) + 2I(B2)}

Trimers

C3

A

{3I(A3) + 2I(A2B) + I(AB2)} / {3I(A3) + 3I(A2B) + 3I(AB2) + 3I(B3)}

Tetramers

C4

A

{4I(A4) + 3I(A3B) + 2I(A2B2) + I(AB3)}/ {4I(A4) + 4I(A3B) + 4I(A2B2) + 4I(AB3) 4I(B4)}

Composition for a AB copolymer (Composition Estimates Method)

Oligomers AB ABC ABCD 2-mers 3 6 10 3-mers 4 10 20

4-mers 5 15 35 5-mers 6 21 56 6-mers 7 28 84 7-mers 8 36 120 8-mers 9 45 165 9-mers 10 55 220 10-mer 11 66 286 11 - mers 12 78 364 12 - mers 13 91 455 13 - mers 14 105 560 14 - mers 15 120 680 15 - mers 16 136 816 16 - mers 17 153 969

Number of peaks expected for two, three ad four components copolymers

0

200

400

600

800

1000

2000 3000 4000 5000 6000 7000 8000 9000m/z

2600 2700 2800 2900 3000 3100m/z

A6B6A7B5 A5B7

A4B8

A3B9

A8B5

A9B4

A8B4

A4B7

A5B6A6B5

A7B4

A3B7

A8B3 A2B8A9B3 A3B8

A2B9A10B3

a.i.

A6B6A6B7A6B5

A5B6

A7B7

A7B8

A8B7

A5B5

A8B8A8B9

A9B9

A9B10

A10B10

A10B11 A11B11

MALDI-TOF spectrum of butylene adipate (A)/sebacate (B) copolymer.

MODELING PROCESS BASED ON CHAIN STATISTICS

1. CHOICE OF DISTRIBUTION MODELS A NUMBER OF DIFFERENT DISTRIBUTION MODELS CAN BE CONSIDERED, OLIGOMERS ABUNDANCES CAN BE GENERATED ACCORDING TO EACH MODEL (BERNOULLIAN, MARKOFFIAN 1° AND 2°, SEQUENTIAL)

2 THEORETICAL NMR OR MASS SPECTRA GENERATE THEORICAL NMR OR MASS SPECTRA FOR A SPECIFIC

COPOLYMER SEQUENCE BY ASSUMING PEAKS INTENSITIES EQUAL TO RELATIVE OLIGOMER ABUNDANCES, AND APPLYING THE APPROPRIATE CONVOLUTION AND MULTIPLICITY RULES

3 ITERATION AND BEST FIT MINIMIZATION A SERIES OF THEORETICAL MASS SPECTRA ARE ORIGINATED AND,

COMPARING THE EXPERIMENTAL MS INTENSITIES WITH THOSE CALCULATED FOR A SPECIFIC MODEL, THE MOST LIKELY COPOLYMER MICROSTRUCTURE AND COMPOSITION CAN BE DETERMINED

IAmBn = f(PAA, PAB, PBA, PBB)

AF = qΣi(Iiexp - Ii

calcd)2

m /z

(b)

(a)

MALDI-TOF Spectra of a three components copolymer (BSu-BAd-Bse)

Theoretical

Experimental

Application of MALDI in

Reactive Melt Mixing of Polymers Containing Functional Groups

(Esters, Carbonates, Amides)

Understand the Exchange Mechanisms . Role of Funcional Groups

. Role of Catalysts

Controlled Synthesis of Copolymers by

Intermolecular Exchange Reactions

Main  Goals  

random copolymers

A-A-B-A-B-B-A-A-B-B-B-A-A-A-B-B-A-B

B-B-A-B-A-A-B-B-A-A-A-B-B-B-A-A-B-A +

diblock copolymers

A-A-A-A-A-A-A-A-A-A-A-A-A-A-B-B-B-B

B-B-B-B-B-B-B-B-B-B-B-B-B-B-A-A-A-A +

interchange

A-A-A-B-B-A-A-A-A-A-B-B-B-A-A-A-A-A

B-B-B-A-A-B-B-B-B-B-A-A-A-B-B-B-B-B + multiblock

copolymers

interchange

interchange

A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A

B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-B + homopolymers

Block Copolyamide

Random Copolyamide

O OHOC (CH2)4 C NH (CH2)6 NH

y

OOOHC (CH2)4 C

x

O ONH (CH2)6 NH C (CH2)8 C

Ny6,10Ny6,6

+ C (CH2)8 C NH (CH2)6 NHp

HO

Ny6,10

O O

Further reaction

m C (CH2)4 CC (CH2)4 C NH (CH2)6 NH n

OO O O OONH (CH2)6 NH C (CH2)8 C

+

NH (CH2)6 NH C (CH2)8 C n

OONy6,10

OHC (CH2)4 CC (CH2)4 C NH (CH2)6 NH n Ny6,6OO O O

AMMIDE/AMMIDE (Ny66/Ny610)

Mixing  Temp  290°C  

13C-NMR spectra of Ny6,6-COOH and Ny6,10 equimolar mixtures

(ppm) 178 179 180 43.5 44.5 33 33.5 34 194 195

a’’ a’

a

b c

d

e

f

e’ e’’

A

B

C

physical blend

290°C for 3h

310°C for 1h

n

C CH2 (CH2)2 CH2 CHO OHn

NH CH2 (CH2)4 CH2 NH C CH2 (CH2)2 CH2 CO

e' e'' a' c a e

O

a''

O O

ONH CH2 (CH2)4 CH2 NH C CH2 (CH2)6 CH2 C

d b f

O

Ny6,6-COOH

Ny6,10

AMMIDE/AMMIDE (Ny66/Ny610)

0

50

100

0

50

100

1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

I%

I%

m/z

m/z

(a)

(b)

Figure 4 - MALDI-TOF mass spectra of an equimolar mixture of Ny6,6-COOH (Mv = 7,200) and high MM Ny6,10 (Mv =36,100): (a) physical blend, (b) melt mixed at 290°C for 30 min.

A2B2 £

AB3 £

AB2 £

A3B3 £

A4B4 £

A4 £

A8 £

A6 £

A10 £

A20 £

A12 £

A15 £

AHO CO-(CH2)4-COOHy

x

B£ =

A = Ny66

B = Ny610

0

50

100

0

50

100

1000 2000 3000 4000 5000

1000 2000 3000 4000 5000

I%

I%

m/z

m/z

(a)

(b)

Figure 4 - MALDI-TOF mass spectra of an equimolar mixture of Ny6,6-COOH (Mv = 7,200) and high MM Ny6,10 (Mv =36,100): (a) physical blend, (b) melt mixed at 290°C for 30 min.

A2B2 £

AB3 £

AB2 £

A3B3 £

A4B4 £

A4 £

A8 £

A6 £

A10 £

A20 £

A12 £

A15 £

AHO CO-(CH2)4-COOHy

x

B£ =

A = Ny66

B = Ny610

0  min  of  mixing  

30  min  of  mixing  

0

50

100

0

50

100

0

50

100

1000 1200 1400 1600 1800 m/z

1000 1200 1400 1600 1800

1000 1200 1400 1600 1800

I%

I%

m/z

m/z

I%

m/z

A4

A3

A4

A5

A6

A7

A4B

AB3

A2B2

A3B

B3

AB2

A2B

B4

A3

A3

A7

A6

A5

A4

A2B2 A3B

AB4

AB3 A2B3

A4B

A3B2

AB2 AB3

B3

A5B

A2B

A4B2

A3B3

A2B4 AB5

A3B2

A3B2

A2B3

A2B3

A5B

A5B

A4B2

A4B2

A3B3

A3B3

A4B

AB3

A3B A2B2

A2B AB2

B3 A6B

A6B

290°C 10 min

290°C 15 min

290°C 30 min

tetramers

trimers

pentamers

hexamers

0

50

100

0

50

100

0

50

100

1000 1200 1400 1600 1800 m/z

1000 1200 1400 1600 1800

1000 1200 1400 1600 1800

I%

I%

m/z

m/z

I%

m/z

A4

A3

A4

A5

A6

A7

A4B

AB3

A2B2

A3B

B3

AB2

A2B

B4

A3

A3

A7

A6

A5

A4

A2B2 A3B

AB4

AB3 A2B3

A4B

A3B2

AB2 AB3

B3

A5B

A2B

A4B2

A3B3

A2B4 AB5

A3B2

A3B2

A2B3

A2B3

A5B

A5B

A4B2

A4B2

A3B3

A3B3

A4B

AB3

A3B A2B2

A2B AB2

B3 A6B

A6B

290°C 10 min

290°C 15 min

290°C 30 min

tetramers

trimers

pentamers

hexamers

0

50

100

0

50

100

1100 1200 1300 1400 1500 1600 1700 1800

Tetrameri Esameri

AMMIDE/AMMIDE (Ny66/Ny610)

290 °C

30 min

60 min

180 min

0

50

100

0

50

100

0

50

100

1000m/z

1000

1000

I%

I%

m/z

m/z

(a)

(c)

Figure 6 - Enlarged section of the MALDI-TOF mass spectra of Ny6,6/Ny6,10 reacted at 290 °C for: (a) 30 min, (b) 60 min and (c) 180 min. With the labels A and B are indicated the Ny6,6 and Ny6,10 units, respectively. Peaks labelled with the symbol Δ indicate copolymer chains terminated with cyclopentanone units.

I%

m/z

(b)

AB2 A2B

1014 B3

958 AB2

B3 A3 902

A2B

B3

B3

B3

B3

AB2

AB2

AB2

AB2

A2B

A2B

A2B

A2B

A3

A3

Δ Δ Δ

Δ

Δ Δ

Δ Δ

Δ

MALDI-TOF OF POLYMERS

Ø  Detection of Intact Molecules

Ø  Very High Sensitivity

Ø  High Resolution

q  Molar Mass Determination

q  Copolymer Analysis

q  End Groups Determination

v Mechanisms of Polymer Degradation

v Mechanisms of Synthesis

APPLICATIONS

FEATURES

MALDI  –TOF  Mass  Spectrum  of    ULTEM,  Mw  about  25,000  

10000  

15000  

20000  

0  

5000  

Cou

nts  

2000   3000   4000   5000   6000   7000   8000   9000   10000   11000  Mass (m/z)  

A  

A  

A  

A  

A  

B   B  B   B  

B  

B  D  

D  D  

D  

C   C  F  E  

2200   2400   2600   2800   3000   3200  Mass (m/z)  

2761  

2939  

2169  2393  

2541  

2554  2986  

3147  

3132  

2926  

A  

D A   D

B   B  

n

CH3

CH3

ON

O

O

NO

O

O

Mw=25 000 (SEC)

NO

O

O

CH3

CH3

O CH3

O

O

N NO

O

O

CH3

CH3

ON

O

O

CH3

n

F  

O

O

O

CH3

CH3

OO

O

N N

O

O O

H

n

C  

O

O

O

CH3

CH3

OO

O

N NO

O

O

CH3

CH3

ON

O

O

CH3O

n

E  

NO

O

O

CH3

CH3

ONNO

O

O

ON

O

O

n

B  

CH3

CH3

ON

O

O

NO

O

O n

A  

NO

O

O

CH3CH3

CH3

ONNO

O

O

O

n

D  

0  

5000  

Cou

nts  

B  

B  

Mass  (m/z  )  2000   3000   4000   5000   6000   7000   8000   9000   10000  

10000  

15000  B  

B  

B  

B  

B  

2559  2541  

2581  

2761  

2169  2393  

2986  3151  

3132  

2777  

B  

A  

A  C  

C  

2184  

2200   2409  3167  

2646  

2690  3002  28

95  

2913  

2320  

2945  

H  L  K  

R  

U  

W  

U  B1  

B2   A1  I  

B1  

H  

H1  

2200     2400     2600     2800     3000     3200    Mass  (m/z)  

E  

E  O  

2661  

N  2676  

 MALDI-­‐TOF  Mass  Spectrum  of  PEI  Sample  Photo-­‐oxidised  at  60°C  for  216  hours  

Photo-Oxidation

not-oxidized chains

C   C  F  

E  

2200   2400   2600   2800   3000   3200  Mass (m/z)  

2761  

2939  

2169  2393  

2541  

2554  2986  

3147  

3132  

2926  

A  

D   A   D  

B  B  

B

2559 2541

2581

2761

2169 2393

2986 3151

3132 2777

B A

A C C

2184 2200 2409

3167

2646

2690 3002 28

95

2913

2320

2945

H L K

R

U

W

U B1 B2 A1

I B1

H

H1

2200 2400 2600 2800 3000 3200 Mass (m/z)

E E

O 2661

N 2676

Photo-Oxidation

CH3

CH3

ON

O

O

NO

O

O

CH3

P1 COCH3O

COOHOCH2COCH3O

OHO

CH2OHO CH2COOHO

NH

O

O

O

O

O

O

O

OHOH

H2O

hν,O2

P2

P3

P4 OH

CH3

OO CH2

Overall Photo-Oxidation Processes of Polyethereimide (ULTEM).

hν,O2

0

1

2

3

4

5

6

Rel

ativ

e A

mou

nt %

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000 1100Exposure time (Hours)

NO

O

O

CH2OH

CH3

ONO

ON

O

ON

O

O

O

CH3

CH3

ONO

O

NO

O

X=0,1,2,3 n

 Rela:ve  amount  vs  exposure  :me  of   linear  oligomers  B,  B1,  B2,  and  B3  as  obtained  from  the  MALDI  spectra  of  photoxidized  ULTEM  sample  

B  

B1  

B2  

B3  

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

Overall Photo-oxidation Processes in Ny6.

O

CH3

CH2 O

OH

O

OHO

CH2COCH3O

COCH3O

CH2OHO

CH2COCH3O CH2COOHOO2

CH2OHOO2

COOHO

CH2O C

CH3

O

OH

++

1'

SCHEME  3b.  Photo-­‐degradaGon  mechanisms  of  Bisphenol-­‐A-­‐  moiety  

N H

O

O

N CH3

O

O

hν  O2  

SCHEME  3a.  Photo-­‐degradaGon  mechanisms  of  Bisphenol-­‐A-­‐  moiety  

O2 R.

CH2

CH3

O

CH3

CH3

O O

O

CH2

CH3

O O

CH2OH

CH3

O O

O2

O

CH3

CH2 O

OH

O

CH3

CH2O

O

OO

H

CH2O C

CH3

O

OH

1'

O2

rearrangement

.

Further Decomposition (Scheme 3 b)

1

+ H.

.

+ H.

n

NH O

H C 2H 2H C2

H C2

H CCC2

Nylon 6

Remarkable information on the photo oxidation of Nylon 6 and Nylon 66 has been provided, in the past, mainly by UV and IR spectroscopy and by wet chemistry methods

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

Overall Photo-oxidation Processes in Ny6.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

log

Mv

0 10 20 30 40 50 60 70 80 90 100 110 120

Exposition Time (hours)

Molar mass of photo-oxidised Ny6 samples as a function of exposition time

Cou

nts

0

10000

20000

30000

1000 2000 3000 4000 5000 6000 Mass (m/z)

MALDI-TOF mass spectrum of Ny6

CO (CH2)5 9NH A

OH CO (CH2)5 9HNH B

OH8

CO(CH2)5CO NH C

1040 1045 1065 1020 1025 1030 1035 1050 1055 1060

1050 CNa +

1019 1020

1041

1042

1043

ANa +

AH+

1037

1059

1060

BNa +

BH+

MALDI-TOF mass spectrum of Ny6 in the range 2800-3100

2853 2862

2872

2967 2976

2985

3080 3090

3098

2850 2900 2950 3000 3050 3100 Mass (m/z)

ANa+

BNa+

CNa+

ANa+

BNa+

CNa+ ANa+

CNa+

BNa+

CO (CH2)5 9NH A

OH CO (CH2)5 9HNH B

OH8

CO(CH2)5CO NH C

5000

10000

15000

20000

25000

30000

Counts

1020 1040 1060 1080 1100 1120 Mass (m/z)

1000

2000

3000

4000

5000

6000

7000

8000

Count

s

1020 1040 1060 1080 1100 1120 Mass (m/z)

0

10000

20000

30000

40000

Count

s

1020 1040 1060 1080 1100 1120 Mass (m/z)

1041

1041

1057

1057

1045

1045

1073

1073

1029

1029

1086 1114 1126

1126 1100 1114

1100

1086

1020 1040 1060 1080 1100 1120 Mass (m/z)

1013

1013

a

b

c

1059

1050

1041

1019 1132

48 h

289 h

0 h

MALDI-TOF mass spectrum of Ny 6 after the deisotoping procedure.

1020 1025 1030 1035 1040 1045 1050 1055 1060

m/z

1050 CNa+

1037

1059 BNa+

BH+ 1019

1041 ANa+

AH+

1040 1045 1065 1020 1025 1030 1035 1050 1055 1060 Mass (m/z)

10

50

1019

10

20

1041

10

42

1043

10

37

10

59

1

06

0

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120

1041

1043

1045 1055

1057

1069

1072

1073

1083

1085 1086

1100 1101 1114

1113

1013

1029

Deisotopized MALDI-TOF Mass Spectrum, in the mass range 1010-1120Da of Ny6 sample photo-oxidized for 289 hours.

m/z

(CH2)4CO CHO

(CH2)4CO COOH

+ NH2

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH

H

NH

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH NH

.

n

n

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH NH

nO OH

CO (CH2)5

NHNH(CH2)4CO

O

C

CO (CH2)4 NH CH

OH

NHn

n

(CH2)2CO CHOCH CH

CO (CH2)5 NH

R.

O2 H.

-H2O

-OH.

H.

O22H.

Scheme 1

Photo-decomposition of a Nylon6 Hydroperoxides

(CH2)4CO CHO

(CH2)4CO COOH

+ NH2

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH

H

NH

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH NH

.

n

n

CO (CH2)4 CO (CH2)5 NHNH(CH2)5CO CH NH

nO OH

CO (CH2)5

NHNH(CH2)4CO

O

C

CO (CH2)4 NH CH

OH

NHn

n

(CH2)2CO CHOCH CH

CO (CH2)5 NH

R.

O2 H.

-H2O

-OH.

H.

O22H.

Scheme 1

Photo-decomposition of a Nylon6 Hydroperoxides

Degradation via Hydroperoxide

chain ends

A

1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150M/z

1041

1055 1050

1058

1059 1132

1057

Cycle+ Na+

1041

1055 1050

1058

1059 1132

1057 Cycle+H+

1057 1057

1040 1042 1044 1046 1048 1050 1052 1054 1056 1058 1060Exposure Time (Hours)

1050 1055

1050 1055 1058

1059 A-E A-A

A-A

Deisotopized MALDI-TOF Mass Spectrum, in the mass range 1010-1120Da of Ny6 sample photo-oxidized for 11 hours.

11 hours

E-E E-E

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120

1041

1043

1045

1055

1057

1069

1072

1073

1083

1085 1086

1100 1101 1114

1113

1013

1029

Exposition Time

289 h

A-A

A-A A-A

A-A A-E

E-A-A

E-A-A E-A

NH(CH2)5CO COOH

(CH2)5CO NH2

+

CO CH2 (CH2)4 CONH (CH2)5 NHNH(CH2)5CO

CO(CH2)4 NHCH3

n

.CO(CH2)4 NHCH2

NH(CH2)5CO CHO

O2

-CO2

+H.+H.

O2

PH

CO(CH2)4 NHCH2

O OH-H20

CO(CH2)4 NHOHC

O2

CO(CH2)4 NHHOOC

-H

.NH(CH2)5CO CO

.

-2H.

CO(CH2)2 NHCHOHC HC

CO(CH2)3 NHCHCH2

Scheme 3

Photo-Decomposition of Nylon 6 by Norrish I Reaction

NH(CH2)5CO COOH

(CH2)5CO NH2

+

CO CH2 (CH2)4 CONH (CH2)5 NHNH(CH2)5CO

CO(CH2)4 NHCH3

n

.CO(CH2)4 NHCH2

NH(CH2)5CO CHO

O2

-CO2

+H.+H.

O2

PH

CO(CH2)4 NHCH2

O OH-H20

CO(CH2)4 NHOHC

O2

CO(CH2)4 NHHOOC

-H

.NH(CH2)5CO CO

.

-2H.

CO(CH2)2 NHCHOHC HC

CO(CH2)3 NHCHCH2

Scheme 3

Photo-Decomposition of Nylon 6 by Norrish I Reaction

Photodegradation via Norrish I reaction.

chain ends

B

CH2NH CH2 CH CH2 CO NH (CH2)5 COCH3+

CH2NH CH2 CH2 CH3

CO (CH2)5 NHNHCH2CO CH2CHCH2CH2

H

NH CHCH2CH2

H

CH2CH2

O

C NH CO(CH2)5

Photodegradation via Norrish II reaction

chain ends

C

1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120

1041

1043

1045

1055

1057

1069

1072

1073

1083

1085 1086

1100 1101 1114

1113

1013

1029

Exposition Time

289 h

A-A

A-A A-A

A-A E-A

E-A-A

E-A-A A-E B-E

B-E

C-C

B-E

B-C

A-C C-E

B-A-C

B-A-C

A-B

E-C B-E B-A

B-C

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

I %

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0 10 20 30 40 50 Exposition Time

OH CO (CH2)5 9HNH

Decomposition via Hydroperoxide

Relative amount vs exposition time of species at m/z 1058 and 1059, as obtained from the MALDI spectra of photo-oxidized Ny6 sample

NH2 CO (CH2)5 9CONH (CH2)4 CHO

E-A

E-E

-1

0

1

2

3

% R

elat

ive

Am

ount

0 5 10 15 20 25 30 35 40 45 50Exposure Time

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

% R

elat

ive

Am

ount

0 5 10 15 20 25 30 35 40 45 50Exposure Time (Hours)

Induction Period

Induction Period

Norrish II

Norrish I

CO (CH2)5 NHHN(CH2)4OHC H

8

OH CO (CH2)5 NH CO CH3

9

0

1

2

3

4

% R

elat

ive

Am

ount

0 5 10 15 20 25 30 35 40 45 50Exposure time (Hours)Exposure Time (Hours)

Figure 6(a-c) . Relative amount vs exposure time of species at m/z (a) 1029, (b) 1101 and (c)1058, as obtained from the MALDI spectra of photo-oxidized 10 µm Ny6 samples.

NH2 CO (CH2)5 HNH

9

Hydroperoxides Decomposition

Relative amount vs exposition time of species at m/z 1029 and 1100,

as obtained from the MALDI spectra of photo-oxidized Ny6 sample

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

CH

H

NH COCO (CH2)4 CH2 CH2 CH2 CH2 CH2 NH CO

H abstraction

NorrishI Norrish II

CO (CH2)4NH CHO

CO (CH2)4NH COOH

CO (CH2)4NH CH3

(B)

(CH2)5CO NH2

(CH2)5CO NH CHO

CO (CH2)3NH CH CH2

CO (CH2)3NH CH3

CO (CH2)2NH CH CH2

(CH2)5CO NH CO CH3

(C)

(A)

CH NH

O OH

CO (CH2)4

(CH2)4CO CHO

(CH2)4CO COOH

NH CO NH2(CH2)5

NH(CH2)4CO CO CO

hνhν

Scheme 2

Overall Photo-oxidation Processes in Nylon 6.

AB

C

Overall Photo-oxidation Processes in Ny6.

30 40 50 60 70 80 90 100(°C)

a

b

c

d e

f

g

h

Figure 7. DSC curves in the range 25-100°C (recorded at 10°C/min in heating mode) of (a) Ny6,10, (b) Ny6,6-COOH, and Ny6,6-COOH/Ny6,10 reacted at 290°C for: (c) 0 min, (d) 5 min, (e) 10 min, (f) 15 min, (g) 30 min, and (h) 60 min.

Endo

Ny6,10

Ny6,6-COOH

Ny6,6-COOH/ Ny6,10 at 290°C

0 min 5 min 10 min 15 min 30 min

60 min

3.5

4.0

4.5

5.0

5.5

log(

Mw

)

20 21 22 23 24 25 26 27 28 29 30 31Ve (mL)

Mw PMMA standards by MALDIMw PMMA Standards by SupplierMw of PMMA Fractions by MALDI

3.5

4.0

4.5

5.0

5.5

log(

Mw

)

20 21 22 23 24 25 26 27 28 29 30 31Ve (mL)

Mw PMMA standards by MALDIMw PMMA Standards by SupplierMw of PMMA Fractions by MALDI