characterisation of genes encoding cyclophilins and …...2.14.2 total rna isolation 56 2.14.3...

345
i Characterisation of genes encoding cyclophilins and protein disulphide isomerases in cereals Huimei Wu (Master of Science) This thesis is presented for the degree of Doctor of Philosophy May 2010 Environment and Biotechnology Centre Faculty of Life and Social Sciences Swinburne University of Technology Melbourne, Australia

Upload: others

Post on 14-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

i

Characterisation of genes encoding cyclophilins and

protein disulphide isomerases in cereals

Huimei Wu

(Master of Science)

This thesis is presented for the degree of Doctor of Philosophy

May 2010

Environment and Biotechnology Centre Faculty of Life and Social Sciences Swinburne University of Technology Melbourne, Australia

Page 2: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

ii

Abstract

The storage protein quality of wheat is important for nutritional and food technological

purposes. ER-localised cyclophilins (Cyps) and protein disulphide isomerases (PDIs)

are expected to play crucial roles in the deposition of storage protein in cereals. Large

Cyp and PDI-like (PDIL) gene families have been identified in Arabidopsis and their

putative proteins show numerous potential functions. However, limited information

exists about the Cyp and PDI gene families in cereals.

This study aimed to identify and characterise the Cyp and PDI gene families in wheat

and rice using bioinformatics approaches and conduct comparative molecular and

phylogenetic analysis with their orthologues in Arabidopsis. Another main aim was to

experimentally identify and investigate the Cyp and PDI genes that potentially encode

endoplasmic reticulum-localised proteins.

Cyp family members (33 in rice, 22 in wheat) and PDIL family members (28 in rice, 27

in wheat) were identified using bioinformatics tools. In addition to the expected CypB

genes, ove, two more putative ER-localised Cyps were identified in wheat and these

may have potential roles in storage protein regulation. CypB genes were also isolated

experimentally from common wheat and its progenitors. The genomic and cDNA

sequences were cloned and the gene structure exhibited seven exons and six introns.

The putative ER-localised CypB protein translated from exon contig from the B genome

gene contains all PPIase signature sites, an N-terminal ER signal peptide, and an

atypical C-terminal ER localisation signal. The putative promoter sequences were

cloned and exhibit several potential tissue specific regulatory elements. The common

wheat CypB genes are localised to chromosomes 7AL, 7BL and 7DL.

In addition to the three reported ER-localised PDI homologues, five more putative ER-

localised PDIs were identified in wheat. Expression of three reported PDI homologues

in developing seeds as well as stems and leaves, supports the hypothesis that PDI plays

a role in vegetative tissues as well as in the developing endosperm.

Page 3: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

iii

Collectively, the work has identified new Cyps and PDIs with potential roles in storage

protein folding function, response to ER and other stresses, grain quality and other

important traits.

Page 4: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

iv

Acknowledgements

I am very grateful to my principal supervisor, Assoc. Prof. Mrinal Bhave, for her

enthusiasm, dedication and guidance during the planning and conduct of this project and

the preparation of this thesis. Her contribution of knowledge and dedication to the

project were remarkable and beyond my expectations. She gave me confidence,

inspired me and challenged me along the way.

I am very grateful to my co-supervisor, Prof. Russell Crawford for his support and

encouragement throughout the study.

I would like to extend my thanks to Prof. Rudi Appels at Murdoch University,

Australia, for his invaluable assistance and advice on the genetic mapping components

of my project.

In addition, many thanks to all of the PhD and Honours students in the lab, in particular

past and present members of Mrinal’s group (Kerrie, Emma, Mark, Pete, Paul, Abi and

Sheeping) for discussing problems and giving advice. I am grateful to the lab

technicians (Chris Key, Soula Mougos and Ngan Nguyen) for their constant willingness

to help.

I am very grateful to the Rural Industries Research and Development Corporation

(RIRDC) for providing me with financial support throughout this project with a Top-up

Postgraduate Scholarship.

The thesis was proofread by Campbell Aitken (Express Editing Writing and Research).

His editorial assistance improved grammar, punctuation and style; however, it did not

affect the structure, content or the analysis.

Thanks to my family, brothers and sister for their constant love and support. Special

thanks must go to my parents who have given me constant encouragement.

Page 5: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

v

Finally, I want to express my deepest thanks and gratitude to my husband Zhonghua and

daughter Yilin for their unselfish love and support through my studies. I could not have

managed without them.

Huimei

Page 6: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

vi

Publications arising from this work

Refereed journal article

Wu H, Wensley E, Bhave M (2009) Identification and analysis of genes encoding a

novel ER-localised Cyclophilin B in wheat potentially involved in storage protein

folding. Plant Science 176: 420-432.

Conference proceedings

Wu H, Bhave M (2009) A comparative analysis of the protein disulfide isomerase gene

family in rice and wheat. Proceedings of the 59th Australian Cereal Chemistry

Conference, 27-31 September, Wagga Wagga, Australia. (In press).

Wu H, Bhave M (2008) Molecular characterisation of Cyclophilin B genes and

promoter sequences in wheat and rice. Proc. of the 11th International Wheat Genetic

Symposium, 24-29 August, Brisbane, Australia. Sydney University Press. ISBN: 978-

1-920899-14-1. (Poster P220)

Wu H, Wensley E, Bhave M (2007) Molecular characterisation of Cyclophilin B genes

potentially involved in storage protein quality in wheat. Proceedings of the 57th

Australian Cereal Chemistry Conference, 5-9 August, Melbourne, Australia. (Eds.

Panozzo JF, Black CK). ISBN 1-876892-16-1. pp 230-233. (Poster P230).

Page 7: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

vii

Declaration

I, Huimei Wu, declare that the PhD thesis entitled ‘Characterisation of genes encoding

cyclophilins and protein disulphide isomerases in cereals’ is no more than 100,000

words in length, exclusive of tables, figures, appendices, references and footnotes. This

thesis contains no material that has been submitted previously, in whole or in part, for

the award of any other academic degree or diploma, and has not been previously

published by another person. Except where otherwise indicated, this thesis is my own

work.

Huimei Wu

May 2010

Page 8: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

viii

Abbreviations aa amino acid(s)

Aet Ae. tauschii

AFLP amplified fragment length polymorphism

APRL adenosine 5’-phosphosulfate reductase-like

AS allele-specific

At Arabidopsis thaliana

BAC bacterial artificial chromosome

BAR Botany Array Resource

BDT big dye terminator

BiP binding protein

BLAST basic local alignment search tool

bp base pair

CDS coding sequence

CN calcineurin

CS Chinese spring

CsA cyclosporin A

CT chloroplast/thylakoid

CTD C-terminal domain

Cyps cyclophilins

dATP deoxyadenosine triphosphate

dCTP deoxycytidine triphosphate

dGTP deoxyguanosine triphosphate

dH2O deionised water

DH doubled haploid

dTTP deoxythymidine triphosphate

dUTP deoxyuridine triphosphate

EDEM ER degradation-enhancing a-mannosidase-like protein

eFP electronic fluorescent pictograph

ER endoplasmic reticulum

ERAD ER-associated degradation protein

ERSE-II ER stress responsive element

esp2 endosperm storage protein 2

Page 9: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

ix

EST expressed sequence tag

GAPDH glyceraldehyde-3-phosphate dehydrogenase

gDNA genomic DNA

Gm Glycine max (soybean)

GRXs glutaredoxins

GSDS gene structure display server

hCypA human CypA

HMW high molecular weight

Hsp heat shock protein

IPCR inverse PCR

kb kilobase pairs

kDa kilodaltons

LB Luria-Bertani medium

LZ leucine zipper

MEGA molecular evolutionary genetics analysis

MT mitochondria

MTS mitochondrial targeting signal

LS nuclear localization signals

NMR nuclear magnetic resonance

NT nullisomic-tetrasomic

N-terminal Amino terminal

Os Oryza sativa (rice)

PAC precursor-accumulating

PB protein body (bodies)

PCR the Polymerase Chain Reaction

PCD programmed cell death

PDI protein disulfide isomerase

PDILs protein disulphide isomerase-like proteins

Pin puroindoline

PM plasma membrane

PPIase peptidyl-prolyl cis-trans isomerase PPIase

PP2A protein phosphatase 2A

PRXs peroxi-redoxins

Page 10: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

x

PSII photosystem II

PSV protein storage vacuole

QSOXL quiescin-sulfhydryl oxidase-like

QTL quantitative trait locus (loci)

RE restriction enzyme

RFLP restriction fragment length polymorphism

RNase ribonuclease

rpm revolutions per minute

RRM RNA recognition motif

RT-PCR reverse transcriptase PCR

SDS sodium dodecyl sulphate

SEF soybean embryo factor

SNP single nucleotide polymorphism

SP signal peptide

S-poor sulphur-poor

SQL structured query language

S-rich sulphur-rich

SSR simple sequence repeat

Ta Triticum aestivum (common wheat)

TAs Transcription assembles

TC Tentative consensus sequence

Td T. turgidum ssp. durum

TE Tris-EDTA buffer

TF transcription factor

TIGR The Institute for Genomic Research

TPR tetratricopeptide repeats

TRX thioredoxin

TSS transcription start site

Tu T. urartu

U units

UV Ultra-violet

wEST wheat EST

ZF zinc finger

Page 11: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xi

Table of contents

1 General introduction and literature review 2

1.1 Introduction to wheat as a crop 2

1.1.1 The wheat industry 2

1.1.2 Wheat flour composition and wheat quality 2

1.1.3 Wheat species and genomes 2

1.2 Wheat seed storage proteins: properties and significance 4

1.2.1 Classification and key biochemical properties of storage proteins 5

1.2.2 Genetic loci of storage proteins 6

1.2.3 Role of storage proteins in determining visco-elastic

properties of dough 7

1.2.4 Synthesis and deposition of seed storage proteins 8

1.2.5 Effects of abiotic stresses on storage proteins in wheat 11

1.2.6 Need for ‘foldase’ enzymes and chaperones in storage protein

folding and assortment processes 11

1.3 Cyclophilins 12

1.3.1 Discovery of cyclophilins 12

1.3.2 Cyclophilins as members of peptidyl prolyl cis/trans isomerases

superfamily 12

1.3.3 The primary biochemical activity of cyclophilins 13

1.3.4 Key structural and biochemical features of cyclophilins 14

1.3.5 Composition of the human cyclophilin family 15

1.3.6 Diverse functions of Cyp in humans and other organisms

(excluding plants) 16

1.4 Properties and functions of plant cyclophilins 18

1.4.1 Cyclophilin family in Arabidopsis: a summary 18

1.4.2 Properties and functions of Cyps in other plants 22

1.5 Protein disulfide isomerase (PDI) 24

1.5.1 Discovery of PDI 24

1.5.2 PDI as a member of the thioredoxin superfamily 25

1.5.3 Structure of PDI 26

1.5.4 The primary biochemical activity of PDI 27

1.5.5 Composition and function of human PDIL family members 29

Page 12: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xii

1.5.6 PDIL families in other organisms 31

1.5.7 Functions of PDI in human and other organisms 32

1.5.8 Additional functions of PDI relevant to cell biology and medicine 33

1.6 Properties and functions of plant PDIL 35

1.7 Evidence for roles of ER lumen ‘foldase’ enzymes and chaperones

in storage protein folding and deposition 39

1.8 Summary of the above literature and aims of this project 41

1.8.1 Aims of this project 42

2 Materials and Methods 45

2.1 Commercial kits, materials and solutions 45

2.2 Prepared solutions 45

2.3 Equipment 46

2.4 Plant materials and DNA stocks used in this project 47

General molecular methods

2.5 Growth of seedlings for DNA isolation 48

2.6 Preparation of genomic DNA 48

2.7 The polymerase chain reaction (PCR) 49

2.7.1 Synthesis of oligonucleotide primers 49

2.7.2 Typical PCR conditions 49

2.8 Agarose gel electrophoresis and purification of PCR products 51

2.9 Cloning of PCR products 51

2.9.1 Preparation of transformation-competent E. coli JM109 51

2.9.2 Cloning of genomic copies or cDNA of genes 51

2.10 Plasmid DNA isolation and RFLP analysis of polymorphism 52

2.11 DNA sequencing 53

2.11.1 DNA sequence reactions 53

2.11.2 DNA sequence analysis 53

2.12 Amplification of promoter sequences by inverse PCR (IPCR) 54

2.12.1 Promoter sequences amplification 54

2.12.2 Characterisation of amplified fragments 54

2.13 Physical and genetic mapping of wheat CypB genes 54

2.13.1 Physical mapping of wheat CypB genes 54

Page 13: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xiii

2.13.2 Genetic mapping of wheat CypB genes 55

2.14 RNA extractions and cDNA synthesis 56

2.14.1 Tissue samples 56

2.14.2 Total RNA isolation 56

2.14.3 First-strand cDNA synthesis 56

2.15 Preliminary analysis of some Cyps and PDILs genes expression 57

Bioinformatics Method 58

2.16 Identification of CypB gene and its promoter sequence in rice 58

2.17 Identification of putative wheat CypB orthologues at rice CypB locus 58

2.18 Identification of putative QTLs in rice and wheat at the CypB locus 59

2.19 Rice Cyp and PDIL family identification and analysis 59

2.20 Wheat Cyp and PDI family identification and analysis 59

2.21 Identification of putative QTLs related to quality in rice and

wheat at loci encoding PDILs 61

2.22 Multiple sequences alignments, cellular location predictions

and phylogenetic analysis 62

2.23 Prediction of PDIL expression in different tissues in Arabidopsis 62

3 Molecular characterisation of cyclophilin B genes in

wheat species and rice 64

3.1 Abstract 64

3.2 Introduction 65

3.3 Results 66

3.3.1 Amplification and identification of CypB genes from genomic

DNA and first-strand cDNA in T. aestivum 66

3.3.2 Sequence alignment of clones from genomic DNA and cDNA

in T. aestivum 68

3.3.3 Identification of two CypB genes in T. turgidum ssp. durum 76

3.3.4 Identification of CypB genes in T. urartu and tentative genome

assignments 77

3.3.5 Identification of CypB genes in Ae. tauschii and tentative

genome assignments 78

3.3.6 Intron/exon structures and sequence identities of various CypB genes 78

Page 14: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xiv

3.3.7 Alignment of exon contigs from genomic sequences

with cDNA clones 81

3.3.8 Alignment of the deduced putative CypB protein sequences

in wheat species 85

3.3.9 Comparison of putative CypB protein sequences with ER-localised

Cyps in other organisms and CypA in human and wheat 86

3.3.10 Identification of putative CypB gene and its promoter

sequence in rice 90

3.3.11 Identification of CypB promoter sequences in diploid wheat 91

3.4 Discussion 94

3.4.1 Wheat cyclophilin B genes show significant diversity in introns 94

3.4.2 Genome assignment of cyclophilin B genes supports the origins

of A genome and D genome from T. urartu and Ae. tauschii 95

3.4.3 Section(s) of Cyclophilin B genes may be divergent in D genome

of common wheat compared to its progenitor 95

3.4.4 Putative wheat CypB protein shows potential roles for

ER protein regulation 95

3.4.5 Wheat CypB has the orthologue in rice and other species 97

3.4.6 The promoter elements suggest CypB proteins may be under tissue

and stress specific regulation in cereals 97

4 Physical and genetic mapping of cyclophilin B genes 100

4.1 Abstract 100 4.2 Introduction 101

4.3 Results 101

4.3.1 Identification of putative wheat orthologues of the rice

cyclophilin B gene and their chromosomal positions 101

4.3.2 Development of molecular markers for physical mapping 102

4.3.3 Experimental physical mapping of wheat Cyp B genes 103

4.3.4 Confirmation of PCR product amplified with allele specific primers

from different genome in T. aestivum cv. Rosella 106

4.3.5 Identification of polymorphisms in TaCypB7A gene from

ten parental lines 107

Page 15: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xv

4.3.6 Identification of polymorphisms in TaCypB7B gene from

ten parental lines 108

4.3.7 Identification of polymorphisms in TaCypB7D gene from

ten parental lines 109

4.3.8 Genotyping of cyclophilin B markers in mapping population 109

4.3.9 Linkage mapping of TaCypB7A and TaCypB7B 114

4.3.10 Identification of rice and wheat QTLs at CypB location 119

4.4 Discussion 124

4.4.1 Data on physical mapping of wheat in rice database indicates

CypB genes may be duplicates on different chromosomes 124

4.4.2 Development of molecular markers for physical mapping

prior to designing of allele specific primers 124

4.4.3 Genetic mapping of TaCypB7A 125

4.4.4 Genetic mapping of TaCypB7B 125

4.4.5 Genetic mapping of TaCypB7D 125

4.4.6 QTLs in the chromosome regions of the cyclophilin B genes

in rice and wheat 126

5 A comparative phylogenetic and molecular analysis of the

cyclophilin family in rice and wheat 128

5.1 Abstract 128

5.2 Introduction 129

5.3 Results 131

5.3.1 Identification of genomic sequences of Cyps genes in rice 131

5.3.2 Identification of expressed sequences of Cyp genes in rice 131

5.3.3 Predictions of intron/exons structures of rice Cyp genes 132

5.3.4 Grouping of putative Cyp proteins in rice 134

5.3.5 Analysis of the rice Cyp gene structures 138

5.3.6 Cyp-coding DNA sequences in wheat 140

5.3.7 Comparative analyses of putative Cyp amino acid sequences

of rice and wheat 142

5.3.8 Chromosomal localisation of Cyps in rice 157

5.3.9 Prediction of chromosomal location of Cyps in wheat 158

Page 16: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xvi

5.3.10 Preliminary expression analysis of genes encoding putative

ER localized Cyps 160

5.4 Discussion 162

5.4.1 The Rice and wheat Cyps comprise large and divergent families,

with some duplicated genes 162

5.4.2 Single domain cytosolic Cyps 162

5.4.3 Multi-domain cytosolic Cyps 164

5.4.4 ER Cyps 165

5.4.5 Chloroplast Cyps 166

5.4.6 Nuclear Cyps 166

5.4.7 Mitochondrial Cyps 167

5.4.8 Chromosomal locations of Cyps in rice and wheat 167

6 A comparative molecular and phylogenetic analysis of the

protein disulphide isomerase (PDI) family in

rice and wheat 170

6.1 Abstract 170

6.2 Introduction 171

6.3 Results 172

6.3.1 Identification of genomic sequences of PDIL genes in rice 172

6.3.2 Identification of expressed sequences of PDIL genes in rice 173

6.3.3 Predictions of intron/exons structures of rice PDIL genes 173

6.3.4 Grouping of putative PDIL proteins in rice 173

6.3.5 Analysis of the rice PDIL gene structures 180

6.3.6 PDIL coding sequences in wheat 183

6.3.7 Comparison of the putative PDIL amino acid sequences of rice

and wheat to each other and to other plant PDILs 186

6.3.8 The relationship of PDILs in rice and wheat to those in Arabidopsis

and other organisms 199

6.3.9 Chromosomal localisation of PDILs in rice and prediction

of chromosomal location of PDILs in wheat 205

Page 17: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xvii

6.3.10 Identification of quantitative trait loci likely to be associated

with PDILs in rice and wheat 207

6.3.11 Expression analysis of selected PDILs in different tissues from

Arabidopsis microarray data 208

6.3.12 Preliminary expression analysis of three homeologous PDI genes

in different tissues and developing seeds in wheat 210

6.4 Discussion 212

6.4.1 Rice and wheat PDILs comprise large and diverse families 212

6.4.2 The PDIL1 group 212

6.4.3 The PDIL2 group 214

6.4.4 The PDIL5 group 215

6.4.5 The QSOXL group 215

6.4.6 The APRL group 216

6.4.7 Chromosomal locations of PDILs in rice and wheat 216

7 General discussion 219

7.1 General discussion 219

7.1.1 Cyclophilin B shows potential location in the ER 219

7.1.2 Putative ER localized cyclophilin and protein disulphide isomerases

may have roles in ER stress response 219

7.1.3 Plant cyclophilins in other cellular locations show

a variety of functions 221

7.2 Future directions 221

References 224

Appendices 251

Page 18: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xviii

List of Figures

Figure 1.1 Summary of the evolution of wheat 4

Figure 1.2 Classification of wheat seed storage proteins (prolamins) 5

Figure 1.3 Schematic summary of sequences of x-type and y-type HMW subunits 6

Figure 1.4 Head-to-tail arrangement of x- and y-type HMW glutenin subunits

with branches of LMW-glutenin 7

Figure 1.5 Processes of storage protein body (PB) formation 8

Figure 1.6 Schematic representation of RNA-dependent seed storage protein

targeting in developing rice endosperm 10

Figure 1.7 Composition of the peptidyl prolyl cis/trans isomerases (PPIase)

superfamily 13

Figure 1.8 Cis-trans isomerisation of a peptidyl-prolyl bond accelerated by

PPIase 13

Figure 1.9 Structure of the main domain and binding site of Cyp 14

Figure 1.10 Schematic representation of cyclophilin members in human 16

Figure 1.11 Structures of putative representative cyclophilins in Arabidopsis 19

Figure 1.12 Classification of the TRX superfamily 26

Figure 1.13 Domain organisation of human PDI 27

Figure 1.14 Disulfide formation and isomerisation accelerated by PDI 28

Figure 1.15 Mechanism of disulfide bond formation in native proteins 28

Figure 1.16 Schematic model illustrating the interaction between Ero1-L

and hPDI 29

Figure 1.17 Domains in human PDI members 30

Figure 2.1 Representative chart for identification of PDILs or Cyps

chromosomal locations in wheat 61

Figure 3.1 Position of primers used for PCR or IPCR amplification 66

Figure 3.2 CypB genomic gene sections and the RFLP polymorphisms

(HaeIII) of clones in T. aestivum, cv. Rosella and CypB cDNA

in T. aestivum, cv. Cranbrook 68

Figure 3.3 Alignment of sequence from seven CypB genomic genes in

wheat species 75

Figure 3.4 RFLP Polymorphisms (HaeIII) of CypB genomic clones in

tetraploid and diploid wheat 76

Page 19: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xix

Figure 3.5 Section amplified by inverse PCR in T. urartu (A) and

confirmation of clones with expected inserts (B) 77

Figure 3.6 Gene structures of the CypB genes isolated from wheat species

and the CypB gene identified in rice 79

Figure 3.7 Phylogenetic analysis of CypB exon contigs and cDNA sequences 82

Figure 3.8 Sequence alignment of exon contigs with cDNA sequences 84

Figure 3.9 Alignment of amino acid s deduced from exon contigs of the seven

CypB genomic genes and CypB cDNA of three clones 86

Figure 3.10 Comparison of ER-localised cyclophilins from different species

with CypA in human and wheat 90

Figure 3.11 Section CYPBIPCR-R1/CYPBF3 amplified by inverse PCR from

SacI digested and circularised genomic DNA (A) in Ae. tauschii

and confirmation of the clones with expected insertion (B) 92

Figure 4.1 Putative wheat orthologues at the CypB locus of rice 102

Figure 4.2 Deduced restriction maps of Exon III to Exon V sections of

TaCYPB-A, TaCYPB-B and TaCYPB-D genes from common wheat 103

Figure 4.3 Positions of primers for physical and genetic mapping of the

genomic CypB genes 104

Figure 4.4 Physical mapping of CypB genes using RFLPs 105

Figure 4.5 Physical mapping of three CypB genes from wheat 105

Figure 4.6 PCR products amplified with allele specific primers from different

genome of gDNA in T. aestivum, cv. Rosella and their RFLPs

digested by enzyme (HaeIII) 106

Figure 4.7 Partial CypB PCR products with allele specific primers from the A

genomes (A), B genome (B), D genome (C) in ten parental lines 107

Figure 4.8 Structure of partial CypB genes (partial Intron II to partial Exon V)

in Tasman and Sunco 107

Figure 4.9 Representative SNP in CypB genes from parental pair CD87 and

Katepwa)(A), alignment of sequences (867- 890bp) in parental lines

with TaCypB7B (B) 108

Figure 4.10 RFLPs of partial CypB gene from B genome in ten parental lines 109

Figure 4.11 TaCypB7A marker assay in the progeny from Tasman x Sunco 112

Figure 4.12 TaCypB7B marker assay in the progeny from Tasman x Sunco 114

Figure 4.13 Linkage map of chromosome 7B generated from Sunco x

Page 20: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xx

Tasman (A) and comparative linkage map of chromosome 7B

in T. aestivum (B) 116

Figure 4.14 Integration of TaCYPB7A and TaCYPB7B markers in the linkage

maps from Sunco x Tasman (Chalmers et al., 2001) based on

the bin mapped markers indicated in Section 4.3.1 (Fig 4.5)

and data analysis by Map Manager software package

QTXb20 (Fig 4.13A) 118

Figure 5.1 Gene structures of Cyp gene family in rice 133

Figure 5.2 Predicted cellular locations of cyclophilins in wheat and rice

compared to those reported in Arabidopsis 135

Figure 5.3 Structure of putative Cyp proteins in rice 137

Figure 5.4 Structure of putative Cyps proteins in wheat 142

Figure 5.5 Alignment of putative amino acid sequences of rice and wheat Cyps

with reported Cyps in Arabidopsis and human CypA 154

Figure 5.6 Phylogenetic analysis of Cyps in Arabidopsis, rice, and wheat 157

Figure 5.7 Likely locations of rice Cyp genes on chromosomes 158

Figure 5.8 Summary of likely locations of wheat Cyps on chromosomes 159

Figure 5.9 RT-PCR products amplified from the first-strand cDNA or genomic

DNA of various tissues and developing seeds of wheat 161

Figure 6.1 Rice PDIL gene structures 174

Figure 6.2 Schematic of the structures of PDILs in rice 178

Figure 6.3 Schematic of the structures of PDILs in wheat 185

Figure 6.4 Alignment of the putative amino acid sequences of the five groups

of PDILs in rice and wheat 198

Figure 6.5 Phylogenetic analysis of PDILs in Arabidopsis, rice, and wheat 203

Figure 6.6 Likely Locations of rice PDILs on chromosomes 205

Figure 6.7 Likely chromosomal locations of wheat PDILs 207

Figure 6.8 PDIL expression levels in different tissues in Arabidopsis (upper)

and expression of AtPDIL1-1 in developing seeds lower 209

Figure 6.9 RT-PCR products amplified from the first-strand cDNA or genomic

DNA of various tissues and developing seeds of wheat 211

Page 21: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xxi

List of Tables

Table 1.1 Key properties and functions of cyclophilins 17

Table 1.2 Properties of cyclophilin family in Arabidopsis and their orthologues 21

Table 1.3 Key properties of cyclophilins in other plants 24

Table 1.4 Properties and functions of PDI in vertebrates and yeast 34

Table 1.5 Properties and functions of PDIL members in Arabidopsis and their

orthologues in other plants 36

Table 1.6: PDI properties and functions in plants (excluding Arabidopsis) 39

Table 2.1 Commercial kit and reagents used during this project 45

Table 2.2 Prepared solutions, media and plates 46

Table 2.3 Equipment used during this project 45

Table 2.4 Wheat cultivars and progenitors 47

Table 2.5 Nullisomic/tetrasomic (NT) lines used for physical mapping 47

Table 2.6 Deletion lines of chromosome 7 used for physical mapping 48

Table 2.7 Primer pairs used for PCR or IPCR amplifications and/or sequencing

of CypB gene and its promoter, physical mapping and genetic mapping 50

Table 2.8 Primers used for gene expression study 57

Table 3.1 Primer pairs used for PCR or IPCR amplification/or sequencing of

CypB gene and its promoter 66

Table 3.2 Summary of sequenced CypB gene sections in wheat species 69

Table 3.3 Identities amongst the wheat CypB genes and with rice and

Arabidopsis orthologs 80

Table 3.4 Sequences of exon/intron junction and putative intron branch points

in TaCypB7B 81

Table 3.5 Functionally important residues in the putative wheat and

rice CypB proteins 90

Table 3.6 Sequence comparisons of the isolated TaCypB7B gene and its

putative protein product, with those from rice 91

Table 3.7 Putative regulatory elements in the promoters of CypB genes

in wheat and rice 94

Table 4.1 Primer pairs used for physical and genetic mapping 104

Table 4.2 QTLs in the vicinity of the rice CypB locus on chromosome 6 120

Page 22: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

xxii

Table 4.3 Markers of QTLs controlling grain or protein quality on rice

chromosome 6, in the general area of the CypB gene 121

Table 4.4 Wheat QTLs relating to agronomic and quality traits on chromosome 7 122 Table 4.5 Summary of wheat QTLs for agronomic and quality traits

and their closest markers on chromosome 7 123

Table 5.1 List of Rice Cyclophilin gene family 134

Table 5.2 Summary of exon sizes (bp) of Cyp genes in rice 139

Table 5.3 Cyclophilin family in Triticum aestivum 141

Table 5.4 Reported functionally important residues in human CypA 143

Table 5.5 Primers used for expression analysis of ER-localising Cyp genes 160

Table 6.1 PDIL gene family in rice 175

Table 6.2 Identities (%) between putative amino acid sequences and

between the coding sequences of PDILs in rice 179

Table 6.3 Summary of exon sizes (bp) of PDIL genes in rice 182

Table 6.4 PDIL family in wheat 186

Table 6.5 PDIL members in wheat and their potential orthologues

in other plants 204

Table 6.6 Wheat and rice putative PDIL orthologues and their chromosomal

locations 206

Page 23: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

1

Chapter 1

GENERAL INTRODUCTION AND LITERATURE REVIEW

Page 24: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

2

1 General introduction and literature review

1.1 Introduction to wheat as a crop

1.1.1 The wheat industry

Wheat is a staple food crop grown in many different countries. The wheat growing

areas total approximately 204,614,529 hectare (ha) worldwide (NUE, 2003), and about

620 million tons are produced annually (Dubcovsky and Dvorak, 2007). Wheat is

Australia’s largest crop, occupying approximately 12,456,000 ha in 2003 (NUE, 2003).

In 2006/2007, the Australian wheat yield was 10.8 million tons; 8.7 million tons with a

value of $3 billion were exported (ABARE, 2008a). Global wheat stocks are currently

low due to demand exceeding production (ABARE, 2008b), and improvements in

global wheat yield are urgently needed. Wheat flour is the most important ingredient of

bread, pasta, noodles and a range of staple foods, so is thus essential to keep this crop

abundant and affordable and improve its quality.

1.1.2 Wheat flour composition and wheat quality

Wheat flour is processed by milling to remove the germ (embryo) and bran. The main

part consumed by humans is the endosperm, which typically contains 72% starch

(Pomeranz, 1988) and 10-12% storage proteins, the quality of grain being dependent on

the characteristics of these polymers (reviewed in Shewry and Halford, 2002). The

gluten proteins form a continuous matrix in the mature dry endosperm cells in wheat.

Flour is mixed with water to form dough, which is expanded by fermentation and baked

into leavened bread or processed into pasta, noodles and a range of other foods. The

technological properties of starch are determined by many factors including its amylose

content, branched chain-length distribution of amylopectin, and starch granule size

distribution (Gama et al., 2000). Similarly, the storage proteins (‘gluten’) show clear

associations with nutritional quality and the visco-elastic properties of the dough due to

properties of individual subunits and overall structure of the polymer; these are detailed

later.

1.1.3 Wheat species and genomes

Domestication of wheat is generally accepted to have occurred around ~12,000 years

ago in the Fertile Crescent of western Asia, most likely in southeastern Turkey. Wheat

spread through Iran into central Asia reaching China by about 3000 BC, and was

Page 25: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

3

introduced in Australia in 1788. The origin and domestication of wheat and the original

research reports on this have been reviewed extensively elsewhere (Salamini et al.,

2002; Huang et al., 2002; Dubcovskyi and Dvorak, 2007; Shewry, 2009). Wheat is a

member of the tribe Triticeae, a subdivision of Panicoideae subfamily belonging to the

Poaceae (grass) family. Based on a basic set of 7 chromosomes (n=7), all wheat

species are divided into diploid (2n=2x=14), tetraploid (2n=4x=28) or hexaploid

(2n=6x=42) (Breiman and Graur, 1995). The diploid species include three genome

types. The AA genome type is represented mainly by Triticum urartu and T.

monococcum (Sears, 1969), the BB genome is represented by various species including

Agropyron triticeum, Aegilops bicornis and Ae. speltoides, while the DD genome is

represented by Ae. tauschii (reviewed in Kimber and Athwal, 1972). The tetraploid

wheats fall into two genome types; the AABB includes T. turgidum which has two sub-

species: the wild form (T. turgidum ssp. dicoccoides) and the cultivated form (T.

turgidum ssp. durum) (reviewed in Morris and Sears, 1967), while the AAGG type has

only one species, T. timopheevii, with two sub-species, the wild T. timopheevii ssp.

armeniacum and the cultivated T. timopheevii ssp. timopheevii (reviewed in Breiman

and Graur, 1995). The hexaploid wheats include two genome types; the AmAmAAGG

is represented by one species (T. zhukovskyi) while AABBDD includes one species (T.

aestivum L.) with sub-species T. aestivum ssp. vulgare (bread wheat), T. aestivum ssp.

spelta (spelt wheat), T. aestivum ssp. compactum, T. aestivum ssp. macha, T. aestivum

ssp. vavilovii, and T. aestivum ssp. sphearococcum (club wheat).

The generally accepted theory of evolution of common wheat is shown in Fig 1.1. Ae.

speltoides (BB, 2n=14 chromosomes) is proposed to have hybridised with T. urartu

(AA, 2n=14) and chromosomes of the AB hybrid may have doubled to produce the

tetraploid T. turgidum (AABB, 4n=28). T. turgidum then possibly hybridised with Ae.

tauschii (DD, 2n=14) and chromosomes of this 3n, ABD hybrid also probably doubled,

leading to the common wheat (T. aestivum, AABBDD, 2n=42). Cytogenetic analysis

shows the A genome was probably contributed by T. urartu; the B genome by Ae.

speltoides (Sear, 1969; Breiman and Graur, 1995); and the D genome by Ae. tauschii

(Gill and Kimber, 1974). Molecular evidence for the A genome donor being T. urartu

includes comparison of 18S.26S ribosomal RNA loci (Nor-A7 on 5AL) by sequential

N-banding and in situ hybridisation (Jiang and Gill, 1994), RFLP comparison of RbcS

gene (Galili et al., 2000), and 5S spacer rDNA from homeologous chromosome 1

Page 26: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

4

(Allaby and Brown, 2000). The B genome being from Ae speltoides is supported by

similar analyses of 18S·26S rRNA loci (Nor-B6 on 1BL) (Jiang and Gill, 1994) and

RbcS (Galili et al., 2000), or it may have come from an unknown relative of Ae

speltoides (Feuillet et al., 2008). The D genome donor status of Ae. tauschii is also

confirmed by analysis of 18S·26S rRNA loci (Nor-D8 on 3DS) (Jiang and Gill, 1994)

and the rRNA (Nor3), high molecular weight glutenin (Glu1) and RbcS loci (Dvorak et

al., 1998; Galili et al., 2000).

Fig 1.1 Summary of the evolution of wheat (reviewed in Shewry, 2009). 1.2 Wheat seed storage proteins: properties and significance

1.2.1 Classification and key biochemical properties of storage proteins

The wheat storage proteins (‘gluten’) were one of the earliest plant proteins to be

analysed. Historically, they were divided into four groups according to extraction and

solubility characteristics, i.e., albumins (soluble and extractable in water and dilute

buffers), globulins (not soluble in water but soluble and extractable in dilute saline),

gliadins (soluble and extractable in 70-90% ethanol) and glutelins (soluble and

extractable in dilute acid or alkali; these were later divided into two separate classes)

(reviewed in Gianbelli et al., 2001). All wheat storage seed proteins are generically

termed prolamins, due to being rich in proline and glutamine. The history of

classification of wheat prolamins has been covered extensively elsewhere (Shewry et

Page 27: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

5

al., 1995; Gianibelli et al., 2001). As per the commonly accepted theme (followed

here), the prolamins are divided into two groups based on degree of polymerisation: the

monomeric gliadins and polymeric glutenins. Based on amino acid composition, they

fall into three broad groups: S-rich (sulphur-rich), S-poor, and high molecular weight

(HMW) (Shewry and Halford, 2002), and the two classification systems can be

integrated (Fig 1.2). The S-poor prolamins have a partial composition of 40-50% Gln,

20-30% Pro, 8-9% Phe, 0-0.5% Lys and 0-<0.5% Cys and contain monomeric ω-

gliadins and the D-type low molecular weight (LMW) glutenin subunits that can form

polymers. The S-rich proteins comprise the main component (70-80%) of prolamins,

have a partial amino acid composition of 30-40% Gln, 15-20% Pro, 2-3% Cys and

<1.0% Lys, and include three subgroups: the monomeric α-gliadins and γ-gliadins, and

the polymers of B- and C-type LMW glutenin subunits. The HMW prolamins have a

partial composition of 30-35% Gln, 10-16% Pro, 15-20% Gly, 0.5-1.5% Cys and 0.7-

1.4% Lys and form polymers of HMW glutenins (Shewry and Halford, 2002). The B-

and C-type subunits contain six or eight Cys, respectively, and have about 70

components (Muccilli et al., 2005).

Fig 1.2 Classification of wheat seed storage proteins (prolamins) (Shewry et al. 2003).

As the name suggests, the S-poor prolamins lack Cys residues and thus cannot form

disulfides bonds and polymers. The amino acid sequence of ω-gliadins contains only

one domain: the repeated motif (Pro-Gln-Gln-Pro-Phe-Pro-Gln-Gln), flanked on N- and

C-terminal sides by unique 12- and 9-residue sequences, respectively (Shewry and

Halford, 2002). The S-rich prolamins contain two main domains: the Pro/Gln-rich

Page 28: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

6

repeated sequence (e.g., PQQPFQQ in γ-gliadin) toward the N-terminal, and the non-

repeated C-terminal which has Cys that form intra-chain disulfide bonds. Six Cys occur

in α-gliadins and eight in γ-gliadins (Shewry et al., 1995). The HMW glutenin subunits

contain three distinct domains: the central domain (420-700 residues) with extensive

repeats comprised mainly of nonapeptide and hexapeptide motifs, and often another

tripeptide; and the non-repetitive N-terminal (81-104 residue) and C-terminal (42

residue) domains which contain Cys that form inter-chain disulfides (Shewry et al.,

2002) (Fig 1.3). The HMW subunits fall into two types: the x-type has an additional

tripeptide motif in the repetitive part and three Cys in the 81-89 residue N-terminal

domain, while the y-type has five Cys in the 104 residue N-terminal. In particular,

1Dx5 contains a Cys towards the N-terminal end of the repetitive domain, while 1By

and 1Dy types contain a Cys toward its C-terminus. The variations in sequences and

numbers of the repeats and Cys residues of HMW glutenins thus have major

implications for structure of the gluten polymer and its technological characteristics

(reviewed in Shewry et al., 1995; 2002).

Fig 1.3 Schematic summary of sequences of x-type and y-type HMW subunits (Shewry et al., 2002). Information in boxes indicates numbers of total residues and Cys in various domains; two N-terminal Cys are deleted in x-type; 1Dx5 contains one Cys close to the N-terminus of the repetitive domain; and 1By and 1Dy contain one Cys close to C-terminus of this domain.

1.2.2 Genetic loci of storage proteins

The Gli-2 loci encoding α-gliadins are located on short arms of chromosomes 6A, 6B,

and 6D, and the Gli-l loci controlling γ- and ω-gliadins are on short arms of

chromosomes 1A, 1B, and 1D. The Glu-I loci encoding HMW glutenin subunits occur

on long arms of chromosome 1A, 1B, and 1D, each locus having two genes, encoding

the x- and y-type subunits. Thus, theoretically, T. aestivum could contain six HMW

subunits (1Ax, 1Ay, 1Bx, 1By, 1Dx, 1Dy); however, silencing certain homeoalleles

Page 29: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

7

results in the presence of only three (1Bx, 1Dx, 1Dy) to five (1Ax, 1Bx, 1By, 1Dx,

1Dy) subunits (Payne, 1987).

1.2.3 Role of storage proteins in determining visco-elastic properties of dough

The visco-elastic properties of dough, formed by mixing flour with water, are very

important to the making of bread, pasta, noodles and many other foods (reviewed in

Payne, 1987). The structures of the HMW subunits influence these properties, as

demonstrated by the transgenetic line of wheat containing additional 1Dx5 subunits

(Barro et al., 1997). Polymeric prolamins are composed of the HMW x- and y-type and

LMW subunits, connected by intra- and/or inter-molecular disulfide bonds. The HMW

subunits form the backbone of a head-to-tail structure from N- to C-terminus, while the

LMW subunits form branches, all connected via disulphide bonds (Fig. 1.4). One

interchain disulphide bond is present at the N-terminus of x-type subunits and two

parallel disulphides occur between N-termini of y-type subunits (Shewry et al. 2002).

The HMW glutenin stabilised by intramolecular disulphide bonds and inter-molecular

hydrogen bonding contribute to dough viscosity, while LMW glutenin stabilised largely

by inter-molecular disulphides determine dough elasticity and strength (reviewed in

Shewry et al., 2002; 2003). Transgenic lines were used to study the effects of the 1Ax1

and 1Dx5 subunits on the visco-elastic properties of the dough; the expression of 1Ax1

transgene resulted in a substantial increase in and time taken to mix to the maximum

resistance of dough, while expression of 1Dx5 resulted in increases in elasticity

(reviewed in Shewry et al., 2002).

Fig 1.4 Head-to-tail arrangement of x- and y-type HMW glutenin subunits with branches of LMW-glutenin (Shewry et al., 2002).

Page 30: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

8

1.2.4 Synthesis and deposition of seed storage proteins

Seed storage protein synthesis and deposition in the endoplasmic reticulum (ER) was

first studied in the maize endosperm by electron microscopy (Larkins and Hurkman,

1987). The proteins may remain in the ER or be transported to distal sites through the

endo-membrane system (Herman and Larkins, 1999). It is now widely accepted that the

overall process involves three key steps: (i) synthesis of protein subunits on ribosomes;

(ii) targeting of nascent proteins to the lumen of ER where their folding and assembly

takes place; (iii) assembly of mature proteins into protein bodies (PBs) and deposition

of PBs in the endosperm (reviewed in Herman and Schmidt, 2004; Vitale and Ceriotti,

2004; Hwang, 2008) (Fig 1.5A). The nascent protein subunits have an N-terminal

signal peptide for directing them into the ER lumen, which is then cleaved (reviewed in

Shewry, 1999). The enzymes and molecular chaperones in the ER lumen, e.g., protein

disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase (PPIase) and Binding

Protein (BiP) possibly assist in the folding of nascent subunits, formation of disulfide

bonds and assembly of oligomers (see below). Misfolded nascent proteins are regulated

to either reform correct conformation or degraded with the aid of chaperones (Meunier

et al., 2002; Vitale and Ceriotti, 2004) (Fig 1.5B).

Fig 1.5 Processes of storage protein body (PB) formation (Vitale and Ceriotti, 2004). A: Nascent subunits folded and PBs assembled with the aid of chaperones. B: Misfolded nascent subunits subjected to aggregation for assembling into PBs, or degradation with the aid of chaperones.

The gliadins were initially identified by immunocytochemical techniques to be localised

in vesicles associated with the Golgi apparatus in wheat endosperm (Kim et al., 1988).

Page 31: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

9

PBs were also detected in the cytoplasm by ultrastructural analysis, showing a dense

core surrounded by rough ER-derived membranes and probably enlarging by fusion of

smaller PB (Levanony et al., 1992). Two complementary pathways are now widely

accepted to lead to PB formation in wheat: some proteins (primarily gliadins) follow the

standard secretory pathway via Golgi to the protein storage vacuole, where they

accumulate into PBs, while the HMW glutenins accumulate directly into PBs within the

lumen of rough ER (reviewed in Shewry and Halford, 2002; Shewry et al., 2002;

Herman and Schmidt, 2004, Tosi et al., 2009), although the movement and localisation

of LMW subunits of glutenins is unclear (Tosi et al., 2009), and assortment of specific

prolamin types into two different PBs has been disputed (Loussert et al., 2008).

Curiously, all prolamins lack the archetypical KDEL/HDEL ER-retention signal or a

discernable vacuolar targeting signal, hence it is also unclear why some prolamins

follow the Golgi pathway to vacuole while others are retained in the ER. The proline-

rich repeats appear to be essential for ER retention (Altschuler et al., 1993; Altschuler

and Galili, 1994), possibly due to a role in protein-protein interactions that result in

accumulation in ER, making them less readily transportable through Golgi as compared

to the monomeric gliadins (Shewry and Halford, 2002). The ER-derived PBs appear to

disconnect from the cisternal ER, surrounded by ER membranes, but the process of

budding remains unknown (reviewed in Galili, 2004). The ER-derived PBs may

ultimately fuse with PBs of vascular origin (reviewed in Galili et al., 1997; Tosi et al.,

2009). The synthesis of large amounts of protein appears to be regarded as an internal

stress, and in response, the ER differentiates into various compartments with different

mechanisms of origin, shapes and functions (reviewed in Hara-Nishimura et al., 2004).

The PBs from Golgi are sequestered in protein storage vacuoles by a process similar to

autophagy (Vitale and Galili 2001). The membranes lyse and PBs coalesce, resulting in

a large central vacuole with one-more prolamin accretions towards the end of seed

maturation. However, details of PB fusion processes are unknown in wheat (Arcalis et

al., 2004) and other cereals (Galili, 2004; Herman and Schmidt, 2004). The SNARE

(soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein

(VTI12) may mediate the transport of PBs by the pathway via Golgi to PSV, as shown

by studies of mutant lines in Arabidopsis (Sanmartin et al., 2007). The eventual fusion

of all PBs in the endosperm forms the highly structured protein network (gluten) that

surrounds the starch granules and materials of broken-up endosperm cells and

determines the strength and viscoelastic properties of the dough. Factors that influence

Page 32: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

10

gluten architecture thus potentially regulate the end-uses of wheat and are the subject of

extensive plant breeding efforts for nutritional as well as food technological reasons

(reviewed in Shewry and Halford, 2002; Shewry, 2009).

In the developing grains of rice, two types of PBs occur: the spherical PB-I contains

prolamins originating from ER, and the irregularly shaped PB-II containing globulins/

glutelins originating from the vacuole (Fig 1.6). Importantly, the prolamin and glutenin

mRNAs appear to be directed to specific subdomains of ER, i.e., protein body ER (PB-

ER) and cisternal ER (C-ER), respectively, and the 3’ untranslated regions on mRNAs

may play a role in targeting (Crofts et al., 2004). Translation of prolamin mRNAs on

PB-ER leads to translocation of the polypeptides into ER lumen and formation of PB-I

directly within ER. In contrast, partial prolamin proteins passing through a precursor-

accumulating (PAC) vesicle-dependent pathway, and glutelins translated from mRNAs

on C-ER and transported through Golgi, together get deposited as PB-II into a protein

storage vacuole (PSV) (Crofts et al., 2004).

Fig 1.6 Schematic representation of RNA-dependent seed storage protein targeting in developing rice endosperm (Crofts et al., 2004). Prolamin and glutelin mRNAs are transcribed in the nucleus (N) and transported into PB-ER and C-ER, respectively. Prolamin polypeptides are translocated into the ER lumen where they form PB-I, while glutelins are exported via the Golgi and deposited into PB-II.

Page 33: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

11

1.2.5 Effects of abiotic stresses on storage proteins in wheat

The effects of environmental factors such as drought, salinity, cold, frost, water logging,

nitrogen, phosphorus and heavy metals, and unseasonable changes to normal patterns,

have been thoroughly studied and the literature is extensive (e.g., Morison et al., 1999;

Wheeler et al., 2000; Reddy et al., 2004). Recent work by Semenov and Halford (2009)

offers in-depth discussion on predictions and simulations of future climate changes and

roles of biotechnology in elucidating and addressing the emerging adversities. An

extensive discussion on abiotic stresses is outside the scope of this work, however, in

summary, it can be said that the results almost always point to severe effects on multiple

facets of plant growth including root function, water availability and stomatal function,

and significant losses of crops including wheat. For example, heat stress influences the

formation of polymeric protein fraction during grain filling in wheat (Ciaffi et al.,

1996). The total protein content is also affected by heat and drought stress through

altering the quantity of total N accumulation (Triboi et al., 2003). High temperature can

increase the rate for accumulation of S-poor compared to S-rich proteins (Dupont and

Altenbach, 2003; Dupont et al., 2006) and has been found to upregulate 31 proteins with

functions in stress/defense and storage and downregulate 32 proteins with roles in starch

biosynthesis and protein synthesis (Hurkman et al., 2009). The decreased proteins

include protein disulfide isomerase (PDI; also a chaperone) which catalyzes disulfide

bond breakage and formation in nascent proteins (Creighton et al., 1980; Hurkman et

al., 2009); PDI is a focus of this work and will be discussed below.

1.2.6 Need for ‘foldase’ enzymes and chaperones in storage protein folding and

assortment processes

The processes of mature storage protein folding, assortment and deposition occur in the

ER, as summarised above. During protein folding, incorrect disulphide bonding or

associations of hydrophobic residues can form undesirable interactions within or

between polypeptide chains, resulting in protein aggregates that need to be resolved or

targeted for removal. Not only do the normal events of rapid expression and assortment

of seed storage proteins lead to an internal ER stress (see section 1.2.4), external abiotic

stresses can affect physiological processes, as mentioned above. This supports the need

for an involvement of ‘foldase’ enzymes with specific biochemical properties as well as

chaperone roles, and other chaperones, for proper folding of nascent proteins and

resolution or removal of aggregates. Three groups of proteins are likely to be involved:

Page 34: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

12

the Binding Protein (BiP)/heat shock protein (Hsp70) chaperones, and the enzymes

peptidyl prolyl cis-trans isomerases (PPIases) and protein disulphide isomerases (PDI).

The cyclophilins (a class of PPIases) and PDI are of direct relevance to this project.

Their key biochemical properties as well as experimental and circumstantial evidence

related to their roles in cereal storage protein folding and assortment processes are

detailed below.

1.3 Cyclophilins

1.3.1 Discovery of cyclophilins

Cyclophilins are so-named due to being cellular receptors for the immuno- suppressant

drug cyclosporin A (CsA) (Handschumacher et al., 1984). Cyclophilins (henceforth

designated as Cyps; literature shows use of this term, as well as ‘cyp’ or ‘CyP’) were

initially found to catalyse the cis-trans inter-conversion of proline (Pro)-containing

peptides purified from pig kidney (Fish et al., 1984). Early Cyps were reported from

different cellular locations, e.g., CypA from cytosol (Harding et al., 1986), CypB in the

ER (Price et al., 1991; 1994), and a nuclear-localized Cyp (Mortillaro and Berezney,

1998). Eighteen Cyps, ranging from 18-to 354 kDa, have been identified from human

genome (Galat, 2004). Cyps have also been reported from bacteria (Herrler et al.,

1994), yeast (Haendler et al., 1989), protozoa (Barisic et al., 1991) and plants (Luan et

al., 1994b, He et al., 2004; Romano et al., 2004a).

1.3.2 Cyclophilins as members of peptidyl prolyl cis-trans isomerase superfamily

Members of the peptidyl prolyl cis/trans isomerase (PPIase) superfamily catalyse the

cis/trans isomerisation of the peptide bond preceding Pro residues. Three proteins

families are reported to have this activity: (i) immunophilins that bind immuno-

suppressive drugs (Galat, 1993); (ii) the very low molecular weight (10.1 kDa)

parvulins (Landrieu et al., 2000); (iii) the ‘trigger factors’ required for translocation-

competent folding of pro-OmpA and other precursor proteins (Crooke and Wickner,

1987). Immunophilins are further divided into two subfamilies: cyclophilins that bind

to CsA (Handschumacher et al., 1984; Galat, 1993), and FKBPs that bind to FK506 and

rapamycin (Harding et al., 1989; Galat, 2003) (Fig 1.7).

Page 35: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

13

Fig 1.7 Composition of the peptidyl prolyl cis/trans isomerases (PPIase) superfamily.

1.3.3 The primary biochemical activity of cyclophilins

The cis/trans isomerization of the peptide bond preceding Pro residues (Xaa-Pro) is a

rate-determining step in nascent protein folding and refolding. The main function of

Cyps in vertebrates was found to be the catalysis of this slow event (Fischer et al., 1984)

(Fig 1.8), this activity being inhibited by CsA in regulation of T-lymphocyte activity

(Handschumacher et al., 1984). The nature of this step was exemplified through studies

on isomerisation of the bond between Tyr-92 and Pro-93 in bovine pancreatic

ribonuclease A (Schmid et al., 1986). The 21 kDa Cyp in the ER lumen was shown to

interact with secretory proteins translocated into the lumen (Klappa et al., 1995). The

PPIase activity of Cyp is inactive in its oxidised form and regained by thioredoxin

converting it to its reduced form (Motohashi et al., 2001; 2003).

Fig 1.8 Cis-trans isomerisation of a peptidyl-prolyl bond accelerated by PPIase (Galat, 1993).

Page 36: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

14

1.3.4 Key structural and biochemical features of cyclophilins

Individual Cyps range from 163 amino acids (aa) (~17kDa) in vertebrates (Harding et

al., 1986) to 837 aa (~95kDa) in plants (Lorkovi et al., 2004). All Cyps contain the

cyclophilin-like domain (CLD) (approximately 109 aa), connected to other domains that

are unique to each member and associated with subcellular location or functional

specialisation (Wang and Heitman, 2005). The structure exhibits eight-stranded

antiparallel β-barrels and two α-helices (Kallen et al., 1991). Based on the sequence of

hCyPA (Ke et al., 1991) these are as follows: (i) β-strands (B1: Pro4-Ala11, B2: Pro16-

Leu24, B3: Lys49-Ile56, B4: Met61-Gly64, B5: Gly96-Ala101, B6: Gln111-Thr116,

B7: Val127-Glu134, B8: Lys155-Leu164); (ii) β-turns (T1: Val12-Glu15, T2: Gly42-

Gly45, T3: Ile57-Phe60, T4: Ser77-Gly80, T5: Gly104-Thr107, T6: Ser147-Gly150);

(iii) α-helices (A1: Phe 25-Val 29, A2: Pro 30-The 41, A3: Gly 135-Gly 146). A loop

between B6 and B7 (Lys118-His126) and four β-strands (B3-B6) constitute a pocket for

CsA binding and PPIase activity (Pflugl et al., 1993; Hur and Bruice, 2002) (Fig 1.9).

A B Fig 1.9 Structure of the main domain and binding site of Cyp (Theriault et al., 1993; Hur and Bruice, 2002). A: Loops L1 to L4 form a channel for substrate binding; B: Residues for PPIase activity and CsA contact indicated in orange. Numbering of beta sheets or alpha helices seen in both.

Thirteen residues are involved in CsA contact by human CypA (hCypA): Arg55, Phe60,

Met61, Gln63, Gly72, Ala101, Asn102, Ala103, Gln111, Phe113, Trp121, Leu122 and

His126 (Pflugl et al., 1993); of these, Trp121 is essential (Bossard et al., 1991). Nine of

these residues (Arg55, Phe60, Gln63, Ala101, Asn102, Gln111, Phe113, Leu122,

His126) plus Ile57 and Arg148 are involved in PPIase activity (Pflugl et al., 1993;

Rascher et al., 1998), Arg55, Phe60 and His126 being essential for catalysis (Zydowsky

Page 37: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

15

et al., 1992). Binding of calcineurin (CN) to the CsA-CypA complex increases the

stability and avoid proteolytic cleavage of the complex (Hornbogen et al., 1992), and

Arg69, Lys125 and Arg148 are responsible for CN contact (Theriault et al., 1993;

Rascher et al., 1998). Cyps from diverse organisms show a high degree of conservation

in the PPIase and CsA contact areas including Arg55, Phe60, Trp121, and His126

(Theriault et al., 1993; Galat, 1999). The active site is formed by four β-sheets and

residues on the enzyme surface, the loops forming a narrow channel for substrate

binding (Hur and Bruice, 2002). Catalysis may involve stabilisation of transaction state

at the binding site by hydrophobic interactions and stable H-bonding (Hamelberg and

Mecammon, 2009).

1.3.5 Composition of the human cyclophilin family

The human Cyp family is comprised of 19 members, falling into 10 classes (Galat,

2004) (representatives shown Fig 1.10; see legend for Genbank accession numbers).

Class A (hCyP18-a, b, c, ci, d) contains only the main domain, and two of these

(hCyP18-a, b) are possibly cytoplasmic. Class B contains N-terminal precursor

sequences and the main domain and has three members (hCyP-22b/p, hCyP-22c/p,

hCyP22d/p) predicted to be in the ER, membrane and mitochondria, respectively, with

hCyP-22b/p (Galat, 2004) (earlier called hCyPB, Price et al., 1991) showing the C-

terminal ER retention/retrieval signal (Freedman et al., 2002; Boldbaatar et al., 2008).

Class C (hCyP-19) has only the main domain while Class D members (hCyP-33, hCyP-

35) have an additional N-terminal RNA-binding domain, but unclear location (Galat,

2004; Wang et al., 2008). The class F member hCYP-40 has a C-terminal TPR

(tetratricopeptide repeat) domain, and the Class I member (hCyP-57) has a C-terminal

RNA-binding domain, in addition to their main domains. The two class G members

(hCyP-58, hCyP-58i) contain additional unknown domains at both termini. The class J

member hCyP73 has WD40 motifs, the two class H members (hCyP-88, hCyP-157)

exhibit zinc finger domains, and hCyP-157 is predicted to be in the nuclear membrane,

as also hCyP-358 of class E (Galat, 2004).

Page 38: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

16

Fig 1.10 Schematic representation of cyclophilin members in human (Galat, 2004). Frames: main domains; Green ovals: precursor sequences; red bars in class D, E and I: RNA-binding domain; yellow: WD40 motifs; violet: zinc finger domain; orange: TPR domain; salmon: other domains. Only representatives of some classes are shown. (Class A: hCyP18a, b, c, ci, d; Genbank accession numbers NP_066953, NP_839944, NP_115861, NP_570981, NP_057143); class B: hCyP-22b/p, hCyP22d/p, hCyP-22c/p (NP_000933, NP_000934, NP_005720); class C: hCyP-19 (NP_006338); class D: hCyP-33, hCyP-35 (NP_006103; NP_775943); class E: hCyP-358 (NP_006258); class F: hCYP-40 (NP_005029); class G: hCyP-58, hCyP-58i (NP_680480, NP_680481); class H: hCyP-88, hCyP-157 (NP_004783, NP_005376); class I: hCyP-57 (NP_624311); class J: hCyP73 (NP_056157).

1.3.6 Diverse functions of Cyp in humans and other organisms (excluding plants)

As mentioned earlier, the main function of Cyps is to catalyse the cis/trans

isomerisation of Xaa-Pro peptide bonds in protein folding in vertebrates (Fischer et al.,

1984), a role also demonstrated in yeast and bacteria (Schonbrunner et al., 1991).

However, several additional functions have been reported for Cyps in vertebrates and

other organisms; these are summarised in Table 1.1. Briefly, the human hCyP18-a

(hCypA) may have a critical role in the maturation of homo-oligomeric receptors, as a

prolyl isomerase or a chaperone (Wang and Heitman, 2005). The membrane-located

hCyP-22c/p binds to unfolded protein substrates and acts as a chaperone to take proteins

for plasma membrane construction (Price et al., 1994; Meunier et al., 2002). The ER-

localised hCyP-22b/p, with prolactin complex, acts as a transcriptional inducer

(Rycyzyn and Clevenger, 2002) and also cooperates with other chaperones (PDI, Bip,

Grp94) to play crucial roles in protecting cells against ER stress (Kim et al., 2008). The

human 150 kDa Cyp (NK-tumor recognition molecule, NK-TR) containing several

domains and three regions containing Ser/Arg rich repeats have been identified in this

Cyp (Anderson et al., 1993). The human nuclear-localised SRcyp contains

serine/arginine dipeptide repeats in the C-terminal and is responsible for cell cycle

Page 39: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

17

regulation (Dubourg et al., 2004). The anti-chaperone role of mouse CypB with PDI

and Hsp47 can export proteins from ER (Smith et al., 1995). The mitochondrial CypD

(homologue of hCyP22d/p) in rat glioma C6 cells functions in protection against

apoptosis (Lin and Lechleiter, 2002). The mammalian CyP40 containing TRP interacts

with heat shock protein (hsp90) (Ratajczak et al., 1993) and shows regulation of gene

transcription, transformation and differentiation (Leverson and Ness, 1998), chaperone

functions (Mok et al., 2006), and signaling of aryl hydrocarbon receptor (AhR) (Luu et

al., 2008).

The cytosolic CypA (TbCypA) from African trypanosomes may play role in the

interaction with infected species (Pelle et al., 2002) and has a 10 aa N-terminal

extension and a 3 aa insertion (KAG) in the centre. The Plasmodium falciparum PfCyP

contains an N-terminal signal peptide and two N-glycosylation sites (N120 and N137)

(Hirtzlin et al., 1995) corresponding to N71 and N108 of hCypA. The ER-localised

cyclophilin B in the fungus Aspergillus nidulans has a potential role in ER response

(Joseph et al., 1999). Expression of yeast CYP1 in the cytosol and CYP2 in the

secretory pathway under heat shock shows their roles in stress response (Sykes et al.,

1993) and in modulating the activity of histone-deacetylase complexes in transcriptional

events (Wang and Heitman, 2005). The yeast nuclear-localised Cyp (Rct1) functions in

pre-mRNA processing through maintaining correct phosphorylation of its own C-

terminal domain (CTD) (Gullerova et al., 2007). The plant Cyps are discussed

separately below.

Page 40: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

18

Table 1.1 Key properties and functions of cyclophilins

Name location*/

Size (KDa) Species/cell

type Structure and /or Functions References

Cyp Cytosol/ 15 bovine Xaa-Proline isomerase, Trp residue essential for CsA binding

Handschumacher et al., 1984

Cyp Cytosol/ 18

bovine Regulation of T lymphocyte activation and proliferation

Harding et al., 1986

CyPA Cytosol/ na Human T cells Signal reception Brazin et al., 2002

CypB ER/ na bovine Cyp B increased the chaperone activity of PDI in vitro

Horibe et al., 2002

CyPB ER, PM / 21 human Chaperone to certain proteins destined for PM or export

Price et al.,1994; Price et al., 1991

CypB ER/ na human T47D With prolactin, acts as transcriptional

inducer for gene expression Rycyzyn and Clevenger, 2002

NK-TR Nucleus/ 150 human Identified in natural killer cells Anderson et al., 1993

SRcyp Nucleus/ na human Contains S/R repeat at C-terminus with function for cell cycle regulation

Dubourg et al., 2004

CyPB ER/ na mouse 3T6 cells

Anti-chaperone, export procollagen from ER, cooperating with Hsp47 and PDI

Smith et al., 1995

CypB ER/ na mouse ER chaperone forms an ER network binding to unfolded protein substrates; protecting cells against ER stress via its PPIase activity.

Meunier et al., 2002; Kim et al., 2008

CypD MT/ na mouse Protection against apoptosis Baines et al., 2005; Lin et al., 2002

CyP40 Nucleus/ 40 mammalian cells

Regulation of gene; role in AhR signaling; 186–215aa essential for forming AhR/Arnt/DRE complex; TPR domain has chaperone function

Leverson et al., 1998; Mok et al. 2006; Luu et al., 2008

CypB ER/na insect cells Stimulates NS5B-catalysed RNA synthesis

Heck et al., 2009

CypG ER/ 23 horseshoe crab

Chaperone to take stored proteins in exocytotic granules

Takaki et al., 1997

CRIP Nucleus /na

Paramecium Cyclophilin-RNA interacting proteins, cell morphogenesis, cortical organization and nuclear reorganization

Krzywicka et al., 2001

TbCypA Cytosol/ 18.7 Trypanosoma Involved in interactions with infected species

Pelle et al., 2002

CypB ER/ na S. cerevisiae Has HDEL signal for ER-localisation Frigerio and Pelham , 1993

CYP1, CYP2

Cytosol / na, secretory / na

S. cerevisiae Function in stress conditions Sykes et al., 1993

Rct1

Nucleus / na

S. pombe RRM-containing cyclophilin, pre-mRNA processing

Gullerova et al., 2007

*ER: endoplasmic reticulum, MT: mitochondria; PM: plasma membrane.

1.4 Properties and functions of plant cyclophilins

1.4.1 Cyclophilin family in Arabidopsis: a summary

The 29 Cyp isoforms identified from Arabidopsis genome range from 17.5-95 kDa and

are predicted to be in the cytosol (13), chloroplast (6), ER (5), mitochondria (2) and

nucleus (3) (He et al., 2004; Romano et al., 2004a). Their key features are summarised

below due to relevance for comparative purposes (Fig 1.11; Table 1.2) (nomenclature

according to Romano et al., 2004a). Nine cytosolic Cyps (AtCYP18-1, AtCYP18-2,

AtCYP18-3, AtCYP18-4, AtCYP19-1, AtCYP19-2, AtCYP19-3, AtCYP22, AtCYP26-

1) contain only the main domain, 4 are multidomain, and genes of six (AtCYP18-3,

AtCYP18-4, AtCYP19-1, AtCYP19-2, AtCYP19-3, AtCYP26-1) are intronless (Chou

Page 41: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

19

and Gasser, 1997; He et al., 2004). AtCYP40 contains the main domain (residues 1-

174) at N-terminus and a TPR (264-331) (He et al., 2004) and is required for vegetative

phase change (Berardini et al., 2001) through regulation of miR156-regulated members

(Smith et al., 2009). AtCYP57 contains a C-terminal Arg/Lys rich domain (200-504)

and AtCYP65 contains a U-box (38-97) at N-terminus and main domain (343-498). U-

box is a modified RING finger domain and may required for protection from protein

degradation (reviewed in He et al., 2004). AtCYP65 acts as a prolyl isomerase and a

chaperone for resolving protein aggregates (AtPUB49; Wiborg et al., 2008). AtCYP71

contains the main domain (475-631) and WD repeats (66-240) at N-terminus and acts as

a histone remodeling factor involved in gene silencing (Li et al., 2007). WD-40 repeat

contains a central Trp-Asp presenting as tandem repeats and its function is for protein-

protein interaction (reviewed in He et al., 2004).

Fig 1.11 Structures of putative representative cyclophilins in Arabidopsis. Based on He et al. (2004). Dark grey boxes: Cyp domains; ER: ER targeting signal, L-Z: leucine zipper, RRM: RNA recognition motif, TPR: tetratricopeptide repeats, Z-F: zinc finger, C/T: chloroplast/thylakoid lumen targeting signal, MT: mitochondrial targeting signal; U-box, WD repeats.

The five predicted ER-Cyps (AtCYP19-4, AtCYP20-1, AtCYP21-1, AtCYP21-2,

AtCYP23) all contain N-terminal ER-targeting signals (residues 1-23, 1-23, 1-27, 1-31,

1-22) and C-terminal main domains (36-201, 37-204, 43-224, 60-228, 31-196) (He et

al., 2004). AtCYP19-4 localises in the ER (AtCYP5; Saito et al., 1999) and regulates

the protein GNOM required for coordination of cell polarity along the embryo axis

(Grebe et al., 2000). AtCYP20-1 functions in regulating protein phosphatase 2A

Page 42: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

20

(PP2A) for auxin transport and growth response (Jackson and Soll, 1999) and AtCYP23

shows a C-terminal extension (197-226).

The six chloroplastic isoforms (AtCYP20-2, AtCYP20-3, AtCYP26-2, AtCYP28,

AtCYP37, AtCYP38) contain chloroplast/thylakoid (CT) lumen targeting sequence (1-

76, 1-79, 1-73, 1-33, 1-114, 1-92) and main domain (85-259, 95-260, 93-317, 77-290,

281-422, 260-437) (He et al., 2004; Romano et al., 2004a). AtCYP20-2 plays an

important role in catalysing the correct folding and integration of proteins in the

thylakoid membrane (TLP20, Edvardsson et al., 2003; Romano et al., 2004b) and shows

PPIase activity (Shapiguzov et al., 2006). AtCYP20-3 also shows this activity and

localises in the stroma (ROC4; Lippuner et al., 1994). Its disulfides (Cys54-Cys171,

Cys129-Cys176) are important for its isomerisation and disulfide reduction activities

(Laxa et al., 2007) and it links the photosynthetic electron transport and redox

regulation to folding of SAT1 (serine acetyltransferase, a rate-limiting enzyme in Cys

biosynthesis) (Dominguez-Solis et al., 2008). Roles of AtCYP20-3 include repair of

photodamaged photosystem II (PSII) (Cai et al., 2008). AtCYP37 has a C-terminal

extension (423-461) while AtCYP38 has a leucine zipper (111-170) (He et al., 2004;

Romano et al., 2004a) and a critical role in the assembly and maintenance of PSII

supercomplexes (Fu et al., 2007; Sirpio et al., 2008). The mitochondrial Cyps

(AtCYP21-3, AtCYP21-4) have N-terminal targeting signals (both 1-47) and main

domain (77-230, 80-236, respectively) (He et al., 2004; Romano et al., 2004a).

The three nuclear isoforms (AtCYP59, AtCYP63, AtCYP95; main domains 1-161, 1-

180; 1-174) (He et al., 2004; Romano et al., 2004a) have had their location confirmed

by GFP fluorescence (Lorkovi et al., 2004; Gullerova et al., 2006). AtCYP59 contains

an RNA recognition motif (RRM) (243-321), a zinc finger motif (342-355) and a C-

terminal Arg/Lys rich domain (397-506); the latter contains a RS/RD(E) rich motif

essential for nuclear localisation, and is involved in connecting transcription and pre-

mRNA processing (Gullerova et al., 2006). AtCYP63 and AtCYP95 contain an

Arg/Lys domain (228-570; 348-837) and play a role in mRNA splicing, possibly by

regulating the phosphorylation/ dephosphorylation of signal recognition proteins and

other spliceosome components (Lorkovi et al., 2004).

Page 43: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

21

Table 1.2 Properties of cyclophilin family in Arabidopsis and their orthologues

Name Other names

Functions (other properties) References

AtCYP18-1 Regulation of K+ channels in guard cell; enhances multiple abiotic stress tolerance; PPIase activity of their orthologue in tomato is confirmed and its function is for auxin regulation of plant growth, development and environmental responses; Acts during development; participation in response to salt stressful conditions.

Luan et al., 1993; Kumari et al., 2009; Oh et al., 2006; Kielbowicz-Matuk et al., 2007; Chen et al., 2007

AtCYP18-2 AtCYP18-3 ROCI

AtCYP18-4 ROC5, AtCYP1 AtCYP19-1 ROC3

AtCYP19-2 ROC6

AtCYP19-3 ROC2 AtCYP22 n/a n/a

AtCYP26-1 n/a n/a

AtCYP40 Regulates microRNA activity for vegetative phase change

Berardini et al., 2001; Smith et al., 2009

AtCYP57 n/a n/a

AtCYP65 AtPUB49 (65kDa)

AtPUB49 with U-box functions both as a PPIase and a chaperone, catalysing isomerisation of peptidyl-prolyl bonds and resolving protein aggregates

Wiborg et al., 2008

AtCYP71 Serves as a highly conserved histone remodeling factor involved in chromatin-based gene silencing

Li et al., 2007

AtCYP19-4 Cyp5 (19 kDa)

regulates GNOM coordinating cell polarity Grebe et al., 2000

AtCYP20-1 ROC7 (22 kDa)

Regulating PP2A activity for auxin transport and growth response pathways

Jackson and Soll, 1999

AtCYP21-1 n/a n/a AtCYP21-2 n/a n/a AtCYP23 n/a n/a AtCYP20-2 TLP20 (20kDa)

Important role in catalysing correct folding and integration of proteins in and around the thylakoid membrane system; Catalysis of chloroplast protein folding in thylakoid lumen; PPIase activity in thylakoid lumen restricted to only AtFKBP13 and AtCYP20-2

Romano et al., 2004b; Edvardsson et al., 2003; Shapiguzov et al., 2006

AtCYP20-3 ROC4 (20kDa)

Active PPIase localised in the stroma of chloroplast; ROC4 functions in the repair of photodamaged PSII (chloroplast stroma); Disulfide bonds are very important for isomerisation and disulfide-reduction activities CYP20-3 links photosynthetic electron transport and redox regulation to the folding of SAT1.

Lippuner et al., 1994; Cai et al., 2008; Laxa et al., 2007; Dominguez-Solis et al., 2008

AtCYP26-2 n/a n/a

AtCYP28 n/a n/a AtCYP37 n/a n/a

AtCYP38 Plays a critical role in assembly and maintenance of photosystem II supercomplexes during PSII assembly

Fu et al., 2007; Sirpio et al. 2008

AtCYP59 Activities connecting transcription and pre-mRNA

processing Gullerova et al., 2006

AtCYP63; CypRS64 (64kDa)

Nuclear location confirmed by GFP fluorescence; Function for pre-mRNA splicing, possibly by regulating phosphorylation/dephosphorylation of SR proteins and other spliceosomal components

Lorkovi et al., 2004

AtCYP95 CypRS92

AtCYP21-3 n/a n/a

AtCYP21-4 Involved in the resistance mechanism of one of the most important diseases of wheat, yellow rust

Bozkurt et al., 2008

Page 44: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

22

1.4.2 Properties and functions of Cyps in other plants

CypA cDNAs from the tomato were initially shown to be expressed in all parts of the

plant and the protein sequence showed 83% conservation to Cyp from vertebrates

(Gasser et al., 1990). The spinach 40kDa Cyp (TLP40; homologue of AtCYP38) in the

thylakoid lumen plays a dual role in photosynthesis involving biogenesis and intra-

organelle signaling (Fulgosi et al., 1998). The 18 and 20 kDa Cyps in Vicia faba are

responsible for regulation of K+ channels in guard cell or under stress conditions (Luan

et al., 1993; Godoy et al., 2000). The 20 kDa plays a specific role in chloroplast

through a unique mode of regulation (Luan et al., 1994a; 1994b). The expression of

gene coding 18 kDa StCyP (AY972080) in potato (Solanum tuberosum) is stimulated

by wounding, fungal infection and heat-shock, showing an involvement in stress

response (Godoy et al., 2000) and also plays an important role in stress responses

induced by salicylic acid and pathogen (Phytophthora infestans) elicitor and infection

(Dubery, 2007). The tomato 17.9 kDa LeCYP1 shows a role in auxin regulation of

plant growth, development, and environmental effects (Oh et al., 2006). A Cyp

(ThCYP1) in salt cress (Thellungiella halophila) shares 90% identity with AtCYP19-1

and 81% identity with LeCYP1 on amino acid level, and participates in response to salt

stressful conditions (Chen et al., 2007). SsCyp (17.9 kDa) of eggplant (Solanum

sogarandinum) show high homology to AtCYP19-1, AtCYP18-3 and AtCYP18-4, has

89% identity with StCyp (AAD22975) of S. tuberosum (Godoy et al., 2000) and plays a

role in plant development (Kielbowicz-Matuk et al., 2007). A 1kb cNDA encoding

GjCyp-1 from a red alga (Griffithsia japonica) was shown to have a role in influencing

plant growth and development in a tobacco transgenic line (Cho and Kim, 2008).

Cytosolic (17.5 kDa, cytosolic PPI) and microsomal (17.7 kDa, microsomal PPI) Cyps

have been isolated from maize and their PPIase activity is inhibited by CypA. The high

similarity (~60% identity) of the N-terminal sequence

(KKDLTEVTHKVYFDV/IEIDGKPAGRIVMGLF) from the purified maize

microsomal Cyp with that of mature animal s-cyclophilin (cyclophilin B) strongly

suggests it is a microsomal cyclophilin B (Sheldon and Venis, 1996). 40 kDa Cyp

(TLP40) contains N-terminal leucine zipper for interaction with other leucine zipper

proteins. It is located in the lumen of the thylakoids and plays a major role in

photosynthesis involving both biogenesis and intraorganelle signalling (Fulgosi et al.,

1998). The drought stress-induced enhancement of Cyp (20 kDa, SorgCyp20)

Page 45: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

23

expression on protein level in both leaves and seeds differs between the tolerant and

susceptible cultivars of sorghum (Sorghum bicolor L Moench) (Sharma and Singh,

2003). Further, the stress-induced enhancement of PPIase activity of Cyps depends

upon the tissues, types of stress treatment, and cultivars, e.g. draught-induced PPIase

activity increases in the leaves of the tolerant cultivars and decreases in susceptible

cultivar (Sharma et al., 2004; Sharma and Singh, 2006).

Limited information existed about the Cyp family in rice at the start of this project.

Only two members (OsCyp1 and OsCyp2) had been reported. Cyp1 expresses in leaves

and/or root, and Cyp2 expresses in both leaves and roots. Genomic Cyp2 is intronless

(Buchholz et al., 1994). Expression of the gene encoding the 172 aa cytosolic OsCyp2

(EF576508) is stimulated by salinity stress (Kumari et al., 2009). Purified OsCyp2

protein exhibits CsA sensitive PPIase activity and expression of OsCyp2 in E. coli

shows it functions in multiple abiotic stress tolerance including salinity, high

temperature, osmotic and oxidative stresses (Kumari et al., 2009).

Both the transcripts of prolamin storage proteins and the transcription of PPIase are

detected 14 days post-anthesis in developing wheat endosperm, which implies PPIase

may play important roles in storage protein formation even if the particular PPIase

involved in these roles have not been identified (Grimwade et al., 1996). A Cyp-like

protein in wheat is involved in mechanism of race-specific resistance to races of yellow

rust (Puccinia striiformis f. sp. tritici ) and is homologous to AtCYP21-4

(NP_187319.1, Romano et al., 2004a) (Romano et al., 2004a; Bozkurt et al., 2008). M.

Bhave’s group previously characterised genes encoding cytoplasmic CypAs in wheat,

which were found to be located on chromosome 6AS, 6BS and 6DS and intronless

(Johnson et al., 2004b). These may be involved in the translocation of storage proteins

into ER. Their cytoplasmic location makes a direct role in protein folding inside the ER

unlikely. However, little other information exists on ER localised or other Cyp

isoforms in wheat.

Page 46: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

24

Table 1.3 Key properties of cyclophilins in other plants

Name Cellular

location/ Size

Species Functions and other properties References

Cyp Na/na P. vulgaris . cv. Saxa

Abiotic stresses (heat, cold) Marivet et al., 1994

Cyclophilin Chloroplast/na pea Folding membrane proteins Breiman et al., 1992

CyPs Na/18kDa; 21kDa

V. faba Regulation K+ channels in guard cell

Luan et al., 1993

pCyP B/C Chloroplast/ 21kDa

V. faba Role in chloroplast function Luan et al., 1994a

pCyPB Chloroplast/ 21kDa

V. faba Expression induced by heat shock

Luan et al., 1994b

TLP40 Thylakoid lumen/40kDa

spinach

Dual role in photosynthesis : biogenesis and intra-organelle signaling

Fulgosi et al., 1998

StCyP Na/18kDa potato Role for cyclophilins in the plant response to environmental stresses

Godoy et al., 2000

Cyclophilin (CyP)

Na/18 kDa potato CyPs play an important role in plant stress responses induced by pathogen

Dubery 2007

CYP, LeCYP1

Na/17.9kDa tomato Auxin regulation of plant growth, development, environmental responses

Oh et al., 2006

SsCyPs Cytosol/ 17.9 kDa

eggplant Acts during plant development

Kielbowicz-Matuk et al., 2007

GjCyp-1

Na/na Transgenic tobacco

Influence growth and development

Cho and Kim 2008

ThCYP1 Nucleus/173 aa

salt cress response to salt stressful condition

Chen et al., 2007

cyclophilins Cytosol/17.5 kDa; ER/17.7 kDa

maize PPIase activity; microsomal Cyp Sheldon and Venis, 1996

OsCyp2 172 aa rice Enhances multiple abiotic stress tolerance

Kumari et al., 2009

Cyclophilin like protein

Na/na wheat Involved in mechanism of resistance to wheat yellow rust

Bozkurt et al., 2008

1.5 Protein disulfide isomerase (PDI)

1.5.1 Discovery of PDI

The enzyme protein disulfide isomerase (PDI; EC 5.3.4.1) was initially found to

catalyse the inactive and reduced ribonuclease A (RNase A) to its active form in bovine

liver (Goldberger et al., 1964); it was then reported from many other organisms

including yeast (LaMantia et al., 1991) and plants (Coughlan et al., 1996). PDI is now

categorised as belonging to a superfamily, consisting of five members in yeast

(Norgaard et al., 2001), 19 in humans (Appenzeller-Herzog and Ellgaard, 2008a) and

19-22 in plants (Houston et al., 2005).

Page 47: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

25

1.5.2 PDI as a member of the thioredoxin superfamily

Thioredoxin (TRX) is a small ubiquitous protein which contains an active site with a

functional motif ‘WCXXC’ (Holmgren, 1985). Proteins catalysing redox reactions,

containing one or more copies of the highly conserved TRX active site motif WCXXC

and showing sequence similarity to TRX are included in the TRX superfamily (Ferrari

and Soling, 1999; Gruber et al., 2006). Based on the numbers of secondary subunits

and variations in motifs at the catalytic site, the TRX superfamily is divided into four

families (Fig 1.12) (Martin, 1995; Jacquot et al., 2002; Houston et al., 2005):

• Thioredoxins (TRXs): approximately 12 kDa (~110 aa) proteins with a very

conserved active site motif with the sequence WC(G/P)PC (Jacquot et al., 2002)

• Protein disulphide isomerase-like proteins (PDILs), which include three groups: (i)

protein disulphide isomerase (PDI); (ii) the quiescin-sulfhydryl oxidase-like

(QSOXL) group; (iii) the adenosine 5’-phosphosulfate reductase-like (APRL) group

(reviewed in Houston et al., 2005). PDIs contain the active site motif WCGHC

(Kemmink et al., 1997). QSOXLs contain a TRX motif WCXXC at N-terminus and

a Erv1-like domain at C-terminus for sulfhydryl oxidase activity, confirmed in

vertebrates (Lee et al., 2000; Thorpe et al., 2002). The APRLs contain N-terminal

chloroplast targeting peptides, an adenylyl sulfate reductase (APR) activity core and

a C-terminal TRX motif WCXXC (Prior et al., 1999)

• Glutaredoxins (GRXs) with the TRX motif YCP(Y/F)C (Jacquot et al., 2002)

• Peroxi-redoxins (PRXs) with a single catalytic Cys (Jacquot et al., 2002).

Of these, the PDILs are of relevance to the project, and are detailed below.

Page 48: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

26

TRX Superfamily

PDI (WCGHC)

TRX (WCG/PPC)

GRX (YCPY/FC)

PRX (single C)

Class 1 (2 a-like

domains at N-and C-

terminus)

Class 2 (2 a-like

domain in middle)

Class 3 (3 a-like domains, 2 at N- and 1 at C-terminus

Class 4 (3 a-like domain at C-terminus)

Class 5 (1 a-like domain)

PDILs

QSOXL (WCXXC; Erv1-like)

APRL (WCXXC;

APR)

Vertebrate (N), plant?

Vertebrate (Y)

Vertebrate (Y), Plant (Y)

Fig 1.12 Classification of the TRX superfamily (Based on Martin, 1995; Jacquot et al., 2002; Houston et al., 2005).

1.5.3 Structure of PDI

The PDI is approximately 500 amino acids or 60 kDa in size. Molecular masses of

purified PDIs differ slightly between different organisms, e.g., 57 kDa (bovine)

(Carmicheal et al., 1997), 60 kDa (yeast) (Mizunaga et al., 1990), 55 kDa (castor bean)

(Coughlan et al., 1996), 60 kDa (wheat) (Shimoni et al., 1995b) or 63 kDa (soybean)

(Kainuma et al., 1995). Using proteolysis of native PDI and characterisation of peptide

fragments, combined with bioinformatics approaches, the currently accepted structure of

PDI has four domains (a, b, b' and a'), x-link, and a C-terminal acidic extension

(Freedman et al., 2002; Wilkinson and Gilbert, 2004) (Fig 1.13a). The boundary

numbers of domains are based on sequences expressed from human PDI cDNA, with

first expressed residue being Asp1 (Darby and Creighton, 1995; Darby et al., 1998).

The a and a’ domains contain active sites WCGHC, which mediates the activity of PDI.

Domains b and b’ also adopt a TRX fold, but do not share high sequence similarity with

each other or with a or a’. The C-terminal contains an ER-retention signal ‘KDEL’ in

human (Denecke et al., 1992; Freedman et al., 2002) and ‘HDEL’ in yeast (Frigerio et

al., 1993; Grube et al., 2006). The structures of a and b domains have been determined

by nuclear magnetic resonance techniques (Kemmink et al., 1997) and are similar, with

five-stranded parallel or anti-parallel β-sheets in the centre, surrounded by four α-

helices (Fig 1.13b). Domains a and a’ contain an extra section (grey extension shown

Page 49: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

27

by arrow in Fig. 1.13b) which has catalytic activity (Vuori et al., 1992). However, their

isomerase activities depend upon presence of b, and b’. All single TRX domain

members exhibit the characteristic α/β fold (reviewed in Freedman et al., 2002).

WCGHC

a b b’x

a’ c

WCGHC

7-117 119-216 218-332 352-462

KDEL

491

(a)

(b)

Fig 1.13 Domains organisation of human PDI (Freedman et al., 2002). (a) Structure of human PDI, consisting of four domains, one linker, and C-terminal extension, organized as a-b-b’-x-a’-c. (b) Secondary structures of PDI domains: A: a-domain; grey extension responsible for catalytic activities indicated by the arrow; B: b-domain.

1.5.4 The primary biochemical activity of PDI

As mentioned above, PDI was first found to catalyse the inactive and reduced RNase A

to its active form (Goldberger et al., 1964). PDI primarily catalyses the refolding and

unfolding of nascent proteins by disulfide bond breakage, formation and rearrangement

in eukaryotes (Creighton et al., 1980). A 52 kDa microsomal PDI binds to different

secretory proteins after their translocation into ER, and also binds to proteins with no

Cys (Klappa et al., 1995). It has one active site each at the N- and C- terminus, both

containing the catalytic motif WCGHC. The two Cys can either form an intra-

molecular disulfide (PDI in oxidised state); or exist in dithiol form (PDI in reduced

state) (Fig 1.14). The oxidase activity of PDI is responsible for disulfide formation in

the early stages of protein folding, while the reductase activity can accelerate the

isomerisation of incorrect disulfides (Wilkinson and Gilbert, 2004). PDI with the motif

WCGHS cannot catalyse reduction or oxidation, but can catalyse disulfide isomerisation

(Woycechowsky et al., 2000; Serrato et al., 2008). The active sites cannot completely

catalyse substrate oxidation or reduction in vivo, as shown by the distribution of human

Page 50: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

28

PDI in HEK-293 cells (50% fully reduced, 18% a-oxidised/a’-reduced, 15% a-

reduced/a’-oxidised, 16% fully oxidised) (Appenzeller-Herzog and Ellgaard, 2008b).

SH SHPDI

S S

PDI

SH SHS S

sulfhydryl disulfide

S S

S S

S

S

S

S

PDI

SH SH

PDI

Disulfide formation

SH SH

Disulfide isomerization

Oxidized

PDI

Reduced

PDI

Fig 1.14 Disulfide formation and isomerisation accelerated by PDI (Wilkinson and Gilbert,

2004). The process of disulfide formation of native bonds is shown in Fig 1.15. PDI is

oxidised by ER oxidoreductin proteins before performing its disulfide formation

function (Woycechowsky et al., 2000). Such proteins include Ero1-Lα and Ero1-Lβb in

mammalian cells, AERO1 and AERO2 in Arabidopsis (Dixon et al., 2003), and Ero1p

or Erv2p in yeast (reviewed in Gruber et al. 2006). A domain-swap study shows that the

b'xa' fragment of hPDI provides the binding region for Ero1-Lα with Cys pair (Cys94-

Cys99) (or Cys100-Cys105 in Ero1p) (Wang et al., 2009) (Fig 1.16). Reduced PDI,

generated by oxidants, is generally an additional requirement for efficient oxidative

folding (Lyles and Gilbert, 1991; Rancy and Thorpe, 2008).

Oxidized state

Reduced state

Fig 1.15 Mechanism of disulfide bond formation in native proteins (Woycechowsky et al.,

2000).

Page 51: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

29

Fig 1.16 Schematic model illustrating the interaction between Ero1-L and hPDI (Wang et al., 2009).

The role of disulfide bond formation in nascent proteins is fulfilled by a combination of

active and inactive TRX sites. The thiol-disulfides exchange could be catalysed by PDI

homologues containing either a’- or a’-domain, but disulfide isomerisation requires

these catalytic domains plus the b and b’-domain in hPDI (Freedman et al., 2002). The

b domain appears to provide the main peptide binding site, e.g., holding the substrate

protein in an unfolded conformation for the catalytic sites to perform the thiol-disulfide

exchange (Freedman et al., 2002), and there is no experimental evidence for a role for b

in substrate binding (Appella and Anderson, 2007; Hatahet and Ruddock, 2007). The

linker region x inhibits the substrate binding of b’-domain by interaction of the

hydrophobic residues of x with b’ (Nguyen et al., 2008).

1.5.5 Composition and function of human PDIL family members

The PDIL families in many organisms have been found to exhibit a great diversity of

structures and functions. The human PDI-like (PDIL) family is comprised of 18

members (17 PDI, one QSOX), all containing at least one TRX-like domain (reviewed

in Ferrari and Soling, 1999; Thorpe et al. 2002; Hatahet and Ruddock, 2007) (Fig 1.17;

see legend for Genbank accession numbers). Some key features are described below to

illustrate the structural and functional complexity and variability, which are of relevance

to the present work.

Seven members (PDI, ERp57, ERp72, PDIr, ERdj5, PDIp, PDILT) contain four or more

TRX-like domains, of which four members (PDI, ERp57, PDIp, PDILT) have all four

main domains (a, b, a’, b’). The putative human PDI (hPDI) (508 amino acids) includes

domains a (residues 23-130), b (135-230), b’ (235-344), and a’ (368-471) (boundary

numbers counted from the first residue Asp1; Darby and Creighton, 1995; Darby et al.,

Page 52: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

30

1998). The putative ERp57 (505 amino acids) also contains these domains (25-129,

134-237, 241-354, 377-481). ERp72 (645 aa) contains five: ao (61-166), a (175-280), b

(286-390), b’ (395-503), and a’ (625-632), where all three a-like domains have the

characteristic WCGHC. PDIr (519 aa) presents the b-domain (28-136) at N-terminus

and three a-like domains (ao: 150-257, a: 275-380, a’: 396-502) (Ferrari and Soling

1999) with variant motifs (CSMC, CGHC, CPHC) (reviewed in Ellgaard and Ruddock,

2005; Hatahet and Ruddock 2007). The ER-localised ERdj5 has four a-type domains,

also with variant motifs (CSHC, CPPC, CHPC, CGPC). In terms of biochemical

activities, PDI and ERp72 demonstrate all activities (oxidase, reductase, isomerase,

chaperone) (Wilson et al., 1998; Forster et al., 2006); PDIp and PDIr exhibit three

(oxidase/reductase/chaperone and reductase/isomerase/chaperone, respectively)

(Hayano and Kikuchi, 1995; Klappa et al., 2001); ERp57 presents two (oxidase,

reductase) (Obeid, 2008); ERdj5 only the reductase activity (Ushioda et al., 2008); and

the activity of PDILT is unknown as yet (van Lith et al., 2005) (reviewed in Kim et al.,

2009).

Fig 1.17 Domains in human PDI members (Hatahet and Ruddock, 2007). Yellow box indicates a-domain and a’-domain, red box indicates b-domain, and green box indicates b’-domain, grey stick indicates connection between domains, and the rectangular box in some indicates x link. (Genbank accession numbers; PDI: P07237; ERp57: P30101; PDIp: Q13087; ERp72: P13667; PDILT: Q8N807; ERp27, Q96DN0; PDIr: Q14554; ERp29: P30040; ERdj5: Q8IXB1; P5, Q15084; ERp18: O95881; ERp44: Q9BS26; ERp46: Q8NBS9; TMX: Q9H3N1; TMX2: Q9Y320; TMX3: Q96JJ7; TMX4: Q9H1E5).

Page 53: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

31

ERp46 (432 aa) contains three a-like domains with the motif CGHC, and ERp44 (406

aa) has domains a (CRFS), b, and b’, but the activities of both proteins are unknown.

P5 (440 aa) presents a and a’ domains at N-terminus with oxidase, isomerase and

chaperone activities, and ERp27 (273 aa) has b and b’ but unknown activities. Only the

a-domain occurs in 5 members (Erp18, 172 aa; TMX, 280 aa; TMX2, 296 aa; TMX3,

454 aa; TMX4, 349 aa). Three members (Erp18, TMX, TMX3) exhibit oxidase and/or

isomerase activities. The mature ERp18 (146 aa, without the 26-residue signal peptide)

shows the C-terminal ER retention signal (EDEL and QDEL in human and mouse,

respectively) and is localised in ER lumen (Jeong et al., 2008). TMX (active site

CPAC) has reductase activity, and ERp29 (P30040, Ellgaard and Ruddock, 2005;

ERp28; X94910, Ferrari and Soling, 1999) contains b domain (35-146) with no

confirmed activity (reviewed in Ellgaard and Ruddock, 2005; Appenzeller-Herzogand

Ellgaard, 2008a; Kim et al. 2009).

The deduced sequence of human QSOX (HsQSOXL, HSU97276) contains an N-

terminal signal sequence, the a/a’ domain (WAV--ALA) of PDI with the motif

WCGHC, an ERV1 domain (GYV--CHN) including its three characteristic sections,

and a C-terminal variable part with no ER retention motif. The three sections in the

ERV1 domain are: (i) section 1 (GYV--QMA) with the active site (CXDC); (ii) section

2 (AVL--GAP) with consensus motif (HNXVNXRL) for interacting with the ADP

moiety of the FAD prosthetic group; (iii) section 3 (PPK--CHN) with the consensus

motif (ELCXXC) (Thorpe et al., 2002). There are no APRL members in human PDIL

superfamily; these only occur in plants and are explained below.

1.5.6 PDIL families in other organisms

The PDIL family comprises five members in yeast (Norgaard et al., 2001), of which

Pdi1p and Eug1p contain two a-like domains, the active site motifs of Eug1p being

CXXS which cannot form intramolecular disulfides. The other three (Mpd1p, Mpd2p,

and Eps1p) have one a-like domain with motifs CGHC, CQHC, or CPHC, respectively

(Norgaard et al., 2001) and Mpd1p may be functionally analogous to human ERp57

(Vitu et al., 2008). Transcriptomics analysis shows yeast PDI (Pdi1), with other

chaperones, has potential functions in the secretion machinery and ER stress regulation

Page 54: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

32

in yeast (Gasser et al., 2007). PDI homologues are also reported in the fungus

(Neurospora crassa) (Tremmel et al., 2007).

The Chlamydomonas reinhardtii chloroplast PDI (RB60), by its phosphorylation and

redox activity, is involved in the light-regulated translation of psbA mRNA, which

encodes a core protein D1 of PSII through modulating RB47, a poly(A)-binding protein

( psbA) (Trebitsh et al., 2001; Alergand et al., 2006). The identification of RB60 by

proteomic approach in Chlamydomonas reinhardtii also indicates its oxidation activity

through the glutathionylation (Michelet et al., 2008). Eleven PDILs occur in the

protozoan parasite Entamoeba histolytica, falling into (i) one a domain; (ii) one a

domain with at least one b, and (iii) a and a’ with/without other domains (Ramos et al.,

2008). The plant PDIs are discussed separately below.

1.5.7 Functions of PDI in human and other organisms

Human PDI has been shown to conduct several functions through its main role in the

ER, i.e., catalysing both the oxidation and isomerisation of disulfide bonds of nascent

polypeptides. These functions include: catalysing the regeneration of ascorbic acid and

initiating the oxidation of intralumenal protein thiols to disulfides (Wells et al., 1990),

keeping the D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) with no disulfide

bonds in its active state by suppressing its aggregation (Cai et al., 1994), and preventing

the aggregation of denatured rhodanese (Yao et al., 1997). PDI also performs

chaperone functions, e.g., refolding of denatured GAPDH (Cai et al., 1994 and

rhodanese with no disulfide bonds (Yao et al., 1997), and is also a subunit of prolyl 4-

hydroxylase and microsomal triglyceride transfer protein (reviewed in Noiva 1999).

PDI also functions in compartments other than ER lumen. In the cytoplasm,

endosomes, or cell surface, it catalyses the reduction of protein disulfides for

participation in the thyroxin-induced actin nucleation, or cell-to-cell interaction through

activation of integrins (Noiva 1999).

Three other hPDIs (ERp57, PDIp, ERp72) have roles as components of peptide-loading

complexes, peptide binding, and protein retention in ER. Other PDI roles include

immune evasion of tumor (P5), protein retention in ER, and regulation of IP3R1 activity

(ER44) (reviewed in Kim et al., 2009). ERp18 is responsible for apoptosis during ER

stress caused by accumulation of misfolded proteins (Jeong et al., 2008). ERdj5

Page 55: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

33

functions in degradation of misfolded proteins through its reductase activity, cleaving

their disulfide bonds and accelerating ERAD (ER-associated degradation protein). It

performs this function in a complex with EDEM (ER degradation-enhancing a-

mannosidase-like protein) and ER-resident chaperone BiP (Ushioda et al., 2008) (see

section 1.5.5).

1.5.8 Additional functions of PDI relevant to cell biology and medicine

• PDI has been linked to transport of nitrous oxide to cell surface and cytosol and of the

estrogens into cells (Sliskovic et al., 2005; Fu et al., 2008).

• Quantitative proteomics shows its functions (with other chaperones) in apoptosis

against ER stress in human cell lines (Short et al., 2007).

• PDIp and PDI are critical for accumulation of misfolded proteins in neurodegenerative

diseases (Nakamura and Lipton, 2009).

• PDI activates of tissue factor (TF), a major initiator protein of blood coagulation

(Manukyan et al., 2008).

• PDI can be used for studies such as obesity, insulin, inflammation (Boden et al., 2008)

and tumor destruction (Fonseca et al., 2009).

• The anti-cancer drug Vincristine inhibits chaperone activity of hPDI and P5, showing

potential for new drug design (Horibe et al., 2008). Based on functions in ER-stress

and apoptosis, small-molecule PDI inhibitors may have potential for cancer treatment

(Lovat et al., 2008).

The diverse catalytic and chaperone activities of PDI in human and other organisms

(excluding plants) are summarised in Table 1.4. While a significant proportion of

information on PDILs comes from humans for historical and medical reasons, and

although some of the functions may not apply to other organisms, the range indicates

the capabilities of PDI far exceed a catalytic role alone. The universality of cellular

events or needs such as protein-protein complexes, ER stress, apoptosis, and signal

transduction, suggests the roles of PDI could be just as diverse in other organisms,

deserving further investigation. The plant PDIs are discussed below.

Page 56: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

34

Table 1.4 Properties and functions of PDI in vertebrates and yeast

Species/tissues

Length (aa), domains

Function/Cellular location Reference

Rat/liver, n/a

Catalyse RNase A Goldberger et al., 1964

Recombined rat PDI n/a

Bind the hormones, estradiol, 3,3',5-triiodo-L-

thyronine (T3) Primm et al., 2001

Bovine/ Pancreas n/a

Refolding and unfolding protein by disulfide bond breakage, formation and rearrangement

Creighton et al., 1980

Bovine/ microsome n/a

Maintain catalysing form of triglyceride transfer protein (MTP) and prevent aggregation

Wetterau et al., 1991

Bovine/ liver n/a

Catalyse regeneration of ascorbic acid and initiate oxidation of intralumenal protein thiols to disulfides

Wells et al., 1990

Keep D-Glyceraldehyde-3-phosphate dehydrogenase (GAP-DH) with no disulfide bonds in its active state by suppressing aggregation (Chaperone-like)

Cai et al., 1994

Prevent aggregation of guanidine-hydrochloride-denatured rhodanese (Chaperone-like)

Song and Wang, 1995

Human PDI (P07237) 508; a-b-b’-a’

Peptide-binding Klappa et al., 1998 Transport NO to cell surface and cytosol Sliskovic et al., 2005

Protein retrotranslocation and retention in the ER, Component of collagen biosynthesis

Reviewed in: Kim et al., 2009; Ellgaard and Ruddock, 2005; Appenzeller-Herzog and Ellgaard, 2008

Human ERp57 (P30101) 505; a-b-b’-a’

PLC component, Molecular marker of immunogenicity

Human PDIp (Q13087) 525; a-b-b’-a’

Peptide binding, Neurodegeneration

Human ERp72 (P13667) 645; a

o-a-b-b’-a’

ER retention

Human P5 (Q15084) 440; a

o-a-b

Tumor immune evasion

Human ERp18 (O95881) 172; a

Apoptosis against ER stress

Human ERp44 (Q9BS26) 406;a-b-b’

Protein retention in ER, Regulation of IP3R1 activity

TMX (Q9H3N1) /280; a

Reduction of ER stress

hPDI and hP5

The anti-cancer drug Vincristine inhibit the chaperone activity of hPDI and hP5

Human ERdj5 (Q8IXB1) 793; a’’-b-a

o-a-a’

ER-localised ERDj5 is member of the complex that recognizes and unfolds proteins for efficient retrotranslocation

Ushioda et al., 2008; Ellgaard and Ruddock, 2005;

Recombined PDIII, PDI (In vivo) n/a

Regulation of E2A transcription factor dimerisation and the development of the B lymphocyte lineage

Markus and Benezra, 1999

hsQSOX1 (HSU97276) Trx, ERV1-like

Regulation of growth through its role in the

formation of the extracellular matrix. Reviewed in, Thorpe et al.,2002

Chicken/ n/a retention of a protein in the endoplasmic reticulum

Parkkonen et al.,1988

In vitro n/a

Assist folding of denatured and reduced disulfide-containing proteins

Yao et al., 1997

Dog Microsomes n/a

Correct folding and assembly protein during biosynthesis (in vitro synthesis of wheat γ-gliadin7).

Bulleid et al., 1988

yeast pdi1/ n/a Secretion machinery and stress regulation Gasser et al., 2007

Page 57: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

35

1.6 Properties and functions of plant PDIL

The PDIL families in plants are multi-gene, comprising 22 members in Arabidopsis, 19

in rice and 22 in maize. The Arabidopsis PDILs are from EST (expressed sequence tag)

and genomic sequence databases, and PDILs in rice and maize are from EST databases.

All plants PDILs contain 1 or 2 active sites. The PDIL family of Arabidopsis has been

reviewed (Houston et al., 2005); some relevant points are summarised below due to

relevance to this project.

Six of the thirteen PDIs (AtPDI1, AtPDI2, AtPDI3, AtPDI4, AtPDI5, AtPDI6;

nomenclature as per Lu and Christopher, 2008a; or AtPDIL1-3, AtPDIL1-4, AtPDIL1-

5, AtPDIL1-6, AtPDIL1-1 and AtPDIL1-2, respectively; Houston et al., 2005) contain

four domains (a, b, b’, a’) with an N-terminal signal peptide (SP) and a C-terminal

KDEL for ER retention/retrieval. One isoform (AtPDI8 or AtPDIL5-2) contains three

domains (a, b, b’) with a SP and a C-terminal transmembrane domain (TMD) and three

(AtPDI9, AtPDI10, AtPDI1; or AtPDIL2-3, AtPDIL2-2, AtPDIL2-1) contain SP, a and

a’. AtPDI7 and AtPDI12 (AtPDIL5-4 and AtPDIL5-3) contain only the a-domain, with

TMD at both N- and C-termini. AtPDIL5-1 contains a domain but others are

unconfirmed (Houston et al., 2005). Certain pairs (AtPDI1-AtPDI2, AtPDI3-AtPDI4,

AtPDI5-AtPDI6, AtPDI7-AtPDI12, AtPDI9-AtPDI10) share 54-79% identity at amino

acid level and phylogenetic trees suggest possible origins through duplications (Lu and

Christopher, 2008a).

In terms of functions, the genes encoding certain PDIs (AtPDI1, AtPDI5, AtPDI6,

AtPDI9, AtPDI10, AtPDI11) are upregulated in response to ER stress induced by

treating seedlings with chemicals (Lu and Christopher, 2008a). PDI5 is found to be

required for normal seed development through regulation of the timing of PCD

(programmed cell death) by chaperoning and inhibiting Cys proteases (Farquharson,

2008; Ondzighi et al., 2008). Likewise, PDIL2-1 functions in embryo sac maturation

and pollen tube guidance, through its roles in maturation of secreted or plasma

membrane proteins (Wang et al., 2008). Two PDIs (PDI-52 and PDI-65, Lu and

Christopher, 2006; likely to be AtPDIL1-1 and/or AtPDIL1-2, and AtPDIL1-4, Houston

et al., 2005) are identified to be chloroplast localised, and PDI-52 interacts with other

Page 58: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

36

proteins to form a 220kDa complex to regulate enzymes associated with starch

metabolism (Lu and Christopher, 2006; 2008b).

Three of the seven APRLs (PRH-19, PRH-26, PRH-43, Gutierrez-Marcos et al., 1996;

or AtAPR1, AtARP3, AtAPR2, Houston et al., 2005) have chloroplast transit peptides

with the motif VHVA, VSAA or VHLA, similar to the cleavage site of chloroplast SP,

V/A-X-A/C↓A (Gavela and von Heijine, 1990). PRH-19 shows the PDI domain with

WCPFC (Gutierrez-Marcos et al., 1996). The AtQSOX1 and AtQSOX2 contain an N-

terminal SP, the a/a’ domain (YAV--KVA) with WCPAC, and an ERV1 domain

(DFV/I--CYL) (Thorpe et al., 2002). The key functions of Arabidopsis PDILs and their

orthologues (if known) are summarised in Table 1.5.

Table 1.5 Properties and functions of PDIL members in Arabidopsis and their orthologues in other plants

Namea, Genomic locus Orthologues in other plants/human Key functions,

reference

AtPDI5 (AtPDIL1-1); At1g21750 Required for proper seed development, regulates timing of PCD by chaperoning and inhibiting Cys proteases (Ondzighi et al., 2008; Lu and Christopher, 2008a)

AtPDIL1-2 (AtPDI6); At1g77510 GmPDIL-1 (soybean); Os04g35600 (rice); AJ277377 (wheat) GmPDIL-2 (soybean); Os02g01010 (rice) GmPDIL-1 and GmPDIL-2 play a role in folding of storage protein by both thiol-oxidoreductase and chaperone activities (Kamauchi et al., 2008; Lu and Christopher, 2008a)

AtPDIL1-3 (AtPDI1); At3g54960

AtPDIL1-4; (AtPDI2; PDI-65) At5g60640

Assisting with regulation of enzymes associated with starch metabolism (Lu and Christopher, 2006, 2008b)

AtPDIL1-5 (AtPDI3); At1g52260 n/a; Houston et al., 2005

AtPDIL1-6 (AtPDI4); At3g16110 n/a; Houston et al., 2005

AtPDIl2-1 (AtPDI11); At2g47470

Function in embryo sac development, ovule structure, pollen tube guidance, through roles in maturation of secreted or plasma membrane proteins in Arabidopsis. (Wang et al., 2008; Lu and Christopher, 2008a)

AtPDIL2-2 (AtPDI10); At1g04980 AtPDIL2-3 (AtPDI9); At2g32920

GmPDIM (soybean); Os09g27830 (rice). GmPDIM plays a role in folding of storage proteins as both the thiol-oxidoreductase and chaperone; responsible for ER-stress response (Kamauchi et al., 2008; Lu and Christopher, 2008a)

AtPDIL5-1; At1g07960 n/a. Houston et al., 2005 AtPDIL5-2 (AtPDI8); At1g35620 n/a Houston et al., 2005 AtPDIL5-3 (AtPDI12); At3g20560 n/a Houston et al., 2005 AtPDIL5-4 (AtPDI7) At4g27080 n/a Houston et al., 2005

AtAPR1 (PRH-19); At4g04610 AtAPR2 (PRH-43); At1g62180 AtAPR3 (PRH-26); At4g21990

Gutierrez-Marcos et al., 1996

AtQSOX1; At1g15020, AtQSOX2; At2g01270

HsQSOXl in regulation of growth by its requirement for the formation of the extra-cellular matrix (Thorpe et al., 2002)

aPDIL names as per Houston et al., 2005; other names given in parenthesis and the corresponding

authors given in column 2. n/a; orthologs in other species not known or confirmed.

Seven PDIL members in soybean (Glycine max) are known so far. Two members (60

and 63 kDa) were first purified from soybean root and stem, respectively; the 63 kDa

Page 59: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

37

PDI presented its enzyme activity in a complex of 120kDa (Shorrosh et al., 1993;

Kainuma et al., 1995). The cDNAs of GmPDIL-1, GmPDIL1-2, GmPDIM, GmPDIS-1

and GmPDIs-2, isolated from leaves and expressed in E. coli, showed thiol-

oxidoreductase activity (Kamauchi et al., 2008; Wadahama et al., 2008). The genomic

sequence (10 exon structure) of GmPDIl-1 is most similar to AtPDIL1-2, a rice (Oryza

sativa) PDI (encoded at locus Os04g35600) and wheat (AJ277377); GmPDIL-2 (12

exons) is most similar to AtPDIL1-3 and product of Os02g01010, and GmPDIM is most

similar to AtPDIL2-2 and AtPDIL2-3 and product of Os09g27830. The structure of

GmPDIM is similar to human P5 (see section 1.5.5) and is up-regulated under ER-stress

during normal seed maturation. GmPDIL-1, GmPDIL1-2 and GmPDIM are localised in

the ER lumen and play a role in the folding of storage proteins through both thiol-

oxidoreductase and chaperone activities (Kamauchi et al., 2008; Wadahama et al.,

2008).

A few other plant PDILs have been reported. The barley (Hordeum vulgare) PDI

protein levels correlate with rate of hordein accumulation, implying participation in

formation of disulfide bonds in hordeins (Mogelsvang and Simpson, 1998). The

expression of HvPDI is abundant in the caryopsis but weak in other tissues (pericarp,

stems, leaves), also supporting a role in assembly of storage proteins (Kim et al., 2008).

Expression of PDI in leaf tissue of spinach (Spinacia oleracea) induced by light

exposure shows a similiar pattern to ER luminal Hsp70, indicating coordinate light/dark

regulation for molecular chaperone (Li and Guy, 2001). The Alfalfa P5 contains two a-

like domains (ao, a,) (Ferrari and Soling, 1999). The cDNA of SPPDI1 of sweet potato

encodes a putative protein of 503 aa with two active sites and C-terminal KDEL, the

expressed protein exhibits a glutathione-insulin trans-hydrogenase activity, and the high

expression of SPPDI1 in storage roots indicates a function in coping with specific tissue

development (Huang et al., 2005). The putative product of OaPDI of Oldenlandia

affinis (Rubiaceae) shows domains a, b, b’ and a’, and interaction of the expressed

protein demonstrates it is involved in the biosynthesis of the insecticidal cyclotides

(knotted circular proteins), mainly through its chaperone activity by noncovalent

interactions (Gruber et al., 2007; 2009). Twelve PDIs (plus 1 QSOXL and 6 APRL)

have been identified from rice (Oryza sativa) EST database (Houston et al., 2005). Of

Page 60: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

38

these, OsPDIL1-1 (LOC_Os11g09280) has a very important role in storage protein

regulation (detailed in section 1.7).

Although wheat is the world’s largest crop plant, molecular work on wheat PDI has

been much more limited than the corresponding work in rice. Three cDNA clones

isolated in M. Bhave’s group from the T. aestivum endosperm library encode putative

proteins of 513-516 aa (Johnson et al., 2001), the gene structures show 10 exons

(Johnson et al., 2004a) and are located on chromosomes 4AL, 4BS, and 4DS (Ciaffi, M

et al. 1999). Their putative orthologue in rice (LOCOs_11g09280) is close to the esp2

locus, indicating the quantitative trait loci related to wheat storage protein deposition

may involve PDI loci (Johnson and Bhave, 2004a; Johnson et al.,

2006). The isolated promoter sequences of three PDI genes on chromosomes 4A, 4B,

and 4D show cis-acting regulatory elements for endosperm specific regulation (Ciaffi et

al., 2006).

Page 61: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

39

Table 1.6: PDI properties and functions in plants (excluding Arabidopsis)

Species/ tissues

(Location) Size Function and other properties Reference

Soybean/root and stem

60 kDa Expression increase (protein level) in developing seeds

Shorrosh et al., 1993

Soybean 63 kDa Native enzyme has a molecular weight of 120 kDa, active sites APWCGHCK

Kainuma et al., 1995

Soybean/leaves 525aa, 551 aa, 438 aa

GmPDIL-1, GmPDIL-2, and GmPDIM have function in folding of storage protein; GmPDIM is up-regulated under ER-stress

Kamauchi et al., 2008; 2007

Sweet potato 503 aa SPPDI1 has function in coping with particular tissue development

Huang et al., 2005

Coffee plant n/a OaPDI can biosynthesis of cyclotides by noncovalent interactions

Gruber et al., 2007; 2009

Barley (Hordeum vulgare)/(ER)

60 kDa Participate in the formation of disulfide bonds in B-, D- and γ- hordeins

Mogelsvang et al., 1998

Barley/HvPDI 507 aa Assembly seed storage proteins Kim et al., 2008

Maize/ endosperm development (ER)

n/a Increase of PDI expression in floury-2 endosperm: molecular chaperone: zein processing and assembly into protein bodies.

Li and Larkins, 1996

Rice (Oryza sativa)/ Esp 2 mutant

n/a Essential role in the segregation of proglutelin and prolamin polypeptides within the ER lumen.

Takemoto et al., 2002

Rice (Oryza sativa)/ Endosperm

n/a ER chaperones and disulfide bonds formed at the dicysteine residues in CCxGL play critical role in sorting fused protein in the endosperm cells.

Kawagoe, Y. et al. 2005

Wheat/Endosperm/(ER)

n/a Putative: formation of disulphide bonds during biosynthesis of wheat storage proteins.

Roden et al., 1982

Dog/Microsomes/ Pancreas/(ER)

n/a Correct folding and assembly of proteins during biosynthesis (in vitro synthesis of wheat γ-gliadin7)

Bulleid and Freedman, 1988

Wheat/Caryopses /ER

n/a Transcripts for BiP, PDI and PPI are highest at earlier stages of development

Grimwade et al., 1996

Wheat/Endosperm

n/a Storage protein folding and accumulation in the ER

Dupont et al., 1998

Wheat n/a Play role in plant defense response to pathogen

Ray et al., 2003

1.7 Evidence for roles of ER lumen ‘foldase’ enzymes and chaperones

in storage protein folding and deposition

The processes of mature storage protein folding, assortment and deposition occur in the

ER, as summarized above (section 1.2.4). During protein folding, hydrophobic

residues can form undesirable interactions within or between polypeptide chains. With

the aid of enzymes and/or chaperones, protein folding can be performed properly

without the risk of aggregation caused by misfolding. Three groups of proteins are

likely involved: the Binding Protein (BiP)/heat shock protein (Hsp70) chaperones

(Galili et al., 1998), and the enzymes PPIases and PDI (Shewry et al., 1995; Boston et

al., 1996; Dupont et al., 1998).

Page 62: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

40

In support of this expectation, BiP has been shown to be present within PBs in wheat

endosperm at 13 and 16 DAA of development by immunogold labeling (Levanony et

al., 1992). BiP also increases dramatically in the PBs in the ER of the maize mutant

floury-2 which produces abnormal storage proteins (Li and Larkins, 1996), and is

induced under ER stress in maize with assembly-defective storage proteins (Wrobel et

al., 1997). Interaction of prolamins with BiP in the formation of ER-derived PBs has

been confirmed experimentally in transgenic rice (Saito et al., 2009).

PPIases have the key function of catalysing the cis-trans isomerisation of the peptide

bond preceding proline residues, a rate-limiting step in the folding of newly synthesised

proteins (Galat, 1993). Thus PPIases are expected to be directly relevant to the folding

processes of the proline-rich wheat prolamins, either themselves and/or in cooperation

with other chaperones (BiP and PDI). Of the three major classes of PPIases (described

in 1.3.2), Cyp members have been indicated to be ER-localised in maize (Sheldon et al.,

1996) and Arabidopsis (Saito et al., 1999b; He et al., 2004; Romano et al., 2004a).

The foldase enzyme PDI has the key activity of catalysing disulfide bond breakages,

formation or rearrangement (Creighton et al., 1980; Schmid et al., 1986) as detailed

above, and thus is highly likely to play direct roles as a foldase (or as a chaperone) in

the folding of wheat prolamins. In support of this, PDI has been shown to be

sequestered in wheat PBs (Roden et al., 1982) and identified in the ER lumen and co-

localised with the storage proteins in the dense PBs (Shimoni et al., 1995b). Messenger

RNAs of BiP and PDI have been reported to accumulate to maximal levels in the

middle stages (specifically 5 to 14 days post-anthesis) of wheat endosperm development

(Dupont et al., 1998) and the two proteins are suggested to act together in storage

protein deposition in maize (Li and Larkins, 1996) and barley (Mogelsvang and

Simpson, 1998). The critical role of PDI in protein folding was established through

studies of the rice mutant esp2 endosperm storage protein 2) by Takemoto et al. (2002).

Rice storage proteins are mainly divided into prolamins and glutelins, accumulating into

two types of protein bodies, PB-I and PB-II, respectively. PB-I are relatively small and

spherical, while PB-II are large and irregularly shaped. The mutant esp2 contained

normal PB-II with mainly glutelins, but lacked the normally spherical PB-I and instead

had a new type of PB which was smaller than PB-I, had polyribosomes attached to its

Page 63: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

41

surface indicating it was generated directly from the ER, and most interestingly, it

contained both glutelin and prolamin polypeptides. Three ER lumenal chaperones (BiP,

calnexin, and PDI) are present in the wild type rice, but esp2 was lacking in PDI

transcripts, establishing that PDI has an essential role in disulfide interchange reactions

and assortment of the prolamin and proglutelin polypeptides (Takemoto et al., 2002).

The sequences in prolamins and proglutelins that promote interactions with PDI are

shown to be LxxC, CCxQL, and PxxC (Kawagoe et al., 2005).

There is also substantial circumstantial evidence for role of PDI in wheat storage protein

folding processes. PDI was initially identified in mature endosperm in wheat and

suggested to be involved in formation of disulphide bonds during wheat storage protein

processing (Grynberg et al., 1977; Roden et al., 1982). The role of PDI in correct

folding and assembling of storage proteins was demonstrated through wheat γ-gliadin7

synthesis in vitro by PDI from microsomes in dog (Bulleid and Freedman, 1988). PDI

was identified in the lumen of ER and co-localised with storage proteins in the dense

protein bodies in wheat (Shimoni et al., 1995b). Expression of PDI and BiP were noted

to be relatively high at both the mRNA and protein levels at the early seed development

stages (Grimwade et al., 1996; DuPont et al., 1998). The highly expressed genes in

wheat endosperm also include the gene (BE438375) encoding protein disulfide

isomerase 3 (PDI3), through the wheat endosperm transcriptome analysis (Laudencia et

al., 2006). Additionally, PDI possibly functions in defense from pathogens (fungi) in

wheat (Ray et al., 2003).

1.8 Summary of the above literature and aims of this project

The quality and quantity of storage proteins in the wheat endosperm are important due

to wheat being one of the world’s most important crops. These proteins are commonly

grouped into the monomeric gliadins and polymeric glutenins, which form a highly

structured protein network in the dough that determines its viscoelastic properties and

end-uses. Genetic differences as well as environment stresses such as high temperature

and lack of water are known to influence the quality and quantity of these proteins. The

processes of cereal grain storage protein folding, resolution of aggregates, assortment of

the various subunits and deposition by the two main routes as well as the ER stress

created in this process, and responses to external abiotic stresses all strongly point to an

Page 64: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

42

involvement of ‘foldase’ enzymes in their enzymatic and/or chaperone roles. The

cyclophilin and protein disulphide isomerase gene families represent two ideal

candidates for not only these functions, but also potentially for additional roles

suggested by literature on other organisms. However, there is limited information on

these gene families in two of the world’s largest cereal crops, wheat and rice, warranting

further investigations.

1.8.1 Aims of this project

The major aim of this project was to identify the cyclophilin (Cyp) and protein

disulphide isomerase (PDI)-like superfamilies in wheat and rice by informatics tools,

conduct their comparative molecular and phylogenetic analysis, and identify any

previously uncharacterised isoforms with potentially important roles in grain quality or

plant development processes. Another aim of this project was to experimentally isolate

and characterise the genes encoding putative ER-localised cyclophilin B proteins in

wheat, to physically and genetically map these genes, and to identify the putative

promoter sequences of the CypB genes in wheat and rice. The specific aims were as

follows.

• To identify and analyse all potential genes encoding Cyp families in rice and wheat

by use of genomic and expressed sequence databases and bioinformatics tools.

• To use the data of these Cyp genes to predict the putative proteins and analyse their

important features through bioinformatics analyses and comparisons to the

Arabidopsis and/or human isoforms.

• To similarly identify all potential members of PDIL gene families in rice and wheat.

• To similarly predict and analyse all putative PDIL proteins in order to identify new

members of relevance to any grain quality traits.

• To use information associated with above rice Cyp and PDIL loci to predict the

physical locations of wheat genes if possible.

• To amplify, clone and sequence CypB genomic genes from common wheat, and its

tetraploid and diploid progenitors.

• To amplify, clone and sequence CypB cDNAs from common wheat.

• To characterise the putative CypB proteins from above species by bioinformatics

analysis.

Page 65: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

43

• To assign the CypB genes to different genomes through comparison of gene

structures and sequence data from hexaploid, tetraploid and diploid wheats.

• To identify the CypB gene in rice by bioinformatics analysis of its genome data.

• To compare the important structural and functional features of the putative CypB

proteins in wheat, rice and other orthologues to their function and relatedness.

• To clone and sequence the putative promoters of CypB gene in wheat, compare

with that of the rice CypB gene, and identify any unique regulatory elements.

• To use any differences in the three homeologous CypB genes in wheat to develop

molecular markers to physically map the genes using nullisomic-tetrasomic and

deletion lines of wheat. Also to predict the physical location of wheat CypB genes

using information associated with the rice CypB locus.

• To use the data of the three homeologous CypB genes to amplify, restriction map

and/or sequence the genes from ten parental lines used for genetic mapping.

• To apply any differences in CypB in the parental lines to genetically map CypB

genes using the DH progeny mapping lines of the relevant crosses.

• To identify from available information any QTLs of interest occurring in the general

area of the CypB and PDIL loci, on the respective chromosomes of rice and wheat.

• To conduct preliminary analysis of the expression of PDI ad ER-localised Cyps in

different tissues and developing grains in wheat.

Page 66: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

44

Chapter 2

MATERIALS AND METHODS

Page 67: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

45

2 Materials and Methods

2.1 Commercial kits, materials and solutions

Table 2.1 Commercial kit and reagents used during this project

Kit/material/solution Supplier Purpose

HaeIII (BsuRI) (GG↓CC; assay temperature: 37

oC; Buffer R)

Fermentas, Ontario, Canada

Generation of RFLPs, allele specific primers confirmation, physical mapping

NcoI (C↓CATGG; assay temperature: 37oC;

NEBuffer 3) New England Biolabs, (NEB), Madison, USA

Generation of RFLP for physical mapping

HpyCH4IV (A↓CGT; assay temperature: 37

oC; NEBuffer 1)

Generation of RFLP for genetic mapping

SacI (GAGCT↓C; assay temperature: 37oC;

NEB Buffer 1) Generation of ligated circles of DNA for inverse PCR

Wizard® Genomic DNA purification kit

(contains nuclei lysis solution, protein precipitation solution, DNA rehydration solution)

Promega, Australia

Plant genomic DNA isolation

Wizard®

Plus Minipreps DNA Purification System (contains cell suspension solutions, cell lysis solution, neutralization solution, column wash solution, minicolumns, alkaline protease solution)

Plasmid DNA purification

pGEM-T Easy Vector System (contains pGEM-T Easy Vector, T4 DNA ligase, 2X ligation buffer)

TA Cloning of PCR products

Perfectprep®

Gel Cleanup kit (contains binding buffer, wash buffer, elution buffer, spin columns)

Eppendorf, Hamburg, Germany

Purification of DNA from gel

TRIsureTM

Bioline, London, UK

Total RNA isolation BioScript

TM Reverse transcription

RNase Inhibitor Prevention of RNAase activity

Biomix (2X) (contains BIOTAQTM

DNA polymerase, (NH4)2SO4, Tris-HCl, Tween 20, dNTPs, MgCl2)

PCR

10 X PCR buffer BIOTAQ

TMDNA Polymerase

dNTP set (4X25 µmol)

GeneRulerTM DNA Ladder Mix Fermentas, Ontario, Canada

Electrophoresis Lambda DNA/EcoRI + HindIII Marker

Ethidium bromide (10 mg/mL) Sigma

BDT (Big Dye Terminator) v3.1 Ready Mix Applied Biosystems, Australia

DNA sequencing

2.2 Prepared solutions

All solutions listed in Table 2.3 were prepared using established protocols (Sambrook et

al., 2001). The solutions were sterilised by autoclaving (121oC for 20 minutes), or

filtering through a 0.45 µm MF-Millipore syringe filter (Millipore, Madison, USA)

under vacuum.

Page 68: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

46

Table 2.2 Prepared solutions, media and plates

Solution Preparation

Transformation and cloning

Luria-Bertani plates 7.5 g agar in 500 mL of LB medium TfbI Per 200 mL: 0.588 g potassium acetate (30 mM), 2.42 g rubidium

chloride (100 mM), 0.294 g calcium chloride (10 mM), 2.0 g manganese chloride (50 mM), 30 ml glycerol (15% v/v)

TfbII Per 100 mL: 021 g MOP (10 mM), 1.1 g calcium chloride (75 mM), 0.121 g rubidium chloride (10 mM), 15 mL glycerol (15% v/v)

Psi broth Per litre: 5 g Bacto yeast extract, 20 g Bacto Tryptone, 5 g magnesium sulfate, Adjust pH to 7.6 with 1 N potassium hydroxide

X-Gal 20 mg/mL: 20 mg (5-bromo-4-chloro-3-indolyl-β-D-galactoside) in 1 mL N,N’-dimethyl-formamide, filter sterilized.

IPTG 0.1 M: 1.2 g (Isopropylthio-β-D-galactoside) in dH2O in 50 mL, filter-sterilised

Ampicillin 20 mg/mL: 20 mg in dH2O in 1mL, filter sterilized

Luria-Bertani plates with X-Gal

7.5 g agar in 500 mL of LB medium, with 100 µg/mL ampicillin, 0.5 mM IPTG, 80 µg/mL X-Gal.

2xTY medium Per litre: 16 g Tryptone, 10 g Yeast extract, 5 g NaCl, adjust pH to 7.0 with 5 N NaOH.

Luria-Bertani (LB) medium

Per litre: 10 g Bacto-tryptone, 5 g Bacto-yeast extract, 5 g NaCl, adjust pH to 7.0 with 5 N NaOH.

Glycerol 60% (v/v) DNA and RNA preparation, PCR, electrophoresis, and DNA sequencing

70% ethanol Per 10 mL: 3 mL ethanol, 7 mL dH2O.

Chloroform/isoamyl-alcohol

Chloroform: isoamylalcohol: 24:1 (v/v)

Isopropyl alcohol 100%

RNase A (10 mg/mL) 0.01 M sodium acetate, 0.1% (v/v) Tris-HCl (1 M, pH 7.4). 6x Loading Dye 0.25% Bromophenol blue (w/v), 0.25% Xylene Cyanol FF (w/v), 40%

Sucrose (w/v)

TAE Buffer 40 mM Tris-acetate, 1mM EDTA 1 x ligation buffer 50 mM Tris-HCl pH 7.4, 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP

5 x BDT buffer 400 mM Tris pH9.0; 10 mM MgCl2

0.2 mM MgSO4 3 ml MilliQ water, 7 ml Ethanol, 2 µl 1 M MgSO4

2.3 Equipment Table 2.3 Equipment used during this project

Equipment Manufacturer Purpose

Humidity cabinet Thermoline, Coburg, Australia Growth of wheat seedlings

Electrophoresis power supply-EPS301 Minnie Gel Unit

General Electric (GE) Healthcare, Buckinghamshire, UK

Electrophoresis

Apollo large gel unit Apollo mini gel tank

Continental Lab Products, California, USA

Electrophoresis

UV transilluminator Integrated Sciences, Chatswood, NSW, Australia

Agarose gel visualisation

GeneQuant pro UV/Vis Spectrophotometer

GE Healthcare, Buckinghamshire, UK

Quantification of DNA and RNA

C3040 digital camera Olympus, Tokyo, Japan Capturing images of gels

Bio-Rad Chemidoc XRS documentation station

Bio-Rad, California, USA Capturing images of gels or chemiluminescent blots

Mastercycler Eppendorf, Hamburg, Germany The Polymerase Chain reaction (PCR)

MyCyclerTM

Bio-Rad, California, USA PCR

Finnpipettes Thermo Electron, Madison, USA Dispensing liquids

Page 69: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

47

2.4 Plant materials and DNA stocks used in this project

The seeds of wheat samples, listed in Tables 2.4 and 2.5, were kindly provided by Dr.

Greg Grimes, Australian Winter Cereals Collection (AWCC, Tamworth, NSW,

Australia). Genomic DNA was extracted from the nullisomic/tetrasomic (NT) lines and

kindly provided by Dr. Kerrie Forrest in our laboratory (now at Biosciences Research

Centre, Department of Primary Industry, Victoria, Australia). Genomic DNA samples

of ten deletion lines of chromosome 7 (Table 2.6) and 163 doubled haploid (DH)

progeny lines of the Tasman x Sunco cross (described later) were kindly provided by

Prof. Rudi Appeals at the Western Australia State Agriculture Biotechnology Centre

(SABC, Murdoch University, Western Australia, Australia).

Table 2.4 Wheat cultivars and progenitors

Aus Accession

Species Cultivars Genome Ploidy and chromosome no.

27032 T. urartu na AA 2n=2x=14

21927 Ae. tauschii na DD 2n=2x=14

26510 T. turgidum ssp. durum

na AABB 2n=4x=28

119 T. aestivum Chinese Spring AABBDD 2n=6x=42

99124 T. aestivum Rosella AABBDD 2n=6x=42

22660 T. aestivum Cranbrook AABBDD 2n=6x=42

11612 T. aestivum Halberd AABBDD 2n=6x=42

25557 T. aestivum Tasman AABBDD 2n=6x=42

23455 T. aestivum Sunco AABBDD 2n=6x=42

91167 T. aestivum CD87 AABBDD 2n=6x=42

91172 T. aestivum Katepwa AABBDD 2n=6x=42

91173 T. aestivum Kukri AABBDD 2n=6x=42

91174 T. aestivum Janz AABBDD 2n=6x=42

91177 T. aestivum Egret AABBDD 2n=6x=42

22177 T. aestivum Sunstar AABBDD 2n=6x=42

Table 2.5 Nullisomic/tetrasomic (NT) lines used for physical mapping

AUS Accession Line Chromosomes AUS Accession Line Chromosomes

91353 N1A-T1B 1 - BBBBDD 91375 N4D-T4A 4 - AAAABB 91356 N1B-T1D 1 - AADDDD 91377 N5A-T5B 5 - BBBBDD 91358 N1D-T1B 1 - AABBBB 91379 N5B-T5A 5 - AAAADD

91359 N2A-T2D 2 - AADDDD 91381 N5D-T5A 5 - AAAABB 91361 N2B-T2A 2 - AAAADD 91383 N6A-T6B 6 - BBBBDD

91363 N2D-T2A 2 - AAAABB 91385 N6B-T6A 6 - AAAADD 91366 N3A-T3D 3 - BBDDDD 91387 N6D-T6A 6 - AAAABB 91368 N3B-T3D 3 - AADDDD 91348 N7A-T7D 7 - BBDDDD

91370 N3D-T3B 3 - AABBBB 91350 N7B-T7D 7 - AADDDD 91372 N4A-T4D 4 - BBDDDD 91352 N7D-T7B 7 - AABBBB

91374 N4B-T4D 4 - AADDDD

Page 70: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

48

Table 2.6 Deletion lines of chromosome 7 used for physical mapping*

Lines Deletion arms Deletion break point Lines Deletion

arms Deletion

break point

7AS-8 7AS 0.89 7DS-4 7DS 0.61 7AL-1 7A 0.39 7DS-5 7DS 0.36 7BS-1 7BS 0.27 7DL-2 7DL 0.61

7BL-2 7BL 0.33 7DL-3 7DL 0.82 7BL-7 7BL 0.63 7DL-5 7DL 0.30

*Generated from T. aestivum cv Chinese Spring. Deletion break-points: Endo and Gill, 1996 . (http://www.k-state.edu/wgrc/Germplasm/Deletions).

Methods

The Methods section contains two parts: the general molecular methods part outlines

the experimental work, with some essential bioinformatics. The bioinformatics

methods part outlines the computational tools used during this project.

General molecular methods

2.5 Growth of seedlings for DNA isolation

Seeds of the experimental variety Chinese Spring and eleven cultivars of Triticum

aestivum L. (AABBDD), the tetraploid durum wheat (T. turgidum ssp. durum, AABB)

and the diploid progenitors of wheat, T. urartu (AA) and Aegilops tauschii (DD) (as

listed in Table 2.4), were germinated and grown under controlled conditions (18-hour

day lengths, 70% humidity, 25°C temperature) for 8-12 days. Young leaves from

seedlings were snap-frozen in liquid nitrogen and used directly for genomic DNA

isolation or stored at -80oC for later isolations.

2.6 Preparation of genomic DNA

Genomic DNA (gDNA) was extracted from the frozen leaf tissue of bulked seedlings

(Rosella, Chinese Spring, and durum) or individual seedlings (T. urartu, Ae. tauschii,

and the ten cultivars used as parental lines in the Australian National Wheat Molecular

Marker Program (NWMMP) (Kammholz et al., 2001), i.e. Cranbrook, Halberd,

Tasman, Sunco, CD87, Katepwa, Janz, Kukri, Egret, Sunstar) (Table 2.4) using the

Wizard genomic DNA purification kit (Promega Australia). Leaf tissues (40 mg) were

kept frozen in liquid nitrogen and ground into fine powder using a 1.5 mL

microcentrifuge tube pestle. The Nuclei Lysis solution (600 µL) was added and

incubated for 15 minutes at 65oC. RNase solution (3 µL) was added to the cell lysate

Page 71: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

49

and the sample incubated for 15 minutes at 37oC. Protein precipitation solution (200

µL) was added to the lysate and the sample was centrifuged for 15 minutes at 14.5 x

1000 rpm. The supernatant containing DNA was carefully transferred to another 1.5

mL microcentrifuge tube containing 600 µL isopropanol and centrifuged for 5 minutes.

The DNA pellet was washed with 600 µL of 70% ethanol, air-dried, dissolved in 100

µL sterilised distilled H2O (dH2O) and stored at -20oC. An aliquot was diluted and the

DNA concentration was determined by the GeneQuant Pro Spectrophotometer.

2.7 The polymerase chain reaction (PCR)

2.7.1 Synthesis of oligonucleotide primers

A Tentative Consensus (TC) sequence TC84720, obtained from the TaGI TC Report in

the TIGR wheat genome database (http://www.tigr.org/tdb/e2k1/tae1) had been

identified earlier as encoding a putative ER-localised cyclophilin B (Johnson and

Bhave, 2004b). This TC was later found to be split into TC264493 and TC264488.

TC264488 (963bp) was selected for the design of primers, and was available

(http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=wheat, accessed

04/2008) through the TIGR wheat genome database ‘DFCI Wheat Gene Index’.

TC264488 was later split into (TC284235, TC308497, TC340662, and TC316845)

(http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=wheat, last accessed

04/2009). The consensus sequence of primers, their positions on the TC264488, and

expected sizes based on TC264488 are shown in Table 2.7 and Appendix I. The

primers were used for amplification of CypB genes from gDNA of T. aestivum cv.

Rosella and its progenitors including the durum wheat and the diploid progenitors T.

urartu (AA) and Aegilops tauschii (DD), and cDNA of T. aestivum cv. Cranbrook.

2.7.2 Typical PCR conditions

All PCR amplifications were conducted using 200 ng gDNA or 100 ng first-strand

cDNA (introduced later), 1 µL of each primer (0.1µg /µL) and 25 µL of 2X BioMix, in

50 µL volumes. The PCR conditions were initial denaturation of template DNA at

95oC for 5 mins, followed by 35 cycles of denaturation (94oC, 45 seconds), primer

annealing (at temperatures shown in Table 1, 45 seconds) and extension (72oC, 3

minutes), then a final extension (72oC, 5 minutes).

Page 72: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

50

Table 2.7 Primer pairs used for PCR or IPCR amplifications and/or sequencing of CypB gene and its promoter, physical mapping and genetic mapping

Forward primer Reverse primer ATc EL* Purpose

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG 3’ CYPBR5 (411-430 bp)

a

5’ CTGTGGAACGAACTCCCCTT 3’ 57

oC

317bp

Fragment (WC1-CYPBR5)

WC4 (253-271bp)a

5’CGCACAAGGTCTACTTCGA3’ CYPBR1 (731-748 bp)

a

5’CTGTCGGCAATGACAACC3’ 54

oC ~1800bp

Fragment (WC4-CYPBR1)

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG 3’ CYPBR9 (943-960 bp)

a

5’ ACGGTGGTGTGTGATGCC3’ 57

oC ~2300bp

Fragment (WC1-CYPBR9)

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG 3’ CYPBR9 (943-960 bp)

a

5’ ACGGTGGTGTGTGATGCC3’ 57

oC ~850bp

cDNA Fragment

CYPBF3 (366-386bp)a

5’ACAGGTGAGAAAGGCATGGGC

CYPBIPCR-F4 (84-98)b

5’AGGGTGGCGGCGACG3’ 62

oC N/A

IPCR CYPBF3 (366-386bp)

a

5’ACAGGTGAGAAAGGCATGGGC

CYPBIPCR-R1 (126-143 bp)a

5’CCACGCCCTCATCGCCAT3’ 62

oC N/A

T7 5’GTAATACGACTCACTATAGGGC

SP6 5’TATTTAGGTGACACTATAGAAT3’

45oC Clone-dependent

WC3 (299-316bp)a

5’TCGGGTTGTCATGGGACT3’ CYPBR4 (255-276 bp)

a

5’CGATGTCGAAGTAGACCTTGTG3’

Internal sequencing for CypB gene

CYPB IPCR-F2 5’GCGTAGTAGATCAGTAGTAGC3’

CYPB IPCR-R2 5’GTGTCGTGGTATTGAA3’

Internal sequencing for CypB promoter

WC3 (299-316bp)a 5’TCGGGTTGTCATGGGACT3’

CYPBR5 (411-430 bp)a 5’ CTGTGGAACGAACTCCCCTT 3’

55o

~1000bp

Physical Mapping

CYPB-A1(625-643bp)b

CCTGCACTGCACCTAATCA CYPBR-A1 (1737-1754 bp)

b

5’CTT GCC GCT GTT GCC CAT3’

57o

1130bp

Genetic mapping (A genome)

CYPBF4 (84-98bp)b

5’CGTCGCCGCCACCCT3’ CYPBR-B1(1770-1789 bp)

b

5’ GGCATGGTCAGCAACCAGTG3’

62o

1706bp

Genetic mapping (B genome)

CYPB-D1 (502-519bp)b

5’CCAATATCGCATGCCTGT 3’ CYPBR-D1(1730-1750 bp)

b 5' GATTAAGTGGGGCATGGTCAG3'

54o

1249bp

Genetic mapping (D genome)

a

Primer positions are based on the TC264488. b

Primers positions are based on the genomic sequence data obtained during this project. Bold red letters in the allele specific primers indicate positions specific to certain genomes.

cAT: annealing temperature used for the pair.

*EL (expected length): refers to estimated minimum lengths of gene sections: (i) length of fragment WC1-CYPBR5 predicted based on sequence of TC264488; (ii) length of fragment WC4-CYPBR1 based on TC264488 and experimentally determined length of fragments WC1-CYPBR5; and (iii) length of fragment WC1-CYPBR9 based on TC264488 and the experimentally determined lengths of fragment WC1-CYPBR5 and WC4-CYPBR1; (iv) length of cDNA fragment based on TC264488; (v) length of fragment CYPBF3-CYPBR1 based on sequence data obtained for fragment WC1-CYPBR9 from T. aestivum cv. Rosella. Size of inverse PCR (IPCR) products cannot be estimated (N/A). Expected size of fragment for physical mapping and genetic mapping were based on sequence data obtained for fragment WC1-CYPBR5. Bold and underlined ATG in the WC1 primer sequence is the start codon.

Page 73: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

51

2.8 Agarose gel electrophoresis and purification of PCR products

Aliquots (5 µL) of PCR products were typically electrophoresed on 1% agarose gels, at

100V for 40-60 mins, to determine their sizes. The remaining 45 µL of PCR products

of interest were purified with Perfectprep® Gel Cleanup Kit (Eppendorf) in order to

remove excess primers and PCR reagents. Briefly, the PCR product was resolved on

1% agarose gels, the gel slice was excised and weighed. Three volumes of binding

buffer were added for every volume of gel slice (1µg: 1µL) and incubated at 50oC for

10 mins. One volume of isopropanol was then added to the liquefied gel slice and

mixed. The sample (800 µL) was added to the spin column and centrifuged at 14.5 x

1000 g for 1 min, washed with 750 µL of diluted wash buffer and collected in 30 µL

dH2O.

2.9 Cloning of PCR products

2.9.1 Preparation of transformation-competent E. coli JM109

The stored E. coli JM109 (-70oC) culture was streaked on an LB agar plate and grown

overnight at 37oC, then a single colony was inoculated into 3 mL LB broth and grown

overnight at the same temperature. One mL of this culture was transferred into 100 mL

Psi broth and incubated at 37oC until the cell density reached A550=0.48 (by shaking for

two hours then checking the absorbance every 30 mins). The Psi broth with competent

cells was held on ice for 15 mins and centrifuged for 5 mins at 5000 rpm. The

supernatant was discarded, 0.4 volume (of original volume) TfbI was added, cells

resuspended and held on ice for 15 mins. The cells were then pelleted for 5 mins at

5000 rpm, the supernatant discarded and the cells resuspended again in 0.04 volume (of

original volume) TfbII and held on ice for 15 mins. Finally, the cell suspension was

then distributed into 100 µL aliquots in 1.5 mL tubes and either used directly or stored

at -70oC.

2.9.2 Cloning of genomic copies or cDNA of genes

pGEM-T Easy Vector System kit (Promega) and the associated protocol were used to

clone the various PCR products generated from gDNAs or CDNAs (the latter is

explained below) from different wheat species. Ligation reactions (10 µL) contained

purified PCR products (3 µL), pGEM-T Easy Vector with T overhangs (1 µL), 2 x

Rapid Ligation Buffer (5 µL) and T4 DNA ligase 1 µL (3 units/µL) and were conducted

Page 74: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

52

overnight at 4oC. The reaction mixes were then transferred to 100 µL JM109 competent

cells, held on ice for 40-60 mins, heat-shocked for 3 mins at 42oC and again held on ice

for 2 mins. 500 µL of 2xTY medium was added and the culture shaken at 37oC for 2

hours. 100 µL of the culture was plated onto LB plates containing AMP/IPTG/X-Gal

and incubated at 37oC overnight. White colonies (expected to contain recombinant

plasmids) were used for plasmid isolations.

2.10 Plasmid DNA isolation and RFLP analysis of polymorphism

For obtaining clones of the PCR product, a few (4-8) randomly selected white colonies

from its ligation/transformation (see above) were inoculated individually into tubes

containing 3 mL LB medium with ampicillin and incubated overnight at 37oC with

shaking. The cells were pelleted by centrifugation at 14.5 x 1000 g for 5 min and

plasmid DNA isolated by Wizard® Plus SV Minipreps DNA purification system

(Promega) with some modifications. Resuspension solution (250 µL) was added into

the microcentrifuge tube containing the pellet and the cells resuspended by vortexing.

Cell lysis solution (250 µL) was added and mixed by inverting the tube. Alkaline

protease solution (10 µL) was then added, mixed by inverting the tube and incubated for

5 minutes at room temperature. Neutralisation solution (350 µL) was added and mixed

by inverting. The sample was centrifuged at 14.5 x 1000 rpm for 10 mins at room

temperature. In order to avoid transferring any white precipitate (cell debris) with the

supernatant, the alkaline protease was added to the sample (in the same tube) and the

sample was centrifuged again. The clear lysate (approximately 850 µL) was transferred

to the prepared spin column and centrifuged at 14.5 x 1000 rpm for 1 min. The spin

column with the bound plasmid DNA was washed with 750 µL, then 250 µL washing

solution and the plasmid DNA eluted into a microcentrifuge tube with 100 µL dH2O.

Based on the predicted restriction sites in TC264488 (Appendix I), HaeIII (BsuRI) was

used for preliminary analysis of sequence variability in the gDNA clones. The inserts

from clones of interest were amplified using vector-based primers T7 and SP6 (Table

2.7) with the PCR protocol given above (section 2.7.2). The PCR products (8.5 µL)

were digested with 0.5 µL HaeIII (10 u/µL) in 10 µL and analysed by electrophoresis

on 1.7% gels.

Page 75: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

53

2.11 DNA sequencing

2.11.1 DNA sequencing reactions

The sequencing was carried out using the dideoxy chain termination method, as per the

instructions of AGRF (Australian Genome Research Facility Ltd; Melbourne, Australia;

http://www.agrf.org.au/docstore/seq/How_to_Prepare_Your_Capillary_Separation_(CS

)_Samples.pdf). The reactions typically included 400-500 ng of plasmid DNA or 40-50

ng PCR products as templates, 3.2 pmole primer, 0.5 µL BigDye v3.1 and 3.5 µL of

supplied 5X dilution buffer, in a volume of 20 µL. Cycling involved initial denaturation

at 94oC for 5 mins, then 30 cycles of denaturation (94oC, 10 seconds), annealing

(50oC, 5 seconds) and primer extension/termination (60oC, 4 mins). The sample was

mixed with 75 µL 0.2 mM MgSO4 for 15 mins, centrifuged for 15 mins at 14.5 x 1000

g, air-dried, then sent for capillary separation at AGRF using a 3730xl DNA Analyser

(Applied Biosystems; USA).

2.11.2 DNA sequence analysis

The Bioedit sequence alignment editor

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) v7.0.5 was used for analysis of raw

sequence data and developing contigs from overlapping sequences. Sequence

alignments were performed using the ‘ClustalW Multiple Alignment’ function in

Bioedit for obtaining identity scores, and alignments of CypB genomic with cDNA

sequences were conducted to elucidate introns and exons. The alignments were

displayed using ‘plot identities to first sequence with a dot’ in Bioedit, calculation of

level of similarity was conducted by pairwise alignments, and restriction maps predicted

by the ‘Restriction Map’ option. Coding sequences of CypB genes, deduced from exon

contigs of genomic copies and cDNAs, were translated into putative proteins using the

‘translate or reverse-translate’ option, the amino acid sequences aligned and compared

as above, and the sizes of predicted proteins determined using the ‘Amino Acid

Composition’ option.

Page 76: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

54

2.12 Amplification of promoter sequences by inverse PCR (IPCR)

2.12.1 Promoter sequences amplification

The promoter sequences of wheat CypB gene copies were amplified by IPCR as per

Digeon et al. (1999). Based on sequencing results (described in Chapter 3), the enzyme

SacI was chosen for gDNA digestion, as it had no site in the T. urartu CypB gene

(TuCypB-A) and one site within intronV of the Ae. tauschii gene (AetCypB-D).

Genomic DNA (1µg) from T. urartu and Aet. Tauschii was digested with 1µL SacI (10

u/µL) in a volume of 20 µL for 2 hours, phenol/chloroform-extracted, resuspended (at 2

µg/mL) in 500 µL ligation buffer (50 mM Tris–HCl pH 7.4,10 mM MgCl2, 10 mM

dithiothreitol, 1 mM ATP) with 1µL (3 u/µL) T4 DNA ligase and ligated for 15 hours at

15oC. The digestion was purified with a double volume of 100% chilled ethanol and

dissolved in 20 µL dH2O. Using the PCR protocol (section 2.7.2), the first round

(IPCR) was conducted with primer pair CYPBIPCRF4/CYPBF3 and the second round

(nested) PCR was conducted with CYPBIPCR-R1/CYPBF3 (Table 2.7).

2.12.2 Characterisation of amplified fragments

The second round PCR products were cloned and plasmid DNAs purified as above, and

inserts were amplified with CYPBF3/CYPBIPCR-R1 from individual clones. The

products were digested with SacI to estimate the lengths of DNA likely from upstream

and downstream of CypB genes. The clones of interest were partially or fully

sequenced.

2.13 Physical and genetic mapping of wheat CypB genes

2.13.1 Physical mapping of wheat CypB genes

Based on comparison of sequences of CypB genes from common wheat and its

progenitors, the common wheat genes were tentatively assigned to different genomes

(results in chapter 3). Physical mapping onto specific chromosomes involved the use of

amplified fragment length polymorphisms (AFLPs) followed by restriction fragment

length polymorphisms (RFLPs) in the amplified fragments. For AFLP, utilising the

length variations noted in certain sections of CypB genes of common wheat,

amplifications were conducted with the primer pair WC3/CYPBR5 from gDNAs of T.

aestiuvm v. Chinese Spring (CS), the 21 nullisomic/tetrasomic (NT) lines in CS

background (Sears, 1966) (Table 2.5) and 10 deletion lines for chromosome 7 (Endo

Page 77: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

55

and Gill, 1996) (Table 2.6). Sequences of the WC3-CYPBR5 sections of CypB genes

from A, B and D genomes of common wheat were used to identify unique restriction

sites by the ‘Restriction Map’ program in Bioedit. PCR products from the NT and

deletion lines with WC3-CYPBR5 were double-digested with HaeIII+NcoI to identify

the presence/absence of specific genes in each line.

2.13.2 Genetic mapping of wheat CypB genes

The genetic mapping was conducted by the following steps.

(i) Design of allele specific primers: AS primers were designed for specific

amplification of CypB genes from the A, B or D genomes in common wheat (results

given in chapter 3). The sequence of AS primers, their positions on genomic sequences

and expected sizes of amplification products are indicated in Table 2.7.

(ii) Confirming specificity of AS primers: partial CypB was amplified with

WC1/CYPBR5 from gDNA of T. asetivum cv. Rosella. Nested PCR was then

performed on these products with AS primers CYPB-A1/CYPBR-A1 (for A genome

allele), CYPBF4/ CYPBR-B1 (B genome allele) and CYPB-D1/CYPBR-D1 (D genome

allele). The second round PCR products were digested with HaeIII for diagnostic

patterns.

(iii) Identification of polymorphisms in parental lines: PCR was performed using

WC1/CYPBR5 on gDNA from single plants of the five pairs of parental lines

(Cranbrook x Halberd; Tasman x Sunco; CD87 x Katepwa; Janz x Kukri; Egret x

Sunstar) (Table 2.7), followed by nested PCR with AS primers. The PCR products

from different genomes in the parental lines were sequenced partially in order to

confirm the noted AFLP or the single nucleotide polymorphisms (SNPs) at the sites of

the restriction enzyme HpyCH4IV, leading to RFLPs (results in chapter 4). Any

polymorphisms between the corresponding genomes in parental pairs were confirmed

directly by analysis of their respective DNAs by AFLP or RFLP.

(iv) Application of the AFLP or RFLP tests to the doubled haploid (DH) progeny lines

from the respective cross, exactly as for parental lines: CypB marker from A genome

was analysed from 161 DH lines generated from the Tasman x Sunco cross by AFLP

and CypB marker from B genome was analysed in 162 DH lines from the same cross by

RFLP.

Page 78: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

56

(v) Integration of CypB markers in the linkage map from Sunco x Tasman (Chalmers et

al., 2001) based on the bin mapped markers (Section 4.3.1) and data analysis by Map

Manager software package QTXb20.

2.14 RNA extractions and cDNA synthesis

2.14.1 Tissue samples

Seeds of T. aestivum cv Cranbrook were grown under controlled conditions (described

in section 2.5) for two weeks. The leaves and stems were collected separately from

young seedlings. Developing caryopses were collected 6, 10, 14, 18, 22, 30, and 34

days after anthesis (DAA). All tissue samples were snap-frozen in liquid nitrogen and

stored at -80oC.

2.14.2 Total RNA isolation

Total RNA was isolated with the TRIsure reagent (Bioline) according to the provided

protocol. The samples of plant materials (50 mg) were ground. TRIsure (1 mL) was

added to each tissue and incubated for 5 mins. Chloroform: isoamyl-alcohol (24:1, 0.2

mL) was added, incubated for 2-3 mins, and centrifuged for 15 mins at 14.5 x 1000 rpm

at 2-8oC. The supernatant containing RNA was carefully transferred to another tube,

mixed with 0.5 mL isopropanol, incubated for 10 mins, centrifuged for 10 mins at 2-

8oC. The RNA pellet was washed with 70% ethanol, air-dried, dissolved in 30 µL

DEPC treated dH2O, and stored at -80oC. The RNA concentration was estimated by

spectrophotometry.

2.14.3 First-strand cDNA synthesis

The reaction 1 included RNA (1 µg), 0.5 µg/µL Oligo (dT)18 (1 µL), 10 mM dNTP mix

(1 µL) in a volume of 10 µL made up with the DEPC treated dH2O, and was incubated

for 10 mins at 65oC. Reaction 2 included 5 x RT Buffer (4 µL), RNase inhibitor (1 µL),

and 200 U/µL reverse transcriptase (0.25 µL) in a final volume of 10 µL with DEPC-

treated dH2O. This was added to the reaction 1, incubated for 60 mins at 37oC, and

terminated by incubating for 15 mins at 70oC, then stored at -20oC.

Page 79: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

57

2.15 Preliminary analysis of some Cyps and PDILs genes expression

PCR was conducted using 0.5 µL first-strand cDNA (out of 20 µL synthesised above),

0.5 µL of each primer (0.1 µg /µL) and 12.5 µL of 2X BioMix in 25 µL volumes made

up with dH2O. The PCR conditions were initial denaturation of template DNA at 95oC

for 5 mins, followed by 30 cycles of denaturation (94oC, 45 seconds), primers

annealing (at appropriate temperatures, for 45 seconds; Table 2.8), extension (72oC, 1

min), then a final extension (72oC, 5 mins). Simultaneous amplifications of all cDNAs

with actin gene primers designed based on actin cDNA of Triticum aestivum (Genbank

accession no. AB181991) provided the house-keeping gene expression controls. The

PCR products were separated on 1% agarose gels.

Table 2.8 Primers used for gene expression study*

Names of Primer Sequence Expected size (Annealing Temperature)

TaCYP23-1 WC4 5’CGCACAAGGTCTACTTCGA3’ 496 bp (54

oC)

CYPBR1 5’CTGTCGGCAATGACAACC3’

TaCYP24-1

CYP21-1F2 5’GGCCGTCGGGTTCCT3’ 542 bp (52oC)

CYP21-1R 5’CCCCTTCAATGGCGT3’ TaCYP26-2

CYP23-1F2 5’ACGCCTCGGATCCCAACC3’ 447 bp (63oC)

CYP23-1R2 5’GGGTTGGCAGGCGCTCT3’

TaPDIL1-1

PDI-A3F 5’CAACCATCCTTACCTCTTGAAATA3’ 627 bp (62 oC) PDI-A4R 5’ATACGAGACCTTCTTCCCGCTA3’

TaPDIL1-2

PDI-B2F 5’CTGCTTTGGAGAAATTCATTGAG3’ 700 bp (62 oC) PDI-B3R 5’CCCTCGTAGGAGACCTTCTTT3’ TaPDIL1-3

PDI-D5F 5’AAAGAGGATCAGGCACCACTG3’ 727 bp (62 oC) PDI-D6R 5’TACAGTATTTCTCGCAACGGGA3’

ACTIN ACTIN-F 5’GTTTCCTGGAATTGCTGATCGCAT3’ 410 bp (62

oC)

ACTIN-R 5’CATTATTTCATACAGCAGGCAAGC3’

*Primers used for amplification of Cyp genes (TaCYP24-1 and TaCYP26-2) were designed based on the identified TA sequences. Primers used for amplification of TaCYP23-1 were designed based on CypB genomic sequences chapter 3). Expected sizes of Cyp genes were based on the cDNA (chapter 3) or identified TAs. Primers used for amplification of PDIL genes (TaPDIL1-1, TaPDIL1-2, and TaPDIL1-3) were as reported (Johnson and Bhave, 2004a). Expected sizes from first strand cDNA were based on reported sequence data in Genbank (AF262979, AF262980, and AF262981). Primers used for amplification of ACTIN gene were designed based on the cDNA sequence of the actin gene of wheat (Accession No. AB181991).

Page 80: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

58

Bioinformatics Methods

2.16 Identification of CypB gene and its promoter sequence in rice

The bacterial artificial chromosome (BAC) clone containing the putative CypB gene of

rice was identified by a BLASTn search of the TIGR (The Institute for Genomic

Research) Rice Genome Annotation Database Assembly 2006

(http://www.tigr.org/tdb/e2k1/osa1/, accessed 11/2006) using TC264488 as the query

sequence. The structure of rice CypB gene was then analysed by alignment with the

experimentally isolated CypB genes of common wheat. The ‘Rice Genome Browser’

interface of the TIGR database was used to find the region upstream of ATG and

analyse it for the putative promoter sequences.

2.17 Identification of putative wheat CypB orthologues at rice CypB

locus

The ‘Rice Genome Browser’ interface of the TIGR Rice Genome Annotation

(http://www.tigr.org/tigr-scripts/osa1_web/gbrowse/rice/; accessed 03/2008) was used

to search for putative wheat orthologues at the rice CypB locus. The search was

involved a few steps: (i) searching the rice genome by entering ‘rice CypB gene BAC

locus (LOC_Os06g49480) (see chapter 3) in ‘landmark or region’; (ii) identification of

‘wheat bin mapped markers’ putatively located at/near the CypB gene of rice by using

‘Wheat Bin Mapped Markers’ feature track; (iii) expressed sequence tags (ESTs) probes

that had been physically mapped to a wheat chromosomal ‘bin’ by searching for probes

used in wheat physical mapping experiments available from the wEST database

(http://wheat.pw.usda.gov/wEST/, accessed 03/2008); (iv) the ESTs sequences were

searched from EST database (http://www.ncbi.nlm.nih.gov/Database/, accessed

03/2008) and aligned with exon contig of the isolated CypB genomic gene (TaCypB-B)

in T. aestivum cv. Rosella (see chapter 3).

2.18 Identification of putative QTLs in rice and wheat at the CypB

locus

The Gramene Genome Browser (http://gramene.org) was used to look up in Oryza

sativa ssp. japonica genome database. The chromosome location of rice (in bp)

containing the putative rice CypB locus (see results) and the list of rice QTL accession

IDs were shown at the Oryza sativa ssp. japonica ContigView (Gramene release V27

Page 81: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

59

database) by graphic view. Further, the QTL category, trait name, genetic position and

map set with list of associated flanking markers for each listed QTL were identified by

browsing its ID in the Gramene QTL database. The rice genomic sequence assembly

positions of the flanking markers were searched in Gramene Markers database. In

addition, wheat QTLs located on chromosome 7 long arm (based on results of physical

location of our isolated CypB gene) were identified by searching the Integrated Wheat

Science database (http://www.shigen.nig.ac.jp).

2.19 Rice Cyp and PDIL family identification and analysis

The bacterial artificial chromosomes (BACs) containing the putative Cyp or PDI family

genes in rice (Oryza sativa ssp japonica cv. Nipponbare) were searched in the Rice

Annotation Release 5 (and in Release 6) (http://rice.plantbiology.msu.edu/osa1.shtml,

last accessed 02/2009) using the reported Arabidopsis genomic sequences of loci

encoding Cyps (Romano et al., 2004a) or PDILs (Houston et al., 2005) as queries for

BLASTn searches (searching a nucleotide database using a nucleotide query). The

genomic and coding sequence (CDS; exon contigs) from each representative locus were

used for gene structure analysis. The gene structures were generated by comparison of

the genomic sequences and CDS respectively with the GSDS (Gene Structure Display

Server) program (http://gsds.cbi.pku.edu.cn). Reported cDNA encoding rice PDILs

(Houston et al., 2005) or longest EST contributing to corresponding TA encoding

PDILs or Cyps, respectively, was used as query to generate a map of chromosomal

locations from the Oryza sativa genome view in the NCBI Map viewer

(http://www.ncbi.nlm.nih.gov, last accessed 02/2009). The sequences of CDS were

used as queries to search the TIGR Plant Transcription Assembles (TAs) database on

the website (http://plantta.jcvi.org, last accessed 02/09) by BLASTn for TAs having

100% identity with queries on the comparable parts. The deduced amino acid

sequences of Cyps or PDILs in rice from the exon contigs were downloaded from same

database. All putative proteins of Cyps or PDILs in rice were used for generating the

phylogenetic tree and other comparative biochemical analyses.

Page 82: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

60

2.20 Wheat Cyp and PDI family identification and analysis

Transcript Assemblies (TA) encoding putative PDILs or Cyps in wheat (Triticum

aestivum L.) were searched using the same queries as in section 2.19 for BLASTn

searches of TIGR Plant Transcript Assemblies database (http://plantta.jcvi.org, last

accessed 02/2009). The obtained TAs were translated into amino acid sequences by

Bioedit sequence alignment editor v 7.0.5

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) with the selected reading frame, to

identify whether they were the expected TAs. The deduced amino acid sequences were

used for generating phylogenetic trees and other comparative biochemical analyses.

The chromosomal map positions of the identified wheat PDIL or Cyp genes were

generated progressively (Fig 2.1), i.e. by (i) a search for the putative wheat orthologues

at the rice locus was conducted in the ‘Rice Genome Browser’ interface of the TIGR

Rice Genome Annotation (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/; last

accessed 02/2009) by entering each identified rice PDIL locus or Cyp locus in the

‘landmark or region’ to identify the corresponding wheat chromosomal ‘bin’ mapped

markers; (ii) cDNA probes used for the physical mapping data available in the

GrainGenes structured query language (SQL) database were searched by entering the

name of queries into the ‘Mapped Loci for EST-derived Probes’

(http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi, last accessed 02/2009); (iii)

sequences of 5’ probes were searched for in the EST database

(http://www.ncbi.nlm.nih.gov, last accessed 02/2009); (iv) sequences of probes were

aligned with corresponding wheat TAs for identity calculation; (v) the map for

chromosomal locations was generated based on deletion breakpoints from wheat genetic

and genomic resource centre (http://www.k-state.edu/wgrc/Germplasm/Deletions, last

accessed 06/2009).

Page 83: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

61

5’ probe: BE444859

3’ probe: BQ161460

http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi

EST sequence: BE444859

http://www.ncbi.nlm.nih.gov

Southern blotting image

http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi

TaPDIL2-1

99.3%

TaPDIL2-2

98.7%

TaPDIL2-3

86.7%

http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/

1DS : C-1DS3-0.48; 1BS : 1BS10-0.50-0.84

Fig 2.1 Representative chart for identification of PDILs or Cyps chromosomal locations in wheat. Identities are the EST sequence (BE444859) with TAs encoding TaPDIL21-, TaPDIL2-2, and TaPDIL2-3 on the overlapping parts, respectively.

2.21 Identification of putative QTLs related to quality in rice and

wheat at loci encoding PDILs

The Gramene Genome Browser (http://gramene.org) was used to look up in Oryza

sativa ssp. japonica genome the chromosome location of rice (in bp) which contained

the putative rice PDIL loci (chapter 6) and list the rice QTL accession IDs shown at the

Oryza sativa ssp. japonica ContigView (Gramene release V27 database) by graphic

view. Further, the QTL category, trait name, genetic position and map set with list of

associated flanking markers for each listed QTL related to quality were identified by

browsing its ID in the Gramene QTL database. The rice genomic sequence assembly

positions of the flanking markers were searched in Gramene Markers database. In

addition, wheat QTLs related to quality locating on chromosomes containing the PDIL

genes (chapter 6) were identified by searching the Integrated Wheat Science database

(http://www.shigen.nig.ac.jp).

Page 84: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

62

2.22 Multiple sequences alignments, cellular location predictions and

phylogenetic analyses

The amino acid sequences deduced from exon contigs (CDS) of the putative genomic

genes in rice and TAs in wheat were aligned with those in Arabidopsis and/or

orthologues in human, using ‘ClustalW Multiple Alignment’ application in Bioedit

(section 2.11.2). The phylogenetic trees of Cyps or PDILs were generated based on

these alignments, using Neighbor-Joining program in MEGA 4.0

(http://www.megasoftware.net). Cellular locations were predicted by the ‘WolF

PSORT Prediction’ (http://psort.ims.u-tokyo.ac.jp) and the TargetP 1.1 Server

(http://www.cbs.dtu.dk/services/TargetP), as well as alignments with respective

orthologues in Arabidopsis. Any signal peptides on proteins were predicted by the

SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP) and chloroplast transit

peptides by the ChloroP 1.1 Server (http://www.cbs.dtu.dk/services/ChloroP).

2.23 Prediction of PDIL expression in different tissues in Arabidopsis

The extent of expression of PDIL genes in different tissues in Arabidopsis was

investigated using the BAR (Botany Array Resource) Arabidopsis eFP (Electronic

Fluorescent Pictograph) browser (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi,

accessed 12/2008) (Winter et al., 2007). The AGI ID of each locus encoding PDILs in

Arabidopsis was entered in the Arabidopsis eFP browser to search the expression value

in different tissues and developing seeds. The expression data were transferred to Excel

to produce a figure showing absolute expression.

Page 85: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

63

Chapter 3

MOLECULAR CHARACTERISATION OF

CYCLOPHILIN B GENES IN WHEAT AND RICE

Page 86: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

64

3 Molecular characterisations of cyclophilin B genes in wheat

species and rice

3.1 Abstract

Cyclophilin B, belonging to the peptidyl prolyl isomerase (PPIase) group of enzymes, is

suggested to be involved in storage protein folding and deposition in the developing

wheat grain. The seed storage protein composition, quantity, assortment, resolution of

aggregates, and deposition into protein bodies via two different routes are all key

phenomena affecting cereal grain quality. The genetic basis of the qualitative

differences in protein subunits is now well understood; however, an understanding of

the genetic basis of the assortment and deposition processes is limited in cereals

including wheat. In this work, genes encoding a potentially important ‘foldase’

enzyme, also a possible chaperone, were identified. The three genes (EU627095,

EU627096, EU627097) represent a putative ER-localised form of cyclophilins, CypB

which is of significance due to the storage protein folding, resolution of aggregates and

assortment processes that occur in the ER of endosperm cells. The genome assignments

of the three genes were conducted by comparison with corresponding genes

(EU627098, EU627099) isolated from the tetraploid progenitor, T. turgidum v. durum,

and one each from the diploid progenitors, T. urartu (EU868840) and Ae. tauschii

(EU627100). The gene structures exhibit seven exons and six introns, the exons being

significantly more conserved than introns. The locus LOC_Os06g49480 encoding the

putative rice CypB gene was also identified from the Rice Genome Annotation

Database Assembly. The putative CypB proteins in wheat and rice are 83% identical

and contain all functional domains of a PPIase and an atypical endosperm

retention/retrieval signal. The promoters isolated by inverse-PCR (T. urartu, Genbank

FJ799756; Ae. tauschii, Genbank FJ799757) and identified from rice genome show a

number of potential tissue specific regulatory elements. The data provide essential tools

for physical and genetic mapping of the gene to assess its association with any quality

traits, as well as identification of genetic variations in this potential regulator of seed

storage protein quality.

Page 87: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

65

3.2 Introduction

As introduced in Chapter 1 (sections 1.2, 1.3, 1.4), the wheat endosperm storage

proteins are commonly grouped into the monomeric gliadins and polymeric glutenins,

the latter comprised of low and high molecular weight subunits. The gliadins are

stablised by intra-molecular disulphide bonds and non-covalent interactions that

contribute to dough viscosity, and glutenins largely by inter-molecular disulphide

bonds, the number and distribution of which determine dough elasticity and strength

(reviewed in Gianibelli et al., 2001; Shewry et al., 2002; Shewry and Halford, 2002).

The storage protein bonding, assortment and deposition processes in the wheat

endosperm and the highly structured nature of the gluten polymer imply significant

roles for ER-localised molecular chaperones and ‘foldase’ enzymes. An important

candidate for direct, specific roles in these processes is the enzyme group peptidyl

prolyl cis-trans isomerase (PPIase), with the key function to catalyse the cis-trans

isomerisation of the peptide bond preceding proline residues, a rate-limiting step in the

folding of newly synthesised proteins (Galat, 1993). The Cyps, a class of PPIases,

exhibit highly conserved secondary structures but localise to several cellular

compartments. Plant ER Cyps are functionally versatile, and in addition to PPIase

activity, their other roles - such as protein-protein interactions and chaperone roles

under internal ER stress or environmental stress - may be relevant to storage protein

processes. In support of this, high levels of PPIase transcripts were reported in the

developing grain, coinciding with high levels of expression of storage proteins

(Grimwade, et al., 1996). However, except for the preliminary reports of ER-localised

PPIase in maize (Sheldon, et al., 1996) and high levels of transcripts of PPIases (of

unidentified type) in the developing wheat endosperm (Grimwade, et al., 1996), little

other work has been reported on these genes/enzymes. Previous work in M. Bhave’s

group (Johnson et al., 2004b) led to characterisation of genes encoding three

homologues of cytoplasmic CypAs in wheat; however, direct roles for these in the ER

lumen are unlikely duo to their cytoplasmic location. The current project extends the

work on wheat Cyps. This chapter focuses on isolation and characterisation of genes

encoding potential ER lumen located CypB proteins in common wheat and its

progenitors, their putative promoters, and identification of rice CypB gene and its

promoter from the rice genome database. The results of this work have been published

(Wu et al., 2009).

Page 88: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

66

3.3 Results

3.3.1 Amplification and identification of CypB genes from genomic DNA and first-

strand cDNA in T. aestivum

PCR amplification of genomic copies of CypB genes from T. aestivum cv. Rosella was

performed with primer pair WC1-CYPBR5 as described (section 2.7), the putative start

codon being included in the WC1 sequence during primer design (Table 3.1; Fig 3.1).

Table 3.1 Primer pairs used for PCR or IPCR amplification/or sequencing of CypB gene and its promoter*

* This table is part of Table 2.7, reproduced here for convenience.

WC1(ST:126)

CYPBIPCR-F4

WC4 CYPBF3

CYPBR5 CYPBR1 CYPBR9CYPBIPCR-R1

SP(767bp)

Fig 3.1 Position of primers used for PCR or IPCR amplification. The putative TaCypB cDNA from TIGR wheat genome database (http://www.tigr.org/tdb/e2k1/tae1/, Johnson and Bhave, 2004; current accession number TA60203_4565) used for designing primers for amplification and/or sequencing of CypB genes. Arrows pointing down indicate positions of forward primer and arrows pointing up indicate reverse primer. Positions of start (ST, 126bp) and stop (SP, 767bp) codons are indicated.

The amplification led to a product of approximately 1.8 kilo base pairs (kb) size (Fig

3.2A), much larger than the corresponding region of TC264488 (317 base pairs; bp),

suggesting the presence of introns. TC84720, which was reported to encode an ER-

localised CypB (Johnson and Bhave, 2004b), was later found split into TC264493 and

TC264488 on the TIGR website during the current project (current accession number

Forward primer Reverse primer ATc EL* Purpose

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG3’ CYPBR5 (411-430 bp)

a

5’CTGTGGAACGAACTCCCCTT3’

57

oC

317bp

Fragment (WC1-CYPBR5)

WC4 (253-271bp)a

5’CGCACAAGGTCTACTTCGA3’ CYPBR1 (731-748 bp)

a

5’CTGTCGGCAATGACAACC3’ 54

oC ~1800bp

Fragment (WC4-CYPBR1)

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG3’ CYPBR9 (943-960 bp)

a

5’ ACGGTGGTGTGTGATGCC3’ 57

oC ~2300bp

Fragment (WC1-CYPBR9)

WC1 (114-131bp)a

5’ATACGATCCAAGATGGCG3’ CYPBR9 (943-960 bp)

a

5’ACGGTGGTGTGTGATGCC3’ 57

oC ~850bp cDNA Fragment

CYPBF3 (366-386bp)a

5’ACAGGTGAGAAAGGCATGGGC

CYPBIPCR-F4 (84-98)b

5’AGGGTGGCGGCGACG3’ 62

oC N/A

IPCR CYPBF3 (366-386bp)

a

5’ACAGGTGAGAAAGGCATGGGC

CYPBIPCR-R1 (126-143 bp)a

5’CCACGCCCTCATCGCCAT3’ 62

oC N/A

T7 5’GTAATACGACTCACTATAGGGC

SP6 5’TATTTAGGTGACACTATAGAAT3’

45oC Clone-dependent

WC3 (299-316bp)a

5’TCGGGTTGTCATGGGACT3’

CYPBR4 (255-276 bp)a

5’CGATGTCGAAGTAGACCTTGTG

Internal sequencing for CypB gene

CYPB IPCR-F2 5’GCGTAGTAGATCAGTAGTAGC3

CYPB IPCR-R2 5’GTGTCGTGGTATTGAA 3’

Internal sequencing for CypB promoter

Page 89: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

67

TA60203_4565). In a preliminary attempt to identify inter-genome variation, six clones

(TaA1-TaA6) of this gene section (WC1-CYPBR5) in pGEM-T Easy plasmids were

selected randomly. Their inserts were amplified with the vector-based primers T7 and

SP6, and RFLP analysis performed on amplified inserts with HaeIII (selected due to

being the only enzyme with appropriately spaced sites in the TC264488 sequence for

analysis on agarose gels). The results showed three patterns, the four clones (TaA1,

TaA2, TaA3, TaA6) each had three bands (~1400bp, ~400bp, ~50bp); one clone (TaA4)

had four bands (~650bp, ~500bp, ~200bp, ~50bp) and another (TaA5) has three bands

(~1300bp, ~400bp, ~50bp) (Fig 3.2B). One representative clone of each (TaA1, TaA4,

TaA5) was sequenced (Table 3.2).

In an attempt to get longer gene sections, an overlapping section WC4-CYPBR1 was

amplified from Rosella and led to products of ~2.0kb (Fig 3.2C). Inserts of ten plasmid

clones of this fragment (TaB1-TaB10) were generated with T7/SP6. RFLP analysis of

inserts by HaeIII showed that six clones (TaB5-TaB10) corresponded to the TaA1 type;

three (TaB2, TaB3, TaB4) to the TaA4 type; and TaB1 had a new pattern (Fig 3.2D).

The representative clones (TaB1, TaB2, TaB6) were also sequenced (Table 3.2).

Once the sequences of these six clones provided clues to gene structures, primer

CYPBR9 located at the 3’end of the gene, 196 bp after the stop codon, was used with

WC1 (114-960 bp section on TC264488) for amplification of a longer section from

Rosella. The product was ~2600bp (Fig 3.2E). The inserts of ten randomly selected

clones were analysed by RFLP (HaeIII), but all showed an identical type (Fig 3.2F).

The representative clone (TaC1) was also sequenced (Table 3.2).

Amplification with WC1-CYPBR9 from first-strand cDNA of leaves from T. aestivum

cv. Cranbrook led to a product of ~850bp (Fig 3.2G). Three randomly selected clones

(TaCD1, TaCD2, TaCD4) of this cDNA gene section were also sequenced (Table 3.2).

Page 90: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

68

A B C

D E F G Fig 3.2 CypB genomic gene sections and the RFLP polymorphisms (HaeIII) of clones in T. aestivum, cv. Rosella and CypB cDNA in T. aestivum, cv. Cranbrook A: amplification of gene section WC1-CYPBR5; B: polymorphisms of clones TaA1-TaA6; C: amplification of gene section WC4-CYPBR1; D: polymorphisms of clones (TaB1-TaB10); E: amplification of gene section WC1-CYPBR9; F: polymorphisms of clones (TaC1-TaC10); G: CypB cDNA section (WC1-CYPBR9) from Cranbrook.

3.3.2 Sequence alignment of clones from genomic DNA and cDNA in T. aestivum

The sequences of the seven genomic clones were analysed with Bioedit

(http://www.mbio.ncsu.edu/BioEdit/bioedit.html) v7.0.5 (Fig. 3.3; Appendix IIA). The

inserts of TaA1, TaA4, and TaA5 were 1869 bp, 1786 bp, or 1820 bp long,

respectively,. those of TaB1 and TaB6 were 2005 bp; and TaB2 was 1936 bp. TaB6

had two single nucleotide polymorphisms (SNPs) compared with TaB1, one of these

being at a HaeIII site, explaining the extra site in TaB1; this could be a Taq-polymerase

introduced artifact in TaB1. In the overlapping sections, TaA1 had 100% identity to

Page 91: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

69

TaB6 and TaA4 had 100% identity to TaB2. Two contigs could thus be generated,

TaA1-TaB6 (2386 bp) and TaA4-TaB2 (2307 bp). The insert of TaC1 was 2606 bp and

100% identical to contig TaA1-TaB6 in the overlapping area. Three copies of CypB in

T. aestivum were thus identified:

(i) clone TaC1 (Genbank accession number EU627095);

(ii) contig TaA4-TaB2 (Genbank EU627096);

(iii) clone TaA5 (Genbank EU627097).

The cDNA clones of section WC1-CYPBR9 of Cranbrook, TaCD1, TaCD2 and

TaCD4, were 846-851 bp (discussed later). The sequence of TaCD4 was compared

with above genomic copies to generate gene structures (Fig 3.3).

Table 3.2 Summary of sequenced CypB gene sections in wheat species

Name (Genbank No) Length Wheat species Resource

TaA1 1869 bp T. aestivum cv Rosella Clones of PCR products from gDNA with WC1-CYPBR5 TaA4 1786 bp

TaA5 (TaCypB-D, EU627099) 1820 bp

TaB1 2005 bp T. aestivum cv Rosella Clones of PCR products from gDNA with WC4-CYPBR1 TaB2 1936 bp

TaB6 2005 bp

TaA4-TaB2 (TaCypB-A, EU627096)

2307 bp T. aestivum cv Rosella

TaC1 (TaCypB-B, EU627095) 2606 bp T. aestivum cv Rosella Clones of PCR products from gDNA with WC1-CYPBR9

TaCD1 846 bp T. aestivum, cv. Cranbrook

Clones of PCR product from cDNA with WC1-CYPBR9 TaCD2 846 bp

TaCD4 851 bp TdA1 1786 bp T. turgidum ssp. durum Clones of PCR products from

gDNA with WC1-CYPBR5 TdA2 1872 bp

TdB1 2008 bp T. turgidum ssp. durum Clones of PCR products from gDNA with WC4-CYPBR1

TdB3 1936 bp

TdA1-TdB3 (TdCypB-A, EU627098)

2307 bp T. turgidum ssp. durum

TdA2-TdB1 (TdCypB-B, EU627099)

2389 bp T. turgidum ssp. durum

TuA 1786 bp T. urartu Clones of PCR product from gDNA with WC1-CYPBR5

TuD2 1629 bp T. urartu Clones of PCR product from SacI digested and circularised gDNA with CYPBF3/CYPBIPCR-R1

TuA-TuD2 (TuCypB-A, EU868840)

3350 bp T. urartu

Aet1 (AetCypB-D, EU627100) 2560 bp Ae. tauschii Clones of PCR product from gDNA with WC1-CYPBR9

Page 92: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

70

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ATACGATCCGAGATGGCGATGAGGGCGTGGAGGAGGAGCGCGGCGGCGAGGGCCCCGGCGCACCTGTGCCTGTGGCTGGCGCTCGTCGCCGCCACCCTGGTGCTCGCCCAGGTGCTCATCCACCTCGTCCGTCTTCCGCGAACCCATCCC

TaCypB7A ......................................................................................................................................C..........C...T

TaCypB7D .................................C....................................................................................................A...............

TdCypB7B ......................................................................................................................................................

TdCypB7A ......................................................................................................................................C..........C...T

TuCypB7A ......................................................................................................................................C..........C...T

AetCypB7D .................................C....................................................................................................A...............

TuCYPB-A ......................................................................................................................................C..........C...T

Tac4 ...............................................................................................................---------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B CTTACTTTTCCGCTTGCCGATTTGTTCGCCGATCTGATCGTTTCTCTGATACGGTTAATCGTTGCCCTCGCGCTGATGTCTGAACCTGTCTGCCGCGGATCCGGATGGCTTATATGTCTTCGGCGCTGCTGATTTGTTAGGGTTTGGTGT

TaCypB7A ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

TaCypB7D .........................................................................................................C...........------------------...........A...

TdCypB7B ......................................................................................................................................................

TdCypB7A ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

TuCypB7A ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

AetCypB7D .........................................................................................................C...........------------------...........A...

TuCYPB-A ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GGTTGGTGTCTCTGTATGGGATGCGTACTTACGATTTTCTTCCTTGTTTTCAGGGCAAGAAATCCAACCTGTCTGAGGTGACGCACAAGGTCTACTTCGACATCGAGATCGACGGCAAGCCCGCAGGTCTGTGCTGAACCCCTGGCCACA

TaCypB7A --C........G.......-......G.....A........TG.G....C.....T.....G..G........G.............................T.....................................G....A...

TaCypB7D ......................................................................T............................................................................G..

TdCypB7B ......................................................................................................................................................

TdCypB7A --C........G.......-......G.....A.........G.G....C.....T.....G..G........G.............................T.....................................G....A...

TuCypB7A --C........G.......-......G.....A........TG.G....C.....T.....G..G........G.............................T...................T.................G....A...

AetCypB7D ......................................................................T............................................................................G..

TuCYPB-A --C........G.......-......G.....A........TG.G....C.....T.....G..G........G.............................T...................T.................G....A...

Tac4 -----------------------------------------------------.........................................................................------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B AATTTGTTTTCATATCAGCGGGATGTATCATCCCAGTATGGGGCAGGCAGTAGACTGCTACTAATACAACCGATATTGCATGCCTGATTCCTAGTCCTAGCCTAGAAAGCACGGTTTGTAGTTACACTTCGAGTGATTCCTTTTGATTAG

TaCypB7A G....A......G.......C...........T...........G.A...............G.............C...............G.C...............C..............G.G..........A......C....

TaCypB7D G....A......G.......C...............C.........A...............G........A....C.........T....------.G...........C.............G..G.T...............C..T.

TdCypB7B ......................................................................................................................................................

TdCypB7A G....A......G..T....C...........T...........G.A...............G.............C...............G.C............G..C..............G.G..........A......C....

TuCypB7A GG...A......G.......C...........T...........G.A...............G.............C...............GTC...............C..............G.G..........A......C....

AetCypB7D G....A......G.......C...............C.........A...............G........A....C.........T....------.G...........C.............G..G.T...............C..T.

TuCYPB-A GG...A......G.......C...........T...........G.A...............G.............C...............GTC...............C..............G.G..........A......C....

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

S.T. HaeIII

Exon I Intron I

Exon II Intron II

CYPBIPCR-R1 CYPBIPCR-F4

Page 93: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

71

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GATCGTTGAAAAA--TGTGAGATTGACATTGAAATTGAATTTCCATGTTTAGATGGCTGCACTGCACCTAATTTTGTTTTATGTTTA---GTGAGAAAAATATTCACTGGTGTGCTATGCATGTACGTTCTTAATGGTTTAACTCCTTTT

TaCypB7A .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TaCypB7D .............AT........C..................T...................C..G.....................TAA............................T......T.......T..--.GC.TCT....C

TdCypB7B ......C.....G--........................................................................---............................................................

TdCypB7A .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TuCypB7A .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

AetCypB7D .............AT........C..................T...................CA.G.....................TAA............................T......T.......T..--.GC.TCT....C

TuCYPB-A .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B CATTGTTTGATTGATCCGCTGGCATTTAAATTGATTCTGAATTGTCATAGGTCGGGTTGTCATGGGACTTTTCGGCAAGGCTGTTCCTAAAACCGCAGGTATCATCTCCTTACTGTTTGAGTTAAAAACCATGTACTCATCTATTGGATG

TaCypB7A ----..............T..........................................................................................C.G.....C................................

TaCypB7D ..................G..................................................................................................C......C...............T..C......

TdCypB7B ...................................................................................................................................C..................

TdCypB7A ----..............T..........................................................................................C.G.....C................................

TuCypB7A ----..............T..........................................................................................C.G.....C................................

AetCypB7D ..................G..................................................................................................C......C...............T..C......

TuCYPB-A ----..............T..........................................................................................C.G.....C................................

Tac4 --------------------------------------------------................................................----------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ACAGAAATGCTAATGGCTTGATATCTTTTGTTCTACAGAGAACTTCAGAGCACTCTGCACAGGTATGCTTCCCTACCACTTGCGCTGTTTTCTATATGTTATAAGCGTTATGCCGTCTGCTTGTTGAAGTTTCTAGATGATTAGTCTGAT

TaCypB7A ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TaCypB7D ..................C.....................................................G...T............-----------.C.TT.T...C...............G......C................

TdCypB7B ......................................................................................................................................................

TdCypB7A ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TuCypB7A ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

AetCypB7D ........................................................................G...T............-----------.C.TT.T...C...............G......C................

TuCYPB-A ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

Tac4 --------------------------------------.............G..........----------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GGCAAGGCTGGCTATTGGAATAAAAT-TTGCTCTATACAATCACAGTTGCTTTGTTATTTTGGCTCACATCTTCAAGTAATTTAGCCAATCAAATGTAATTGGCTTCCTCAGAAAGTCAAAACATAATTGTACAGTGGAAATTATATACT

TaCypB7A ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TaCypB7D ............GT............-C........C....T..T...A...-............A--..........T................A......C...........................C...A...........----

TdCypB7B ..........................-..............................................A............................................................................

TdCypB7A ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TuCypB7A ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

AetCypB7D ............GT............-C........C....T..T...A...-............A--..........T................A......C...........................C...A...........----

TuCYPB-A ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon III Intron III

Exon IV Intron IV

HaeIII

WC3

Page 94: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

72

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GTAACTAATTTGATGCATGCTATGCTTGTAACATGGAAACGTTG--CTTGCCTTTTTCTTATAAAAGAAGGAAGCTATCTGTATTGTTCCCTTGTTATTTCAAATCCAAGTATACCTTTCTAGACACGACA---TAGAGAGAATGGTGGC

TaCypB7A -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TaCypB7D -.....C.............................C..A.C..TG...A........C.TG..G........T...C..........T...CA.................T....A..........A.G.ATG................

TdCypB7B ............................................--.....................................................................................ACG................

TdCypB7A -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TuCypB7A -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

AetCypB7D -.....C.............................C..A.C..TG...A........C.CG..G........T...C..........T...CA.................T....A..........A.G.ATG................

TuCYPB-A -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B AGCCTGTTTGCCTGCAAATTTTTGGGCATGATCTGTTTAAATCCCAAGCTCCCTAGAGCATCATTGAAGGGTTCTAAGTTGTATGTTCTACACAGTCTCTAGTAGTAGCCCTGTGTGTGGA-TTTTGATTGTTCATCCCTCCTCTACCAT

TaCypB7A ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TaCypB7D .........T........G.......G..C............T....A.C....C......A........-.....T......A.....G...G.....A..G..............CA..A..................TG--------

TdCypB7B .........................................................................................................................-............................

TdCypB7A ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TuCypB7A ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

AetCypB7D .........T........G.......G..C............T....A.C....C......A........-.....T......A.....G...G.....A..G..............CA..A..................TG--------

TuCYPB-A ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GGTTCTAAAAGAAATCCCTCTACCATACAAGTGCCCAAATATGAATGTCAATAAGAAAAAA-GAGAAGAAAT-AGATAACTGGTTGAATTTGTAGTTGGCTGGTGCCTAGCTGAATATATC--AGAGTATTTTACTTCATGGAAA--AAG

TaCypB7A -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TaCypB7D -----------------..................T.................T.......-..........T.AG.......C...G..C.......T..A........-------.C.AA--.TA..............A...GA...

TdCypB7B ..........A........G.........................................-..........-................................................A--.....................--...

TdCypB7A -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TuCypB7A -----------------.................-T.............T...T.......A..........G.AG..............C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

AetCypB7D -----------------..................T.................T.......-..........T.AG.......C...G..C.......T..A........-------.C.AA--.TA..............A...GA...

TuCYPB-A -----------------.................-T.............T...T.......A..........G.AG..............C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GTGGATAAATGTTGTCATACTCTTCATA--------TTCCACCATAGAGTATTACGAAAGCCTATCATTATTTACTGCATATATCATTATATTCAGAATATCTGCTTTATTAGTACTACAGTCTGTATGGTAGCTT--------GATATC

TaCypB7A ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

TaCypB7D ........C...C..T.C..........AGTTCATA.....A.........................C..............-................................A....A.......A.......CTCTCTAT...G..

TdCypB7B ............................--------....................................................................................................--------......

TdCypB7A ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

TuCypB7A ........C...C..T.C...--.....--------......................G.............................G....................C.............C....T.......CTCTCTAT......

AetCypB7D ........C...C..T.C..........AGTTCATA.....A.........................C..............-................................A....A.......A.......CTCTCTAT...G..

TuCYPB-A ........C...C..T.C...--.....--------......................G.............................G....................C.............C....T.......CTCTCTAT......

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

NcoI

HaeIII

Page 95: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

73

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B TGCCACTGGTTGCTGACCATGCCCCACTTAATTGTCATACAGGTGAGAAAGGCATGGGCAACAGCGGCAAACCTCTCCACTACAAGGGGAGTTCGTTCCACAGAATTATCCCCAGCTTCATGATCCAAGGAGGGGACTTCACTCTTGGCG

TaCypB7A ...T.G.....................................A..........................G...............................................................................

TaCypB7D ...T.G..........................C..........A........T..................................................-----------------------------------------------

TdCypB7B .....G................................................................................................................................................

TdCypB7A ...T.G.....................................A..........................G...............................................................................

TuCypB7A ...T.G.....................................A..........................G................................-----------------------------------------------

AetCypB7D ...T.G..........................C..........A........T................................................................................C..........C...T.

TuCYPB-A ...T.G.....................................A........T.................G..............................................................T................

Tac4 ------------------------------------------............................................................................................................

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ATGGAAGGGGCGGTGAATCAATCTATGGCACAAAGTTCGCCGATGAGAACTTCAAGCTCAAGCACACTGGACCAGGTAATGATCCGTGTTTCTTGAAATCCAGTTC-CAACTGCAAGTGA-AC-GATAGAATGATAGCCGGGGTTAAGAT

TaCypB7A .........................C................................................................................-............CT..-.G.....A.....G.C..........

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ..........................................................................................................-.............-..-..........................

TdCypB7A .........................C................................................................................-............CT..-.G.....A.....G.C..........

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ..........T..............C...........................................................T................T..TG......G...A.CTC.-.T.............CT.......CC

TuCYPB-A .........................C................................................................................-............CT..-.G.....G.....G.C..........

Tac4 ...........................................................................---------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GTCCTCCTTTTTCATTGACTGGTTGTTGGTGCAGGCTACCTTTCCATGGCCAATGCTGGGAGAGATACCAATGGATCCCAGTTCTTCATCACCACTGTAACCACGAGCTGGTAATT-TTCATGA--CTCTGTGATTGCAGCAGTTTGTAC

TaCypB7A ..........................C.........................................................................................-.......TT..T.............T....CG.

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ....................................................................................................................-.......CT..--....................

TdCypB7A ..........................C.........................................................................................-.......TT..T.............T....CG.

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D A.........................C............................................C.............................T..............C....C..TG..T...A..C....T.A.....G.

TuCYPB-A ..........................C.........................................................................................-.......TT..T.......A.....T....CG.

Tac4 ----------------------------------............................................................................----------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B TAAGCCTTT-TATTCTGCTTGAA-------CTTTGTTGTTGATGATCTACATTTTGTATGTTAGGTTGGACGGCAAGCACGTCGTGTTCGGCAAGGTGTTGTCTGGAATGGACGTGGTCTACAAGGTTGAGGCCGAGGGCAAGCAGAACG

TaCypB7A .G.AT....C.G.......G...-------..C.A...........A....C.C.....TC.........T...............................A...............................................

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B .........-.............-------........................................................................................................................

TdCypB7A .G.AT....C.G.......G...-------..C.A...........A....C.C.....TC.........T...............................................................................

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ...A.....-.G.....T.G.G.GTTGGGA................A....C.C.....TC.........T........................................................C......................

TuCYPB-A .G.AT....C.G.......G-------GAA..CCA...........A....C.C.....TC.........T...............................................................................

Tac4 ----------------------------------------------------------------......................................................................................

Exon V

Intron V

SacI

Exon VI Intron VI

Exon VII

HaeIII

HaeIII

CYPBF3 CYPBR5

Page 96: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

74

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B GGACGCCAAAGAGCAAGGTTGTCATTGCCGACAGCGGTGAAGTGCCGCTGTGATGAGACCTGAAATGGGCTCTGGTGGAA-GCTACGGTGACTAGTTTTCGTTGTAGAACCGTTACTAGCCGGTCTGTTTTTTGTTTTCGTGTACTTTTG

TaCypB7A ............A.....................--------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ..................................--------------------------------------------------------------------------------------------------------------------

TdCypB7A ..................................--------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ....A...........A...........T........G..................--.......C..T...........A.................C..........G.....T..T....A.-------.A.............CC.

TuCYPB-A .........................C...........A..............................T...........A...................A..............T.GT.G..A.-------...............CC.

Tac4 ................................................................................-...................................................................C.

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B TGTGAAATTCAGACGACAAGGATTCTC----TTGCTATAAGAAAGTATAATGACTTGCGGATTTACCCGTGATCTGGCTGGCAACTTTGAAGGCATCACACACCACCGT-----------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ......-..T.....G....TT..T..CTCT..A......A......C..........----...............................T...............-----------------------------------------

TuCYPB-A ......-..T.....G...A.C..T.TCTCT.-A......A..........A......----....T.A....A...A..............TGC..TT.TTATTTTT.CTTGGATGTTTTGCTGGGTTATTTGCCTTGGAGAAAGTGCT

Tac4 ...........................----...........................----C..............................................-----------------------------------------

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A GATATGCGCCTTTTGATTTGAACGATTATCGATCGTCAGCAAACAAATATTCTCGCTTAGTACTGCAAGTGCAGCGGCCGATACCTCCCGCCTGGTGATTGTTTTTTTATGAGGACCAATCTCACAGTAGTTTTATACTTGAAAATCTTT

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A AAAGAAACATTTCTGGCTTTACGCTTTAAAAGGTCTGAAAACTGTTGGGAGCACTACCCTATGACCTTTGTGTCGATGAAGCTCCACCACTGCCCGGTAGAGGAGAATCTCCAACAAACCTCCACCACCATAGACCACAGTAGTATTCTT

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

S.P.

Page 97: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

75

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A TTTCCCTGGCAGAAAAAGAAATATTCTTTGTTAAAAAAAGAGAAAGAAATATTCTCTTACAATCCTATTTGTTTTTCTTATACGATAATAATCTACGGTCCGCATCTTCTTCTCATACGATTGGTACTATGAATATACGTAAAAAAAGTA

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A AACAGAGTCCGCGGTTTTAAGAAATAGGAAAAGAAAAGGAGTTATGCAAAGACACGGCGAGCAACCCTAGAAGCCGCATCTTCCACTCAACCAATATATTTTTCTTTCATCTAGTATATCATATTAAAAAAAAGGAGGAATCCTACAATC

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7B ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCypB7A ------------------------------------------------------------------------------------------------------------------------------------------------------

AetCypB7D ------------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A AGCATCAGGGCCGCTGGCTCCAGATCGGACGGTGGAGCGGGCAGAGCCGCGCGCCCAGGGGGCCTAATAATTGGCGTCCCCCCATCCGCCCCCGAGCCGCCCCCAAACCCCGTCCCGTCAAACGCAAAGAAGACAAGCGCAGCAAGTAGG

Tac4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB7B ----------------------------------------

TaCypB7A ----------------------------------------

TaCypB7D ----------------------------------------

TdCypB7B ----------------------------------------

TdCypB7A ----------------------------------------

TuCypB7A ----------------------------------------

AetCypB7D ----------------------------------------

TuCYPB-A GTTAGGAGAGCCGACGGCGGCGGCGGCGGCGGAAAGCGAG

Tac4 ---------------------------------------- Fig 3.3 Alignment of sequence from seven CypB genomic genes in wheat species. Dots indicate bases identical to the top line, broken lines indicate gaps. Start (S.T.) and stop (S.P.) codons, primers used for IPCR and physical mapping are underlined. The digestion sites of HaeIII, NcoI, SacI are framed.

Page 98: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

76

3.3.3 Identification of two CypB genes in T. turgidum ssp. durum

In order to identify which copies of genes from T. aestivum cv Rosella were from the A

or B genome, gene sections WC1-CYPBR5 and WC4-CYPBR1 were amplified from

gDNA of T. turgidum ssp. durum, and led to products of sizes similar to those in T.

aestivum (data not shown). Six randomly selected clones of WC1-CYPBR5 showed

two HaeIII RFLP types, type I (clones TdA1, TdA3, TdA5) and type II (clones TdA2,

TdA4, TdA6) (Fig 3.4A). One of each (TdA1 and TdA2) was sequenced and found to

be 1786bp and 1872bp, respectively (Table 3.2; Appendix IIA). Ten randomly selected

clones of WC4-CYPBR1 were similarly analysed and showed two RFLP types (Fig

3.4B). One representative of each (TdB1 and TdB3) was sequenced and found to be

2008bp and 1936bp respectively (Table 3.2; Appendix IIA). Further, TdA1 was 100%

identical to TdB3 and TdA2 was 100% identical to TdB1 in the overlapping areas

(Appendix IIA). Two contigs of CypB genes in T. turgidum ssp. durum were thus

generated (Fig 3. 3):

(i) 2307bp (TdA1-TdB3; Genbank EU627098)

(ii) 2389bp (TdA2-TdB1; Genbank EU627099)

A B C Fig 3.4 RFLP Polymorphisms (HaeIII) of CypB genomic clones in tetraploid and diploid wheat A: Clones (TdA1-TdA6) with insert fragment (WC1-CYPBR5) in T. turgidum ssp. durum; B: Clones (TdB1-TdB10) with insert fragment (WC4-CYPBR1) in T. turgidum ssp. durum; C: Clones (Aet1-Aet6) with insert fragment (WC1-CYPBR9) in Ae. tauschii.

Page 99: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

77

3.3.4 Identification of CypB genes in T. urartu and tentative genome assignments

The section WC1-CYPBR5 amplified from gDNA of a single plant of T. urartu

produced the same size band as in Rosella (data not shown). The PCR product (TuA)

was sequenced directly and was 1786bp (Appendix IIA, Table 3.2). In order to isolate

the full length CypB gene in T. urartu, inverse PCR (IPCR) was applied to SacI digested

and circularised gDNA (section 2.12), as SacI has no site in section WC1-CYPBR5

from T. urartu (Appendix IIA). First round PCR (IPCR) was amplified with primer pair

CYPBF3-CYPBIPCR-F4 (data not shown). Second round PCR on these with

CYPBF3-CYPBIPCR-R1 led to a product of ~2200bp (Fig 3.5A). The section

CYPBF3-CYPBIPCR-R1 was cloned and two clones (TuD1 and TuD2) used further.

Amplification of the inserts with CYPBF3-CYPBIPCR-R1 led to only TuD2 producing

the expected size (~2200bp). Its digestion by SacI gave two bands of sizes (~1700bp,

~500bp) (Fig 3.5B) and its sequence was 1629 bp up to the SacI site (G’AGCTC)

(Appendix IIA, Table 3.2). TuD2 was 100% identical to TuA in the overlapping part.

A 3350 bp contig of CypB gene was thus generated, designated TuCypB-A (Genbank

EU868840) (Fig 3.3). It was similar to the contigs TaA4-TaB2 and TdA1-TdB3 in the

comparable parts. TaA4-TaB2 and TdA1-TdB3 were thus deduced to be from the A

genome and renamed as TaCypB-A and TdCypB-A, respectively.

2500bp 1500bp

2027bp

947bp

564bp

1 2

A B

Fig 3.5 Section amplified by inverse PCR in T. urartu (A) and confirmation of clones with expected inserts (B). Section (CYPBIPCR-R1/CYPBF3) was amplified from SacI digested and circularised genomic DNA. Arrow in A indicates the isolated section of CYPBIPCR-R1/CYPBF3. Arrows in B indicate the right sizes of PCR products and digestion by SacI. Lane 1 in B: PCR products by primer pairs CYPBIPCR-R1/CYPBF3; Lane 2 in B: digestion of PCR products by SacI.

Page 100: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

78

3.3.5 Identification of CypB genes in Ae. tauschii and tentative genome assignments

Section WC1-CYPBR9 amplified from gDNA of Ae. tauschii also yielded a ~2600bp

product (data not shown). Six randomly selected clones showed a common HaeIII

RFLP pattern (Fig 3.4C). One clone (Aet1) was sequenced, gave a length of 2560 bp

(Appendix IIA, Table 3.2) and found to be similar to TaA5; AeT1 was hence designated

as AetCypB-D (Genbank EU627100) and TaA5 as TaCypB-D (Fig 3.3). Sequences of

TaC1 and TdA2-TdB1 were most similar to each other, and considering the above

information, these were deduced to be from B genome and renamed TaCypB-B and

TdCypB-B, respectively.

3.3.6 Intron/exon structures and sequence identities of various CypB genes

The sequence of the cDNA clone (TaCD4) was compared with that of CypB genomic

contigs/or clone sequences (Table 3.2) for elucidation of the exon/intron structure

(Appendix IIA, Figs 3.3). The CypB genes in T. aestivum cv. Rosella, i.e. TaCypB-B

and TaCypB-A, both contained 7 exons and 6 introns, and TaCypB-D contained 5 exons

and 4 introns. TdCypB-A and TdCypB-B in T. turgidum ssp. durum, TuCypB-A in T.

urartu, and AetCypB-D in Ae. tauschii, all contained 7 exons and 6 introns (Fig 3.6).

Interestingly, the single domain cytoplasmic Cyp genes in plants, e.g., rice Cyp2

(Buchholz et al., 1994), CyPA genes in wheat (Johnson and Bhave, 2004b) and

AtCYP18-3, AtCYP18-4, AtCYP19-1, AtCYP19-2, AtCYP19-3 in A. thaliana

(Romano et al., 2004a), are all intronless. The Cyp genes encoding ER-localised

isoforms (AtCYP19-4 and AtCYP20-1) in A. thaliana (Romano et al., 2004a) and the

CypB genes isolated here all contain introns ranging from 90bp to 851bp. In the

comparable sections, the A genome genes from common wheat, durum and T. urartu

had introns and exons of identical sizes, as did the D genome genes from common

wheat and Ae. tauschii and the B genome genes of common and durum wheat, except

for intron IV in the durum gene with 3 bp-insertion.

Three genomic genes in common wheat showed exons were conserved with no gaps and

a few SNPs in exon II, V and VII (Fig 3.3). In Exon II, TaCypB-A differed from that of

TaCypB-B by five SNPs and of TaCypB-D by these as well as an additional one. In

exon V, TaCypB-A differed from TaCypB-B by two SNPs and TaCypB-D by two others,

while in exon VII, it differed from TaCypB-B by only one SNP, which did not lead to

amino acid changes (introduced later).

Page 101: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

79

242 369 90 851 106 93 111 73 48 24 183 76 136 204

SP 7aa R F W H EVPL

232 320 90 827 107 96 111 73 48 24 183 76 120

TaCypB-B

224 366 90 823 111 73 48 24 61

TaCypB-A

TaCypB-D

232 320 90 827 107 96 111 73 48 24 183 76 120

232 320 90 827 107 96 111 73 48 24 183 76

242 369 90 854 106 93 111 73 48 24 183 76 120 TdCypB-B

TdCypB-A

136 1162

224 366 90 823 107 103 111 73 48 24 183 76 136 195

TuCypB-A

AetCypB-D

249 396 93 466 108 99 255 79 48 24 183 76 136 265 Rice

SP 7aa R F W H ELPM Fig 3.6 Gene structures of the CypB genes isolated from wheat species and the CypB gene identified in rice. Boxes indicate exons, solid lines between them indicate introns, and the numbers show their lengths in base pair (bp). Arrows pointing down or up indicate restriction sites for HaeIII and NcoI in the three copies of genes (TaCypB-A, TaCypB-B, TaCypB-D), respectively. Rice CypB gene structure identified from TIGR (http://www.tigr.org/tdb/e2k1/osa1/, last accessed 11/08). The putative N-terminal signal peptide (SP), the seven-amino-acid insertion characteristic plant Cyps, three essential residues (R, F and H) for PPIase catalytic activity, conserved W for CsA binding, and putative unusual ER-localisation signal sequence EVPL in TaCypB-B or ELPM in rice CypB at the C-terminal are also indicated.

The major variations were in introns I, II and IV. Intron I of TaCypB-B (242bp) was

10bp or 18bp longer than in TaCypB-A or TaCypB-D respectively; intron II (369bp) of

TaCypB-B was 49bp or 3bp longer than TaCypB-A or TaCypB-D respectively, and

intron IV of TaCypB-B (851bp) was 24bp or 28bp longer than TaCypB-A or TaCypB-D.

Intron III was the least variable, with identical lengths but some SNPs. Variation in

introns of the three common wheat genes resulted in certain diagnostic restriction sites

(Figs 3.2, 3.3, 3.6).

Comparison of genomic copies in wheat species and their homologues in Arabidopsis is

shown in Table 3.3. TaCypB-A had 85.8% and 84.2% genomic sequence identity to the

other two common wheat genes, but its identities to TdCypB-A of durum and TuCypB-A

of T. urartu were >99%. The identity of TaCypB-B to TdCypB-B in durum was 99.3%

and that of TaCypB-D to AetCypB-D in Ae. tauschii was 99.8%. The identities of the

TaCypB-B gene were 54.7% over the full length and 83.3% over exon contig when

Page 102: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

80

compared to the putative rice CypB (see below). Comparisons with AtCYP19-4 and

AtCYP20-1 in Arabidopsis (Romano, et al., 2004a) showed TaCypB-B had identities of

31.1% (AtCYP19-4) and 37.2% (AtCYPB20-1) over full gene, and 69% (AtCYP19-4) and

67% (AtCYP20-1) over exon contigs.

Table 3.3 Identities amongst the wheat CypB genes and with rice and Arabidopsis orthologs

Genes Ta-

CypB-A Td-

CypB-A

Tu- CypB-

A

Ta- CypB

-B

Td- CypB-

B

Ta- CypB-

D

Aet- CypB-D

Rice AtCYP-20-1

AtCYP-19-4

AtCYP19-4 f

31.7 a 31.8 a 24.9 a 31.1 a 31.9 a 24.8 a 30.3 a 37. 1a 41.0 a -

67.3 b 67.3b 60.5 b 69.0 b 69.2 b 61.4 b 69.2 b 67.1 b 75.0 b -

72.3c 72.3c 61.4c 75.1c 74.9c 62.4c 74.9c 72.7c 82.4c -

AtCYP20-1 e

41.0 a 41.2a 29.4a 37.2 a 37.5 a 28.6a 37.1 a 41.4a -

65.1 b 65.1 b 57.7 b 67.0 b 70.0 b 57.0 b 70.0 b 67.7 b -

73.0c 73.0c 62.1c 75.8c 75.6c 63.1c 75.6c 73.6c -

Rice d

54.7 a 54.7 a 44.1a 54.7 a 53.8 a 44.7a 54.8a -

82.5b 82.5b 77.4 b 83.3 b 83.4 b 78.0 b 83.4 b -

82.7c 82.7c 72.2 c 83.2 c 83.6 c 73.1 c 83.6 c -

Aet- CypB-D

85.6 a 87.3 a 83.9 a 87.8 a 87.8 a 99.8 a -

96.7 b 96.5 b 96.8b 97.5 b 97.5 b 100b -

99.5c 99.5c 100c 99.5 c 99.5c 100c -

Ta- CypB-D

84.2a 84.0a 84.0 a 87.3 a 87.3 a -

97.2 b 97.2b 96.8b 98.7 b 98.7 b -

100c 100c 99.0c 100c 100c -

Td- CypB-B

85.7 a 85.8 a 83.4 a 99.3 a -

98.3 b 98.3 b 97.5b 100 b -

100c 100c 99.0c 100c -

Ta- CypB-B

85.8 a 85.7 a 83.4a -

98.6 b 98.6 b 97.5b -

100c 100c 99.0c -

Tu- CypB-A

99.7a 99.4 a -

99.7b 99.7b -

99.0c 99.0c -

Td-CypB-A

99.6 a -

100 b -

100c -

Ta- CypB-A

-

-

-

Identities of: agenomic sequences;

bexon contigs;

cputative CypB amino acid sequences

deduced from exon contigs. d

Rice CypB identified from (http://www.tigr.org/tdb/e2k1/osa1/, accessed 03/08);

eAtCYP20-1 and

fAtCYP19-4 reported by Romano et al. (2004a).

Sequences at the exon/intron junctions and putative branchpoint sequences of TaCypB-

B are listed in Table 3.4. All junctions followed the universal GT-AG rule, but some

variation was noticed (Fig 3.3). T was the most abundant nucleotide (40-70%) in six

introns in the area of -5 to -14 bases of the 3’ splice site, considered very important in

branchpoint definition and 3’ splice site identification in introns of vertebrate and yeast

Page 103: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

81

(Baynton et al., 1996). The branchpoint motifs (YTNAN) are considered very

important splicing signals in most plant introns (Simpson et al., 1996). All TaCypB-B

introns matched this motif in the region 15 nucleotides (intron 2 and intron 5) to 25

nucleotides (intron 4) upstream of the 3′ splice sites. It is interesting to note that the

intron sequences shown in Table 3.4 are also highly conserved among the other six

wheat CypB genes.

Table 3.4 Sequences of exon/intron junction and putative intron branch-points in TaCypB7B

Exon

junction Nucleotide and deduced amino acid sequences

a

Intron number

Splice site sequencesb

5' splice site -- branch point -- 3' splice site -5/-14t %

1-2 CTC GCC CAG-GGC AAG 1 gtgctc ----------cttac -----7c----- ttccttgttttcag 70

Leu Ala Gln Gly Lys

2-3 CCC GCA G-GT CGG GTT 2 gtctgt ----------.ttgat -----1----- ctgaattgtcatag 40

Pro Ala Gly Arg Val

3-4 ACC GCA G-AG AAC TTC 3 gtatca ----------ctaat -----10----- cttttgttctacag 70

Thr Ala Glu Asn Phe

4-5 TGC ACA G--GT GAG AAA 4 gtatgc---------- ctgac -----11----- taattgtcatacag 50

Cys Thr Gly Glu Lys

5-6 GGA CCA G-GC TAC CTT 5 gtaatg ---------- ttgac -----1----- ggttgttggtgcag 50

Gly Pro Gly Tyr Leu

6-7 ACG AGC TG-G TTG GAC 6 gtaatt ----------- ttgat -----7----- attttgtatgttag 60

Thr Ser Trp Leu Asp

.

Consensusd

: g100t100a67 t50 t50t33...y100

t100n a100n...-5-14tttttttttt a50 c67a100g100 aCodons of some amino acids are split across two exons;

bconserved residues with the plant

consensus sequences shown in bold; cnumber of nucleotides between adjacent sequences;

doccurrence (%) in TaCypB7B gene of the most conserved bases in the consensus sequences

was calculated using the splice site sequence data presented in this table. Percentage of ‘t’

nucleotide occurrence in 3’ splice site in the position -5-14 ranged from 40% to 70%.

3.3.7 Alignment of exon contigs from genomic sequences with cDNA clones

The exons of CypB genes (Fig 3.3) were joined together to create exon contigs for

comparison and translation purposes (Figs 3.8). Of the cDNA clones of section WC1-

CYPBR9 of Cranbrook, TaCD1 and TaCD2 were 846 bp with three SNPs (position766:

C-T; 800: T-C; 836: C-T). TaCD4 was 851 bp, with two insertions (7 and 1 bp), one

gap (4 bp) between 731bp and 778bp, and had many SNPs compared to TaCD1 and

TaCD2.

In the coding parts of the three genes, the cDNAs TaCD1 and TaCD2 had 19 SNPs

compared TaCypB-A, 17 SNPs compared to TaCypB-B, 2 SNPs with AetCypB-D and

none with TaCypB-D. TaCD4 had 10 SNPs with TaCypB-A, one SNP with TaCypB-B,

Page 104: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

82

five SNPs with TaCypB-D and 13 more SNPs with AetCypB-D in the length of 306 bp

to 642 bp. Compared CypB from the three genomes, TaCD1 and TaCD2 has two

deletions (7 bp and 1 bp) and one insertion (4 bp) between 724 bp to 846 bp compared

to TaCypB-B; two insertions with TuCypB-A; and only five or three SNPs with

AetCypB-D. TaCD4 had only three SNPs with TaCypB-B, but exhibited

insertions/deletions in relation to TuCypB-A and AetCypB-D. TaCD1 and TaCD2 were

deduced to be from D genome and TaCD4, from B genome.

The phylogenetic tree of CypB exon contigs in wheat species and three cDNA CypB

clones from T. aestivum cv Cranbrook confirmed the genomic assignment, i.e., TaCypB-

A most likely being from A genome, TaCypB-B from B genome, TaCypB-D from D

genome; the cDNAs TaCD1 and TaCD2 being from D genome; TaCD4 from B genome

(Fig 3.7).

AetCypB-D

TaCD1

TaCD2

TaCypB-D

TaCypB-B

TdCypB-B

TaCD4

TuCYPB-A

TaCypB-A

TdCypB-A

Rice

72

100

39

81

57

30

94

32

Fig 3.7 Phylogenetic analysis of CypB exon contigs and cDNA sequences. Trees were generated by Neighbor-Joining method of the Bootstrap Test of Phylogeny in MEGA 4.0 program (http://www.megasoftware.net/mega.html), based on alignments of CypB exon contigs from seven genomic genes shown in Fig 3.3 with sequences of cDNA clones (TaCD1, TaCD2, TaCD4) in T. aestivum cv. Cranbrook and exon contig of CypB in rice (presented later) (Fig 3.8).

Page 105: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

83

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB-B ATACGATCCGAGATGGCGATGAGGGCGTGGAGGAGGAGCGCGGCGGCGAGGG------CCCCGGCGCACCTG---------TGCCTGTGGCTGGCGCTCGTCGCCGCCACCCTGGTGCTCGCCCAGG-GC--------------AAGAAA

TaCypB-A ....................................................------..............---------..............................................-.T--------------.....G

TaCypB-D .................................C..................------..............---------..............................................-..--------------......

TdCypB-B ....................................................------..............---------..............................................-..--------------......

TdCypB-A ....................................................------..............---------..............................................-.T--------------.....G

TuCYPB-A ....................................................------..............---------..............................................-.T--------------.....G

AetCypB-D .................................C..................------..............---------..............................................-..--------------......

TaCD1 .................................C..................------..............---------..............................................-..--------------......

TaCD2 .................................C..................------..............---------..............................................-..--------------......

TaCD4 ....................................................------..............---------..............................................-..--------------......

Rice ------------......GG...C.G...........T.C......T....AGGCCGC..AT.T...G..C.GCCTCGGTC.....C...A.C.T....................C...........T..TCATCCACCTCGCG......

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB-B TCCAA------CCTGTCTGAGGTGACGCACAAGGTCTACTTCGACATCGAGATCGACGGCAAGCCCGCAGGTCGGGTTGTCATGGGACTTTTCGGCAAGGCTGTTCCTAAAACCGCAGAGAACTTCAGAGCACTCTGCACAGGTGAGAAA

TaCypB-A ..G..------......G.............................T...............................................................................................A......

TaCypB-D .....------...T................................................................................................................................A......

TdCypB-B .....------...........................................................................................................................................

TdCypB-A ..G..------......G.............................T...............................................................................................A......

TuCYPB-A ..G..------......G.............................T...................T...........................................................................A......

AetCypB-D .....------...T................................................................................................................................A......

TaCD1 .....------...T................................................................................................................................A......

TaCD2 .....------...T................................................................................................................................A......

TaCD4 .....------........................................................................................................................G..................

Rice ..G..GGCGGATT..A.......C..C..................G.......T..T..............A.......................G...A.............G............C.......T........A......

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB-B GGCATGGGCAACAGCGGCAAACCTCTCCACTACAAGGGGAGTTCGTTCCACAGAATTATCCCCAGCTTCATGATCCAAGGAGGGGACTTCACTCTTGGCGATGGAAGGGGCGGTGAATCAATCTATGGCACAAAGTTCGCCGATGAGAAC

TaCypB-A ....................G........................................................................................................C........................

TaCypB-D ..T..................................................-------------------------------------------------------------------------------------------------

TdCypB-B ......................................................................................................................................................

TdCypB-A ....................G........................................................................................................C........................

TuCYPB-A ..T.................G..............................................................T.........................................C........................

AetCypB-D ..T................................................................................C..........C...T...........T..............C........................

TaCD1 ..T................................................................................C..............T...........T..............C.............G..........

TaCD2 ..T................................................................................C..............T...........T..............C.............G..........

TaCD4 ......................................................................................................................................................

Rice ..A.CT..A..G..T......G.A.......T......A...G.A..............A........T..............T........A.....T...........T........T........G..G..............A...

Page 106: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

84

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB-B TTCAAGCTCAAGCACACTGGACCAGGCTACCTTTCCATGGCCAATGCTGGGAGAGATACCAATGGATCCCAGTTCTTCATCACCACTGTAACCACGAGCTGGTTGGACGGCAAGCACGTCGTGTTCGGCAAGGTGTTGTCTGGAATGGAC

TaCypB-A ...........................................................................................................T..........................................

TaCypB-D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB-B ......................................................................................................................................................

TdCypB-A ...........................................................................................................T..........................................

TuCYPB-A ...........................................................................................................T..........................................

AetCypB-D ..............................................................C.............................T..............T..........................................

TaCD1 ..............................................................C.............................T..............T..........................................

TaCD2 ..............................................................C.............................T..............T..........................................

TaCD4 ......................................................................................................................................................

Rice ......A..........C.........CT...G.......................C..A..C..G........T....................C..............G.................T......C.............T

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaCypB-B GTGGTCTACAAGGTTGAGGCCGAGGGCAAGCAGAACGGGACGCCAAAGAGCAAGGTTGTCATTGCCGACAGCGGTGAAGTGCCGCTGTGATGAGACCTGAAATGGGCTCTGGTGGAA-GCTACGGTGACTAGTTTTCGTTGTAGAACCGT

TaCypB-A .......................................................................-------------------------------------------------------------------------------

TaCypB-D ------------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB-B .......................................................................-------------------------------------------------------------------------------

TdCypB-A .......................................................................-------------------------------------------------------------------------------

TuCYPB-A ..............................................................C...........A..............................T...........A...................A............

AetCypB-D ..............C..........................A...........A...........T........G..................--.......C..T...........A.................C..........G...

TaCD1 ..............C..........................A...........A...........T........G..................--.......C..T...........A.................C..........G...

TaCD2 ..............C..........................A...........A...........T........G..................--.......C..T...........A.................C..........G...

TaCD4 .....................................................................................................................-................................

Rice .....T......A....A..T......C......GT...T.A..G........A........C..G........C...C.....A...A.------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

TaCypB-B TACTAGCCGGTCTGTTTTTTGTTTTCGTGTACTTTTGTGTGAAATTCAGACGACAAGGATTCTC----TTGCTATAAGAAAGTATAATGACTTGCGGATTTACCCGTGATCTGGCTGGCAACTTTGAAGGCATCACACACCACCGT

TaCypB-A --------------------------------------------------------------------------------------------------------------------------------------------------

TaCypB-D --------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB-B --------------------------------------------------------------------------------------------------------------------------------------------------

TdCypB-A --------------------------------------------------------------------------------------------------------------------------------------------------

TuCYPB-A ..T.GT.G..A.-------...............CC.......-..T.....G...A.C..T.TCTCT.-A......A..........A......----....T.A....A...A..............TGC..TT.TTATTTTT.

AetCypB-D ..T..T....A.-------.A.............CC.......-..T.....G....TT..T..CTCT..A......A......C..........----...............................T...............

TaCD1 ..T..T....A.-------...............CC.......-..T.....G....TT.....CTCT..A......A......C..........----...............................T...............

TaCD2 ..T..T....A.-------...............CC.......-..T.....G....TT..T..CTCT..A......A......C..........----C..............................T....T..........

TaCD4 ...................................C............................----...........................----C..............................................

Rice -------------------------------------------------------------------------------------------------------------------------------------------------- Fig 3.8 Sequence alignment of exon contigs with cDNA sequences. Exon contigs from seven genomic genes shown in Fig 3.3 with sequences of three cDNA clones (TaCD1, TaCD2, TaCD4) in T. aestivum cv. Cranbrook and exon contigs of identified CypB in rice (presented later). Alignment of TuCypB-A exon contigs up to 847bp. Dots indicate the bases identical to the first line and broken lines indicated deletion and incomplete amplification at 3’-end.

Page 107: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

85

3.3.8 Alignment of the deduced putative CypB protein sequences in wheat species

The amino acids sequences were deduced using the ‘translate or reverse-translate’

option in Bioedit, from exon contigs of individual clones and/or genomic contigs in T.

aestivum cv. Rosella, T. turgidum ssp. durum, T. urartu, and Ae. tauschii; and three

CypB cDNAs in T. asetivum cv. Cranbrook (Fig 3.9). The sequences were aligned

using the ‘ClustalW Multiple Alignment’ in Bioedit and led to 100% identity to putative

proteins deduced from exon contigs of CypB genes in T. aestivum cv. Rosella. The

putative amino acid sequence deduced from the cDNA clone TaCD4 was also 100%

identical with that from the full-length exon contig TaCypB-B. The sequences from

cDNA clones TaCD1 and TaCD2 showed one residue variation (A131G) in relation to

TaCD4 and other genes. The proteins deduced from exons contigs of TdCypB-A and

TdCypB-B had 100% identity to each other and to comparable sections of the three

deduced proteins of common wheat cv. Rosella. The sequences deduced from contig

exons of TuCypB-A in T. urartu and AetCypB-D (clone AetC1) in Ae. tauschii had one

variant residue (TuCypB-A, position 57:A-V; AetCypB-D, position 116: L-P) which

appeared not to affect any functionally important residue.

Page 108: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

86

60

TaCypB-B MAMRAWRRSA AARAPAHLCL WLALVAATLV LAQGKKSNLS EVTHKVYFDI EIDGKPAGRV

TaCypB-A .......... .......... .......... .......... .......... ..........

TaCypB-D .......... .......... .......... .......... .......... ..........

TdCypB-B .......... .......... .......... .......... .......... ..........

TdCypB-A .......... .......... .......... .......... .......... ..........

TuCypB-A .......... .......... .......... .......... .......... ......V...

AetCypB-D .......... .......... .......... .......... .......... ..........

TaCD4 .......... .......... .......... .......... .......... ..........

TaCD1 .......... .......... .......... .......... .......... ..........

TaCD2 .......... .......... .......... .......... .......... ..........

120

TaCypB-B VMGLFGKAVP KTAENFRALC TGEKGMGNSG KPLHYKGSSF HRIIPSFMIQ GGDFTLGDGR

TaCypB-A .......... .......... .......... .......... .......... ..........

TaCypB-D .......... .......... .......... .......... .--------- ----------

TdCypB-B .......... .......... .......... .......... .......... ..........

TdCypB-A .......... .......... .......... .......... .......... ..........

TuCypB-A .......... .......... .......... .......... .......... ..........

AetCypB-D .......... .......... .......... .......... .......... .....P....

TaCD4 .......... .......... .......... .......... .......... ..........

TaCD1 .......... .......... .......... .......... .......... ..........

TaCD2 .......... .......... .......... .......... .......... ..........

180

TaCypB-B GGESIYGTKF ADENFKLKHT GPGYLSMANA GRDTNGSQFF ITTVTTSWLD GKHVVFGKVL

TaCypB-A .......... .......... .......... .......... .......... ..........

TaCypB-D ---------- ---------- ---------- ---------- ---------- ----------

TdCypB-B .......... .......... .......... .......... .......... ..........

TdCypB-A .......... .......... .......... .......... .......... ..........

TuCypB-A .......... .......... .......... .......... .......... ..........

AetCypB-D .......... .......... .......... .......... .......... ..........

TaCD4 .......... .......... .......... .......... .......... ..........

TaCD1 .......... G......... .......... .......... .......... ..........

TaCD2 .......... G......... .......... .......... .......... ..........

213

TaCypB-B SGMDVVYKVE AEGKQNGTPK SKVVIADSGE VPL*

TaCypB-A .......... .......... .......--- ----

TaCypB-D ---------- ---------- ---------- ----

TdCypB-B .......... .......... .......--- ----

TdCypB-A .......... .......... .......--- ----

TuCypB-A .......... .......... .......... ...*

AetCypB-D .......... .......... .......... ...*

TaCD4 .......... .......... .......... ...*

TaCD1 .......... .......... .......... ...*

TaCD2 .......... .......... .......... ...* Fig 3.9 Alignment of amino acids deduced from exon contigs of the seven CypB genomic genes and CypB cDNA of three clones. Dots indicate the residues identical to the first line; broken lines indicated residues deduced from the incompletely amplified genes.

3.3.9 Comparison of putative CypB protein sequences with ER-localised Cyps in

other organisms and CypA in human and wheat

Alignment of the amino acid sequence of putative TaCypB-B deduced from exon contig

of TaCypB-B, with ER-localised Cyps in other organisms and cytosolic CypA in human

and wheat showed a very high degree of similarity except in the N- and C-terminal

regions (Fig 3.10). The sequence and secondary structure of human cyclophilin A

(hCyP-18a; Genbank NP_066953) used as reference shows three consensus sequences,

Page 109: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

87

FHRI(V)IP(K/Q)XFMI(C)QGGDFT, (V/T)GXL(V)SMANA(R/S)GXD(N)TNGSQFFI

and WLDGKHVVFG, containing cyclosporin A-binding residues and the tetrapeptide

Ala-Ala-Pro-Ala (Hirtzlin et al., 1995). The seven residue insertion noted in Cyps of

‘organisms with chloroplasts’ (Saito et al., 1999; Johnson and Bhave, 2004b), occurring

between α-helix-II and β-strand-III, exposed as an extended loop of a domain possibly

interacting with other cellular components (Buchholz et al., 1994), was also observed in

the current analysis.

The ER-localised Cyps presented four to ten additional C-terminal residues, i.e., ELPM

in maize (AY103896) and rice, ELPL in Arabidopsis ROC7 (AtCYP20-1) and Cyp5

(AtCYP91-4) (Saito et al., 1999; Romano et al., 2004a) and SGEL in Dictyostelium

discoideum (AF123597) and Leishmania donovan (CAG33110), all of which are similar

but do not correspond to the characteristic KDEL/HDEL/HEEL ER-retention/retrieval

signal (Frigerio and Pelham, 1993; Derkx and Madrid, 2001). TaCypB-B showed a

new variant ‘EVPL’. The ten-residue motif ‘WEKPFAV(I)AKE’ in human CypB

(Price et al., 1991) and conserved in chicken, mouse and zebrafish, and the C-terminal

variable extensions in yeast and other fungal Cyps were absent in TaCypB and other

plant Cyps.

The TaCypB-B had a 40-amino-acid N-terminal extension compared to wheat CypA

(CYP18-2) (Johnson and Bhave, 2004b), which had 12% identity to the 32 amino acid

extension for ER-targeting in human CypB (Price et al., 1991). Generally this sequence

contains positively charged residue(s) (K) preceding a hydrophobic stretch, which is

thought to act as the ER-targeting signal sequence (Bose et al., 1994; Saito et al., 1999).

The ER-localised Cyp5 in Arabidopsis has a potential cleavage site of signal peptide

between A23 and K24 (Saito et al., 1999). TaCypB-B and rice CypB both exhibit a K-

rich N-terminal, with the putative cleavage site between G34-K35 or A39-K40

respectively, identical to that for Cyp5 (Saito et al., 1999).

The overall DNA identity of exon contig TaCypB-B with other ER-localised Cyps

ranged from 47% to 83%, and its amino acid identity ranged from 40% to 84%.

Sequence alignment with hCyp18-a showed TaCypB-B and rice CypB (detailed below;

section 3.3.10) had residues potentially involved in PPIase activity (Kallen and

Walkinshaw, 1992), CsA binding (Pflugl et al., 1993), calcineurin binding (Rascher et

Page 110: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

88

al., 1998) and glycosylation (Hirtzlin et al., 1995; Pelle et al., 2002). Three residues in

TaCypB-B (R102, F107, H173) corresponded to R55, F60 and H126 in hCypA which

are highly conserved and essential to PPIase activity (Zydowsky et al., 1992) and W168

in TaCypB corresponded to W121 of hCypA essential for CsA binding (Bossard et al.,

1991). However, residue R69 shown to be essential for binding CypA-CsA complex to

calcineurin in hCyp-18a (Pelle et al., 2002) was absent in wheat and rice CypB, and

replaced by L116 in wheat and L123 in rice; this residue is also replaced in Leishmania

major Cyp by an unusual interaction residue (N) (Rascher et al., 1998). The N-linked

glycosylation sites in hCypA (N71 and N108) or in Trypanosome CypA (N81 and

N121) (Pelle et al., 2002) were only partially conserved in TaCypB-B (D118, N155).

Similarly, the O-glycosylation sites in hCypA (T73, S110) or Trypanosome CypA (T83,

S123) (Pelle et al. 2002) were not completely conserved in TaCypB-B (R120, S157).

Page 111: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

89

TaCypB-B MAMRAWRRSA AAR-----AP AHLCLWLALV AATLVLAQGK KSN------- LSEVTHKVYF DIEIDGKPAG 58

Rice ..GSG...IP .V.RPPMSR. .SV...IV.. ....A...A. ..KAD----- .T........ .V........ 65

Maize .ETSG...R. ...ASW--S. .TVY.....A ..A.T...A. .D-------- .T........ .V........ 60

ROC7 ..S------- ---------S VT.L..SL.L LG..SAI.A. ..K-----EN .K.I...... .V.....A.. 49

AtCyp5 ..K------- ---------A SFIL.GTLFL FGAIASI.A. --------ED .K........ .V.....S.. 46

dCyp2 ---------- ---------M KVIFVV..I. LV..WAMPSE AGK------- DPKI.N..F. .....N.... 44

hCypB ---------- ---------- MKVL.AA..I .GSVFFLLLP GPSAADEKKK GPK..V.... .LR.GDEDV. 50

Mouse ---------- ---------- MKVLFAA..I VGSV.FLLLP GPSVANDKKK GPK..V.... .LQ.GDESV. 50

Chicken ---------- ---------- MKALVAATAL G-PAL.LLLP AASRADERKK GPK..A..F. .LRVGEED.. 49

Fish ---------- --MVRICERR MKFLVAVT.I VGSV.FLLFP SETEADEKKK GPK..A.... ..K.GDED.. 58

Donovan ---------- ---------- -----MRFVA VLAV..CALS F----LNVAA EP...A.... .VM..SE.L. 41

Fungi ---------- -------MTS LKSLFLSFF- LVVALGLALV N--ASEP--R GPKI.N.... ..QHGDESL. 48

Yeast ---------- ---------- MK.QFFSFIT LFACLFTTAI F--AKEDTAE DP.I...... ..NHGD.QI. 48

CYP18-2 ---------- ---------- ---------- ---------- ---------- --MANPR.F. .MTVG.A... 18

hCyP-18a ---------- ---------- ---------- ---------- ---------- --M.NPT.F. ..AV..E.L. 18

+ + + + βI βII

↓ ↓ * * * * # -*-

TaCypB-B RVVMGLFGKA VPKTAENFRA LCTG-EKGMG NSGKPLHYKG SSFHRIIPSF MIQGGDFTLG DGRGGESIYG 127

Rice .........T .......... ....-...T. K...A..F.. .A........ .......... .......... 134

Maize .I.......T .......... ....-...I. K...A..... .T........ .L........ .......... 129

ROC7 .I.......T ....V..... ....-...I. KN..A..... .......... .L......H. N.M....... 118

AtCyp5 ...I...... .......... ....-...V. K......... .K........ ........H. N.M....... 115

dCyp2 .I.F..Y..T ....V..... ....-...L. T........D .K......N. ........R. ..T....... 113

hCypB ..IF.....T ....VD..V. .A..-...F. -------..N .K...V.KD. ........R. ..T..K.... 112

Mouse ...F.....T ....VD..V. .A..-...F. -------..N .K...V.KD. ........R. ..T..K.... 112

Chicken ...I.....T ....V...V. .A..-...F. -------F.. .K...V.KD. ........R. ..T..K.... 111

Fish .I.I.....T ....T...LQ .A..-...F. -------... .K...V.KD. ........R. ..T..K.... 120

Donovan .ITI.....D A.L.T....Q ....-.H.F. -------..D .I...V.QN. ........NF ..T..K.... 103

Fungi .I.L..Y..T ..E....... .A..-...F. -------.E. .N...V.KD. ........R. ..T..K.... 110

Yeast .I....Y.LT T.Q.V...YQ .TISRDPK.. -------.LN .I...V..N. ........HR S.I..K..F. 111

CYP18-2 .I..E.YKD. ..R.V..... ....-...V. K......... .....V..D. .C......K. N.T....... 87

hCyP-18a ..SFE..ADK .......... .S..-...F. -------... .C......G. .C......RH N.T..K.... 80

βII αI αII ++ + + βIII+ + βIV +

↓ *** - - * * ↓ ** #* #

TaCypB-B TKFADENFKL KHTGPGYLSM ANAGRDTNGS QFFITTVTTS WLDGKHVVFG KVLSGMDVVY KVEAEGK-QN 196

Rice .........I ......L... .......... .......... .......... .......... .I....Q-.S 203

Maize M........I ......L... .......... .......... .......... .......... ......R-.S 198

ROC7 E......... ......F... ....Q..... .......... ....R..... ..VT...... ......N-.S 187

AtCyp5 Q......... ......V... ..S.E..... .......... ....R..... ..VQ...... .I.....-.S 184

dCyp2 K..N.....I ..SK..L... ....PN.... .......V.. ....R.T... E.IE...I.K LL.SI.S-.S 182

hCypB ER.P...... ..Y...WV.. ....K..... .......K.A .......... ...E..E..R ...STKTDSR 182

Mouse ER.P...... ..Y...WV.. ....K..... .......K.. .......... ...E.....R ...STKTDSR 182

Chicken DR.P...... ..Y...WV.. ....K..... .......K.A .......... ...E.....R ...NTKTDSR 181

Fish DR.P...... ..Y...W... ....K..... .......Q.P .......... .I.E.....R .I..TKTDGR 190

Donovan E......LNV ..-FV.A... ....PN.... ......AP.P ....R..... ...D.....L RI.KTKTNSH 172

Fungi A..K...... R..KT.L... ....K..... ......AV.P .......... E..E.Y.I.D .IQNVP.GR. 180

Yeast NT.K....DV ..DK..R... ..R.KN.... .......PCP .......... E..D.....H YI.NVKTDSR 181

CYP18-2 E.....K.VH ...K..I... ....PN.... ....C..PCN .......... E.VE.....K NI.KV.S-RS 156

hCyP-18a E..E....I. ......I... ....PN.... ....C.AK.E .......... ..KE..NI.E AM.RF.S-R. 149

βV βVI βVII αIII

TaCypB-B GTPKSKVVIA DSGEVPL--- ---------- ---------- ---- 213

Rice .S........ ....L.M--- ---------- ---------- ---- 220

Maize .Q........ ....L.M--- ---------- ---------- ---- 215

ROC7 .........V ....L..--- ---------- ---------- ---- 204

AtCyp5 .......... ....L..--- ---------- ---------- ---- 201

dCyp2 ...SKIAK.S N...L----- ---------- ---------- ---- 197

hCypB DK.LKD.I.. .C.KIEVE-- --------KP FAIAKE---- ---- 208

Mouse DK.LKD.I.V ...KIEVE-- --------KP FAIAKE---- ---- 208

Chicken DK.LKD.T.. .C.TIEVE-- --------KP FAIAKE---- ---- 207

Fish DK.LKD.S.H ...KIDVE-- --------KP FAVAKE---- ---- 216

Donovan DR.VKP.K.V A...L----- ---------- ---------- ---- 187

Fungi DR.LKD.K.V K...LEME-- --------AD VANEGDKKGS HNEL 214

Yeast NM.VKE.I.V E...LETVPL DNKDAAKLQE EIKAEASEAA HDEL 225

CYP18-2 ..CSKQ.... .C.QL----- ---------- ---------- ---- 171

hCyP-18a .KTSK.IT.. .C.QLE---- ---------- ---------- ---- 165

βVIII

Page 112: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

90

Fig 3.10 Comparison of ER-localised cyclophilins from different species with CypA in human and wheat The aligned ER-localised cyclophilins are the putative wheat CypB protein (wCypB) deduced from exons contig of isolated CypB genomic gene (EU627095); putative rice CypB identified from rice database (http://www.tigr.org/tdb/e2k1/osa1/) (this study); ER-localized Cyps in Arabidopsis thaliana, i.e. AtCyp5 (AtCYP19-4; NM128550) and ROC7 (AtCYP20-1; NM125258); maize (AY103896); CypB (dCyp2; AF123597) in Dictyostelium discoideum; human (hCypB; M60857); mouse (M60456); chicken (M63553); zebrafish (NM213019); Leishmania donovani (CAG33110); fungi (Q5B4R3) and yeast (P35176). CypA in human (hCyP-18a; NP_066953) and wheat (CYP18-2; AY456122) used for comparisons. Dots indicate residues identical to top line; broken lines indicate gaps; arrows indicate exons (I–VII) based on the CypB genomic gene (TaCypB7B) in T. aestivum cv Rosella. Three consensus sequences containing residues for CsA binding and tetrapeptide (Ala-Ala-Pro-Ala) contact are in bold and underlined. Asterisks in bold (*) above the lines indicate residues involved in CsA contact, including the key W residue. +residues involved in enzymes activity;

#calcineurin binding residues;

−N-linked and O-linked

glycosylation sites. The seven-amino-acid insertion characteristic of ‘organisms containing chloroplasts’, the N-terminal ER-targeting sequence and the C-terminal ER-localisation signal are boxed. The putative cleavage site of signal peptide is at K35 in TaCypB-B. Secondary structure features based on hCypA. Table 3.5 Functionally important residues in the putative wheat and rice CypB proteins

Function Residues

wCypB Rice Corresponding hCypA residues; Reference

PPIase activity R102, I104, F107, Q110, A148, N149, Q158, F160,

L169, H173, A191

R109, I111, F114, Q117, A155, N156, Q165, F167,

L176, H180, A198

R55, I57, F60, Q63, A101, N102, Q111, F113, L122, H126, R144 (Kallen and Walkinshaw, 1992)

Essential for PPIase activity

R102, F107, H173 R109, F114, H180 R55, F60, H126 (Zydowsky, et al., 1992)

CsA contacting

R102, F107, M108, Q110, G119, A148, N149, A150, Q158, F160, W168, L169, H173

R109, F114, M115, Q117, G126, A155, N156, A157, Q165, F167, W175, L176, H180

R55, F60, M61, Q63, G72, A101, N102, A103, Q111, F113, W121, L122, H126 (Pflügl, et al., 1993)

Essential for CsA binding

W168 W175 W121 (Bossard, et al., 1991)

Calcineurin binding (CN-binding)

L116, K172, Q195 L123, K179, Q202 R69, K125, R148 (Rascher, et al., 1998)

Essential for CN-binding

L116 L123 R69 (Rascher, et al., 1998)

N-linked Glycosylation

D118, N155,

D125, N162, N71, N108, (Hirtzlin, et al., 1995; Pelle, et al., 2002)

O-linked Glycosylation

R120, S157 R127, S164 T73, S110 (Hirtzlin, et al., 1995; Pelle, et al., 2002)

3.3.10 Identification of putative CypB gene and its promoter sequence in rice

The BLASTn search of Rice Genome Annotation Database Assembly 2006

(http://www.tigr.org/tdb/e2k1/osa1/) using TC264488 as a query sequence (section

2.16) led to identification of the BAC of Oryza sativa ssp japonica cv. Nipponbare

containing a highly similar sequence (LOC_Os06g49480) between 29972988 and

29975061 bp on chromosome 6. Alignment of the putative CypB gene in this BAC and

its coding sequence (CDS) showed a seven-exon structure (Fig 3.6). Compared to

Page 113: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

91

TaCypB-B, the rice gene had 54.7% identity in DNA sequence, with much higher

identity over exons (83%) than introns (30%) (Table 3.6). The putative CypB protein

encoding by its CDS contained 220 amino acids and shared 83.2% identity with wheat

putative CypB (213 amino acids) (Fig 3.10; Tables 3.6), suggesting they are

orthologous. The ‘Rice Genome Browser’ interface of TIGR Rice Genome Annotation

(http://www.tigr.org/tigr-scripts/osa1_web/gbrowse/rice/) was used to find the region

1000 bp upstream of the ATG and analysed it as putative promoter region (Appendix

III).

Table 3.6 Sequence comparisons of the isolated TaCypB7B gene and its putative protein product, with those from rice*

*LOC_Os06g49480 in TIGR Rice Genome Annotation Database (http://www.tigr.org/tdb/e2k1/osa1/, first accessed 11/06).

aLength of genes or individual exons, from start codon in exon I to stop codon

in exon VII; bnumber of amino acids encoded in the putative protein.

3.3.11 Identification of CypB promoter sequences in diploid wheat

As introduced in section 3.3.4, IPCR was applied for amplification of unknown sections

flanking TuCypB-A. Amplifications on SacI digested and circularized gDNA with first

round primers (CYPBF3-CYPBIPCR-F4), and second round PCR on these products

(with CYPBF3-CYPBIPCR-R1) gave ~2200bp products which were cloned. Clone 2

(TuD2) in T. urartu was confirmed to be of interest by amplification with primer pair

(CYPBF3/CYPBIPCR-R1) and digestion with (SacI) (Fig 3.5). The digestion showed

two bands, ~1700 bp and ~500 bp, suggesting likely inclusion of upstream and

downstream regions in this clone. The insert was sequenced and the section of 505 bp

(Genbank FJ799756) was identified as an upstream section of TuCypB-A; the other

1629 bp up to the SacI site (G’AGCTC) being as downstream.

Length (bp) Identity (%)

Rice Wheat

Exon I 114a 99

a 48.24

Exon II 79 73 39.24

Exon III 48 48 91.76 Exon IV 24 24 91.76 Exon V 183 183 85.79

Exon VI 76 76 88.16 Exon VII 139

a 139

a 84.89

Total Exons 663 642 83.25 Intron I 249 232 38.55 Intron II 396 320 22.37 Intron III 93 90 35.48 Intron IV 466 827 17.44

Intron V 108 107 30.68 Intron VI 99 96 37.37 Total Introns 1411 1672 30.31 Total 2074

a 2393

a 54.72

CDS 663a 642

a 83.25

Protein 220b

213b

83.18

Page 114: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

92

The putative promoter of AetCypB-D in Ae. tauschii was amplified by IPCR from SacI

digested and circularised gDNA with the primer pairs noted above. The size of PCR

products with CYPBF3-CYPBIPCR-R1 was ~3000bp (Fig 3.11A). Clone 4 was

confirmed (by PCR with CYPBF3-CYPBIPCR-R1) to contain the expected size insert.

Digestion of this PCR product with SalI showed two bands (~2800 bp, ~200 bp) (Fig

3.11B). The insert was sequenced partially and the 1216 bp section (FJ799757) was

identified as upstream of AetCypB-D. The putative promoters TuCypB-A (P) in T.

urartu and AetCypB-D (P) in Ae. tauschii were aligned with that of rice CypB

(Appendix IIB). Alignments of 500 bp areas showed 75.9% identity over 500bp region

and 88.5% identity over the 370 bp region to the start codon.

A B

Fig 3.11 Section CYPBIPCR-R1/CYPBF3 amplified by inverse PCR from SacI digested and circularised genomic DNA (A) in Ae. tauschii and confirmation of the clones with expected insertion (B) Arrow in A indicates the isolated section of CYPBIPCR-R1/CYPBF3. Arrows in B indicate the right sizes of PCR products and digestion by SacI. Lane 1 in B: PCR products by primer pairs CYPBIPCR-R1/CYPBF3; Lane 2 in B: digestion of PCR products by SacI.

The main regulatory elements identified are listed in Table 3.5 and Appendix III. The

potential TATA-box motif (TAAATAAA) for determination of transcription start site

(TSS) was identified in rice CypB promoter at -484bp from the start codon and two

CAAT box motifs noted downstream of it, CGCAAT (-276) and CTCAAT (-245). No

TATA and CAAT boxes were found for TuCypB-A and AetCypB-D, whereas GC-rich

motifs critical to transcription initiation (Pugh and Tjian, 1991; Sargsyana et al., 2002)

occurred at –114 in rice CypB, -180 in TuCypB-A, and -183 in AetCypB-D. In addition,

Page 115: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

93

the E-boxes (CACCTG) considered responsible for tissue specific expression of napA in

transgenic Brassica seeds (Stalberg et al., 1996) and puroindoline (Pin) genes in wheat

seeds (Simeone et al., 2006) were present in all three. Motifs similar to the AT-rich

motif (ATATTTAT/AA/T) and the soybean embryo factor (SEF) binding sites for seed-

specific enhancer (Allen et al., 1989) present in seed storage protein gene promoter of

Coffea arabica (Marraccini et al., 1999) were identified at -343 and -489 of rice CypB,

-314 in TuCypB-A and -318 of AetCypB-D. The Dof core sequence (AAAG) for light

regulation and tissue specific expression of maize storage protein zein (Vicente-

Carbajosa et al., 1997) and wheat Pin genes (Lillemo et al., 2002; Simeone et al., 2006)

appeared frequently, and motifs similar to the endosperm consensus motif (prolamin

box) (TG(T/A/C)AAA(A/G)(G/T)) considered responsible for endosperm specific

expression of wheat storage proteins (Colot et al., 1987) and Pins (Lillemo et al., 2002;

Simeone et al., 2006) also occurred in all three. The dyad repeats (CAAN2-9TTG)

related to endosperm specific expression of barley chitinase (Leah et al., 1994) and

wheat Pin (Lillemo et al., 2002) were at -468 of rice CypB and similar sequences

occurred at -495 (CAAN12TGG) and -201 (CAAN11TGG) of TuCypB-A and AetCypB-

D. The CT-leader box (CTCTCTCT) influencing gene expression (Marraccini et al.,

1999) or similar motifs also occurred in all three. Sequences up to -370bp upstream of

start codons thus appear sufficient for transcription initiation of these genes. Further,

the ER stress responsive element (ERSE-II) motif (ATTGG-N-CC(A/C)N(C/G/T)

(Yoshida et al., 1998; Kokame et al., 2001) was identified at position -954.

Page 116: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

94

Table 3.7 Putative regulatory elements in the promoters of CypB genes in wheat and rice*

Regulator element

Consensus sequence Position; gene

Proposed function

Reference

CT leader box

CTCTCTCT CTCTCTCCCTCTCTTTCTCTCT CTCTCTCTCTCT CTCTCTCCCTCTCTTTCTCTCT

-49, R -34, A -44, D

Influence gene expression

quantitatively

Marraccini et al., 1999

Endosperm motif (Prolamin-box)

TG(T/A/C)AAA(A/G)(G/T) TGAAAAGA TATAAAGT TGCAAAGC TATAAAGT TGCAAAGC

-368, R -273, A -205, A -276, D -208, D

Endosperm-specific

expression

Colot et al., 1987; Lillemo et al., 2002; Simeone et al., 2006

AT-rich motif ATATTTAT/AA/T AAAATTTTTAT TTTTTTAAATAAA ATTTTTTAATCATTTTTT ATTTTTTTAATCATATTTT

-343, R -489, R -314, A -318, D

Seed-specific enhancer

(soybean embryo factor (SEF) binding site)

Allen et al.,1989; Marraccini et al., 1999

GC-rich motif

TCCCGCCCCTAACTCCGCCCA TGGGCAGAGTGCGGAGACCGC TGCGGTCGGGGGCGAGCAGCC TGCAGTCGGGGGCGAGCAGCT

-114, R -180, A -183, D

Critical for TSS Pugh et al., 1991 Sargsyana et al., 2002

Dof Core AAAG

frequent Light regulation, tissue specific

gene expression

Vicente-Carbajosa et al., 1997; Lillemo et al., 2002; Simeone et al., 2006

E-box CANNTG CACCTG CACCTG CACCTG

-169, R -125, A -133, D

Tissue specificity, developmental control

Stålberg et al., 1996; Simeone et al., 2006

Dyad repeats

CAA(N)2-9TTG CAAAAAGTATTTG CAAATTTTTG CAAAATACTTG

-468, R -495, A -464, D

Endosperm specificity

Leah et al., 1994; Lillemo et al. , 2002

*Consensus sequences (shown in parentheses in bold) of reported regulatory elements, and their positions upstream (-) of the start codons of the putative CypB genes of rice (R) and two diploid wheat progenitors, TuCypB-A of T. urartu (A) and AetCypB-D of Ae. tauschii (D).

3.4 Discussion

3.4.1 Wheat cyclophilin B genes show significant diversity in introns

Three different CypB genomic copies have been isolated and sequenced from T.

aestivum cv Rosella. Alignment of the full-length sequence TaCypB-B with the isolated

cDNA clones indicated the genes contain seven exons and six introns, with total length

of ~2.6kb. To our knowledge, this is the first complete sequence of a cereal CypB gene.

The results show a complete conservation of exons in size with single nucleotide

polymorphisms (SNPs) mainly in exon II and V (Figs 3.3, 3.6). Major variations

existed in introns including insertions or deletions in introns I, II, IV, V and VI, and/or

SNPs in all introns. The variations noted in intron sequences provided the basis for

assignment of the genes in different genome and physical locations on chromosomes.

Page 117: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

95

3.4.2 Genome assignment of cyclophilin B genes supports the origins of A genome

and D genome from T. urartu and Ae. tauschii

The CypB genes were also isolated and sequenced from the tetraploid (T. turgidum ssp.

durum) and diploid (T. urartu and Ae. tauschii) progenitors of wheat. Two copies were

identified from durum and one each from T. urartu and Ae. tauschii. Alignment of

genomic sequences (TaCypB-A, TaCypB-B, TaCypB-D) of T. aestivum cv Rosella with

those from T. urartu (TuCypB-A) and Ae tauschii (AetCypB-D) showed identities of

<90% between the three common wheat genes; however, their identities with TuCypB-A

and AetCypB-D were 99.7% and 99.8%, respectively. Further, the phyllogenetic tree of

CypB exon contigs and cDNAs confirmed that TaCypB-A was most related to the A

genome, TaCypB-B to the B and TaCypB-D to the D genome. The data supports the

contention that the A genome of 6n and 4n wheats may have been contributed by T.

urartu (Sears, 1969; Breiman and Graur, 1995) and D genome of 6n by Ae. tauschii

(Gill and Kimber, 1974).

3.4.3 Section(s) of Cyclophilin B genes may be divergent in D genome of common

wheat compared to its progenitor

From the lack of success in amplifying the full-length TaCypB-D gene of common

wheat with the primer CYPBR9, it may be deduced that this gene is partial in common

wheat or that the area of primer binding may be divergent. Further, from two hints (i)

primer sequence corresponding to CypBR9 exists in AetCypB-D; (ii) its full length

(WC1-CYPBR9) cDNA clones (TaCD1, TaCD2) could be obtained in cv. Cranbrook, it

is hypothesised that the 5’ area of the gene may be deleted/divergent in Rosella. The

hypothesis can be tested by amplification of the TaCypB-D gene's 3’ and 5’ flanking

sequences by IPCR.

3.4.4 Putative wheat CypB protein shows potential roles for ER protein regulation

The putative wheat CypB protein deduced from the exon contig of TaCypB-B is

comprised of 213 amino acids, with an estimated molecular mass of ~23kDa. The 40

residue N-terminal sequences are not conserved, with identities of 9% (wheat to

Arabidopsis) and 12% (wheat to human); however, the reported cleavages sites (Saito et

al., 1999) appear conserved in all ER-localised Cyps in plants, e.g. G-K in wheat and A-

K in rice, maize and Arabidopsis (Fig 3.10). The wheat CypB contains the putative N-

terminal signal for ER-targeting (Price et al., 1991) and the mature protein in ER would

Page 118: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

96

be 19.2 kDa. The C-terminal tetrapeptide signal EVPL is unusual, but has acidic and

hydrophobic residues and partially corresponds to ELPM from maize, ELPL from

Arabidopsis, SGEL from Dictyostelium discoideum and Leishmania Donovan, and the

reported C-terminal ER-localization signals KDEL, HDEL or HEEL (Price et al., 1994;

Frigerio et al., 1993; Derkx et al., 2001), but not to the 10-residue signals

VEKPFAIAKE from animals including human CypB (Price, et al. 1991). The 19 kDa

protein (AtCYP19-4) (with the N-terminal signal) in Arabidopsis has a role in

regulating the protein GNOM required for coordination of cell polarity along the

embryo axis (Grebe et al., 2000). Although the amino acid sequence of wheat TaCypB-

B exhibits an overall identity of only 50.2% with human hCypB, the wheat protein

exhibits all functionally residues including the potential CsA and calcineurin contact

residues, the Trp essential for CsA-binding, and the PPIase catalytic residues as reported

from human cytosolic CypA and ER-localised CypB (Pflügl et al. 1993; Price et al.,

1991). The four residues Arg55, Phe60, His126, W121 in human CypA (hCyp18-a)

essential for PPIase activity and CsA contact (Zydowsky et al., 1992) are conserved in

all the aligned ER localised Cyps in plants, e.g. ER-localised Cyps (AtCYP19-4 and

AtCYP20-1) in Arabidopsis, purified maize microsomal Cyp, putative rice CypB

identified and other organisms (Fig 3.10). The N-glycosylation site in TaCypB-B is

partially conserved and O- glycosylation site isn’t conserved, compared to reported ones

in Trypanosome CypA (Pelle et al., 2002), so residues D118, R120 and S157 in

TaCypB-B may be essential for glycosylation.

The seven-residue insertion of unknown function noted here is a characteristic of Cyps

from ‘organisms containing chloroplasts’ (Saito et al., 1999; Johnson and Bhave,

2004b), occurring between α-helix-II and β-strand-III, exposed as an extended loop of a

domain possibly interacting with other cellular components (Buchholz et al., 1994). It

isalso proposed to be located in a domain interacting with other proteins and thus might

be relevant to functions reported for Cyps involving protein-protein interactions (Galat,

1993). The 19 kDa AtCYP19-4 in Arabidopsis has a role in regulating the protein

GNOM required for coordination of cell polarity along embryo axis (Grebe et al., 2000).

The ER-localised CyP in human, with prolactin complex, acts as a transcriptional

inducer (Rycyzyn and Clevenger, 2002) and also cooperates with other chaperones

(PDI, Bip, Grp94) in playing crucial roles in protecting cells against ER stress (Kim et

al., 2008). Wheat CypB shows all functional residues as well as N-terminal ER-

Page 119: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

97

targeting and C-terminal ER-retention sequences. TaCypB-B shares 83.8% identity

with CypB deduced from maize cDNA (AY103896) and a 30-amino-acid sequence

(K38-F67; Fig 3.10) of microsomal cyclophilin B protein of maize (Sheldon and Venis,

1996). The present observations thus indicate that the wheat CypB is possible to be ER-

localised and play important enzymatic roles in storage protein processes and in

addition may be a chaperone for other partners and roles.

3.4.5 Wheat CypB has orthologues in rice and other species

The wheat CypB orthologue in rice was identified due to their high identity and both

show similar gene structures (Fig 3.6). The wheat gene shows low identity (<50%) in

exons I and II compared to rice, but much higher (~85%) from exon III to VII,

indicating the functionally important sections (e.g., catalytic and CsA contact sites) are

encoded in the latter areas. TaCypB-B shares 69% and 67% identity on coding

sequence level with genes encoding the ER-localised AtCYP19-4 and AtCYP20-1,

suggesting it has at least two orthologues in Arabidopsis. Alternatively, five ER-

localised Cyps (AtCYP19-4, AtCYP20-1, AtCYP21-1, AtCYP21-2, AtCYP23) occur in

Arabidopsis (He et al., 2004; Romano et al., 2004a) and two in human (Galat, 2004);

thus more than one type of Cyp may be involved in protein processes occurring in the

ER of cereals.

3.4.6 The promoter elements suggest CypB proteins may be under tissue and stress

specific regulation in cereals

The promoter sequences of the putative rice and wheat CypB genes contain conserved

regulatory sequences such as GC-rich motif critical for initiation of transcription (Pugh,

et al., 1991; Sargsyan et al., 2002), the E-box (Stålberg et al., 1996; Simeone et al.,

2006) and Dof core (Vicente-Carbajosa et al., 1997; Lillemo et al., 2002; Simeone at al.,

2006) for tissues specific expression, endosperm motif (prolamin-box) (Colot et al.,

1987; Lillemo et al., 2002; Simeone et al., 2006) and dyad repeats for endosperm

expression (Leah et al., 1994; Lillemo et al., 2002), and AT-rich motif for seed-specific

enhancer (Allen et al.,1989; Marraccini et al., 1999). These results support the tissue-

specific up-regulation of Cyp genes noted in developing wheat endosperm (Grimwade

et al., 1996). High levels of storage protein expression are suggested to be an internal

stress (Hara-Nishimura, et al. 2004), and presence of ER stress responsive element

(ERSE-II) in the rice promoter (Yoshida et al., 1988; Kokame et al., 2001) also supports

Page 120: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

98

the suggested role of ER-Cyps in stress response (Derkx, 2001; Joseph, 1999). Further,

the tissue specific elements noted strongly suggest the CypB in wheat and rice may play

important role in storage protein folding/sorting processes and against ER-stress.

In order to address the roles of CypB, further work can be pursued such as; (i) gene

expression studies under stress conditions and during seed development; (ii) testing of

CypB location in ER experimentally by immunology techniques; (iii) testing of CypB

interactions with storage or other proteins by yeast-two hybrid or similar systems or

other biochemical studies; (iv) study of direct roles in deletion lines in Arabidopsis or

other plants; (v) experimental testing of promoter sequences; (vi) the numbers of ER- or

other Cyps can be addressed through genome, transcriptome or proteome databases.

The genomic and cDNA clones and all sequence data obtained here are most essential

for studies of gene regulation, physical and genetic mapping, as well as assessing any

association with grain quality and other QTLs, and as a potential marker for such traits.

Many of these aspects are addressed in the next two chapters.

Page 121: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

99

Chapter 4

PHYSICAL AND GENETIC MAPPING OF

CYCLOPHILIN B GENES

Page 122: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

100

4 Physical and genetic mapping of cyclophilin B genes

4.1 Abstract

Molecular characterisation of CypB genes and their predicting promoter sequences in

wheat and rice are the important prerequisites for understanding the functions of their

encoding proteins and essential tools for physical mapping and genetic mapping of

thesis genes. The aims of the work described in this chapter were determination of

physical and genetic maps of the CypB genes and identification of any co-localised

and/or associated QTLs related to grain quality and other traits. Using variable

restriction sites to develop RFLP assays, the genes were localised on chromosomes

7AL, 7BL, and 7DL, in agreement with the rice genome project ‘wheat bin mapped

markers’ data. AFLPs were identified for TaCypB7A between the mapping parental

lines Tasman x Sunco. RFLP digested by the enzyme (HpyCH4IV) was identified for

TaCypB7B between the mapping parental lines Tasman x Sunco, CD87 x Katepwa, Janz

x Kukri. No polymorphism was identified for partial TaCypB7D gene on sequence

level between the ten mapping parental lines. The marker for TaCypB7A was used to

screen double haploid progeny lines of Tasman x Sunco cross revealing no co-

segregation with other markers due to the limited markers on chromosome 7AL. On the

other hand, the marker for TaCypB7B was found to be linked with several other markers

and gene Stb8 on chromosome 7B by screening the same progeny.

Page 123: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

101

4.2 Introduction

Alignment of the putative CypB amino acid sequences in wheat with other ER-localised

Cyps showed it contained all the features of ER Cyps (chapter 3). ER-localised Cyps

are most directly relevant to the processes of storage protein folding and formation of

protein bodies by both routes (see section 1.2.4). Characterisation of the CypB genes in

T. aestivum and its progenitors as well as rice and polymorphisms of genes from

different genomes provided the essential data for: (1) allele specific primer design (2)

prediction of chromosomal locations of CypB genes in wheat, (3) analysis of these

genes in ten parental lines (Tasman x Sunco, CD87 x Katepwa, Janz x Kukri,

Cranbrook x Halbred, Egret x Sunstar) as well as their doubled haploid lines generated

as part of the Australian National Wheat Molecular Marker Program (NWMMP)

(Kammholz et al., 2001).

The aims of this chapter were to (1) identify wheat orthologues at the rice CypB locus

and their chromosomal position; (2) generate molecular markers for CypB genes for

physical mapping and genetic mapping; (3) search any QTLs on the CypB locus in rice

and wheat associated with CypB genes.

4.3 Results

4.3.1 Identification of putative wheat orthologues of the rice cyclophilin B gene and

their chromosomal positions

The putative rice cyclophilin B (LOC_Os06g49480) reported in chapter 3 was used to

identify any potential wheat bin markers at this locus. The ‘Rice Genome Browser’

interface of the TIGR Rice Genome Annotation (http://www.tigr.org/tigr-

scripts/osa1_web/gbrowse/rice/) was used to identify the region that included the rice

‘LOC_Os06g49480’ and select ‘Wheat Bin Mapped Markers’ on the track feature.

Three markers were identified, i.e., KSU027BE590822, NDS021BE406148, and

UNL036BF200636 (Fig 4.1). In order to identify the cDNA probes used for physical

mapping experiments, which are available in the GrainGenes structured query language

(SQL) database. The identified markers were entered into the ‘Mapped Loci for EST-

derived Probes’ query in this database (http://wheat.pw.usda.gov/cgi-

bin/westsql/map_locus.cgi). This showed that KSU027BE590822 had been mapped to

chromosome 1 (1BL: 2-0.69-0.85, 1DL: 2-0.41-1.00, and 1AL: 3-0.61-1.00) by

Page 124: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

102

Southern blotting, by two probes (5’ probe: BE590822, 3’ probe: CD453728);

UNL036BF200636 to chromosome 1 (1AL: 3-0.61-1.00, 1BL: 3-0.85-1.00) by 5’

probe BF200636 and 3’ probe CD453641, and NDS021BE406148 to chromosome 7

(7AL: 1-0.39-0.71, 7DL: 2-0.61-0.82, and 7BL7-0.63-0.78) by a 5’ probe BE406148

(Appendix IV). Sequences of the 5’ probes (BE590822, BF200636, BE406148) were

obtained from the EST database (http://www.ncbi.nlm.nih.gov/Database/), aligned with

exon contig of TaCypB-B and showed 97.2%, 98.1%, and 99.5% identities, respectively,

in the overlapping sections.

Fig 4.1: Putative wheat orthologues at the CypB locus of rice. The 2.478kb region of rice chromosome 6 contains the putative CypB gene (BAC LOC-Os06g49480: 29,972,847 to 29,975,324). Three wheat bin mapped markers were found: KSU027BE590822-3 on wheat Chr 1, NDS021BE406148-1 on wheat Chr 7*, and UNL036BF200636-4* on wheat Chr 1 (http://www.tigr.org/tigr-scripts/osa1_web/gbrowse/rice).

4.3.2 Development of molecular markers for physical mapping

PCR-based amplified fragment length polymorphism (AFLP) followed by restriction

fragment length polymorphism (RFLP) assays for specific enzymes were designed

based on the variations in introns of the three CypB genes of T. aestivum cv. Rosella

(Figs 3.3, 3.6). The expected sizes of WC3-CYPBR5 gene sections in T. aestivum, cv.

Rosella were 1049 bp from the A, 1073 bp from B and 1045 bp from D genome. Using

the “Restriction Map Program” in Bioedit, maps were predicted for these sections for 4

and 6 base cutter enzymes (Fig 4.2). Four enzymes (HaeIII, MscI, Stul, Spel) were

identified to be specific to TaCypB-A. Five (Psil, BsIGI, ACII, HpyCH4IV, NcoI) were

specific to TaCypB-B and none specific to TaCypB-D. HaeIII and NcoI were selected

for double digestion to generate RFLPs (detailed later). Based on genomic sequences,

HaeIII was expected to cut the 1049bp section of TaCypB-A twice, at 261 bp and 857

bp, to produce 596+261+192 bp bands, NcoI would cut the 1073 bp section of TaCypB-

Page 125: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

103

B to generate 690+383 bp bands, but neither would cut the 1045 bp section of TaCypB-

D.

AclI

BsrGI

BstZ17I

HinP1I HhaI

HpyCH4IVTaiIPsiI

NcoI

PsiI

ScaI

BspHI

HaeIII

MscI

HaeIII

StuI

ScaISpeI

TaiIXhoI

TaqI

BspHI

HinP1I HhaI

TaqI TaqI

XhoI

TaqI

Exon IIIIntron IIIExon IV

Intron IV

TaCypB-A TaCypB-B TaCypB-D

Exon V

Fig 4.2 Deduced restriction maps of Exon III to Exon V sections of TaCYPB-A, TaCYPB-B and TaCYPB-D genes from common wheat. The restriction sites were predicted using the Bioedit program. Enzymes sites unique to a gene are shown in red.

4.3.3 Experimental physical mapping of wheat Cyp B genes

In order to experimentally determine the location of isolated genomic CypB genes on

wheat chromosomes, PCR amplifications were conducted in two rounds. First

amplifications were conducted with the primer pair WC1-CYPBR5 (Table 4.1; Fig 4.3)

on gDNA of the 21 nullisomic-tetrasomic lines. Nested PCRs were then conducted on

first round products with WC3-CYPBR5 (Table 4.1; Fig 4.3) (data not shown).

Page 126: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

104

Table 4.1 Primer pairs used for physical and genetic mapping*

Forward primer Reverse primer AT Expected Length

c

Purpose

WC1 (114-131bp)a

ATACGATCCAAGATGGCG CYPBR5 (411-430bp)a CTGTGGAACGAACTCCCCTT

57oC

~1800bp

First round PCR

WC3 (299-316bp)a

TCGGGTTGTCATGGGACT3’ CYPBR5 (411-430bp)

a

CTGTGGAACGAACTCCCCTT 55oC

~1000bp

Physical Mapping

CYPB-A1(625-643bp)b

CCTGCACTGCACCTAATCA CYPBR-A1 (1737-1754bp)

b

CTT GCC GCT GTT GCC CAT 57oC

1130bp

A genome

CYPBF4 (84-98bp)b

CGTCGCCGCCACCCT CYPBR-B1(1770-1789bp)

b

GGCATGGTCAGCAACCAGTG 62oC

1706bp

B genome

CYPB-D1 (502-519bp)b

CCAATATCGCATGCCTGT CYPBR-D1(1730-1750bp)

b

GATTAAGTGGGGCATGGTCAG 54oC

1249bp

D genome

*Table 2.7 partly reproduced for convenience. a

Primer positions based on TC264488. b

Primer positions based on genomic sequence data obtained during this project. Bold red letters in allele specific primers indicate specificities to genomes.

cExpected length based on genomic

sequence data introduced in chapter 3. AT: Annealing temperature.

242 369 90 851 106 93 TaCypB-B48 24

232 320 90 827 107 96 TaCypB-A

224 366 90 823 TaCypB-D

111 73 183 76 136

111 73 183 76 120

111 73 61

20448 24

48 24

48 24

WC1

WC1

WC1

CYPBR5

CYPBR5

CYPBR5

CYPBF4 CYPBR-B1

CYPB-A1 CYPBR-A1

CYPB-D1 CYPBR-D1

WC3

WC3

WC3

Fig 4.3 Positions of primers for physical and genetic mapping of the genomic CypB genes Forward and reverse arrows indicate forward and reverse primers, respectively. Arrows pointing down indicate HaeIII sites; arrow pointing up indicated Ncol site (see section 3.3.5).

All WC3-CYPBR5 PCR products were double-digested with HaeIII+NcoI. The results

showed the lines N7A-T7D, N7B-T7D and N7D-T7B lacked the bands expected for A,

B or D genomes, respectively, while all other lines including control (CS: Chinese

Spring) showed six bands from all genes (results for D genome chromosomes 1 to 6

shown in Fig 4.4A; data for other lines not shown), indicating the genes are located on

chromosome 7A, 7B, and 7D. The same test was then applied to ten deletion lines of

chromosome 7 from CS (Endo and Gill, 1996) (Fig 4.4B). The lines 7AL-1, 7BL-2,

7BL-7, 7DL-2, 7DL-3 and 7DL-5 lacked the respective bands. Based on deletion

breakpoints (FL: fraction length, indicates location of deletion breakpoint), the genes

appeared to be located on (i) 7AL-1 towards the distal region of the long arm (FL: 0.39-

1.00); (ii) 7BL-7 towards the distal region of the long arm (FL: 0.63-1.00); (iii) 7DL-3

towards the distal region of the long arm (FL: 0.82-1.00) (http://www.k-

state.edu/wgrc/Germplasm/Deletions/grp7L.html). Following this work, the genes were

designated as TaCypB7A, TaCypB7B and TaCypB7D (Fig 4.5).

Page 127: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

105

Fig 4.4 Physical mapping of CypB genes using RFLPs (A) Nullisomic-tetrasomic lines in Chinese spring background (CS) and control DNA (CS). (B) Deletion lines of chromosome 7 and control (CS). PCR products were amplified from gDNAs with WC3/CYPBR5, digested with HaeIII+NcoI and electrophoresed on 1.7% agarose gels. Fig 4.5 Physical mapping of three CypB genes from wheat Red arrows: CypB genomic gene locations, i.e. TaCypB7A located in 7AL-1 towards the distal region of the long arm of 7A, TaCypB7B located in 7BL-7 towards the distal region of the long arm of 7B, and TaCypB7D located in 7DL-3 towards the distal region of the long arm of 7D chromosome. Deletion breakpoints as reported in Endo and Gill (1996) (http://www.k-state.edu/wgrc/Germplasm/Deletions/grp7L.html, last accessed 04/2009). The numbers on the left indicate C-banded and unbanded regions and outlined numbers indicate C-bands that did not differentiate well.

TaCypB7A

TaCypB7B

TaCypB7D

Page 128: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

106

4.3.4 Confirmation of PCR products amplified with allele specific primers from

different genomes in T. aestivum cv. Rosella

The amplification of partial CypB gene from different genomes of gDNA of T. aestivum

cv. Rosella was conducted by nested PCR. First round PCR was with WC1/CYPBR5

(data not shown), followed by second round on these products with allele specific

primer pairs CYPB-A1/CYPBR-A1 (for A genome), CYPBF4/CYPBR-B1 (B genome)

and CYPB-D1/CYPBR-D1 (D genome) (Table 4.1) with expected sizes of ~1100bp,

~1700bp and ~1250bp, respectively (Fig 4.6). Based on sequence data of the genes in

cv. Rosella (Chapter 3), HaeIII presents different digestion patterns in the sections

amplified by allele specific primers, i.e., two sites in CYPB-A1/CYPBR-A1 (expected

sizes 160bp, 374bp, 596bp after digestion); one in CYPBF4/CYPBR-B1 (expected sizes

363bp, 1343bp after digestion) and none in CYPB-D1/CYPBR-D1. In order to confirm

that the PCR products were from different genomes. The products generated by allele

specific primers were thus also digested by HaeIII and the results coincided with

expecting patterns (Fig 4.6).

Fig 4.6 PCR products amplified with allele specific primers from different genome of gDNA in T. aestivum, cv. Rosella and their RFLPs digested by enzyme (HaeIII). A: PCR products amplified from A genome by primer pair (CYPB-A1/CYPBR-A1), B genome by primer pair (CYPBF4/CYPBR-B1), and D genome by primer pair (CYPB-D1/CYPBR-D1); B: PCR products digested by HaeIII and electrophoresed on 1% gels.

Page 129: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

107

4.3.5 Identification of polymorphisms in TaCypB7A gene from ten parental lines

The CypB genes from the five pairs of parental lines (Cranbrook x Halberd, Tasman x

Sunco, CD87 x Katepwa, Janz x Kukri, Egret x Sunstar) used in the Australian National

Wheat Molecular Marker Program (NWMMP) (Kammholz et al., 2001) were amplified

by nested PCR. First round PCR was conducted on gDNAs of each parent with WC1/

CYPBR5 (data not shown). Second round PCR was on these products with allele

specific primer pair CYPB-A1/CYPBR-A1 (Fig 4.7A). The PCR products from

Tasman were larger (~1350 bp) than those of other 9 lines with the expected size

(~1100 bp). The PCR products from Tasman and Sunco were sequenced directly and

showed an insertion of 192 bp in intron IV in Tasman (Fig 4.8, Appendix IIC). A

marker for TaCypB7A could thus be developed for Tasman x Sunco progeny for genetic

mapping.

BA C

1500bp 1030bp

2000bp 1500bp

1500bp 1200bp

Cr Ha Ta Sc Cd Ka Ja Ku Eg Ss Cr Ha Ta Sc Cd Ka Ja Ku Eg Ss Cr Ha Ta Sc Cd Ka Ja Ku Eg Ss

Fig 4.7 Partial CypB PCR products with allele specific primers from the A genomes (A), B genome (B), D genome (C) in ten parental lines. Cr: Cranbrook, Ha: Halberd, Ta: Tasman, Sc: Sunco, Cd: CD87, Ka: Katepwa, Ja: Janz, Ku: Kukri, Eg: Egret, Ss: Sunstar. PCR products were electrophoresed on 1% gels.

Fig 4.8 Structure of partial CypB genes (partial Intron II to partial Exon V) in Tasman and Sunco.

Page 130: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

108

4.3.6 Identification of polymorphisms in TaCypB7B gene from ten parental lines

The gene on chromosome 7B in the ten parental lines was amplified by nested PCR,

with the first round PCR with WC1/CYPBR5 (as per sections 4.3.4, 4.3.5) (data not

shown), followed by the allele specific pair CYPBF4/CYPBR-B1 (Fig 4.7B). All lines

showed an identical size of ~1700bp, corresponding to the expected 1706 bp. In order

to identify any variations, the PCR products were sequenced directly. Alignment of

their partial sequence with corresponding section of TaCypB7B showed an SNP (T-C) at

its position 877bp in five of the parental lines (Fig 4.9), altering the digestion site of

HpyCH4IV (A’CGT). The SNP (T-C) altered the digestion site of HpyCH4IV (A’CGT).

Enzyme (HpyCH4IV) was applied to digest the PCR products generated with

CYPBF4/CYPBR-B1 (Fig 4.10). The result showed two types, i.e. the parental lines

Tasman, CD87, Janz, Egret and Sunstar contained three bands (~650bp, ~550bp,

~500bp), while Cranbrook, Halbred, Sunco, Katepwa and Kukri contained five bands

(~640bp, ~480bp, ~370bp, ~260bp, ~80bp). A molecular marker for TaCypB7B could

thus be applied, involving PCR followed by digestion by HpyCH4IV, for progeny lines

from Tasman x Sunco, CD87 x Katepwa, and Janz x Kukri for genetic mapping.

A

870 880 890

...| ....|....| ....|....|

TaCypB7B TTAA AAACCATGTA CTCATCTATT

Cranbrook TTAA AAACCACGTA CTCATCTATT

Halbred TTAA AAACCACGTA CTCATCTATT

Tasman TTAA AAACCATGTA CTCATCTATT

Sunco TTAA AAACCACGTA CTCATCTATT

CD87 TTAA AAACCATGTA CTCATCTATT

Katepwa TTAA AAACCACGTA CTCATCTATT

Janz TTAA AAACCATGTA CTCATCTATT

Kukri TTAA AAACCACGTA CTCATCTATT

Egret TTAA AAACCATGTA CTCATCTATT

Sunstar TTAA AAACCATGTA CTCATCTATT

B

Fig 4.9 Representative SNP in CypB genes from parental pair CD87 and Katepwa)(A), alignment of sequences (867- 890bp) in parental lines with TaCypB7B (B). The base representing SNP, i.e. ‘T’ in CD87, ‘C’ in Katepwa is framed.

Page 131: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

109

Fig 4.10 RFLPs of partial CypB gene from B genome in ten parental lines. Products of first round PCR of gDNA with primer pair WC1/CYPBR5 were amplified with. CYPBF4/CYPBBR-B1. These were then digested with HpyCH4IV and electrophoresed on 1.7% agarose gels. Cr: Cranbrook, Ha: Halberd, Ta: Tasman, Sc: Sunco, Cd: CD87, Ka: Katepwa, Ja: Janz, Ku: Kukri, Eg: Egret, Ss: Sunstar.

4.3.7 Identification of polymorphisms in TaCypB7D gene from ten parental lines

The CypB genes on chromosome 7D in the ten parental lines were amplified by nested

PCR, first round with WC1/CYPBR5 (data not shown) and second round with the allele

specific pair CYPBD1/CYPBR-D1 (Fig 4.7C). All products were same size (~1300bp),

coinciding with the expected size of 1249 bp. They were sequenced directly but lacked

variations (data not shown). Thus a marker could not be developed for the gene on

chromosome 7D.

4.3.8 Genotyping of cyclophilin B markers in mapping populations

The TaCypB7A marker was amplified from gDNA from the 162 double haploid progeny

lines (of Tasman x Sunco as described above (first round with WC1/CYPBR5, second

round with CYPB-A1/CYPBR-A1) (Fig 4.11). Eighty-four lines exhibited the AFLP

phenotype of Tasman (1350 bp), 77 lines exhibited that of Sunco (1100 bp), and one

line (#51) showed no product. DNA of four lines (#60, #71, #73, #108) was

unavailable.

Page 132: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

110

M 1S 2T 3S 4S 5S 6S 7T 8T 9T 10S 11T 12S 13S 14S 15T 16T 17T 18T

1500bp 1030bp

M 19S 20S 21S 22T 23S 24S 25T 26T 27S 28T 29S 30T 31T 32T 33T 34T 35T 36S

1500bp

1030bp

1500bp

1030bp

M 37T 38S 39S 40S 41T 42T 43S 44S 45S 46S 47S 48S 49S 50T 52T 53S 54S

M 55S 56T 57T 58S 59S 61T 62T 63T 64S 65S 66T 67S 68S 69S 70T 72S 74T

1500bp

1030bp

Page 133: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

111

M 75S 76S 77S 78S 79S 80T 81S 82T 83S 84T 85T 86S 87T 88S 89S 90T 91T 92S

1500bp

1031bp

1500bp

1030bp

M 93S 94T 95T 96S 97S 98S 99T 100S 101T 102T103S 104T105T 106T107T 109T110S 111S

M 112T 113S 114T 115T 116T 117T 118S 119T 120T 121T 122S 123T 124S 125S 126S 127T 128T 129T

1500bp

1030bp

1500bp

1030bp

M 130S 132S 133T 134S 135T 136S 137T 138S 139T 140T 141S 142S 143S 144T 145S 146T 147T 148T

Page 134: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

112

1500bp

1030bp

M 149S 150T 151T 152S 153T 154T 155T 156S 157T 158T 159T 160T 161T 162T 163S 164T 165T 166T

Fig 4.11 TaCypB7A marker assay in the progeny from Tasman x Sunco. Data were generated from 161 DH lines and no PCR product in line (#51), for the TaCypB7A PCR-AFLP marker by primer pairs (CYPB-A1/CYPBR-A1). S indicates the phenotype being the same as Sunco. T indicates the phenotype being the same as Tasman.

The TaCypB7B marker was amplified from gDNA of the 162 DH lines of Tasman x

Sunco as first round PCR with WC1/CYPBR5, second round with CYPBF4/ CYPBR-

B1, and digestion of all second round products with HpyCH4IV (Fig 4.12). Seventy-

three lines out of 162 had the RFLP phenotype of Tasman, and 89 that of Sunco.

M 1T 2T 3S 4S 5T 6T 7S 8T 9T 10T 11T 12T 13S 14T 15S 16S 17T 18S

800bp 500bp

100bp

M 19S 20T 21S 22S 23T 24S 25S 26T 27S 28T 29T 30T 31T 32T 33S 34S 35T 36S

800bp

500bp

100bp

Page 135: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

113

M 37S 38S 39S 40S 41S 42T 43T 44T 45S 46S 47T 48S 49S 50S 51S 52S 53T 54T

800bp

500bp

100bp M 55S 56T 57S 58T 59T 61T 62S 63T 64S 65S 66S 67T 68S 69S 70T 72S 74S

800bp

500bp

100bp

M 75S 76T 77T 78S 79S 80S 81S 82S 83T 84T 85S 86S 87S 88S 89S 90S 91S 92T

800bp

500bp

100bp

800bp

500bp

100bp

M 93S 94S 95S 96S 97S 98T 99T 100T 101S 102S 103S 104S 105S 106T 107T 109S 110T 111T

Page 136: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

114

M 112S 113S 114S 115T 116T 117S 118T 119S 120T 121T 122T 123S 124T 125S 126S 127S 128T 129T

800bp

500bp

100bp

800bp

500bp

100bp

M 130T 132S 133S 134T 135S 136T 137S 138T 139T 140T141S 142T 143S 144S 145S 146S 147T 148T

M 149S 150S 151T 152T 153S 154T 155T 156T 157T 158S 159T 160T 161S 162S 163T 164T 165T 166T

800bp

500bp

100bp Fig 4.12 TaCypB7B marker assay in the progeny from Tasman x Sunco. Data was generated from 162 DH lines for the TaCypB7B marker, by first round PCR with WC1/CYPBR5, second round with CYPBF4/CYPBBR-B1, followed by digestion of the second round products with HpyCH4IV. S indicates the phenotype being the same as Sunco, T indicates the phenotype being the same as Tasman.

4.3.9 Linkage mapping of TaCypB7A and TaCypB7B

Analysis of the above data for TaCypB7A with the Map Manager software package

QTXb20 could not integrate this marker into the current genetic maps (data not shown)

due to limited markers in this area. In combination with location of bin mapped marker

(TaCypB7A: 7AL: 1-0.39-0.71) (Section 4.3.1), TaCypB7A is integrated in the reported

linkage map from Sunco x Tasman (Chalmers et al., 2001) (Fig 4.14A). This marker is

Page 137: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

115

in the area (unbanded region 4) with no markers on this reported linkage map. The data

generated by Map Manager software package QTXb20 for TaCypB7B allowed its

integration between the markers wmc76 and wmc364 into the genetic map from the

Sunco x Tasman cross (Fig 4.13A) and on the same arm as gene Stb8 for resistance to

Septoris tritici blotch (Zwart et al., 2010) (Fig 4.13B). The TaCypB7B marker was

aligned into the comparative linkage map generated from a number of crosses including

Synthetic x Opata, Arina x Forno, CD87 x Katepwa, Cranbrook x Halberd, Egret x

Sunstar, and Sunco x Tasman (http://gramene.org/db/cmap/viewer, last accessed

07/2009) and found to be on the same arm as Stb8 (data not shown), as indicated in our

mapping (Fig. 4.13A), By combination of the Map Manager data with that from bin-

mapped marker (TaCypB7B: 7BL7-0.63-0.78) (Section 4.3.1), this marker was also

integrated in the reported linkage map from Sunco x Tasman (Chalmers et al., 2001)

(Fig 4.14B). The results showed that TaCypB7B was between markers (P40/M36-B and

xwmc364) on the linkage map of chromosome 7B (Figs 4.13A, 4.14B).

Page 138: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

116

36-B

Fig 4.13 Linkage map of chromosome 7B generated from Sunco x Tasman (A) and comparative linkage map of chromosome 7B in T. aestivum (B). PCR-RFLP markers for TaCypB7B are highlighted (A) or shown in box between markers (Xwmc76 and Xwmc 364a) (B). Distances (in cM) and marker names are shown on the right and left of the map, respectively. Green indicates the AFLP markers and gene (B). Black indicates the RFLP, SSR markers (B).

Page 139: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

117

1

123

4

5

6

7

TaCypB7A

A

Page 140: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

118

P41/ M39-5, qwm400

Xwmc076

XsunM16

Xstm337b, gwm573

Xwg180b

P45/M32-2

P40/M 36-8

TaCypB7B

Xwmc402, Xwmc364

Stn337b

P39/M78

P42/M78

wmc273

gwm344

gwm577

ksuE19

rds481

B x Tasman

1 2

3

4

56

1

2

1

2

3

45

6

Fig 4.14 Integration of TaCYPB7A and TaCYPB7B markers in the linkage maps from Sunco x Tasman (Chalmers et al., 2001) based on the bin mapped markers indicated in Section 4.3.1 (Fig 4.5) and data analysis by Map Manager software package QTXb20 (Fig 4.13A). PCR-RFLP markers for TaCypB7A and TaCYPB7B are highlighted. Distances (in cM) and marker names are shown on the right and left of the map, respectively. Gray lines indicate the corresponding positions on chromosome 7A and 7B in three parental crosses.

Page 141: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

119

4.3.10 Identification of QTLs on on chromosome arms of rice and wheat that

contain CypB genes

The QTLs on rice chromosome 6 in the general area of the CypB gene were identified

by browsing the Oryza sativa ssp. japonica Group genome database

(http://gramene.org) and looking up the chromosome location (29972988-29975061 bp)

corresponding to the putative rice CypB and looking up the QTLs in ContigView

(Gramene release V27 database). Fifty-five QTL accession IDs were identified, falling

in six categories: abiotic stress, anatomy, biochemical, quality, vigor and yield (Tables

4.2, 4.3). Three of these relate to grain quality i.e., AQFA001 (amylose content),

AQB008 (consistency viscosity) and AQCD004 (alkali digestion). Interestingly, the

consistency viscosity QTL (AQB008) (8.9cM) centred on a 1.3Mb region which

contained the CypB gene.

Page 142: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

120

Table 4.2 QTLs in the general area of the rice CypB locus on chromosome 6

QTL Category

QTL Trait Name and Accession IDa

Genomic assembly

position (bp)b

Genetic position (cM)

Abiotic stress

iron sensitivity (AQEK008, AQEK006, AQEK012, AQEK004)

26,161,226-30,823,968

73.5-92.6

Anatomy

large vascular bundle number (AQBJ013, AQBJ004, AQBJ011)

28,638,436-30,823,968 84.4-92.6

panicle length (AQDY087, AQDY09, AQDY096, AQCB022, AQDY098, AQDY093, AQDY089)

26,161,226-30,823,968 71.1-87.9

leaf width (AQFW224) 29,027,995-30,945,466 227.1-234.3

internode length (CQX23), culm length (CQX9), panicle length (CQX14)

24,916,395-30,945,789 64.4-91.6

root branching (AQHJ008) 28,532,453-30,328,051 74.6-113.3

Biochemical

chlorophyll content (CQE47) 27,612,443-31,173,447 107.3-124.4

alpha amylase activity (AQAC035) 29,027,995-30,823,968 171-196

allelopathic effect (CQAD4) 28,695,316-30,945,789 116.7-135.6

blast disease resistance (AQAQ013, AQAQ004, AQAQ021)

29,027,995-30,945,466 223.7-234.3

white-backed planthopper resistance (AQBG012)

28,638,436-30,823,968 84.4-92.6

Quality amylose content (AQFA001) 29,027,995-30,447,453 90-128.2

consistency viscosity (AQB008) 28,431,560-30,328,051 133.5-143.7

alkali digestion (AQCD004) 27,252,300-30,265,590 0 -25.6

Vigor

plant height (AQBZ012), root dry weight (AQGI060, AQGI059)

29,027,995-30,823,968 171-196

tiller number (AQDY104, AQDY105) 26,161,226-30,823,968 60.6-87.9

root dry weight (AQHJ002) 28,532,453-30,328,051 74.6-113.3

ratooning ability (AQDK004), root to shoot ratio (AQBY008)

29,027,995-30,796,997 138.8-152.2

Yield

spikelet number (AQBK038) 29,539,579-30,823,968 85.1-85.1

spikelet number (AQCU041, AQCU243, AQFW114)

29,027,995-30,945,466 227.1-234.3

spikelet number (CQC5, AQBK006) 17,054,655-30,823,968 39.8-48.1

panicle number (AQDY103) 26,161,226-30,823,968 59.8-87.9

biomass yield (AQGI117, AQGI181), large vascular bundle number to spikelet number ratio (AQAI065), grain yield (AQCY003), 1000-seed weight (AQEY020), biomass yield (AQGI122), grain number (AQCQ013)

29,027,995-30,823,968

171-196, 148-162.7

yield (CQAS78) 29,502,932-30,796,997 132.9-142.3

panicle number (AQDY102) 21,731,316-30,823,968 49.7-87.9

seed number (AQBK042), seed set percent (AQBK045)

30,823,968- 3,168,374 17.7

aThe QTL accession ID in the list of QTLs, and the map set with associated markers close to

the CypB locus are given in parentheses. bGenomic assembly position (bp) in Gramene

Annotated Nipponbare Sequence 2006. The QTL related to quality are shaded and the details of the markers are listed in Table 4.3.

Page 143: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

121

Table 4.3 Markers of QTLs controlling grain or protein quality on rice chromosome 6, in the general area of the CypB gene

Trait name and map seta Associated

Markersa

position in Gramene

sequence assembly (bp)b

Genetic position

(cM)b Amylose content (Cornell V20A/glab QTL 2004)

CDO78 N/A 90

RG653 29027995-29028429 109.2 RZ884 30446330-30447453 128.2

Consistency viscosity (Cornell IR64/Azu DH QTL 2001)

RG716 N/A 79.7

RG653 29027995-29028429 133.5 RM400 28431560-28431939 134.5

RM439 29624819-29625195 139.9

RM461 30113540 -30113752 139.9

RM412 30327854 -30328051 142.4

RM30 27252300-27252381 125.4 RM103 30889151-30889486 146.7

RM141 N/A 146.7

OSR21 N/A 146.7 Alkali digestion (CNYU Bal/Nan//Bal BC1 QTL 2001)

RM30 27252300-27252381 0 RM176 30265439-30265590 25.6

aThe trait name, map set, and list of associated marks were accessed from QTL database in website (http://gramene.org). The name of the relevant map set is given in parentheses. bPosition in Gramene sequence assembly and genetic position on the corresponding map set were accessed from Marker database on the same website.

QTLs on wheat chromosome 7 were identified by searching the integrated wheat

science database (http://www.shigen.nig.ac.jp, accessed 05/2008). Thirty-five QTLs

relating to agronomic and quality traits were present on group 7 chromosomes (Table

4.4, 4.5). Of these, QTLs related to flour, semolina and pasta colour were located on

chromosome 7 group, one for starch viscosity was on 7B between the markers

Xgwm344-7B (104.5cM) and Xwg420-7B (100.83cM) and 7A close to Wx-A (Batey et

al., 2002), flour and grain protein content on 7B close to Xwmc662 (Huang, et al.

2006), on 7A close to Xwmc65 and 7D close to between markers (Xcfd31–Xgwm44)

(Kuchel et al., 2006), grain protein content close to gwm263 on 7B and gwm332 on 7A

(Peleg et al., 2009), to wmc276-barc50/wmc311-Ta3 on 7B and wmc506-cfd66 on 7D

(Li et al., 2009), to Xgwm577 on 7B (Blanco et al., 2006).

Page 144: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

122

Table 4.4 Wheat QTLs relating to agronomic and quality traits on chromosome 7* Classes Trait

Grain Quality Parameters

Flour, semolina and pasta color

Starch characteristics Loaf volume

Proteins Grain protein content Endosperm storage proteins (glutenins) Enzyme Inhibitors (subtilisin inhibition)

Yield and physiology Restorers for cytoplasmic male sterility Grain weight

Flowering time

Dormancy (seed) Purple grain/pericarp

Defence from diseases and toxins

Reaction to Diuraphis noxia (Mordvilko) Resistance to disease caused by Fusarium head scab, scab Resistance to Blumeria graminis

Reaction to crown rot caused by Fusarium pseudograminearum, F. culmorum and other Fusarium species

Reaction to Schizaphis graminum Rond. Resistance to Phaeosphaeria nodorum (E. Muller).

Sensitivity to SNB toxin Reaction to Puccinia striiformis Westend (Strip rust QTLs). Resistance to tan spot

Reaction to Black-Point of Grain Resistance to disease caused by Mycosphaerella graminicola (Fuckel) Schroeter

Vigor Growth rate and early vigor *The QTLs in wheat on chromosome 7 were accessed from integrated wheat science database

(http://www.shigen.nig.ac.jp, accessed 05/2008).

Page 145: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

123

Table 4.5 Summary of wheat QTLs for agronomic and quality traits and their closest markers on chromosome 7

Trait Chr Closest or interval Markers Wheat varieties Reference

Septoria tritici blotch (Stb)

7D wPt-3727; Xwmc405b DHLs from F1 of CPI133872/Janz

Zwart et al., 2010 Stripe rust 7D wPt-2863 (8.8) wPt-3727

Red coleoptile

7A Xwmc283; wPt-3883/wPt-4877; wPt-8897, wPt-4744

7D Xwmc405b; Xwmc405a; Xpsp3123 Grain yield 7A Xwmc83 DHLs from F1 of AC

Karma/87E03-S2B1 Huang et al., 2006 7B Xgwm537

Plant height 7B Xgwm537

Grain protein 7B Xwmc662

Flour protein 7B Xwmc662

Flour protein 7A Xwmc65 DHLs derived from F1 of Trident/ Molineux

Kuchel et al., 2006 7D Xcfd31–Xgwm44

Flour color 7B Xgwm273–Xgwm146

Milling 7D Xgwm130 DHLs derived from F1 of RL4452/‘AC Domain

McCartney et al., 2006 Mixograp 7D Xgwm130–Xwmc405

7B Xgwm400–Xwmc182 Starch 7A Xwmc139, Xwmc422

7D Xgwm130–Xwmc405, Xwmc702 Noodle colour 7A Xwmc633–Xwmc809 Baking 7A Xbarc70-Xwmc168 Resistance to Fusarium head blight

7A Xgwm276-Xgwm282; DHLs derived from F1 of Wangshuibai/Alondra

Jia et al., 2005 7B Xgwm297-Xgwm644; Xgwm146-

Xgwm611 Grain yield 7AL Xpsp3094.1-Xm68p78.6 DHLs from F1 of Chinese Spring × SQ1

Quarrie et al., 2004 7BL Xm43p78.14-Xm86p65.0

7BS Xm59p78.7

Starch viscosity 7A Wx-A1 DHLs from F1 of CD87/Katepwa Batey et al., 2002 7B Xgwm344-Xwg420 DHLs derived from F1 of

Cranbrook / Halberd Grain hardness 7B wmc517-wmc311 RILs from Neixiang 188/ Yanzhan 1

Li et al., 2009

Grain protein 7B wmc276-barc50/wmc311-Ta3

7D wmc506-cfd66 Wet gluten content 7B wmc276-barc50/wmc311-

7A wmc506-cfd66 Water absorption 7D wmc506-cfd66

Grain protein 7A gwm332 RILs from durum wheat/wild emmer wheat

Peleg et al., 2009 7B gwm263

Grain zinc 7A wPt-9555

7B gwm983

Grain iron 7A wPt-9555

7B gwm400

Grain copper 7A wPt-7053

7B gwm46

Grain manganese 7B gwm400 Grain calcium 7B gwm263

Grain magnesium 7A gwm871a

7B wPt-8417

Grain Potassium 7B gwm537

Grain Phosphorus 7A wPt-7053

Grain sulfur 7A gwm1083

7B wPt-3730

Loaf volume 7A cfa2049, bcd1930 RILs from Renan and Récital Groos et al., 2007 7B gpw1045, gwm577

S. nodorum resistance

7A Xglk165- pwir232a RILs from Forno and Oberkulmer Aguilar et al., 2005 7B Xpsr952- Xgwm46

Powdery mildew 7BL Xpsr593c-Xpsr129c RILs from Forno and Oberkulmer Keller et al., 1999 Grain protein 7B Xgwm577 BILs derived from durum wheat/

dicoccoides Blanco et al., 2006 AB: advance backcross; BIL: backcross inbred line; DHL: double hybridization lines; RIL

(recombinant inbred lines). QTLs related to wheat grain or proteinquality traits on group of chromosome 7 are shaded.

Page 146: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

124

4.4 Discussion

4.4.1 Data on physical mapping of wheat in rice database indicates CypB genes

may be duplicates on different chromosomes

The wheat orthologues (wheat bin mapped markers) were identified at the putative rice

CypB locus LOC_Os06g49480. Three ESTs in wheat corresponding to the rice CypB

locus were mapped on chromosomes 1 and 7 and all three ESTs showed very high

identity (> 97%) with exon contig of TaCypB-B. This observation indicates that CypB

genes may be located on chromosome 1 and/or 7suggesting possible recent duplications.

4.4.2 Development of molecular markers for physical mapping prior to designing

of allele specific primers

With no information on allele specific primers at this stage, a PCR based AFLP+RFLP

assay was developed for physical mapping of the genes onto specific chromosomes.

The SNPs in the three CypB genes (Chapter 3) provided the basis for exploiting these

polymorphisms. As some of SNPs were expected to alter restriction sites, RFLP was

applied to conveniently identify the polymorphisms between homeoalleles. The success

of this approach in mapping shows this may be a most useful tool for mapping of other

genes too. All CypB genes mapped to chromosome 7AL, 7BL, and 7DL through

application of PCR-based analysis of polymorphisms to the nullisomic-tetrasomic lines

and deletion lines; however, the wheat bin mapped-markers data (from rice genome)

suggested CypB could be on wheat chromosomes 1 as well. This may be due to the

primers being too specific for amplifying a CypB gene on chromosome 1, if it is present

but divergent. The copy number of CypB genes thus needs to be addressed by methods

such as southern blotting, with the isolated CypB cDNA clones (section 3.3.6) as

probes. To author’s knowledge, this is the first report of physical mapping of CypB

genes in wheat. The data provide the basis for analysis of expression of the three

individual homeoalleles.

Page 147: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

125

4.4.3 Genetic mapping of TaCypB7A

The presence of SNPs in the genomic sequences of three CypB genes allows the design

of allele specific primer pairs for amplification genes from A, B and D genomes of

common wheat (Table 4.1). Use of these primer pairs in ten mapping cultivars showed

an AFLP polymorphism between the parental pair Tasman x Sunco. The genotyping

data of the TaCypB7A marker in 161 DH progeny lines of this cross were analysed for

integrating this gene on the linkage map of chromosome 7A; however, the gene could

not be integrated by the Map Manager software package QTXb20, possibly due to

limited markers. TaCypB7A was integrated in the reported linkage map from Sunco x

Tasman (Chalmers et al., 2001) (Fig 4.14A) with combination of its bin mapped marker

location (7AL: 1-0.39-0.71) (Section 4.3.1). This marker is in the area with no markers

on this reported linkage map. Future efforts could concentrate on finding SNPs of

other parental pairs, e.g. Cranbrook x Halbred or CD87 x Katepwa.

4.4.4 Genetic mapping of TaCypB7B

No AFLP was found in the B genome, but one SNP (T-C) altered the HpyCH4IV site,

leading to RFLP polymorphism in the mapping cultivar crosses Tasman x Sunco, CD87

x Katepwa and Janz x Kukri. The genotyping of TaCypB7B marker in the 162 DH

progeny lines from Tasman x Sunco permitted its integration onto the genetic linkage

map of 7B and reported linkage map from Sunco x Tasman (Chalmers et al., 2001) (Fig

4.13A, 4.14B). This linkage map contains markers including AFLP, RFLP, SSR and

gene specific markers, and this marker is located between markers (P40/M36-B and

xwmc364). TaCypB7B appears close to gene Stb8 for resistance to septoria tritici

blotch (Zwart et al., 2010) on the linkage maps generated from a number of crosses

including Synthetic x Opata, Arina x Forno, CD87 x Katepwa, Cranbrook x Halberd,

Egret x Sunstar, and Sunco x Tasman (http://gramene.org/db/cmap/viewer). The gene

may be useful as a marker by identifying any QTLs close to or co-localised with it.

4.4.5 Genetic mapping of TaCypB7D

Neither AFLP nor SNPs were found in the partial TaCypB7D in ten mapping lines.

This is in agreement with reports of lower levels of polymorphisms within D genome of

T. aestivum (Langridge et al., 2001). Further efforts to develop a molecular marker for

TaCypB7D gene may require for analysis of the 5’-end of this gene.

Page 148: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

126

4.4.6 QTLs in the chromosome regions of the cyclophilin B genes in rice and wheat

Several QTLs in rice have been identified on the region 17,054,655-3,168,374 bp on

chromosome 6 (Table 4.2). The QTLs encoding blast resistance and white-backed plant

hopper resistance are in the region 28,638,436-30,945,466 bp. Several QTLs resistant

to diseases are located on chromosome 7 in wheat (Tables 4.4, 4.5). The wheat Cyp-

like protein homologous to Arabidopsis AtCYP21-4 (Romano et al., 2004a) has been

reported to be involved in resistance to one of the most important diseases (yellow rust)

(Bozkurt et al., 2008). The QTLs related the traits of plant height and root dry weight

are at the 29,027,995-30,823,968 bp region. The ER-localised AtCYP20-1 in

Arabidopsis has a role in regulating PP2A activity for auxin transport and growth

response pathways (Jackson and Soll, 1999). Thus it is reasonable to ask whether the

wheat CypB gene may also have functions in defence or plant growth; these will need to

be tested further.

Three quality QTLs, relating to amylose content, consistency viscosity and alkali

digestion, occur in the general area of the putative rice CypB (Table 4.3). The QTLs for

consistency viscosity are in the region (28,431,560-30,328,051 bp) on chromosome 6,

which contains the CypB gene. Most interestingly, the wheat QTL search also shows a

probable association with consistency viscosity. A number of QTLs relating to

agronomic and quality traits occur on wheat group 7 chromosomes. In particular, the

consistency viscosity QTL in rice centres on the chromosome 6 region containing the

CypB gene and the wheat QTL for starch viscosity is on 7BL, between the markers

Xgwm344-7B (104.5cM) and Xwg420-7B (100.83cM) (Batey et al., 2002). This

observation supports the reported synteny of a large section of wheat group 7

chromosomes to rice chromosome 6 (La Rota and Sorrells, 2004). The visco-elastic

properties of dough have long been known to be important to the quality of bread, pasta,

noodles and other foods (reviewed in Payne 1987; Shewry 2009). Any causative

association of the CypB genes with this trait, seen in both cereals, thus suggests could

play significant roles in influencing storage protein quality. This is a very important

outcome of this work and will need to be tested further by identification of genetic

variations or gene knock

Page 149: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

127

Chapter 5

A COMPARATIVE PHYLOGENETIC AND MOLECULAR ANALYSIS OF THE

CYCLOPHILIN FAMILY IN RICE AND WHEAT

Page 150: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

128

5. A comparative phylogenetic and molecular analysis of the

cyclophilin family in rice and wheat

5.1 Abstract

Cyclophilins are a group of peptidyl prolyl cis/trans isomerase enzymes that catalyse the

slow cis/trans isomerisation of the peptide bond preceding proline residues in the

nascent protein folding and refolding processes. A large cyclophilin (Cyp) gene family

in Arabidopsis has been reported, with twenty-nine members located in all cellular

compartments and performing numerous functions. Little is known about the Cyp

family in rice and wheat, except reported three members in rice, and two members in

wheat. The genomic loci encoding the Cyp gene family in Arabidopsis were used as

queries to search Rice Annotation Release 6 in rice and Plant Transcription Assembly

(TA) database in wheat. Thirty-three Cyps encoded by twenty-seven loci in rice and

twenty-two Cyps encoded by TAs in wheat were identified, located in five cellular

locations. The gene encoding Cyps in rice are located on 11 different chromosomes and

range from being intronless to having 14 introns. Three out of twenty-two of TAs

encoding Cyps in wheat mapped chromosomes 1, 3, and 7. In addition to TaCYP23-1

(cyclophiln B, chapter 3), two other potential ER localized cyclophilins (TaCYP24-1

and TaCYP26-2) were identified in this study. Three genes encoding ER-localised

Cyps were found to be expressed in different tissues and developing seeds by RT-PCR

analysis. The TA data of Cyps in wheat can be used to develop markers for mapping in

wheat.

Page 151: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

129

5.2 Introduction

cyclophilins (Cyps) are a group of peptidyl prolyl cis/trans isomerase enzymes that

catalyse the otherwise-slow cis/trans isomerisation of the peptide bond preceding

proline residues during the folding and refolding of newly formed proteins (Galat, 1993;

Wang and Heitman, 2005) (sections 1.3, 1.4). Their activity is inhibited by the

immunosuppressive drug cyclosporin A (CsA) (Handschumacher et al., 1984).

Cyclophilins are ubiquitous and can be grouped based on their subcellular locations, i.e.

cytosol, endoplasmic reticulum (ER), nucleus, mitochondria, and chloroplast. Chapter 1

details the various functions of Cyps in humans and other organisms, in their PPIase

and/or chaperone roles. In brief, the cytosolic Cyps may play roles in the interaction

with infected species (Pelle et al., 2002), plant growth (Oh et al., 2006; kielbowicz-

Matuk et al., 2007), response to stress conditions (Godoy et al., 2007; Dubery, 2007),

and enhancing multiple abiotic stress tolerance (Kumari et al., 2009). A cytosolic multi-

domain Cyp containing tetratricopeptide repeats (TRP) is required for vegetative phase

change (Berardini et al., 2001). The 65kDa Cyp with U-box acts as a prolyl isomerase

and a chaperone for resolving protein aggregates (Wiborg et al., 2008). Cyp with WD

repeats act as a highly conserved histone remodeling factor involved in gene silencing

(Li et al., 2007). The ER-localised Cyps act as a transcriptional inducer (Rycyzyn and

Clevenger, 2002), play crucial roles in protecting cells against ER stress (Kim et al.,

2008), and regulate PP2A for auxin transport and growth response (Jackson and Soll,

1999). The chloroplast Cyps function in catalysing the correct folding and integration

of proteins in the thylakoid membrane (Edvardsson et al., 2003; Romano et al., 2004b)

and repairing photodamaged photosystem II (PSII) (Cai et al., 2008). A chloroplast Cyp

containing leucine zipper motif plays a critical role in the assembly and maintenance of

PSII supercomplexes (Fu et al., 2007; Sirpio et al., 2008). Nucleus localized Cyps with

an Arg/Lys domain play roles in cell cycle regulation (Dubourg et al., 2004) and pre-

mRNA processing (Lorkovi et al., 2004; Gullerova et al., 2007), while the

mitochondrial Cyps have roles in protection against apoptosis (Lin and Lechleiter,

2002).

The complexity of the Cyp gene family, consisting of 29 members in Arabidopsis (He et

al., 2004; Romano et al., 2004a) gives a clue to the potential diversity of Cyps in plants,

but little detail has been uncovered in other plants, especially cereals. Two cDNA

Page 152: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

130

clones from rice encode two different Cyps (Cyp1 and Cyp2) with differential

expression in leaf and root, and the genomic Cyp2 is intronless (Buchholz et al., 1994).

One previously reported cytosolic member (CypA) from wheat genomic DNA is

intronless (Johnson and Bhave, 2004b). In the experiments described in chapters 3 and

4, an ER-localised CypB was isolated from wheat, compared to one identified from rice

genome, physically mapped to group 7 chromosomes, linkage-mapped, and shown to be

in the genetic region associated with certain grain protein quantitative traits.

In light of the diverse functions of human and other plant Cyps (see above and Chapter

1), it is essential to develop an understanding of this gene family and identify members

with potential contributions to traits such as grain quality, plant development and stress

response. The Cyp family has not been studied in plants other than Arabidopsis. This

chapter reports bioinformatics-based identification of the Cyp family in rice from Rice

Annotation Release 5, and in wheat from the Plant Transcription Assembly database.

Further, analysis of gene structures in rice, estimation of phylogenetic relationships of

Cyps in rice, wheat and Arabidopsis, and preliminary expression analysis of genes

encoding ER-localised Cyps in wheat were conducted.

Page 153: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

131

5.3 Results

5.3.1 Identification of genomic sequences of Cyps genes in rice

The search for Cyp family members in rice (Oryza sativa ssp japonica cv. Nipponbare)

in the Rice Annotation Release 5 (and updated from Release 6)

(http://rice.plantbiology.msu.edu/osa1.shtml) using the reported Arabidopsis Cyp family

sequences as queries (Romano et al., 2004a) led to identification of 27 loci, resulting in

33 coding sequences (CDS; or exons contigues) due to some loci encoding different

splice forms (Table 5.1). The gene names were assigned based on the molecular weight

of putative proteins (introduced later). Twenty-two loci encoded single splice forms,

four (LOC_Os06g49480, LOC_Os07g37830, LOC_Os08g19610, LOC_Os08g44330)

potentially encoded two splice forms, and LOC_Os08g44520 presented three (Fig 5.1;

DNA alignments of alternative splice forms shown in Appendix V). Of these possible

alternative forms,

(i) OsCYP24-1 was smaller than OsCYP24-2 by 15 bp in exon I but larger than it by

15 bp in intron I.

(ii) OsCYP46 was split into two exons at the 5’-end by a 99 bp intron I, compared to

OsCYP50 containing 444 bp in exon I.

(iii) OsCYP40 had an extra exon II (212bp) and intron I (2716 bp), compared to the

intronless OsCYP28.

(iv) OsCYP73 had three extra exons (245 bp, 86 bp, 89 bp) and three extra introns (86

bp, 323 bp, 162 bp) at 5’-end, compared to OsCYP58.

(v) OsCYP18-2 was larger than OsCYP19-3 by 36 bp in intron III but smaller than it

by 36 bp in exon III.

(vi) OsCYP20 had extremely large intron I (1352 bp), compared to OsCYP18-2 and

OsCYP19-3 (120 bp).

5.3.2 Identification of expressed sequences of Cyp genes in rice

Thirty-one expressed Cyp sequences were also retrieved from the rice Transcript

Assembly (TA) database (see methods in section 2.19). Two sequences (OsCYP19-3,

OsCYP58) did not have a corresponding TA, suggesting these splice forms may not be

expressed, or at least not in the tissues that the ESTs were reported.

Page 154: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

132

5.3.3 Predictions of intron/exons structures of rice Cyp genes

The genomic sequences from the 27 loci ranged from 420 bp (LOC_Os02g02090) to

8092 bp (LOC_Os02g10970) and the coding sequences (CDSs) (exon contigs) ranged

from 420 bp (OsCYP16) to 1956 bp (OsCYP73) (Table 5.1). The gene structures

generated by comparison of genomic DNA with corresponding CDS varied from

intronless (OsCYP16, OsCYP18-1, OsCYP18-3, OsCYP19-1, OsCYP19-2, OsCYP28) to

a 15-exon-14-intron structure (OsCYP63) (Fig 5.1) (discussed later).

Page 155: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

133

Fig 5.1 Gene structures of Cyp gene family in rice Gene structures were generated based on comparison of genomic sequences with the corresponding CDSs downloaded from the Rice Annotation Release 6 (http://rice.plantbiology.msu.edu/osa1.shtml) with program ‘gene structure display server’ (http://gsds.cbi.pku.edu.cn). Blue lines indicate 5’ and 3’ extra regions compared to the CDSs. Green boxes indicate exons. Regions marked in red indicate the DNA sections encoding main domain in putative Cyp proteins.

Page 156: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

134

Table 5.1: List of Rice Cyclophilin gene family*

Namea Locus ID

b

GS

c

(bp)

CDS

(bp)

Ex

on

cDNA/EST RFWHd Protein

(KDa/aa) Cellular location

e

OsCYP16 Os02g02090 420 420 1 BE229368 QIWY 16.2/139 Cytosol

OsCYP18-1 Os06g04000 934 483 1 AK105360 RFHY 17.5/160 Cytosol

OsCYP18-2 Os08g44520 3804 495 6 AK072675 RFSH 18.0/164 Cytosol

OsCYP18-3 Os02g02890 1078 519 1 AK061894 RFWH 18.3/172 Cytosol

OsCYP19-1 Os10g06630 1015 546 1 AK058898 RFWH 18.9/181 Cytosol

OsCYP19-2 Os09g39780 1101 540 1 AK103109 RFWH 19.2/179 Cytosol

OsCYP19-3 Os08g44520 3804 531 6 na RFSH 19.4/176 Cytosol

OsCYP20 Os08g44520 3804 537 6 CF957035 RFSH 19.8/178 Cytosol OsCYP22-1 Os03g59700 3099 615 7 AK071076 RFWH 21.8/204 Cytosol

OsCYP22-2 Os06g49470 2197 627 7 CI598173 RFRH 22.1/208 ER OsCYP23 Os09g36670 2623 648 7 AK061004 RFWH 23.4/215 ER

OsCYP24-1 Os06g49480 2478 663 7 AK072490 RFWH 23.5/220 ER

OsCYP24-2 Os06g49480 2478 678 7 AK060865 RFWH 24.0/225 ER OsCYP25 Os01g18210 3133 717 6 CI392401 RFWH 25.4/238 CP OsCYP26-1 Os11g38990 5003 708 7 AK068821 RFHY 25.8/235 ER OsCYP26-2 Os07g29390 5767 708 7 AK066346 HFDL 26.4/235 M OsCYP27 Os05g01270 2866 753 7 AK061557 RFWH 26.6/250 CP

OsCYP28 Os08g19610 4898 777 1 AK121304 KQEN 28.2/258 CP OsCYP31 Os01g02080 1367 915 2 AK065672 KYEA 31.4/304 CP OsCYP40 Os08g19610 4898 984 2 AK069211 KQEN 35.9/327 CP OsCYP43 Os06g11320 5858 1191 8 AK068112 RFHH 43.2/396 Cytosol OsCYP44 Os02g52360 4560 1212 8 AK070404 RFHH 44.0/403 Cytosol

OsCYP46 Os07g37830 5593 1299 12 AK071983 QDFF 46.1/432 CP

OsCYP47 Os08g29370 3918 1284 7 AK058264 RKIY 46.6/427 CP

OsCYP49 Os02g10970 8092 1311 10 AK068982 RFRS 49/436 Nucleus

OsCYP50 Os07g37830 5593 1398 11 AK107481 QDFF 49.8/465 CP

OsCYP51 Os03g10400 4020 1389 7 AK102337 RFHH 50.7/462 Cytosol

OsCYP57 Os01g40050 4816 1500 10 AK069484 RFWN 56.8/499 Cytosol

OsCYP58 Os08g44330 5595 1542 10 na RFWH 58.3/513 Cytosol

OsCYP63 Os06g45900 8079 1647 15 CI140095 KFYH 63.2/548 Nucleus

OsCYP65 Os06g45910 6072 1695 14 AK059079 KFYH 65.0/564 Nucleus

OsCYP70 Os07g08190 6218 1899 13 AK059946 RFHH 70.0/632 Nucleus

OsCYP73 Os08g44330 5595 1956 13 AK111654 RFWH 72.9/651 Cytosol

* The Cyp family was identified originally in Rice Annotation Release 5, and updated from Rice Annotation Release 6) (http://rice.plantbiology.msu.edu/, last accessed 02/2009).

a Cyps were

named based on estimated molecular weight of putative proteins; names in bold refer to sequences reported by other names, i.e. OsCYP18-3 and OsCYP19-2 reported as Cyp2 and Cyp1 (Buchhoz et al., 1994); OsCYP24-1 designated as CypB (Chapter 3).

bLoci in bold encode

two or three putative Cyps. cGS: genomic sequences.

dFour residues essential for PPIase

activity and CsA binding. eCellular locations predicated ‘PSORT Prediction’ (http://psort.ims.u-

tokyo.ac.jp), and ‘TargetP 1.1 Server’ (http://www.cbs.dtu.dk/services/TargetP); M: mitochondria; CP: chloroplast.

5.3.4 Grouping of putative Cyp proteins in rice

The sizes of putative proteins ranged from 16.2 kDa (139aa) of OsCYP16 to 72.9 kDa

(651aa) of OsCYP73. Cellular locations were predicted by ‘WoLF PSORT Prediction’

and ‘TargetP 1.1 Server’ (section 2.22) as well as comparisons to those in Arabidopsis

Page 157: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

135

(He et al., 2004; Romano et al., 2004a), and based on the results, the rice Cyps were

grouped into cytosolic, ER, nuclear, mitochondrial and chloroplast isoforms (Fig 5.2).

The Cyps in wheat were identified and sequences of all three species (rice, wheat,

Arabidopsis) were compared (details presented later). The key characteristics of each

group in rice were described below.

nucleusAtCYP59 OsCYP49 TaCYP70AtCYP63 OsCYP63 AtCYP95 OsCYP65

OsCYP70

Cyclophilins in rice, wheat, and

Arabidopsis

ER

AtCYP19-4 OsCYP22-2 TaCYP23-1 AtCYP20-1 OsCYP23 TaCYP24-1AtCYP21-1 OsCYP24-1 TaCYP26-2AtCYP21-2 OsCYP24-2 AtCYP23-1 OsCYP26-1

Mitochondria AtCYP21-3 OsCYP26-2 TaCYP16-1 AtCYP21-4 TaCYP23-2

TaCYP26-4

ChloroplastAtCYP20-2 OsCYP25 TaCYP26-1 AtCYP20-3 OsCYP27 TaCYP26-3 AtCYP26-2 OsCYP28 TaCYP32 AtCYP28 OsCYP31 TaCYP36 AtCYP37 OsCYP40 TaCYP46-2 AtCYP38 OsCYP46

OsCYP47OsCYP50

CytosolAtCYP18-1 OsCYP16 TaCYP16-2 AtCYP18-2 OsCYP18-1 TaCYP17 AtCYP18-3 OsCYP18-2 TaCYP18-1 AtCYP18-4 OsCYP18-3 TaCYP18-2 AtCYP19-1 OsCYP19-1 TaCYP19 AtCYP19-2 OsCYP19-2 TaCYP21 AtCYP19-3 OsCYP19-3 TaCYP24-2 AtCYP22-1 OsCYP20 TaCYP31-1AtCYP26-1 OsCYP22-1 TaCYP31-2AtCYP40 OsCYP43 TaCYP46-1 AtCYP57 OsCYP44 AtCYP65 OsCYP51 AtCYP71 OsCYP57

OsCYP58 OsCYP73

Fig 5.2 Predicted cellular locations of cyclophilins in wheat and rice compared to those reported in Arabidopsis (He et al., 2004; Romano et al., 2004a; 2005). Cellular locations of Cyps were predicated by ‘PSORT Prediction’ (http://psort.ims.u-tokyo.ac.jp) and ‘TargetP 1.1 Server’ (http://www.cbs.dtu.dk/services/TargetP).

Fifteen members were predicted to be located in cytosol, encoded by eleven loci. The

estimated lengths/molecular weights of the putative full-length proteins ranged from

139 aa/16.2 kDa (OsCYP16) to 651 aa/72.9 kDa (OsCYP73) (Table 5.1). OsCYP18-3

and OsCYP19-2 were earlier reported as Cyp2 and Cyp1, respectively (Buchholz et al.,

1994). Based on alignment with the reported human CypA (hCyP18-a, NP_066953)

and orthologues in Arabidopsis (Romano et al., 2004a) (introduced later), the structures

of Cyps in this group are shown in Fig 5.3. Nine members out of fifteen (OsCYP16,

Page 158: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

136

OsCYP18-1, OsCYP18-2, OsCYP18-3, OsCYP19-1, OsCYP19-2, OsCYP19-3,

OsCYP20, OsCYP22-1) contained only the main domain for PPIase activity (Galat,

1999). OsCYP51 contained the extra section at both the N- and C-termini with no

functions known. Five (OsCYP43, OsCYP44, OsCYP57, OsCYP58, OsCYP73) were

multi-domain, of which OsCYP43 and OsCYP44 contained the main domain at the N-

terminus and the tetratricopeptide repeat (TPR) at the C-terminus shown to be required

for association with the Hsp90 chaperone complex (Duina et al., 1996). OsCYP58 and

OsCYP73 contained the WD40 repeat for protein-protein interactions (reviewed in He

et al., 2004). OsCYP57 had an Arg/Lys rich domain at the C-terminus with nucleus

localisation signals (NLS), characteristic of RNA-interacting proteins (Fu, 1995).

Five members were predicted to be located in ER, encoded by four loci. The putative

full-length proteins ranged from 208 aa/22.1 kDa (OsCYP22-2) to 235 aa/25.8 kDa

(OsCYP26-1). OsCYP24-1 is the CypB analysed in Chapter 3. All members had ER-

targeting signals at N-terminus (Price et al., 1991) and were predicted to have a SP

(secretory pathway signal peptide) by ‘TargetP 1.1 Server’ (Fig 5.3). The SP cleavage

site was predicted to be between residues A28 and V29 (OsCYP22-2), A20 and A21

(OsCYP23), A39 and K40 (OsCYP24-1), A37 and Q38 (OsCYP24-2) and G27 and

A28 (OsCYP26-1). Based on this, the mature proteins were estimated to be 19.2-23.3

kDa.

Eight members were predicted to locate in the chloroplast, encoded by six loci. The

putative full length of proteins ranged from 238 aa/25.4 kDa (OsCYP25) to 465 aa/49.8

kDa (OsCYP50) (Table 5.1). The putative N-terminal bipartite chloroplast/thylakoid

(C/T) targeting signals for translocation into thylakoid lumen, predicted by the ‘TargetP

1.1 Server’, existed in all putative homologues (Fig 5.3). OsCYP47 contained the

seven-residue repeat regions of a putative leucine-zipper motif between the C/T

targeting signals and main domain (Fulgosi et al., 1998).

One member was predicted to be mitochondrial, the full-length protein being 235

aa/26.4 kDa (OsCYP26-2). It contained the mitochondrial targeting signal (MTS) at N-

terminus and the main domain at the C-terminus (Fig 5.3).

Page 159: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

137

Four members, encoded by four loci, were predicted to be nuclear. The lengths/

molecular weights ranged from 436 aa/49.0 kDa (OsCYP49) to 632 aa/70.0 kDa

(OsCYP70) (Table 5.1). All members contained the Arg/Lys domains at the C-terminus

with SR rich motif within this domain, considered as the nucleus localisation signals

(NLS), characteristic of RNA-interacting proteins (Fu, 1995). OsCYP63 and OsCYP65

contained unique RNA recognition motif (RRM) involved in binding to RNA (Birney et

al., 1993) and Zinc finger (Z/F) motif for mediating DNA binding, protein-protein and

protein-lipid interaction (reviewed in He et al., 2004) (Fig 5.3).

139OsCYP16

160OsCYP18-1

164OsCYP18-2

172OsCYP18-3

181OsCYP19-1

179OsCYP19-2

176OsCYP19-3

17 178OsCYP20

33 204OsCYP22-1

36 208OsCYP22-2

34 215OsCYP23

ER47 220

OsCYP24-1

52 225ER OsCYP24-2

OsCYP2569 238

33 214OsCYP26-1

MTS

79 250

OsCYP26-2

OsCYP27

83 304

106 258OsCYP28

OsCYP31

70 235

C/T

106 327C/T OsCYP40

22 208OsCYP43

29 215OsCYP44

238 432OsCYP46

226 427OsCYP47

OsCYP491 190

271 465OsCYP50

219 387OsCYP51

1 181OsCYP57

353 513OsCYP58

1 205OsCYP63

1 175OsCYP65

1 187OsCYP70

491 651 OsCYP73

ER

C/T

ER

C/T

C/T

L/Z

101 160C/T

83

116

C/T

C/T

TPR TPR TPR

TPR TPR TPR

286 349

293 356

272/347

RRM

367/380

242/320 340/353

RRMZ/F

R/K

R/K

WD WD WD86 240

WD WD3 122

R/K

199 499

224 632

R/K

421 548

395 564

376/436

ER

R/K

Fig 5.3 Structure of putative Cyp proteins in rice. Grey box indicates main domain for PPIase catalysis; ER: ER-targeting signal; C/T: chloroplast/ thylakoid lumen targeting signal; MTS: mitochondrial targeting signal; TPR: tetratricopeptide repeat; R/K: Arg/Lys rich domain; dark bars in the R/K domain indicate NLS (nuclear localisation

signal). WD: WD40 repeat; RRM: RNA recognition motif; L/Z: Leu zipper; Z/F: Zinc-finger.

Page 160: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

138

5.3.5 Analysis of the rice Cyp gene structures

The lengths of individual exons varied from 24 to 795 bp (Table 5.2) and those of

introns, from 0 to 2716 bp (Fig 5.1; Appendix VI). All exhibited GT_AG at the

putative intron/exon splice junctions, except the intron I of OsCYP25 showing AG_GC

(data not shown; Appendix V). Genes encoding single domain cytosolic Cyps were

found to be intronless (OsCYP16, OsCYP18-1, OsCYP18-3, OsCYP19-1, OsCYP19-2)

or had five to six exons (OsCYP18-2, OsCYP19-3, OsCYP20). Genes encoding

OsCYP43 and OsCYP44 had the same 8-exon structure, the sizes of exons II, V, VI

VII, VIII being conserved (Table 5.2), the main domain encoded in exons I and II (Fig

5.2), and TPR domain mainly in exons V-VIII. The identities of CDS and putative

amino acid sequences of OsCYP43 and OsCYP44 were 81.2% and 82.6%, respectively.

The results suggest that their loci may be duplicate genes, dispersed on these two

chromosomes.

Genes encoding the putative ER Cyps had the same 6-exon structure. The sizes of

exons II, IV, V VI were conserved in OsCYP22-2, OsCYP23, OsCYP24-1, OsCYP24-2

(Table 5.2). The main domain was encoded by exons II-VI (Fig 5.2). The identities of

CDS and putative amino acid sequences of OsCYP24-1 and OsCYP24-2, possibly

different splice forms of LOC_Os06g49480, were both 97.8%. Further, the CDS of

OsCYP24-1 had high identities to those of OsCYP22-2 (73.5%) and OsCYP23 (57%),

and the respective protein identities were also 69.5 or 52.2%. These results suggest

that the loci LOC_Os06g49470, LOC_Os06g49480 and LOC_Os09g36670 may be

duplicates dispersed on two chromosomes, of which, LOC_Os06g49470 (29970113–

29971975 bp) and LOC_Os06g49480 (29972988–29975061 bp) are separated by only

1013 bp.

Genes encoding the two putative nuclear Cyps had conserved sizes of exons V-VIII of

OsCYP63 to exons IV-VII of OsCYP65. The identities of CDS and putative amino acid

sequences of OsCYP63 and OsCYP65 were 76.8% and 69.3%, respectively.

LOC_Os06g45900 (27781934–27790012 bp) and LOC_Os06g45910 (27791762–

27797300 bp) may thus be duplicate genes, separated by only 1751 bp.

Page 161: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

139

Table 5.2 Summary of exon sizes (bp) of Cyp genes in rice*

Exon I

Exon II

Exon III

Exon IV

Exon V

Exon VI

Exon VII

Exon VIII

Exon IX

Exon X

Exon XI

Exon XII

Exon XIII

Exon XIV

Exon XV

OsCYP18-2 72 96 62 134 85 46

OsCYP19-3 72 96 98 134 85 46

OsCYP20 114 96 62 134 85 46

OsCYP22-1 209 24 88 93 33 57

OsCYP22-2 81 79 48 24 183 76 136

OsCYP23 78 75 48 24 183 76 163

OsCYP24-1 114 79 48 24 183 76 139

OsCYP24-2 129 79 48 24 183 76 139

OsCYP25 184 147 89 55 86 156

OsCYP26-1 138 114 149 73 90 40 90

OsCYP26-2 152 40 51 86 138 148 93

OsCYP27 30 189 151 89 55 68 153

OsCYP31 796 118

OsCYP40 772 212

OsCYP43 237 501 99 46 105 76 38 82

OsCYP44 258 501 186 53 105 76 38 82

OsCYP46 165 180 90 95 108 50 103 54 156 123 50 124

OsCYP47 117 288 200 236 143 72 228

OsCYP49 78 55 89 25 39 118 167 364 113 263

OsCYP50 444 90 96 108 49 103 54 156 123 50 124

OsCYP51 91 76 362 257 289 111 189

OsCYP57 220 179 99 104 145 223 40 208 141 141

OsCYP58 246 122 40 108 177 218 133 224 154 84

OsCYP63 98 107 108 98 51 92 100 120 69 47 56 41 106 133 421

OsCYP65 98 105 118 51 92 100 120 78 47 56 41 106 133 550

OsCYP70 81 55 89 25 39 163 155 328 113 145 309 81 360

OsCYP73 245 86 89 240 122 76 107 177 164 133 224 154 84

The sizes of exons were calculated based on gene structures generated with gene structure display server program (http://gsds.cbi.pku.edu.cn).

Page 162: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

140

5.3.6 Cyp-encoding DNA sequences in wheat

A search of TIGR Plant Transcript Assemblies database (http://plantta.jcvi.org) using

the sequences of Arabidopsis Cyp loci (Romano et al., 2004a) as queries led to

identification of twenty-two Transcript Assemblies (TAs) ranging from 742 to 2237 bp

(Table 5.3). The TAs encoded 22 putative proteins, 15.5-70 kDa in size including any

predicted signal peptides. Their subcellular locations were predicted by two programs

(as for rice). Based on this information, the wheat Cyps could also be grouped into five

groups (Fig 5.2), i.e. cytosolic (10), ER (3), chloroplast Cyp (5), nuclear (1), and

mitochondrial (3). Their key characteristics are presented below. The putative amino

acid sequences and domains were compared to those in rice and other plants; this

information is presented later (section 5.3.7).

The ten putative full-length cytosolic proteins ranged from 148 aa/16 kDa (TaCYP16-2)

to 389 aa/46.2 kDa (TaCYP46-1). Two TAs (TA87300_4565, TA77265_4565)

encoding TaCYP31-2 and TaCYP46-1 respectively, had no stop codon, while

CV781674 encoding TaCYP21 had no start codon. TaCYP18-1 has been reported as

TaCYP18-3 on chromosome 6AS (Johnson and Bhave, 2004a). Eight members

(TaCYP16-2, TaCYP17, TaCYP18-1, TaCYP18-2, TaCYP19, TaCYP21, TaCYP42-2,

TaCYP31-1) contained only the main domain for PPIase activity (Galat, 1999). Two

members (TaCYP31-2, TaCYP46-1) were multi-domain. TaCYP46-1 contained the

TPR at C-terminus, required for association with the Hsp90 chaperone complex (Duina

et al., 1996) and TaCYP31-2 had the Arg/Lys rich domain at N-terminus, characteristic

of RNA-interacting proteins (Fu, 1995).

The three putative full-length ER-located proteins (including SPs) ranged from 213

aa/22.8 kDa (TaCYP23-1) to 231 aa/25.8 kDa (TaCYP26-2) (Table 5.3). TaCYP23-1

was 100% identical to TaCypB7A on coding sequence level and its gene was located on

7AL (Chapter 3). All members had ER-targeting signals at N-terminus (Fig 5.4) and a

SP, with cleavage site predicted to be between G34 and K35 (TaCYP23-1), A28 and

A29 (TaCYP24-1) and A24 and S25 (TaCYP26-2). The mature proteins were thus

estimated to be 19.2-23.4 kDa.

The five putative full-length chloroplast localized proteins ranged from 240 aa/25.7 kDa

(TaCYP26-1) to 423 aa/46.3 kDa (TaCYP46-2). TA106818_4565 had no start codon,

Page 163: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

141

suggesting its product TaCYP32 is partial at N-terminus. The N-terminal bipartite

chloroplast/thylakoid targeting signal (C/T) for translocation into the thylakoid lumen

(He et al., 2004; Romano et al., 2004a), as predicted by the ‘TargetP 1.1 Server’, existed

in four members (Fig 5.4). Alignment of TaCYP32 with TaCYP36 and rice Cyps

OsCYP46 and OsCYP50 showed highest similarity (described later); therefore,

TaCYP32 was placed in this group although it lacked a C/T. TaCYP46-2 contained the

leucine-zipper motif between the C/T signals and main domain (Fulgosi et al., 1998).

The three putative full-length mitochondrial proteins ranged from 135 aa/ 15.5 kDa to

233 aa/26.2 kDa and contained N-terminal mitochondrial targeting signal (Fig 5.4).

One member was likely nuclear, the full-length protein being 636 aa/70.0 kDa. It

contained the Arg/Lys rich domains with SR rich motifs being considered as nucleus

localized signals (NLS), a characteristic of RNA-interacting proteins (Fu, 1995).

Table 5.3 Cyclophilin family in Triticum aestivum*

Namesa TA ID

TA (bp) ST-SP

b Exon RFWH

c

Protein (KDa)/aa

Cellular location

d

TaCYP16-1 CV777661 781 180-587 n/a HW-- 15.5/135 M

TaCYP16-2 TA87618_4565 810 75-521 n/a RFHY 16.0/148 Cytosol

TaCYP17 CK159156 694 104-547 n/a RFSH 16.5/147 Cytosol

TaCYP18-1 TA51537_4565 938 188-682 1 RFSH 18.2/164 Cytosol

TaCYP18-2 DR738025 931 130-645 n/a RFWH 18.4/171 Cytosol

TaCYP19 DR739063 1152 146-685 n/a RFWH 18.7/179 Cytosol

TaCYP21 CV781674 742 n/a-587 n/a RFHH 21.3/194 Cytosol

TaCYP23-1 CK208443 1061 67-708 7 RFWH 22.8/213 ER

TaCYP23-2 TA86901_4565 855 203-826 n/a HLDI 23.1/207 M

TaCYP24-1 TA85832_4565 1073 131-781 n/a RFWH 23.6/216 ER

TaCYP24-2 TA75912_4565 1267 194-841 n/a RFHH 23.9/215 Cytosol

TaCYP26-1 TA79896_4565 1062 104-826 n/a RFWH 25.7/240 CP

TaCYP26-2 TA85549_4565 897 46-741 n/a RFHY 25.8/231 ER

TaCYP26-3 DR738857 1008 96-833 n/a RFWH 25.9/245 CP

TaCYP26-4 TA86902_4565 1040 14-715 n/a HSDI 26.2/233 M

TaCYP31-1 TA77268_4565 947 106-n/a n/a RFHH 30.7/280 Cytosol

TaCYP31-2 TA87300_4565 1223 87-935 n/a RFWN 31.4/282 Cytosol

TaCYP32 TA89563_4565 1145 39-986 n/a SING 32.2/315 CP

TaCYP36 TA106818_4565 1176 n/a-992 n/a CING 35.7/329 CP

TaCYP46-1 TA77265_4565 1288 122-n/a n/a RFHH 46.2/389 Cytosol

TaCYP46-2 TA67068_4565 1655 127-1398 n/a RFNG 46.3/423 CP

TaCYP70 TA75909_4565 2237 145-2055 n/a RFHH 70.0/636 Nucleus

*As identified in TIGR Plant Transcript Assemblies database (http://plantta.jcvi.org, last accessed 02/2009).

aCyps named based on molecular weight of putative proteins; the names in

bold are reported by other names, e.g. TaCYP18-1 reported as TaCYP18-3 (Johnson and Bhave, 2004b); TaCYP23-1 as TaCypB-A;

bST-SP, translated region from start codon (ST) to

stop codon (SP); cFour residues essential for PPIase activity and CsA binding.

dcellular location

predicted by ‘PSORT Prediction’ (http://psort.ims.u-tokyo.ac.jp), ‘TargetP 1.1’

(http://www.cbs.dtu.dk/services/TargetP), M: mitochondria; CP: chloroplast.

Page 164: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

142

70/135TaCYP16-1

148TaCYP16-2

147TaCYP17

164TaCYP18-1

171TaCYP18-2

179TaCYP19

194TaCYP21

24 213TaCYP23-1

70 207TaCYP23-2

34 216TaCYP24-1

1 179TaCYP24-2

48 240TaCYP26-1

51 245

29 198TaCYP26-2

TaCYP26-3

70 233TaCYP26-4

1 218TaCYP31-1

1 169TaCYP31-2

80 315TaCYP32

112 329 TaCYP36

TaCYP46-11 192

223 432TaCYP46-2

1 179TaCYP70

ER

C/T

MTS

C/T

MTS

C/T?

C/TER

ER

L/Z97 156

TPR TPR TPR

282 345

R/K

199/282

R/K

230 636

NLS

MTS

Fig 5.4 Structure of putative Cyps proteins in wheat. Grey box indicates main domain for PPIase catalysis; ER: ER-targeting signal; C/T: chloroplast/ thylakoid lumen targeting signal; MTS: mitochondrial targeting signal; TPR: tetratricopeptide repeat; R/K: Arg/Lys rich domain; dark bars in the R/K domain indicate NLS (nuclear localisation signal). L/Z: leu zipper.

5.3.7 Comparative analyses of putative Cyp amino acid sequences of rice and

wheat

The putative amino acid sequences of cytosolic single domain Cyps, translated from the

CDSs (exon contigs) in rice and TAs in wheat, were aligned with these types of Cyps in

Arabidopsis (Romano et al., 2004a; He et al., 2004) and CypA in human (hCyP-18a;

NP_066953) (Fig 5.5A). Three residues, corresponding to R55, F60 and H126 in

hCypA essential for PPIase activity (Zydowsky et al., 1992) (Table 5.4) were conserved

in seven out of nine Cyps in rice and seven out of eight Cyps in wheat. Residues (Q33-

I38-Y98; R44-F49-Y115; R32-F37-Y103, respectively) in OsCYP16, OsCYP18-1 and

TaCYP16-2 replaced these three residues. The W121 in hCypA essential for CsA

binding (Bossard et al., 1991) was conserved in five rice Cyps and two wheat Cyps. It

was replaced by H in OsCYP18-1, TaCYP16-2, TaCYP24-2, TaCYP31-1, TaCYP21;

or S in OsCYP18-2, OsCYP19-3, OsCYP20, TaCYP17, TaCYP18-1 (summaried in

Tables 5.1, 5.3).

Page 165: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

143

Table 5.4 Reported functionally important residues in human CypA

Function Residues Reference

PPIase activity R55, I57, F60, Q63, A101, N102, Q111, F113, L122, H126, R144

Kallen and Walkinshaw, 1992

Essential for PPIase activity R55, F60, H126 Zydowsky et al., 1992

CsA contact R55, F60, M61, Q63, G72, A101, N102, A103, Q111, F113, W121, L122, H126

Pflügl et al., 1993

Essential for CsA binding W121 Bossard et al., 1991

Calcineurin (CN) binding R69, K125, R148 Rascher et al., 1998

Essential for CN binding R69 Rascher et al., 1998

N-linked glycosylation N71, N108, Hirtzlin et al., 1995; Pelle et al., 2002 O-linked glycosylation T73, S110

The seven amino acid insertion located between α-helix-II and β-strand-III (Saito et al.,

1999; Johnson and Bhave, 2004b) was absent in some of the Cyps, present in

OsCYP22-1, TaCYP31-1, TaCYP21 (4 aa); OsCYP18-3, OsCYP19-2, TaCYP18-2,

TaCYP19 (7 aa) and OsCYP19-1 and TaCYP24-2 (8 aa). The phylogenetic relationship

of these single domain Cyps was determined by analysis of the alignments with the

Neighbor-Joining program in MEGA 4.0 (http://www.megasoftware.net) (Fig 5.6A).

The possible orthologues TaCYP16-2 and OsCYP18-1 were >76% identical to

AtCYP18-1. TaCYP17 and TaCYP18-1 were grouped together and their amino acid

sequences were conserved in the comparable parts with only 17 aa extension at the N-

terminus in TaCYP18-1. They may be encoded by allele genes or by one gene with

different splice forms. OsCYP18-2, OsCYP19-3 and OsCYP20 were grouped together,

and were encoded by exons contigs produced by different splice forms of

LOC_Os08g44520. All five orthologues, TaCYP17, TaCYP18-1, OsCYP18-2,

OsCYP19-3 and OsCYP20, were >75% identical to AtCYP18-2. Likewise, TaCYP18-

2 and OsCYP81-3 were >75% identical to AtCYP18-3, AtCYP18-4, AtCYP19-1 and

AtCYP19-2; and TaCYP19 and OsCYP19-2 had >75% identity to AtCYP19-3.

TaCYP21 and TaCYP31-1 were grouped together and their amino acids sequences were

almost conserved in the comparable part with only four-residue variations. TaCYP31-1

contained extensions at both the N- and C-termini. TaCYP21 and TaCYP31-1 may be

encoded by allelic genes or the same gene with different splices forms.

The sequences of cytosolic multi-domain Cyps were also aligned (Fig 5.5B). Residues

corresponding to R55, F60 and H126 of hCypA were conserved in five Cyps in rice and

one Cyp in wheat; OsCYP57 and TaCYP31-2 had R-F-N instead. W121 in hCypA

was conserved in three of six Cyps in rice and one of two in wheat; OsCYP43,

Page 166: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

144

OsCYP44, OsCYP51 and TaCYP46-1 contained H instead (Tables 5.1, 5.3). The

sequences exhibited a 6-8 aa insertion between α-helix-II and β-strand-III. At the N-

terminus, OsCYP73 contained WD40 of the same size as AtCYP71, while OsCYP58

contained a partial WD40, with 86 aa deletion. OsCYP43, OsCYP44 and TaCYP46-1

had an identical TPR (21 aa) to AtCYP40 (He et al., 2004). OsCYP57 and TaCYP31-2

contained an Arg/Lys domain analogous to that in Arabidopsis. The phylogenetic

relationships were assessed by analysis of the alignments (Fig 5.6B). TaCYP31-2 and

OsCYP57 had >60% identity to AtCYP57 in overlapping part and TaCYP46-1,

OsCYP43 and OsCYP44 had >64% identity to AtCYP40. OsCYP58 and OsCYP73 had

67% identity to AtCYP71 and OsCYP51 had 55% identity to AtCYP65. Compared to

AtCYP65, OsCYP51 was short of the U-box.

The putative amino acid sequences of ER-Cyps were aligned with those in Arabidopsis,

microsomal Cyp in maize (AY103896) and hCyP-18a (Fig 5.5C). R55, F60 and H126

in hCypA were conserved in four Cyps in rice and two in wheat; OsCYP26-1 and

TaCYP26-2 contained R-F-Y. W121 of hCypA was conserved in three rice and two

wheat Cyps; OsCYP22-2 contained R and OsCYP26-1 and TaCYP26-2 contained H

instead. Four out of five (OsCYP22-2, OsCYP23, OsCYP24-1, OsCYP24-2) Cyps in

rice and two of three (TaCYP23-1, TaCYP24-1) in wheat contained a 7 aa insertion

between α-helix-II and β-strand-III. All contained the N-terminal ER-targeting signals

of variable lengths and C-terminal ER retention signals with four (Freedman et al.,

2002), eleven (Boldbaatar et al., 2008), or thirty-six residues. The phylogenetic

relationships (Fig 5.6C) showed the possible orthologues TaCYP23-1, OsCYP24-1 and

OsCYP24-2 had >73% identity to AtCYP19-4 and AtCYP20-1; TaCYP24-1 and

OsCYP23 had >64% identity to AtCYP21-1, and TaCYP26-2 and OsCYP26-1 had

>69% identity to AtCYP23-1.

The putative amino acid sequences of chloroplast Cyps (Fig 5.5D) showed residues

corresponding to R55, F60, H126 and W121 of hCypA were conserved in only two

Cyps (OsCYP25, OsCYP27) in rice and two (TaCYP26-1 and TaCYP26-3) in wheat

(Tables 5.1, 5.3). These sequences had no insertion between α-helix-II and β-strand-III;

however, six Cyps (OsCYP28, OsCYP31, OsCYP40, OsCYP46, OsCYP47, OsCYP50)

in rice and three (TaCYP32, TaCYP36, TaCYP46-2) in wheat contained insertions of

11-24 residues. All contained N-terminal C/T targeting signals of variable lengths and

Page 167: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

145

TaCYP46-2 and OsCYP47 contained Leu-Zipper similar to AtCYP38. The

phylogenetic relationships are shown in Fig 5.6D. TaCYP26-1 and OsCYP25 had

>54% identity to AtCYP20-3, and TaCYP26-3 and OsCYP27 had >59% identity to

AtCYP20-2. TaCYP32 and TaCYP36, with 71% identity, may be encoded by duplicate

genes. TaCYP32, TaCYP36, OsCYP46 and OsCYP50 had >62% identity to AtCYP37;

and TaCYP46-2 and OsCYP47 had 72% identity to AtCYP38.

The putative nuclear Cyps (Fig 5.5E) R55, F60, H126 of hCypA were conserved in

three of four Cyps in rice and in TaCYP70; OsCYP63 contained K-F-H. W121 was

substituted by H (OsCYP70, TaCYP70), Y (OsCYP63, OsCYP65) or R (OsCYP49)

(Tables 5.1, 5.3). OsCYP49, OsCYP70 and TaCYP70 contained an 8 aa insertion

between α-helix-II and β-strand-III. Alignment with AtCYP59 showed OsCYP63 and

OsCYP65 contained RRM and zinc-finger motifs involved in RNA-binding and

protein-protein interaction (He et al., 2004). All contained the Arg/Lys rich domains of

variable sizes at C-terminus. TaCYP70 and OsCYP70 had >69% to AtCYP63 in the

main domain part corresponding to hCypA (Fig 5.5E). The phylogenetic relationships

(Fig 5.6E) show the orthologues of TaCYP70 may be OsCYP70 and AtCYP63. The

orthologue of OsCYP63 and OsCYP65 (encoded by same locus; section 5.3.1) may be

AtCYP59, with an identity of >58% in the comparable parts including main domain,

RRM motif, and zinc-finger motif.

The mitochondrial Cyps (Fig 5.5F) showed variable residues in place of to R55, F60,

H126 (OsCYP26-2: H-F-L; TaCYP23-2: H-L-I; TaCYP26-4: H-S-I) (Tables 5.1, 5.3).

TaCYP16-1 contained a partial main domain corresponding to the first 68 aa of hCypA.

All mitochondrial Cyps in rice and wheat contained a D corresponding to W121 and a 4

aa deletion between α-helix-II and β-strand-III. The mitochondrial targeting sequences

at N-terminus had conserved lengths. The phylogenetic relationship (Fig 5.6F) showed

all three wheat Cyps grouped together. Compared to TaCYP26-4, TaCYP16-1 and

TaCYP23-2 had deletions of 98 aa and 26 aa respectively at the C-terminus, with a few

variable residues in comparable parts. Duplicated genes may encode three

mitochondrial Cyps in wheat.

Page 168: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

146

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

hCypA ---------------------------------MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGE-KGFG--------YKGSCFHRIIPGFMCQGGDFTRHNGTGGKSIYG------------EKFEDEN-FILKHT-G

AtCYP18-1 ------------------------------------MS.TLHTNLG-----DIKC.I.C.E...S....L..C-----AS.-------Y.D.TI...N.K...I....PK-GT.K..T..W.------------K..N..IRDS...N-A

AtCYP18-2 ---------------------------MSARPEGSP.E.TLETSMG-----PFTV.MYYKHS.R.CR..LE..-----RR.-------Y.DNVL....VKD.IV....P.-GT.R..E....------------S.....INKE....-.

AtCYP18-3 ---------------------------------.AF.K.Y..MTI..Q.A..IVM..YT..T.R........C...-..V.GT-GKPLHF...K...V..N.........AG.....E....------------S......-.ER...-.

AtCYP18-4 ---------------------------------.S..R....MSLS.T.I..IEM.....TT.N........C...-..M.KL-GKPLHF...I...V............AK.....E....------------A..K...-..K...-.

AtCYP19-1 --------------------------------MAT..K.Y..MT.G.KSA..IVM..Y..TT.E........C...-R.I.KQ-GKPLH....S...V..K.........AG.....E....------------S..K...-..K...-.

AtCYP19-2 --------------------------------MASH.K....MTIG.A.A.KIVM..YT..T..........C...-..V.RS-GKPLHF...S...V..N.........KG.....E....------------A......-.ER...-.

AtCYP19-3 ---------------------------------.A..K.....LIGKMKA...VM.....VT.R..N.....C...-N.I.KA-GKALH....A.................G.....E....------------S......-.K....-.

AtCYP22-1 MNSGGGIVAAAAPS-----SGGGNVEWHVRPPNPK..V....VSIG.I.A..IKM.....IA........QFC...LRKA.KP----LG..ECQ...V.KD..V.S...LKND.S.CM....------------H......-.TA...-.

AtCYP26-1 ---------------------------------.A..K....LT...K.A..IVI.....LT.R......G.C...-R.I.KC-GKPIH....T.DH.V.DL.WC...IIFE.----EP.HS------------.ELD..Y-...N.ED.

OsCYP16 ------------------------------------------------------M..Y..L..L........Y.KK----------PLH...L.LSQHY.RIHVE.RRLRQGPWHRRRVHLR------------RHLPN..-.L.P.D--

OsCYP18-1 ------------------------------------MS.TLHTNLG-----DIKC.V.C.QA.R.....L..C-----AS.-------Y.D.TI...N.K...I....P.-GT.K..T..W.------------K..A..FRES...N-A

OsCYP18-2 ---------------------------MWGSADGGT.E.TLETSMG-----AFTI.MYYKHA...CR..LE..-----RR.-------Y.DNVI.....KD.IV....P.-GT.R..E....------------A.....IRPE....-.

OsCYP18-3 ---------------------------------.S.TR....MT.G.A.A..IVM..Y.KD..R........C...-..V.KS-GKPLH....T...V..E..........G.....E....------------...A..V-.KF..D-S

OsCYP19-1 --------------------------MAPAASSKS..R..L...IG..WV...VI..L.....D......R.C..--ERA.RSGKSRLH....A...VV.........I.AG.....E.ALDG---------AARH.P..G-.AV..D-.

OsCYP19-2 -------------------------------MASK..K.....LIGKARA...VM.....T.........C.C...-..L.AS-GKPLH....A......N..........G.....E....------------DR.A...-.K.R..-.

OsCYP19-3 ---------------------------MWGSADGGT.E.TLETSMG-----AFTI.MYYKHA...CR..LE..-----RR.-------Y.DNVI.....KD.IV....P.-GT.R..E....SAYFLLSSSFNLA.....IRPE....-.

OsCYP20 ------------MDPRSKADRIVRRTAMIGAATAAYFLLTA.YGP------DYPNPMYYKHA...CR..LE..-----RR.-------Y.DNVI.....KD.IV....P.-GT.R..E....------------A.....IRPE....-.

OsCYP22-1 MASSGGAAISAGPTPPSAAAASSSVDWHLRPPNPK..V....VTIGSI.A..IKM.....I.........QFC...HRKS.LP----QG...CQ...V.KD..I....YMKGD...CT....------------T..D...-..A...-.

TaCYP16-2 -----------------------------------------------------MV.V.CEQ..R.....L..C-----AS.-------Y.D.TV...N.K...V....P.-GT.K..A..W.------------G..A..FREA...G-A

TaCYP18-1 ---------------------------MWGGDDGGT.E.TLETSMG-----SFTV.MYHKHA...CR..VE.A-----RRK-------Y.DNVV.....KD.IV....PS-GT.R..E....------------A.....IRPE....-.

TaCYP17 --------------------------------------------M.-----PFTV.MYHKHA...CR..VE.A-----RRK-------Y.XNVV.....KD.IV....PS-GT.R..E....------------A.....IRPE....-.

TaCYP18-2 ---------------------------------.A..R....MT.G.A.A..IVM..YK.A..R.V......C...-..V.KS-GKPLH....A...V..D..........G.....E....------------...A..K-.VH...-K

TaCYP19 ------------------------------MAAAK..K.....LIGQAKA...VM..Y.....R..A...Q.C...-..L.AS-GKPLH....A.................G.....E.V..------------A..A...-.L.R..-.

TaCYP24-2 ---------------------------MPKFKKNL..Q..LE.SI..R.AE.IT......V...........C...-..L.ESTKKPLYF..THI........A.A...S.GD.R..E....------------G..P...-.K...D-Q

TaCYP31-1 ---MEGGGEGAAPAPAAAAAEVKNPRCFMDITIGGEMEGRIV.ELY-----ASVVPRT.ENFRAHCTGEKGVG-----AS.KP----LH....Y.....K...V......AGD....E....------------S....K.-.....E-R

TaCYP21 --------------------------------------------------------------TRPCTGEKGVG-----AS.KP----LH....Y.....K...V......AGD....E....------------S......-.....E-R

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

βI βII αI αII βIII βIV

+ + + + # -*-* * *

++ + + + +

A 7 aa

Page 169: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

147

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

hCypA PGILSMANAGPNTNGSQFFICTAKT-EWLDGKHVVFGKVK-EGMNIVEAMER-FGSR-NGKTSKKITIADCGQLE---------------------------------------------------------------------------

AtCYP18-1 R.M.....S...........TY..Q-PH.N.LYTI....I-H.FEVLDI..K-TQTGPGDRPLAE.RLNRVTIHANPLAG----------------------------------------------------------------------

AtCYP18-2 A...................TL.PQ-PS.....TI..R.C-R..EVIKRLGS-VQTDNTDRPIHEVK.LRTKVID---------------------------------------------------------------------------

AtCYP18-3 ..........A...........V..-D..........Q.V-..LDV.K.I.K-V..S-S..PT.PVVV......S---------------------------------------------------------------------------

AtCYP18-4 A.......S.............D..-S..........Q.V-K.LDV.K.I.K-V..D-S.....VV..T.....S---------------------------------------------------------------------------

AtCYP19-1 ..........A...........E..-S..........Q.V-..L.V.RDI.K-V..D-S.R...PVV......IS---------------------------------------------------------------------------

AtCYP19-2 ..........A...........V..-D..........Q.V-..LDV.K.I.K-I..S-S..PT.PVV.....EISS--------------------------------------------------------------------------

AtCYP19-3 ........S.............E..-S............V-D.Y.V.K...D-V..D-M.NP.ERVV.E...E.KNPSS-----------------------------------------------------------------------

AtCYP22-1 ..L.....S......C....TC..C-D...N......R.LGD.LLVMRKI.N-VAIGP.NRPKLAVV.TE..EM----------------------------------------------------------------------------

AtCYP26-1 ...I...DS----.....Q.HMKDYGLQV..D...I...V-..LDLMRNI.KEVITTTTRTP..PVV.....E.SDYRSERCYLMKNIEKEVIIKTAKDNKPVVIADCGGLSDDRSERYYLINIVVACMVLMCFWSWFV-----------

OsCYP16 --RPWLP.GSAEN.I....TR----VP.F..NY....CII-S.FHNLK.I.AEVEVKIANRGEVV.VPPPSLTTN---------------------------------------------------------------------------

OsCYP18-1 R.VM....S...........TY..Q-PH.N.HYT..A..I-H.FEVLDL..K-AQTGPGDRPLAE.RLNRVTIHANPLAN----------------------------------------------------------------------

OsCYP18-2 A...................TL.PC-QS.....TI..R.S-K..E..KRLGS-VQTDKSDRPIHEVK.LRTVVKD---------------------------------------------------------------------------

OsCYP18-3 ......................VPC-S..........R.V-...DV.K.I.K-V...-G.S.A.PVV.......S---------------------------------------------------------------------------

OsCYP19-1 ..VV................TVD.A-P....R..A..R.V-A..GA.R.ID.-T.TW-S...V.PVV.T...V.----------------------------------------------------------------------------

OsCYP19-2 ..V...................TR.-T............V-D.YTV..K..Q-V..G-S.G.AERVL.E.....ADDHAN----------------------------------------------------------------------

OsCYP19-3 A...................TL.PC-QS.....TI..R.S-K..E..KRLGS-VQTDKSDRPIHEVK.LRTVVKD---------------------------------------------------------------------------

OsCYP20 A...................TL.PC-QS.....TI..R.S-K..E..KRLGS-VQTDKSDRPIHEVK.LRTVVKD---------------------------------------------------------------------------

OsCYP22-1 ..L.....S.V.S.......TC..C-....N......R.LGD..LA.RKI.N-VATGP.NRPKLACV.SE..EM----------------------------------------------------------------------------

TaCYP16-2 R.T.....S...........TY..Q-PH.N.HYT..A..I-H.FDVLDL..K-TPTGPADRPLAE.RLNRVTVHANPLAG----------------------------------------------------------------------

TaCYP18-1 A...................TL.PC-QS.....TI..R.C-R..E..KRLGS-IQTDK.DRPIHEVK.LRTVVKD---------------------------------------------------------------------------

TaCYP17 A...................TL.PC-QS.....TI..R.C-R..E..KRLGS-IQTDK.DRPIHEVK.LRTVVKD---------------------------------------------------------------------------

TaCYP18-2 ......................VPC-N..........E.V-...DV.KNI.K-V...-S.TC..QVV.......----------------------------------------------------------------------------

TaCYP19 ..V........G.............-P..........Q.V-D.YGV..K..A-V..S-G.S.AQPVV.E.....PDDQG-----------------------------------------------------------------------

TaCYP24-2 ........S.E.........TFKAV-PH...........L-N.KALLKKL.A-L..E-S..PTCPVK.V...EASNIDTQNQLHGEKEKKLKRAVEDNQRCWREGQNQKNI---------------------------------------

TaCYP31-1 K.......S...........T.TR.-PH........AR.I-K..GV.RSC.H-IPVGEADRPTVDAV..E..E.PEGADDGVVNFFKDGDMYPDWPNDLDEKPTEVSWWMEAVESAKAFGNDNFKKQDYKTALRKYRKALRYLDVCWETE

TaCYP21 K.......S...........T.TR.-PH........AR.I-K..GV.RSC.H-IPVGEADRPTVDAV..E..E.PEGADDGVVNFFKDGDMYPDWPNDLDEKATEVSWWMEAVEAAKAFGKDNFRN-------RIIRRP-----------

βV βVI βVII αIII βVIII

++ * * *

+ + - - * *

+ + * * # * + #

Page 170: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

148

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP43 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP44 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP46-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP31-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP71 -------------------MEEESKNGGTTIPTEELAVVAVPPVVEEEEPMVGPGPAP-RGKRKRPLQFEQAYLDSLPSANMYEKSYMHRDVVTHVAVSAAEFFISGSMDGHLKFWKKKGVGIEFAKHFRSHLGPIEGLAVSIDGLLCCT

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------MQVSVDGLLCCT

OsCYP73 MATASDAPASSTITTATDDAEVERDQGNGNGAVSAAPAAVGKEAAAEEEEMIGPAPVPPRPRKKRPLQFEQAFLDALPSAAMYEKSYMHRDVVTHVAVSPADYFITGSADGHLKFWKKKPAGIEFAKHFRSHLSPIEGLAVSVDGLLCCT

AtCYP65 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP51 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP43 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP44 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP46-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP31-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP71 ISNDHAVKIYDVVNYDMMAMIRLPYIPGAVEWVYKQGDVKAKLAVSDRDSLFVHIYDPRSGSNEPIASKEIHMNPIKVMKYNPVSDTMISGDTKGIIEYWSATTLQFPEDEVNFKLKSDTNLFEIIKCKTTISAIEVSPDGKQFSITAPD

OsCYP58 ISSDWSVKIYDVVNYDMMFMMRLPFVPGAIEWVYRQGDVKPKLAVSDRNTPFVHIYDTHSGSNDPIISKEIHAGPVKVMKYNHVHDVVISADAKGLLEYWSPSTLKFPEDAVNFRLKTDTNLFEIAKCKTSVSAIEMSNDGTQFVVTSPD

OsCYP73 ISSDWSVKIYDVVNYDMMFMMRLPFVPGAIEWVYRQGDVKPKLAVSDRNTPFVHIYDTHSGSNDPIISKEIHAGPVKVMKYNHVHDVVISADAKGLLEYWSPSTLKFPEDAVNFRLKTDTNLFEIAKCKTSVSAIEMSNDGTQFVVTSPD

AtCYP65 MGKKQHSKDRMFITKTEWATEWGGAKSKENRTPFKSLPYYCCALTFLPFEDPVCTIDGSVFEITTIVPYIRKFGKHPVTGAPLKGEDLIPLIFHKNSEGEYHCPVLNKVFTEFTHIVAVKTTGNVFCYEAIKELNIKTKNWKELLTEEPF

OsCYP51 ----------------------------------------------------------------------------------------------------------------------------MRWGLAIQELNIKPKNWRELLTDEPF

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP43 ---------------------------------------------------------------------------------------------------------------------------------------------------MEG

OsCYP44 ---------------------------------------------------------------------------------------------------------------------------------------------------MEG

TaCYP46-1 ---------------------------------------------------------------------------------------------------------------------------------------------------MEG

AtCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP57 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP31-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP71 RRIRVFWFRTGKLRRVYDESLVVAQDLQRSDAPLYRLEAIDFGRRMAVEKELEKTESAPQPNAVFDESSNFLIYATFLGIKVINLHTNTVARILGKVESNERYLRVALYQGDQGGKKVRKIPAAAANVNESKEPLTDPTILCCAFKKHRI

OsCYP58 RRIRVFWFKTGKLRRVYDESLEVAQDLQKSDIPMYRLDAIDFGRRMAVEKEIEKTENVPQPNAVFDESSNFLIYATLLGIKIINLHTNKVSRILGKVENNERFLRIALYQGDKGNKKVRKIPSVAANVNDSKEPLSDPTLLCCAFKKHRI

OsCYP73 RRIRVFWFKTGKLRRVYDESLEVAQDLQKSDIPMYRLDAIDFGRRMAVEKEIEKTENVPQPNAVFDESSNFLIYATLLGIKIINLHTNKVSRILGKVENNERFLRIALYQGDKGNKKVRKIPSVAANVNDSKEPLSDPTLLCCAFKKHRI

AtCYP65 TRADLITIQNPNAVDGKVTVEFDHVKNGLKIDDEELKKMNSDPAYNINVSGDIKHMLADLGTDKAKEIALHGGGGNKARNERAAAIAAILESRSKIKEVS-KAEQPKQTYSVVDAASASVFGRSADAAKAGSSDKTAARIAMHMAGDRTP

OsCYP51 TRNDLITIQNPNAVDSKILGEFDHVKKGLKLEDEELQRMKNDPTYNINISGDLKQMIKELGTEKGKLAFLHGGGGQKAQKERAAALAAILAKKEKDDSKSGKEPKPHQPFSIVDAASASVHGRSAAAAKAATAEKTAARIAMHMAGDRAP

B

WD40

WD40

Page 171: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

149

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA --------------------------MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGEKG--------FGYKGSCFHRIIPGFMCQGGDFTRHNGTGGKSIYGEKFEDENFILKHTGP--GILSMANA-G-PNTNGSQF

AtCYP40 --------------------------.GRSKC.M..SIG..LE..IVI..YD.V.........L.C.....LGPNTGVPLH...NR...V.K...I....ISAND....E....L..D....E...ERK--.M.....S-.-........

OsCYP43 GGEGAESAAVASAAAA-------EVEVK..RC.M.VSIG..IE..IVI..Y.SV..R........C.....VGAVTGKHLH........V.K...V....I.AGD....E....L.......V...ERK--.M.....S-.-........

OsCYP44 GGEGTTTAAAAAAVAAGKEEEAEVVVVR..RCYL.VSIG.DME..IVV..Y.SVA.R........C.....VSAATGVPLH.....I...VK...V....I.AGD....E....LN......V...ERK--.M......-.-.D......

TaCYP46-1 GGEGAAPAPAAATAAE----------VK..RC.M..TIG..ME..IVI..Y.SV..R........C.....VGAS-GKPLH....Y.....K...V......AGD....E....S...........ERK--.......S-.-........

AtCYP57 -------------------------------MSTVYVLEPPTK.K.IVNTTHGPIDVELWPKE.PKSVRNFVQLCLE--GYFDNTI...V....LV....P.-GS....D....GV.A..-.HSRLRFSHR..VA....SS-..S.....

OsCYP57 -------------------------------MSSVYVLEPPTK.K.VVQTT.GPLDIELWPKE.PKAVRNFVQLCLE--GY.D.TL...V.KS.LV....P.-GS....E....AP.A..-.HTRLRFNHR.LVAC...-.T.HS.....

TaCYP31-2 -------------------------------MSSVYVLEPPTK.N.VVQTT.GPIDIELWAKE.PKATRNFVQLCLE--GY.D.TL...V.KS.LI....P.-GS....E....AP.A..-.HSRLRFNHR.L.AC...-.T.HS.....

AtCYP71 YMFSRREPEEPEDASQGRDVFNEKPAADELMSVS..GNSATTSLPENVIMHTTLGDIHMKLYPEECPKTVENFTTHCRNGY.DNHL...V.R...I.T..PL-GD....Q..W.RE....-.HKSLRHDRPFT......-.-........

OsCYP58 YLFSRREPEEPEDATKGRDVFNEKPPPEELLAVS.LGKTATTSLPDNLVMHTSMGDIHLRLYPEECPKTVENFTTHCRNGY.DNLI...V.K...I.T..PL-GD....Q..W.RE....-.HKSLRHDRPFT......-.-........

OsCYP73 YLFSRREPEEPEDATKGRDVFNEKPPPEELLAVS.LGKTATTSLPDNLVMHTSMGDIHLRLYPEECPKTVENFTTHCRNGY.DNLI...V.K...I.T..PL-GD....Q..W.RE....-.HKSLRHDRPFT......-.-........

AtCYP65 VNSKMVKSRYSSGAASRSFTSSAFTPVTKNDFELIKVEKNPKKKGYVQFQTTH-GDLNI.LHCDIAPRACENFITLCERGY.N.VA...S.RN..I....P.-GT.K..E..W.KP.K..-PNS.LLHSGR.VV....S-.-.H......

OsCYP51 VNAKLVKSRYTTGAASRSFTSTAYDPVTKNELEYVKVEKNPKKKGYVQLHTTH-GDLNL.LHCDITPRTCENFLTHCENGY.N.LI...S.KN..I....P.-GT.S..E..W.KP.K..-LNS.LIHSGR.VV....S-.-.H......

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA FICTAKTEWLDGKHVVFGKVKEGMNIVEAMERFGSRNGKTSKKITIADCGQLE-------------------------------------------------------------------------------------------------

AtCYP40 ..T.TR.SH.........R.TK..GV.RSI.HVSIEEQSCPSQDVVIHDCGEIPEGADDGICDFFKDGDVYPDWPIDLNESPAELSWWMETVDFVKAHGNEHFKKQDYKMALRKYRKALRYLDICWEKEGIDEETSTALRKTKSQIFTNS

OsCYP43 ..T.TR.PH.........R.IK..GV.RSV.HAPVGEADRPTSDVEIVDCGELPEGADDGVVNFFNDGDTYPDWPNDLDEKPMEVSWWMDAVESAKAFGNNNFKKQDYKAALRKYRKALRYLDVCWEKEDIDEEKSSALRKTKSIILTNS

OsCYP44 ..T.TR.PH.........R.IK..GV.RS..HVSVGESDRPITDIVIVDCGELPEGASDGVVNFFSDGDMYPDWPNDLEEKPAEISWWMTAVDSAKSFGNEYFKKKDYKTALKKYRKAMRYLDLCWEKEEIDEEKSSALRKTKSIILTNS

TaCYP46-1 ..T.TR.PH........AR.IK..GV.RSC.HIPVGEADRPTVDAVIAECGELPEGADDGVVNFFKDGDMYPDWPNDLDEKPTEVSWWMEAVESAKAFGNDNFKKQDYKTALRKYRKALRYLDVCWEKEEIDEEKSSALRKTKSIILTNS

AtCYP57 .FTLD.CD...K..TI....TGDSIYNLLRLGEVDTSKDDRPLDPAPKILSV.VLWNPFEDIVPRVLAKTSEESAAEIK-EPPTKPVKKLNLLSFGEEAEEEEKELA-VVKQKIKSSHDVLNDPRLLKAEASDKERNASESKEVLSVREA

OsCYP57 ..SLDRCD...K.NTI....TGDSIFNLLALADIETDKDDRPVYPQ-KILSV.VLWNPFDDIVPRQLKKTEPTAKGDIEGKSKKKAVKQLNVLSFGDEVEEEENEAASSVKDKIKSIHDVLDDPRFLKGEAPDEQLTKEQEDKKKETVQS

TaCYP31-2 ..TLDRCD...K.NTI....TGDSIFNLLALADIETDKDDRPVYPQ-KILSV.VLWNPFDDIVPRQLKKIQPAPKADAERKPEKKAVKQLNVLSFGDEVEEEENEAASFVKDKIKSIHDVLDDPRFLKVEPQVEQLSKKKEGEAGKKLIS

AtCYP71 ..T.VA.P...N..T...R.VK..DV.QGI.KVKTDKNDRPYQDVKILNVTVPKS-----------------------------------------------------------------------------------------------

OsCYP58 ..T.VA.P...N..T...R.VK..DV.QQI.KVKTDKNDKPYQDVKILNVTVPKT-----------------------------------------------------------------------------------------------

OsCYP73 ..T.VA.P...N..T...R.VK..DV.QQI.KVKTDKNDKPYQDVKILNVTVPKT-----------------------------------------------------------------------------------------------

AtCYP65 .VLYKSATH.NY..T...G.VG.LATLA...NVPVDESDRPLEEIKIIEASVFVNPYTELDEEEEKEKAEKEKNEDKDIEKIGSWYSNPGSGTTEAGAGGGGVGKYLKAMSSTATKDTKGSLDSDISTIGVSKKRKTTASASTGFKDFSS

OsCYP51 ..LYKSAPH.NF..T...M.VG.LTTLS...KVPVDDDDRPLEEIKILKVSVFVNPYTEPDEEEEEKAKEEEKKKDEDYDKVGSWYSNPGTGVAGSTSSGGGVGKYLKAR-------TAG--FADVVADDSNKKRKASVSN-VEFKDFSG

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP40 AACKLKFGDAKGALLDTEFAMRDEDNNVKALFRQGQAYMALNNVDAAAESLEKALQFEPNDAGIKKEYAAVMKKIAFRDNEEKKQYRKMFV-----------------------------------------------------------

OsCYP43 SACKLKLGDLKGALLDADFALRESEGNAKAFFRQGQAHIALNDIDAAVESFKHALELEPSDGGIKRELAAAKKKIADRRNQERKAFARMFQPSGKSDKDNEESK----------------------------------------------

OsCYP44 SACKLKLGDLKGALLDADFALREGEGNPKAFFRQGQARIALNDIDAAVESFKHALQLEPNDGGIKRELAAAKKKIADRRDQERKAFSRMFQPSGGSEKIDEENN----------------------------------------------

TaCYP46-1 SACKMKLGDLKGALLDADFALRETEGNAKAFFRQGQAHIALNDIDAAVESFQHALDLEPNDGTIKRELAAAKKKISNGKIWSARRTPGMFPTLR---KIPRENK----------------------------------------------

AtCYP57 LNAKKEAAQKDKSFSVSDTVGNSDDDDDGEDETKFDAKMRNQVLSRRKEIGDTPSKPTQKKKSSSLKGREESTQRSDAVSSEDEKPRMEKLSLKKKGIGSEAKAEHMEKGDTDLQLYNASERARQLHKLKKRRLQGNEDSVLAKLEKFKQ

OsCYP57 VREALVSKKSDFRELEHDSETDDYPDDENEEDFDNRMRSQILRKRRELGDIRSSETSKKTDKAHRKDKELPVHRSDDDNDDDNEDHQLTKSRKFSMKKKGIGSEASAERMSKGDANLQLLNPAEQEKHLQKQKRRRLQGREDETLAKLQK

TaCYP31-2 LSSWHSLRTVQDGRRSCVP-----------------------------------------------------------------------------------------------------------------------------------

AtCYP71 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP65 W-----------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP51 W-----------------------------------------------------------------------------------------------------------------------------------------------------

6-8 aa+ + + + * * * * # -* -

++ * * *

+ - - *

+ *

+ **

+ #*

+#

TPR

TPR

Arg/Lys rich domain

Arg/Lys rich domain

βI βII αI αIIαII βIII βIV βV

βVI βVII αIII βVIII

Page 172: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

150

910 920 930 940 950 960 970 980 990

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

hCypA --------------------------------------------------------------------------------------------

AtCYP40 --------------------------------------------------------------------------------------------

OsCYP43 --------------------------------------------------------------------------------------------

OsCYP44 --------------------------------------------------------------------------------------------

TaCYP46-1 --------------------------------------------------------------------------------------------

AtCYP57 SISAKPFTSSNEPVVLTSSSEPVDNKEEDLSDWKNVKLKFAPERGKDKMSRRDDPDAYMVVDPLLEKGKEKFNRMQAKQKRREREWSGKSLA

OsCYP57 FKASFLSKNPATGNTEKKTDEEDYTGWHSNRLTFEPDSSKDGMTRKDDPDDYVVVDPLLEKGKQKFNKMQAKLKRREREWAGRSLT------

TaCYP31-2 --------------------------------------------------------------------------------------------

AtCYP71 --------------------------------------------------------------------------------------------

OsCYP58 --------------------------------------------------------------------------------------------

OsCYP73 --------------------------------------------------------------------------------------------

AtCYP65 --------------------------------------------------------------------------------------------

OsCYP51 --------------------------------------------------------------------------------------------

Arg/Lys rich domain

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA -------------------------------------------------------------------------MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGEKGFG-------YKGSCFHRIIPGFMCQGGDFTRH

AtCYP19-4 -------MAKA----------------SFILLGTLFLFGAIASIQAK----------------------EDLKE.THK.Y..VEI..KSA...VIG..GKA...........C.....V.KSGKPLH....K......S..I......HG

AtCYP20-1 -------MASS----------------VTLLLWSLLLLGTLSAIQAKK-------------------SKENLKEITHK.Y..VEI..KAA..IVMG..GKT....V......C.....I.KNGKALH....S......S..L......HG

AtCYP21-1 MRREISFLLQPRCLL------------LLVALTIFLVFALFNTGKDEEK------------------QVIEDHEITNR..L.VDI..QR...IVIG.YGTV....V......C.....KTSSGKPLH...TP.....S..VI....IIHG

AtCYP21-2 -------MAITATR-----------LVSLTLLWIVVLFVTLALIQIKLTDVADPSVNEKILDAKLNQVGEDLEG.THK.Y...QIN.S.A..ILIG..GNI.........S.C.....V.NMGKPLYF...S.........I.......G

AtCYP23-1 -----MGITRNLILG-----------------LACLAFVSIAKA-----------------------LPHEPELGSAR.V.QTSY-----.DIE.GFYPTVA...VDHIFK.VRLG----------G.NTNH.F.VDK..VA.VA.VASG

OsCYP22-2 -------MAARETSR-----------HASLCLWLALVAATLSLAQAVES-------------------EAELTK.TTK.....TIN.K.A..IVMG..GNT..........IC.....L.KSGKPLS...TP.........I....TVSG

OsCYP23 -------MLRKVAVA------------FLACAALYLAFAAYS--RRESL------------------GEVRLPA.TNR.YL.VEI..QHI..IVIG.YG.V....VA.....C...E.I.HKGKSLH....R.........I....IV.G

OsCYP24-1 -------MAGSGWRRIPAVRRPPMSRPASVCLWIVLVAATLALAQ-------------------AKKSKADLTE.THK.Y..VEI..K.A...VMG..GKT...........C.....T.KSGKALHF...A......S..I......LG

OsCYP24-2 -------MAGSGWRRIPAVRRPPMSRPASVCLWIVLVAATLALAQVLIH--------------LAKKSKADLTE.THK.Y..VEI..K.A...VMG..GKT...........C.....T.KSGKALHF...A......S..I......LG

OsCYP26-1 ----MAALLRHAAAAA------------AAVVLLIAAAASTDGATSF--------------------YASDPNLGSAR.V.QTTH-----.DIE.GF.PHVA...V.HIYK.VRLG----------C.NTNH.F.VDK..VA.VASVVGG

TaCYP23-1 -------MAMRAWRRSAAARAP-----AHLCLWLALVAATLVLAQ---------------------GKKSNLSE.THK.Y...EI..K.A...VMG..GKA...........C.....M.NSGKPLH....S......S..I......LG

TaCYP24-1 -------MLRKAAVG------------FLACLVLYLAFSSYP--RSQRA------------------AYVQLPA.THR.YL.VEI..QNI..IVIG.YGEV....V......C.....D.PKGKPLH...TP.........I....IV.G

TaCYP26-2 ----MAGLLRHIAAA----------------LLFLLTAASTAGASTY--------------------YASDPNLGSAR.V.QLNH-----.DIE.GF.PHVA...V.HIFK.VQLG----------C.NTNH.F.VDK..VA.VA.VMGG

Maize -------METSGWRRRAAARAS--WSPATVYLWLALAAAALTLAQ----------------------AKKDLTE.THK.Y..VEI..K.A..IVMG..GKT...........C.....I.KSGKALH....T......S..L......LG

160 170 180 190 200 210 220 230 240 250 260 270 280

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

hCypA N----GTGGKSIYGEKFEDENFILKHTGPGILSMANA-GPNTNGSQFFICTAKTEWLDGKHVVFGKVKEGMNIVEAMER-FGSRNGK---TSKKITIADCGQLE---------------------------------

AtCYP19-4 .----.M..E....Q..A....K.......V.....S-.ED........T.VT.S....R.......VQ..DV.YKI.A-E.KQS.T---PKS.VV...S.E.PL--------------------------------

AtCYP20-1 .----.M..E.......A....K.......F......-.QD........T.VT.S....R.......VT..DV.YKV.A-E.NQS.T---PKS.VV.V.S.E.PL--------------------------------

AtCYP21-1 D----.KSSD....GT.P....KIQ.SHA.MVA...T-..DS.......T.V.AS..E.E...L...IQ..DN.F.I.GGA.TYS..---PR..VV...S.EIPKDKWDEER-------------------------

AtCYP21-2 D----.R..E....D..A....K.......F.....S-..DS.......T.VT.S....H.......LS..EV.RKI.A-Q.QDS.V---PKANVI.FAS.EVSL--------------------------------

AtCYP23-1 RSAPMNEEQRKEAEK.IVG.FSDV..VR-.T...GRYDD..SAQ.S.SMLLGNAPH..RQYA.....TK.DETLSKL.EVPTR.E.IFVMPTER...LSTYYYDTKMESCEEERSVLKRRLQASFVEVERQRMKCFP

OsCYP22-2 .----...CD....GM.P....KIN.SA..L.....Y-AKD........T.V.LTR...........LS..DV.YKI.A-E..QS.T---PRS.VL.S.S.E.K---------------------------------

OsCYP23 D----.K.SE....GT.P.....V...H..VIA...S-..DS.....Y.T.I..S....E.....R.IQ..DY.Y.I.GGA.TY...---PR..VV.T.S.EIPKEKWAEEV-------------------------

OsCYP24-1 D----.R..E....T..A....KI......L......-.RD........T.VT.S............LS..DV.YKI.A-E.QQS.S---PKS.VV...S.E.PM--------------------------------

OsCYP24-2 D----.R..E....T..A....KI......L......-.RD........T.VT.S............LS..DV.YKI.A-E.QQS.S---PKS.VV...S.E.PM--------------------------------

OsCYP26-1 RTAPMNDEQQEEAEKSVVG.FSTV..VR-.....GRHSD..SG..S.S.LLGDAPH...QYA...RLTK.DDTLRKL.QLPTR.E.IFVMPIER.S.LSTYYYDVDLESCEAEKSILRRRLSESASEVERWRRKCFA

TaCYP23-1 D----.R..E....T..A....K.......Y......-.RD........T.VT.S............LS..DV.YKV.A-E.KQ..T---PKSIVV...S.EVPL--------------------------------

TaCYP24-1 D----.KARE....GT.P....SV...H..VVA...S-.TDS.....Y.T.I..G....E.....R.IQ..DY.Y.I.GGA.TY...---PR..VL.T.S.EIPKEKWGEEAD------------------------

TaCYP26-2 RKAPMNKEQEQQAEKSIVG.FSTV..VR-.....GRYSD.DSAS.S.S.LLGDAPH...QYA...R.TK.DDTLRKL..LPTHKE.IFVMPIER.E.LSTYYYDIDVESCEAEKSILKRRLSESASEVERWRRKCFA

Maize D----.R..E....M..A....KI......L......-.RD........T.VT.S............LS..DV.YKV.A-E.RQS.Q---PKS.VV...S.E.PM--------------------------------

ER-targeting sequence

7 aa+ + + + * * * *

C#

- * - ++ * * *

- - + + * *

+ + * * #*

+ #

ER-localization signal

βI βII αI αII βIII βIV

βV βVI βVII αIII βVIII

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA -------------------------------------------------------------------------MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGEKGFG-------YKGSCFHRIIPGFMCQGGDFTRH

AtCYP19-4 -------MAKA----------------SFILLGTLFLFGAIASIQAK----------------------EDLKE.THK.Y..VEI..KSA...VIG..GKA...........C.....V.KSGKPLH....K......S..I......HG

AtCYP20-1 -------MASS----------------VTLLLWSLLLLGTLSAIQAKK-------------------SKENLKEITHK.Y..VEI..KAA..IVMG..GKT....V......C.....I.KNGKALH....S......S..L......HG

AtCYP21-1 MRREISFLLQPRCLL------------LLVALTIFLVFALFNTGKDEEK------------------QVIEDHEITNR..L.VDI..QR...IVIG.YGTV....V......C.....KTSSGKPLH...TP.....S..VI....IIHG

AtCYP21-2 -------MAITATR-----------LVSLTLLWIVVLFVTLALIQIKLTDVADPSVNEKILDAKLNQVGEDLEG.THK.Y...QIN.S.A..ILIG..GNI.........S.C.....V.NMGKPLYF...S.........I.......G

AtCYP23-1 -----MGITRNLILG-----------------LACLAFVSIAKA-----------------------LPHEPELGSAR.V.QTSY-----.DIE.GFYPTVA...VDHIFK.VRLG----------G.NTNH.F.VDK..VA.VA.VASG

OsCYP22-2 -------MAARETSR-----------HASLCLWLALVAATLSLAQAVES-------------------EAELTK.TTK.....TIN.K.A..IVMG..GNT..........IC.....L.KSGKPLS...TP.........I....TVSG

OsCYP23 -------MLRKVAVA------------FLACAALYLAFAAYS--RRESL------------------GEVRLPA.TNR.YL.VEI..QHI..IVIG.YG.V....VA.....C...E.I.HKGKSLH....R.........I....IV.G

OsCYP24-1 -------MAGSGWRRIPAVRRPPMSRPASVCLWIVLVAATLALAQ-------------------AKKSKADLTE.THK.Y..VEI..K.A...VMG..GKT...........C.....T.KSGKALHF...A......S..I......LG

OsCYP24-2 -------MAGSGWRRIPAVRRPPMSRPASVCLWIVLVAATLALAQVLIH--------------LAKKSKADLTE.THK.Y..VEI..K.A...VMG..GKT...........C.....T.KSGKALHF...A......S..I......LG

OsCYP26-1 ----MAALLRHAAAAA------------AAVVLLIAAAASTDGATSF--------------------YASDPNLGSAR.V.QTTH-----.DIE.GF.PHVA...V.HIYK.VRLG----------C.NTNH.F.VDK..VA.VASVVGG

TaCYP23-1 -------MAMRAWRRSAAARAP-----AHLCLWLALVAATLVLAQ---------------------GKKSNLSE.THK.Y...EI..K.A...VMG..GKA...........C.....M.NSGKPLH....S......S..I......LG

TaCYP24-1 -------MLRKAAVG------------FLACLVLYLAFSSYP--RSQRA------------------AYVQLPA.THR.YL.VEI..QNI..IVIG.YGEV....V......C.....D.PKGKPLH...TP.........I....IV.G

TaCYP26-2 ----MAGLLRHIAAA----------------LLFLLTAASTAGASTY--------------------YASDPNLGSAR.V.QLNH-----.DIE.GF.PHVA...V.HIFK.VQLG----------C.NTNH.F.VDK..VA.VA.VMGG

Maize -------METSGWRRRAAARAS--WSPATVYLWLALAAAALTLAQ----------------------AKKDLTE.THK.Y..VEI..K.A..IVMG..GKT...........C.....I.KSGKALH....T......S..L......LG

160 170 180 190 200 210 220 230 240 250 260 270 280

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

hCypA N----GTGGKSIYGEKFEDENFILKHTGPGILSMANA-GPNTNGSQFFICTAKTEWLDGKHVVFGKVKEGMNIVEAMER-FGSRNGK---TSKKITIADCGQLE---------------------------------

AtCYP19-4 .----.M..E....Q..A....K.......V.....S-.ED........T.VT.S....R.......VQ..DV.YKI.A-E.KQS.T---PKS.VV...S.E.PL--------------------------------

AtCYP20-1 .----.M..E.......A....K.......F......-.QD........T.VT.S....R.......VT..DV.YKV.A-E.NQS.T---PKS.VV.V.S.E.PL--------------------------------

AtCYP21-1 D----.KSSD....GT.P....KIQ.SHA.MVA...T-..DS.......T.V.AS..E.E...L...IQ..DN.F.I.GGA.TYS..---PR..VV...S.EIPKDKWDEER-------------------------

AtCYP21-2 D----.R..E....D..A....K.......F.....S-..DS.......T.VT.S....H.......LS..EV.RKI.A-Q.QDS.V---PKANVI.FAS.EVSL--------------------------------

AtCYP23-1 RSAPMNEEQRKEAEK.IVG.FSDV..VR-.T...GRYDD..SAQ.S.SMLLGNAPH..RQYA.....TK.DETLSKL.EVPTR.E.IFVMPTER...LSTYYYDTKMESCEEERSVLKRRLQASFVEVERQRMKCFP

OsCYP22-2 .----...CD....GM.P....KIN.SA..L.....Y-AKD........T.V.LTR...........LS..DV.YKI.A-E..QS.T---PRS.VL.S.S.E.K---------------------------------

OsCYP23 D----.K.SE....GT.P.....V...H..VIA...S-..DS.....Y.T.I..S....E.....R.IQ..DY.Y.I.GGA.TY...---PR..VV.T.S.EIPKEKWAEEV-------------------------

OsCYP24-1 D----.R..E....T..A....KI......L......-.RD........T.VT.S............LS..DV.YKI.A-E.QQS.S---PKS.VV...S.E.PM--------------------------------

OsCYP24-2 D----.R..E....T..A....KI......L......-.RD........T.VT.S............LS..DV.YKI.A-E.QQS.S---PKS.VV...S.E.PM--------------------------------

OsCYP26-1 RTAPMNDEQQEEAEKSVVG.FSTV..VR-.....GRHSD..SG..S.S.LLGDAPH...QYA...RLTK.DDTLRKL.QLPTR.E.IFVMPIER.S.LSTYYYDVDLESCEAEKSILRRRLSESASEVERWRRKCFA

TaCYP23-1 D----.R..E....T..A....K.......Y......-.RD........T.VT.S............LS..DV.YKV.A-E.KQ..T---PKSIVV...S.EVPL--------------------------------

TaCYP24-1 D----.KARE....GT.P....SV...H..VVA...S-.TDS.....Y.T.I..G....E.....R.IQ..DY.Y.I.GGA.TY...---PR..VL.T.S.EIPKEKWGEEAD------------------------

TaCYP26-2 RKAPMNKEQEQQAEKSIVG.FSTV..VR-.....GRYSD.DSAS.S.S.LLGDAPH...QYA...R.TK.DDTLRKL..LPTHKE.IFVMPIER.E.LSTYYYDIDVESCEAEKSILKRRLSESASEVERWRRKCFA

Maize D----.R..E....M..A....KI......L......-.RD........T.VT.S............LS..DV.YKV.A-E.RQS.Q---PKS.VV...S.E.PM--------------------------------

ER-targeting sequence

7 aa+ + + + * * * *

C#

- * - ++ * * *

- - + + * *

+ + * * #*

+ #

ER-localization signal

βI βII αI αII βIII βIV

βV βVI βVII αIII βVIII

Page 173: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

151

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP20-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP26-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP27 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP20-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP25 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCYP26-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP31 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP26-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP38 -----------------------------------MAAAFASLPTFSVVNSSRFPRRRIGFSCSKKPLEVRCSSGNTRYTKQRGAFTSLKECAISLALSVGLMVSVPSIALPPNAHAVANPVIPDVSVLISGPPIKDPEALLRYALPIDN

OsCYP47 -----------------------------------MAAALAFPTCCCCRRPSLRPSAGRRGRRPVARCALPSSEKNS---------FSWKEYAISVALSAGLITGAPTLGWPAHASPLE-PVIPDVSVLISGPPIKDPGALLRYALPIDN

TaCYP46-2 -----------------------------------MAAALAS--SRCCRRPSLLTIDRRRS--SVARCALSGGKGNS---------FSWKECAISVALSVGLITVPPTFGWSAHAYPLE-PVIPDISVLISGPPIKDPGALLRYALPIDN

AtCYP37 ---MASPLSSSTVVSHRLFFLHPSPLNRKFLFVKPKLPFNRTNSGDFRMRLHSTSSKTGTKELIHSCNSSIDSKLNTFEAGSKNLEKLVATILIFVQVWSPLPLFGLDSAYISPAEAVLYSPDTKVPRTGELALRRAIPANPSMKIIQAS

OsCYP50 MASRAAAAMVLAGALPVFPGRPLVAAGARCCDGGIRGRVSCSSHRRSDHPSCAAEVSTRWLLVSPHPNGFQSCSVRFSLIVWLSGLVQEGGVVELLKGAVAALAVIAQISVSLPADAILYSPDTNVPRTGELALRRAIPANPNMKTIQES

OsCYP46 MASRAAAAMVLAGALPVFPGRPLVAAGARCCDGGIRGRVSCSSHRRSDHPSCAAE---------------------------------EGGVVELLKGAVAALAVIAQISVSLPADAILYSPDTNVPRTGELALRRAIPANPNMKTIQES

TaCYP36 ----------------------------------------------------------------------------------------------------------------------------------------AIPANPNMKAIQES

TaCYP32 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA -------------------------------------------------------------------------------------------------------------------------MVNPTVFFDIAVD---GEPLGRVSFELFA

AtCYP20-2 -----------------------------------MATLSMTLSNPKSLSAPPRRLSPINTSAFTSTSFRLRTKSSFDSISFSSSTPFSASSLLLHTSYTKRNHRCFSVQSNAEVVTEPQSKITHK.Y...S.GNPV.KLA..IVIG.YG

TaCYP26-3 -----------------------------------------------MAAATSSFATLAIARPAAAGPAAQRALLASKAPSSALSLRGGRIASPALSVSQQSRARFVPSATAEPYAPELQSK.TNK.Y...SIGNPV.KNV..IVIG.YG

OsCYP27 -----------------------------------------MAVATS-FATLAIARPAAERALLASKTPSPLLSIRTGTGTARLPSSAVFGGFTPALSAAHSRARFVSSATADPKEVDLQSKITNK.Y...SIGNPV.KNV...VIG.YG

AtCYP20-3 ------------------------------MASSSSMQMVHTSRSIAQIGFGVKSQLVSANRTTQSVCFGARSSGIALSSRLHYASPIKQFSGVYATTKHQRTACVKSMAAEEEEVIEPQAK.TNK.Y..VEIG---..VA..IVMG..G

OsCYP25 -----------------------------------------------MACRPAVCSPSALAPPRHRLLSLGCARTAAPSGGLPLRLRLRSS-----PAPRGHGADLVVRAAAAEGAVELQAK..SKC...VE.G---...A..IVIG..G

TaCYP26-1 -----------------------------------------------MACRPAVSNPSALTPAPRRCVVLGRS---STRGRVDCSLRSSSAGAVRLGARRAPAAAFVVRAAAAEGDLDLQAK.TSKC...VEIG---..RA.K.VIG..G

OsCYP31 ------------------------------------MQLSPLVSPAMSHQILHTSNPTLPTPPQPHNHHPPVPPPPKLGRRAALAIAAAPAILSATPAPSRAQEAAAAAAAPCIADLPVTAKAFLD.SIGGEPAGRITIG.FGDAAPAG.

AtCYP26-2 -----------------------------MMQPNAKLLSPSAKFLPSPIEPPQHNRRTTVGAPPSLERNCKLSRRNLSKSSLLLLLTTQTTLTPLLDFSKAQADTIANPNLTNCENRIPTKKAFID.SI.GEPIGRIIIG.YGDDVPAGT

AtCYP38 KAIREVQKPLEDITDSLKIAGVKALDSVERNVRQASRTLQQGKSIIVAGFAESKKDHGNEMIEKLEAGMQDMLKIVEDRKRDAVAPKQKEILKYVGGIEEDMVDGFPYEVPEEYRNMPLLKG---RASV.MK.KIKDNPNIEDCV.RIVL

OsCYP47 KAVREVQKPLEDITDSLKIAGVRALDSVERNVRQASRALSNGRNLILGGLAESKRANGEELLDKLAVGLDELQRIVEDRNRDAVAPKQKELLQYVGTVEEDMVDGFPYEVPEEYSSMPLLKG---RATV.MK.KIKDNPN.EDCV.RIVL

TaCYP46-2 KAIREVQKPLEDITDSLKVSGVRALDSVERNVRQASRALTNGRSLILSGLAESKRANGEKTLDKLAVGLEELQRIIEDRNRNAVAPKQKELLNYVGTVEEDMVDGFPYEVPEEYNNMPLLKG---RATV.MT.KIKDNPNVEDCV.RIVL

AtCYP37 LEDISYLLRIPQRKPYGTMESNVKKALKVAIDDKDKILASIPVDLKDKGSELYTTLIDGKGGLQALITSIKKQDPDKVSLGLAASLDTVADLELLQASGLSFLLPQQYLNYPRLAGRGTVEITIEKADGSTFSAEAG.DQRKSATVQIVI

OsCYP50 LEDISYLLRIPQRKPYGSMEGDVKKAMKIAMDNKDAILASIPVELKEKGSKLYTSLLEEKGGLQTLLKYIKENDPDRLSVALASSLDTVAELELLQAPGLSFLLPQQYLEYPRLAGRGVVEFSVEKGDGSTFFPTAG...KSVATIQVVI

OsCYP46 LEDISYLLRIPQRKPYGSMEGDVKKAMKIAMDNKDAILASIPVELKEKGSKLYTSLLEEKGGLQTLLKYIKENDPDRLSVALASSLDTVAELELLQAPGLSFLLPQQYLEYPRLAGRGVVEFSVEKGDGSTFFPTAG...KSVATIQVVI

TaCYP36 LEDISYLLRIPQRKPYGSMESDVKKSMKIAMDNKEAILGSIPAEHKEEGAKLYTSLLEEKGGFQTLLKYIKENDPDKLSIALASSLDIVAELELLQAPGLSFLLPQQYLEYPRLTGRGVVEFTVEKGDGSTFFPTGG...KSVATIQVII

TaCYP32 ------------------MEGDVKKAMQIATENKEAMLASMPAELKEKGSELYTTLLEGKGGLQTLLKYIKDKDNDRLSVALASSLDTIAELELLQAPGLSFLLPKQYLEYPRLTGRAVVEFTVEKGDGSTFFPTAG...KSAATIQVVV

AtCYP28 -----------------------------------------------------MISSSSSSNMASSSILIPPILTRRNLLLSTTIATVTPPPPA---KPPSPDITITDRVFLDFSLCPTYFRSD.SATLSSTTPCSDST.....VLG.YG

OsCYP40 ----------------MVLPSSNTRATSSMAYPVSLSSLHHHPNNHHAFFLPSKTNHDNTHKPIESSRISRRSLIFLPVLPSLLYASSSPALDDANIPSTSAIDTTITDRIFMDFSVCPSYFRSDRTLGAELATCPDS......I.G.YG

OsCYP28 ----------------MVLPSSNTRATSSMAYPVSLSSLHHHPNNHHAFFLPSKTNHDNTHKPIESSRISRRSLIFLPVLPSLLYASSSPALDDANIPSTSAIDTTITDRIFMDFSVCPSYFRSDRTLGAELATCPDS......I.G.YG

Chloroplast/thylakoid targeting signal

Chloroplast/thylakoid targeting signal

Chloroplast/thylakoid targeting signal

Leu-zipperβI βII

D

Page 174: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

152

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

....|....|....|....|....|....|....|....|.. ..|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

hCypA D--KVPKTAENFRALSTGEKGFGYKGSCFHRIIPGFMCQGGDFTR-HNGTGGKSIYG------------------------EKFEDENFILKHTGPGILSMANAGPNTNGS---QFFICTAKTEWLDGKHVVFGKVKEGMNIVEAMERFG

AtCYP20-2 .--D..Q.V......C...........T...V.RD..I.....EK-G.......V..------------------------RT.K....K.S.V...V.............---......I..S....R.....Q.I...EV.KLI.EQE

TaCYP26-3 .--D..Q.V......C...........S...V.KD..I.....DK-G..........------------------------RT.K....Q.V.....V.............---......V..P....R.....Q.L...D..RTI.SSE

OsCYP27 .--D..Q........C...........S...V.KD..I.....DK-G..........------------------------RT.K....K.V.....VV............---......V..P....R.....Q.I...D..KMI.SQE

AtCYP20-3 E--V....V......C....KY.....S.....KD..I......E-G.....I....------------------------A.......T.....................---......V..S...N......Q.I...KL.RTL.SQE

OsCYP25 E--V....VD.....C..D..Y....CS.....KD..I.....QN-N.....R....------------------------.C.D....T.......V........D....---......V..P...NR.....H.L...DV.KNL.SQE

TaCYP26-1 E--V..R.VD.....C..D..Y....CS.....KD..I.....QN-N.....R....------------------------.C.D....T...V...V........D....---......V..P...DR.....H.L...DV.REL.SQE

OsCYP31 SRFLSLV.GVG---YRRK.FVKIVP.YVQ.GGVVSYPAIPAVTE.LAAEM.AVRAQCGGERSPHAAAGAVSIVVRDPSLPPP.PKLVARGG.LEVDQEQVGVVPNGTEFVITTGDAPELD.SALVVGRVV-DGMD.LGKIAA.PTVKDN-

AtCYP26-2 ARFSSIVSGKAGITYRRKDFVKIMP.YVQ.GG.RSYGVDAERA.AAVGSLQNLIEEWERGKRGEICNVNKAGSVGIVVRDPS.PPPKTKLVARN.KLVVEEEVIAVGP..TEFVITAVDSPEL.DSVLVIGKVL-EGM.VVEKMREVKTV

AtCYP38 .GYNA.V..G..VD.VERH---F.D.MEIQ.SD-..VV.T..PEGPAE.FIDP.TEKTRTVPLEIMVTGEKTPFYGSTLEELGLYKAQVVIPFNAF.TMA..REEFENDSGSSQV.--------..LKESELTPSNSNILDGRY.VFGYV

OsCYP47 .GYNA.V..G..LD.VERK---F.D.MEIQ.AD-..VV.T..PEGPAE.FIDP.TGKVRTIPLELMVDGDKAPVYGETLEELGRYKAQTK.PFNAF.TMA..RDEFDD.SASSQI.--------..LKESELTPSNANILDGRY.VFGYV

TaCYP46-2 .GYNA.V.SG..VD.VERK---F.D.MEIQ.AD-..VV.T..PEGPAE.FIDP.TGKSRTIPLEIMVDGDKAPIYGETLEELGLYKAQTK.PFNAF.TMA..REEFDD.SASSQV.--------..LKESELTPSNSNILDGRYSVFGYV

AtCYP37 .GYSA.L..G..AK.V.SG---A.D.AKLNTVNQAVITED.SGKVESVSVPLEVMPS-------------GQFEPLYRTPLSVQDG.LPV.PLSVY.AVA..HSENSEEY.SPY...FYLYDKRNSGLGGLS.DEGQFSVFGYTI-AGKD

OsCYP50 .GYSA.L..G..AK.VLDG---A.D.IKLKCASQAIIADNENGK-KGYTVPLEVMPA-------------GQFEPLYRTPLSIQDG.LPV.PMSVY.AVA..HSVDSDEY.SPS...FYLYDKRNSGLGGIS.DEGQFSVFGYTT-DGRE

OsCYP46 .GYSA.L..G..AK.VLDG---A.D.IKLKCASQAIIADNENGK-KGYTVPLEVMPA-------------GQFEPLYRTPLSIQDG.LPV.PMSVY.AVA..HSVDSDEY.SPS...FYLYDKRNSGLGGIS.DEGQFSVFGYTT-DGRE

TaCYP36 .GYSA.L..G..AKMVLDG---A.D.VTLKCASQAIIADNETGK-NGYTVPLEVKPA-------------GQFEPLYRTPLSIQDG.LPV.PMSVY.AVA..HSVDSDEY.SPT...FYLYDKRNSGLGGIS.DEGQFSVFGYTT-DGRD

TaCYP32 .GYSA.L..G.IAK.VLDG---A.D.ATLKSVSQAIIVDSETGK-KGYTLPLEVMPA-------------GQFEPLYRSPLSIQDG.LPV.PMSVY.SVA.SHSEDSDEY.SPT...FYLYDKRNSGLGGIS.EEGQFSVFGYAT-DGRD

AtCYP28 R--H..I.VST.KRMC.SS-STS..NTPV.K.F..QYFLA.RQGG-GRRDTAEVG.SLRDLPRNTDVVNSKAFLLPHAR-AGVVSLCLSENDDDDDIR.DPDYRNVEFLITTGPGPSPQLDGGNIVF.TVLEGLD.VTSISSIPTYKPSE

OsCYP40 R--LL.L.TA..K.AC.SA---A.R.TLV.KLLQ.QFFVA.RQGP--RRDR.EVQPPT-GLVRNAETIDPKAFELKHAR-PGTLSLCLGQNDDDDDIK.NPNYHNVEFLVTTGPGPCPELDGQNIVF.TVLEGMN.ITSIATIPTYKPAE

OsCYP28 R--LL.L.TA..K.AC.SA---A.R.TLV.KLLQ.QFFVA.RQGP--RRDR.EVQPPT-GLVRNAETIDPKAFELKHAR-PGTLSLCLGQNDDDDDIK.NPNYHNVEFLVTTGPGPCPELDGQNIVF.TVLEG-----------------

460 470 480 490 500

....|....|....|....|....|....|....|....|.. ..|....|...

hCypA SRNG-KTSKKITIADCGQLE---------------------------------

AtCYP20-2 TDR.DRPR..VV.......PMSEA-----------------------------

TaCYP26-3 TDR.DRPK..VV.SE..E.PVV-------------------------------

OsCYP27 TDR.DRPK..VV.SE..E.PVV-------------------------------

AtCYP20-3 T.AFDVPK.GCR.YA..E.PLDA------------------------------

OsCYP25 TSRSDIPKQPCR.VN..E.PVDG------------------------------

TaCYP26-1 TSRSDIPKQPCR.V...E.PLDG------------------------------

OsCYP31 TASPYFRVA.LIGDKRAVVAERGFNRPYT-KILITNCGVIEQQQEQ-------

AtCYP26-2 RD.-TSSPYFRVAKVI.DKRAVVAERGFNRPYS-KVVVTNCGLIESQTL----

AtCYP38 TD.EDFLADLKVGDVIESIQVVSGLENLANPSYKIAG----------------

OsCYP47 TE.EDYLADLKVGDVIESIQVVSGLDNLANPSYKIVG----------------

TaCYP46-2 TE.EDFLADLKVGDVIESIQVVSGLDNLVNPSYKIVG----------------

AtCYP37 ILGQI..GDI.KS.KLIEGQDRLSLPVQNNNINEST-----------------

OsCYP50 VLSQI..GDI.RS.KLV.GRERLVLPPEAP---AES-----------------

OsCYP46 VLSQI..GDI.RS.KLV.GRERLVLPPEAPAES--------------------

TaCYP36 VLSQI..GD..RS.KLV.GRERLVLPSIAP---EES-----------------

TaCYP32 VLSQI.AGD..RS.KLI.GRERLVLPAAASAPAPADPTPAPADPTLAPAES--

AtCYP28 NIKQFNDFAEFLGDERA.NARSLWNRPLK-TVFISGCGELKVTNPSLSPTLP-

OsCYP40 RIRFFNDFAQLIGDERA.TARALWDRPLK-TVYISDCGELKVTKPSLSPPSLP

OsCYP28 -----------------------------------------------------

+ + + + * * * *

# - * -+ + * **

- -+ + * *

+ + * * # * +

#

αI αII βIII βIV βV βVI βVII αIII

βVIII

Page 175: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

153

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------MVNPTVFFDIAVDGEPLGRVSFELFADKVPKTAENFRALSTGEKGFGY--------KGSCFHRIIPG-FMCQGGDFTRHNGTGGKSIYG--------------------------------EKF-EDE-NFILKHTGPGILSMA

AtCYP59 --------------MSVLIVTS..DIVID.HS..C.L.CK..LK.CKIKYY-----------N.CL..TVQKD-.TA.T..P.-GT.A..D.-------------------------IYKFLYGEQ-AR.YK..IHLD...SKT.TVA..

OsCYP63 --------------MSVLIVTSV.DIEVD.HT.MC.L.TK..LK.CK.NE.LVA--------G.LA.RKQLS.Q.WRCRAGA.-GS.FDV.GMSFPGYSFFLVFLSLHYFVHIQNYLFSRFLSGAMATR.FD..IHPE.R.SKM.TIA..

OsCYP65 --------------MSVLIVTSV.DIEVD.HT.MC.L.TK..LK.CKMKYY-----------N.CL..KVEK-D.LA.T..P.-GT.A..D-------------------------SVYKFLYGDQA-R.FD..IRPD.R.SKK.TIA..

AtCYP63 ---MTKKK..N..L.VSIG.D.VQ.IVI.....V...........C...A.V.KSTGKPLHF...S...V.K.-..A.....SNG.....E....--------------------------------G..-S..-..R.D.D.A.V....

OsCYP70 MPKAKK--..H......IG.RAAE.IT......V....T......C...R.L.VSTQKPLYF..TNM...LK.-..A.....S.GD.R..E....--------------------------------A..-K..-..K...DQ..V....

TaCYP70 MPKFKKNL..Q..LE.SI..R.AE.IT.Q....V...........C.....L.ESTKKPLYF..THI......-..A.A...SGGD.R..E....--------------------------------G..-P..-..K...DQ.......

AtCYP95 ---MAKKK..Q..M.VSI..D.AETMV....PEVA...S......C.....I.PRSGKPLHY...F....MK.-SSA.A...VNR...A.E...A--------------------------------G..-P..-SPK.R.EET.L...S

OsCYP49 ---MAKKK..I..M.VSIGD..DE.MV......VA.R........C...M.I.QTSKKPLYY...L...V.K.-..A.....SNGD.S..E....--------------------------------GT.-...-..V.R.DER.L....

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA NAGPNTNGSQFFICTAKT-EWLDGKHVVFGKVKEGMNIVEAMERFGSRNG-KTSKKITIADCGQLE------------------------------------------------------------------------------------

AtCYP59 SG.E.L.A...YFTLRDDLDY.....T...QIA..FDTLTRINEAYVDPKNRPY.N.R.KHTHI.DDPFDDPPQLAEMMPDASPEGKPKEEVKDDVRLEDDWVPMDEELGAQELEEVIREKAAHSSAVVLESIGDIPEAEVKPPDNVLFV

OsCYP63 S..E.C.A...Y.TLRDGVDY..D..T...M.A..FDTITKINETYVDDKGRPF.D.R.RHTYV.DDPFDDPPQLSKLIPENSPVGKPQDEIAEER-LEDNWVPPDETVAPEELEDTIRSKEAHTNAVILQSLGDIPDAEIKPQDNVLFV

OsCYP65 S..E.C.A...Y.TLRDDVDY..D..T...M.A..FDTLTKISETYVDDKGRPF.D.R.KHTYV.DDPFDDPPQLSELIPENSPVGKPQDEIAEER-LEDSWVPMDEMVAPEELEEMIRSKEAHTNAVILESVGDIPDAEIKPPDNVLFV

AtCYP63 .C...........LFKRQ-PH...........V...AVIKK..LV.TSD.-.PTSPVK.I...ETSQIRAHDAAEREKGKSKKSNKNFSPGDVSDREAKETRKKESNEKRIKRKRRYSSSDSYSSSSDSDSDSESEAYSSSSYESSSSSD

OsCYP70 ....DS.......TFMP.-PH...........VT..PLLKKL.AV..DT.-.PTCEVK.V...EVSDSQNQLKGEKEKKLRRTEDNSAAEKRVKTQKPPTHDKQKKKRKHYSSDSYSSDYSDTQSSDSGSESESYSSSSLDTSSSSDHRH

TaCYP70 .S.E.........TFKAV-PH...........LN.KALLKKL.AL..ES.-.PTCPVK.V...EASNIDTQNQLHGEKEKKLKRAVEYNNSDAGGRVKTKKTSSVDKRRKRRKNYSSDSYSSETSDSQSYSSDSGSESQSYSSASSDTSS

AtCYP95 I.DRDKF..H.H.TFRPN-QQ..RNN.....LIQ.KE.LKKI..V.DEE.-.PTVSVK.IR..EYSGDKKKSDGKKNGKHKKSLRVRRKKRRRHSSSESESSSDSETDSSESDSESDSDLSSPSFLSSSSHERQKKRKRSSKKDKHRRSK

OsCYP49 .............TFKHN-SR..R.ST....LIL.NDVLKRI.YVDVHGAGS.PVVPVRIVDCGELVDGKCLGSITVENDKKRSVKSKLSKDESSDEENNEGKRKRHHKKSSRRRRKKKRYSSSESESSSESESELSDSDSESDTCSSDS

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP59 CKLNPVTEDEDLHTIFSRFGTVVSADVIRDFKTGDSLCYAFIEFENKESCEQAYFKMDNALIDDRRIHVDFSQSVSKLWSQFRQKDSQKGKGNGCFKCGSTDHIAKDCVGGPSSK-----FIVKDQNRQHGGGE--GYEMVFEGDVHETP

OsCYP63 RELN---KDEDLYTIFSHFGSVTSAEIIRDYKTGDSLCFAFIEFEKKEACERAFFMMDNCLIDDRRIRVDFSQSVSKQWRQFRQSKSNANK-DGCFKCGALDLIARDCDQRAEQKNKGPNYILKDENTQRSGNKRRSYDLVFE-DGENYN

OsCYP65 CKLNPVTQDEDLYTIFSRFGTVTSAEIIRDYKTGDSLCYAFIEFETKEACERAFFKMDNCLIDDRRIHVDFSQSVSKLWGQFRQSKRNANK-DGCFKCGAPDHIAKDCDQGTEQKNKGPSYVLKDENTQRGGNNRRSYDLVFDEDGENYT

AtCYP63 GKHRKRKSTTRHKGRRGERKSKGRSGKKKARPDRKPSTNSSSDTESSSSSDDEKVGHKAIKSVKVDNADQHANLDDSVKSRSRSPIRRRNQNSRSKSPSRSPVRVLGNGNRSPSRSPVRDLGNGSRSPREKPTEETVGKSFRSPSPSGVP

OsCYP70 KRRKSSKKDKHRSAKGKSKHKKTKRKSRGTKRKSKRSYRSSSDDSDSSKTGGSSSDSESEGRRTTRTKHSSKKDPDNTKTISLEKDSTLEDADKGKQTATLDN-ISNEGSKPSNTDGNGAGIRDDPGARARSSPIRADASLTKVDGNNGA

TaCYP70 SSDHRHKRRKGSKKVKRKPAKRKSSHKKSKSKSRGTKRSKRSYGSSSDASKSSSTSSDNESAGRRTKHPLKKDQENTKIINLEIGKSLEYADKGKQTVAGSKPLHKDESWADDRVGTQNSEDRSSKFRDDTNPIRADTTLSKADGNITAV

AtCYP95 QRDKRHEKKRSMRDKRPKRKSRRSPDSLEDSNSGSEASLSDVNVEIGAKKRKHRVSRRTGNSAPAVEKEAESLHQGKRKGPDLLENRGLRSNGISDAASEQISDRQPDIVDDHPSKSRSRSLSPKRTVSKSTSVSPRRSQSKSPSSSPRW

OsCYP49 SDLSSSSDDRRRRRKRHSKKDKHKRGKRKRDRRRERKRRKRDRKSKQKSKRMLESDSETGNVSDSSLEDDKSKRHHRGRKSKASSQVSGENHTALAALKDAASTQQKSATPRSLAQEDKSPKENGDTRTNGVTESKTERNADIALTSNRS

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP59 KHN---SHERERSEKIQ-RRS---PHGNGE---GKRQHRDERD-----DGRRQHDREDARELERKHRERKERESREDE---DRRRRRRREESRDKESRRERDEDDHRSHRDYK-ERRRERDDRHGREARHERRDR---------------

OsCYP63 GQQDLRSADRRKIHKIDDRRSGLPPRGDRDRISRERTHIDEND----KEGNRDRGNQKHEDYNRYCKPGERSSSRHDDRGYSKHESRSKYRDGDDDYRRQSGG-SRYGRDKCDGERRYRGDDDHGRSNRHTR------------------

OsCYP65 DQQDPGSTGRRKIQRTDDRKSGLPPRGDHDRISRERTHSDENGREGGKEGDRDRGIRKHEDYHRYNKSGERSSSRYDDRGYSKHESRGKYRDGNDDYRRQPGGGSRYGRDKYEGERRYREDDGHGRSDRHKRDESDNRKRSPDTGKHRRE

AtCYP63 KRIRKGRGFTERYSFARKYHTPSPERSPPRHWPDRRNFQDRNRDRYPSNRSYSERSPRGRFRSPPRRRSPPRYNRRRRSTSRSPDGYRRRLRDGSRSQSPRHRSRSQSPRKRQPISQDLKSRLGPQRSPIRGGRTSPAESLSPSHSPSPP

OsCYP70 DTAEAGISRAEPVPTNGKDLAMGSTDNGQPQRVRKGRGFTQQYAFARRYRTPSPERSPVRSRYNDGRNDRWNHFNRYGRNGPYGARSPVRRYRGSPRASSPSRYPRRDRSRSRSRSPLRYRERGGYRRPSPRHSRSRSPAEHQRRDVRNR

TaCYP70 AAGTGISEAGAERNPLSNKPVPTNGQDLAMGSTEDGRVRKGRGFTQKYSFARRYRTPSPECSHVRSSYYGGRNDRWNNFNRYGRNGLYGARSPVRRYQGSPRASSSLRYTRRDRSRSRSRSPVRRRDGGGRHRRPSPRRSHSPAEQHKRD

AtCYP95 NGGRSPAKGSRQVKNLTNSRRESPGSEEKGRHVRRSPTKSVSRSPVRVKKERDISRSPSKSLSRSPLRSPKRVISRSPVRGRIARSPSRSPVRSASRGSLGRGPLRRSSRRSPSRSPVRSSRRSLSRSPIQLSRRSLSRSPTRLSRRSLS

OsCYP49 KSRFPIFLHTSIILCAYCVHEQCFI-----------------------------------------------------------------------------------------------------------------------------

E 8 aa+ + + + * * * * # - * -

+*

+ * *

+ + * *

+ **

#+ *

+ #

βI βII αI αII βIII βIV βV

βVI βVII αIII βVIII

RRM

RRM

Zinc-Finger

Arg/Lys rich domains

Arg/Lys rich domains

- -

Page 176: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

154

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ------------------------------------------------------------------------------------------------------------------------------------------------------

AtCYP59 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP63 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP65 DGGHRETSKHRERRQRDDR-----------------------------------------------------------------------------------------------------------------------------------

AtCYP63 GKRGLVSYAD--------------------------------------------------------------------------------------------------------------------------------------------

OsCYP70 LRSGRDGGGPDHRNSSPPVNRGRSRSRSKSRDPSKSRSPDAPAKKGSSKYNRRRSSSSRSSSPAGSKGLVSY------------------------------------------------------------------------------

TaCYP70 AAYRPRSGRGGGGGPSAANRGRSRSRSKNRDASRSRSPNAAPAKRLSSKYNRRRSSSSRSSSPSGSKGGLVSY-----------------------------------------------------------------------------

AtCYP95 RSPIRSPRKSVSRSPVRSSRKSVSRSPVRSSRRRISRSPVRSSRKSVSRSPIRLSRRSISRSPIRLSRRSISRSPVRGRRRISRSPVPARRRSVRPRSPPPDRRRSLSRSASPNGRIRRGRGFSQRFSYARRYRTSPSPDRSPYRFSDRS

OsCYP49 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

hCypA -------------------------------------------------------------------------------------------------------------------------------

AtCYP59 -------------------------------------------------------------------------------------------------------------------------------

OsCYP63 -------------------------------------------------------------------------------------------------------------------------------

OsCYP65 -------------------------------------------------------------------------------------------------------------------------------

AtCYP63 -------------------------------------------------------------------------------------------------------------------------------

OsCYP70 -------------------------------------------------------------------------------------------------------------------------------

TaCYP70 -------------------------------------------------------------------------------------------------------------------------------

AtCYP95 DRDRFRSRRRFSPSRFRSPLRGRTPPRYRRRSRSVSPGLCYRNRRYSRSPIRSRSPPYRKRRSPSASHSLSPSRSRSRSKSYSKSPIGTGKARSVSRSPSKARSPSKSDSTSSDNSPGGKKGLVAYD

OsCYP49 -------------------------------------------------------------------------------------------------------------------------------

Arg/Lys rich domains

Arg/Lys rich domains

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA ----------------------------------------------------------------------MVNPTVFFDIAVD---GEPLGRVSFELFADKVPKTAENFRALSTGEKGFGY-KGSCFHRIIPGFMCQGGDFTRHNGTGGK

AtCYP21-3 MAKIKPQALLQQSKKKKGPSRISITNIVIYTLAVLLLVFVLFSAYRRWTHRS-EIPTHNGRS-VLEDAAFP-G-MKNV.LPRFATLDTGK.S.TI...K.TA.NVVDQ.MKFCQDG----.F..FL.S.VVKH.VI.A..SAEFDAVKDW

AtCYP21-4 MAKIKPQALLNQSKKKKGPSRISISTIIVCNLVVAVVILSLVTTYRHWSQRSRNTIEHETRSQRFEDTNTASG-QKTY.LPGFADINTSK.LITV...KEGS.EVVDK.LD.CQKD----HF..MP.Q.V.KNYLV.A.HSPSSIPVEEW

OsCYP26-2 MARIKPKQLLIQSKTKKAPTRISYSTIVTWNLIVILVALSLYATYRHWHHRPMLETEMDLPRAEHVGRSEDST--KTSRPSYAVIDTA-K.SITI.IYK.ASADVVDR.VS.CKSN----HF..MP.RHV.KN.VI.....DFNGAAQEW

TaCYP26-4 MXRLKXKQLXIQSKXKKGPSXISYXSIIXWKXXVXLVVLSXYATYRHWHHRPAFEAEMDLPRAENVERSEDST--KISTPSYVIMDTL-K.SITI.ISK.ASAGVVDR.IN.CKSD----.F..MP.RHV.KNSVIH....DLNGAAHEW

TaCYP16-1 MARIKPKQLLIQSKTKKGPSRISYSSIITWNLIVVLVVLSLYATYRHWHHRPAFEAEMDLPRAENIERSEDST--XISTPSYVIMDTF-E.SITI.ISQ.ASAGVVDR.INFMQSD----.F..MP.RHV.KNWESM..ILI--------

TaCYP23-2 MARIKPKQLLIQSKTKKGPSRISYSSIITWNLIVVLVVLSLYATYRHWHHRPAFEAEMDLPRAENIERSEDST--KISTPSYVIMDTL-K.SITI.ISK.ASAGVVDR.IN.CKSD----.F..MP.RHV.KNLVIY....DLNGAAHEW

160 170 180 190 200 210 220 230 240

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hCypA SIYGEKFEDENFILKHTGPGILSMANAGPNTNGSQFFICTAKT-EWLDGKHVVFGKVKEGMNIVEAMERFGSRNG-KTSKKITIADCGQLE----

AtCYP21-3 ALD---RKNI-DTSLKHEE-FMVGTPKAK.EQ.GFE.FIVSAQIKD.NE.LT...R.SK.QDV.QEI.EVETDDQYQPKSP.E.MSVTL.QDM--

AtCYP21-4 TAK.KLRGRL-H.GPKHEA-FMLGTPKNKGN.KDFELLI.TAPIPD.NDQLI...R.LK.EDV.QEI.EVDTDEHFQPKSP.G.TGVVLKLET--

OsCYP26-2 ILKAKASGEN-ALSPKHEA-FMIGTTKN.-N.KGFDLFI.TAPIPD.ND.L....Q.IN.QD..QEI.EVDTDEHYQPKTP.G.LNITLKQQALS

TaCYP26-4 ILKAKASGEN-ALSPKHEA-FMIGTTRS.-NSKGFDLFI.TAPIPD.ND.I.L..R.IK.ED..QEI.EIDTDEHYQPKTP.G.INISLIQEL--

TaCYP16-1 -----------------------------------------------------------------------------------------------

TaCYP23-2 ILKAKASGEN-ALSPKHEA-FMIGTTRS.-NSKGFDLFI.TAPIPD.ND.I.L..X.IK.ED..QGD----------------------------

Mitochondria targeting sequence+ + + + * * * *F # - * -

+ + * **

+ + * *

+ ** #

+ * + #

βI βII αI αII βIII βIV

βV βVI βVII αIII βVIII

4 aa

- -

Fig 5.5 Alignment of putative amino acid sequences of rice and wheat Cyps with reported Cyps in Arabidopsis and human CypA. A: cytosolic single domain Cyps; B: cytosolic multi-domain Cyps; C: ER Cyps; D: chloroplast Cyps; E: nuclear Cyps; F: mitochondrial Cyps. Dots indicate amino acids identical to human CypA. Secondary structure was generated based on hCypA. Asterisks (*) above the lines indicate residues involved in CsA contact; plus (

+) above the lines indicates residues involved in enzymes activity;

Number (

#) above the lines calcineurin binding residues; minus (

−) above the

lines indicates N-linked and O-linked glycosylation sites. Framed motifs are ER targeting signal, chloroplast/thylakoid lumen targeting signal, mitochondrial targeting signal, Arg/Lys rich domain, TPR: tetratricopeptide repeat, WD: 40-WD repeat, RRM: RNA recognition motif, leu-zipper; Zinc-finger.

Page 177: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

155

OsCYP18-2

OsCYP20

OsCYP19-3

TaCYP18-1

TaCYP17

AtCYP18-2

TaCYP16-2

AtCYP18-1

OsCYP18-1

TaCYP31-1

TaCYP21

AtCYP22-1

OsCYP22-1

TaCYP24-2

OsCYP19-2

TaCYP19

AtCYP19-3

hCypA

OsCYP18-3

TaCYP18-2

AtCYP18-3

AtCYP19-2

AtCYP19-1

AtCYP18-4

AtCYP26-1

OsCYP19-1

OsCYP16

74

100

100

100

37

100

96

100

100

72

62

57

94

99

43

32

77

35

85

54

71

52

46

60

A

B OsCYP43

OsCYP44

TaCYP46-1

AtCYP40

hCypA

AtCYP65

OsCYP51

AtCYP71

OsCYP58

OsCYP73

AtCYP57

OsCYP57

TaCYP31-299

100

100

100

100

62

100

100

93

62

Page 178: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

156

OsCYP24-1

OsCYP24-2

Maize

TaCYP23-1

AtCYP19-4

AtCYP20-1

AtCYP21-2

OsCYP22-2

hCypA

AtCYP21-1

OsCYP23

TaCYP24-1

TaCYP26-2

AtCYP23-1

OsCYP26-166

100

99

92

76

86

100

85

84

98

75

C

OsCYP50

OsCYP46

TaCYP36

TaCYP32

A tCYP37

OsCYP47

A tCYP38

TaCYP46-2

hCypA

TaCYP26-3

OsCYP27

A tCYP20-2

A tCYP20-3

OsCYP25

TaCYP26-1

A tCYP28

OsCYP40

OsCYP28

OsCYP31

A tCYP26-2100

98

100

100

71

94

100

100

71

70

100

100

85

77

91

97

D

OsCYP70

TaCYP70

AtCYP63

hCypA

AtCYP95

OsCYP49

AtCYP59

OsCYP63

OsCYP65100

100

98

31

32

40E

Page 179: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

157

TaCYP26-4

TaCYP23-2

TaCYP16-1

OsCYP26-2

AtCYP21-4

AtCYP21-3

hCypA

63

100

56

99F

Fig 5.6 Phylogenetic analysis of Cyps in Arabidopsis, rice, and wheat. A: Cytosolic single domain Cyps; B: Cytosolic multi-domain Cyps; C: ER Cyps; D: Nuclear Cyps; F: mitochondrial Cyps. Trees were generated by Neighbor-Joining of the Bootstrap Test of Phylogeny in MEGA 4.0 program (http://www.megasoftware.net/mega.html), based on the alignments of Cyps by ‘ClustalW Multiple Alignment’ in Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

5.3.8 Chromosomal localisation of Cyps in rice

The maps of chromosomal locations of Cyp genes in rice were generated from the

Oryza sativa genome view in the NCBI Map viewer database

(http://www.ncbi.nlm.nih.gov) with representative cDNA/ESTs listed in Table 5.1 (Fig

5.8A). Twenty-seven loci, encoding 33 putative Cyps, were scattered on all

chromosomes except 4 and 12. Six loci, encoding seven Cyps, were on chromosome 6,

four loci each were on chromosomes 2 and 8 and three loci each on chromosomes 1 and

7. Two were present on chromosome 3, with genes at each end, and on chromosome 9,

with genes at one end. One each occurred on chromosomes 5, 10 and 11. Some of rice

Cyp genes are closely linked, e.g., the four loci (encoding OsCYP22-2, OsCYP63,

OsCYP65, and OsCYP24-1+OsCYP24-2 encoded by one locus) in ~22 kb on

chromosome 6; three (encoding OsCYP16, OsCYP18-3, OsCYP49) in ~52 kb on

chromosome 2, and two (encoding OsCYP23 and OsCYP19-2) in ~16 kb on

chromosome 9. The distance between two adjacent Cyps varied from 1014 bp

(OsCYP22-2 and OsCYP24-1) to 9.9 Mb (OsCYP47 and OsCYP73).

Page 180: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

158

Chr1

OsCYP31

OsCYP57

OsCYP25

Chr2

OsCYP18-3

OsCYP44

OsCYP49

OsCYP16

Chr5

OsCYP27 OsCYP43

OsCYP18-1

Chr6

OsCYP24-1;

OsCYP24-2

OsCYP63

OsCYP65

OsCYP22-2 OsCYP26-2

Chr7

OsCYP46;

OsCYP50

OsCYP70

OsCYP18-2; OsCYP19-3;

OsCYP20Chr8

OsCYP28;

OsCYP40

OsCYP47

OsCYP58;

OsCYP73 Chr10

OsCYP19-1

Chr11

OsCYP26-1

Chr9OsCYP19-2

OsCYP23

OsCYP22-1

Chr3

OsCYP51

Fig 5.7 Likely locations of rice Cyp genes on chromosomes. The map was generated from the Oryza sativa Genome View in the NCBI Map viewer database (http://www.ncbi.nlm.nih.gov) with representative cDNA/ESTs as queries. Frames indicate genes likely to be different splice forms.

5.3.9 Prediction of chromosomal location of Cyps in wheat

A search in the ‘landmark or region’ for each of the 27 Cyp loci on the rice genome

browser (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/) led to identification of

three wheat bin mapped markers (Appendix VII). These were entered into the ‘Mapped

Loci for EST-derived Probes’ query in the GrainGenes structured query language (SQL)

database (http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi), leading to the

identification of cDNA probes used for Southern blotting. This showed

KSU027BE590822 had been mapped to wheat chromosome 1 (1AL: 3-0.61-1.00, 1BL:

2-0.69-0.85, 1DL: 2-0.41-1.00) by two probes (5’ probe: BE590822, 3’ probe:

CD453728), NDS021BE406148 to chromosome 7 (7AL: 1-0.39-0.71; 7BL: 7-0.63-

0.78; 7DL: 2-0.61-0.82) by 5’probe (BE406148), UMW213BE497013 to chromosome

3 (3AS: 4-0.45-1.00) (Appendix IV). The sequences of 5’ probes were searched in the

EST database (http://www.ncbi.nlm.nih.gov) and aligned with the corresponding wheat

TAs. The cDNA sequences of BE590822 and BE406148 showed identities of 95.2%,

and 95.7% in respective areas overlapping with TaCYP23-1; and BE497013 aligned

with corresponding sections of TaCYP26-1 (99.8% identity). The maps were then

generated based on deletion breakpoints (http://www.k-

state.edu/wgrc/Germplasm/Deletions ) (Fig 5.8). TaCYP23 was probably located on the

Page 181: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

159

long arms of group 1 chromosomes, while it had been experimentally mapped to the

long arms of group 7 chromosomes (see section 4.3.3). TaCYP26-1 was probably

located on short arm of chromosome 3A.

TaCYP23-1

1AL-3:

0.61-1:00

TaCYP23-1

1BL-2: 0.69-0.85

TaCYP23-1

1DL-2: 0.41-1:00

TaCYP26-1 3AS-4: 0.45-1:00

3A

Fig 5.8 Summary of likely locations of wheat Cyps on chromosomes. Diagram of deletion breakpoints from the wheat genetic and genomic resource centre (http://www.k-state.edu/wgrc/Germplasm/Deletions, accessed 06/2009).

Page 182: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

160

5.3.10 Preliminary expression analysis of genes encoding putative ER localized

Cyps

Expression of wheat genes TaCYP23-1, TaCYP24-1 and TaCYP26-2 encoding putative

ER localised Cyps was analysed by reverse transcriptase PCR (RT-PCR). First-strand

cDNA synthesised from total RNA from stems, leaves and developing seeds (6, 10, 14,

18, 25 and 30 days after anthesis (DAA)) was amplified separately with primer pairs

WC4/CYPBR1, CYP21-1F2/CYP21-1R and CYP23-1F2/CYP23-1R2 (Table 2.8).

Amplification of gDNA was also conducted to ensure the isolated RNA had no gDNA

contamination. The ACTIN gene was amplified simultaneously from all cDNAs with

the primers ACTIN-F/ACTIN-R as a ‘housekeeping’ control (Fig 5.9). The expression

of genes (TaCYP23-1, TaCYP24-1, TaCYP26-2, ACTIN) in the first set of samples

(panels A, B, C, D) and in the second set of samples (panel E, F, G, H). The sizes of

PCR products were ~500 bp (TaCYP23-1), ~550 bp (TaCYP24-1) and ~450 bp

(TaCYP26-2). The gene TaCYP23-1 obtained from gDNA is ~2000 bp (see section

3.3.2). PCR of cDNA conducted with the ACTIN primers (based on its cDNA;

Accession No. AB181991) was of the expected size (410 bp). The preliminary results

indicate that all the genes encoding putative ER-localised Cyps are expressed in all

tissues. Most gels indicate that the expression in stem and leaf is lower compared to

that in developing seeds. However; the work was only designed as a qualitative test for

confirming previous reports of Cyp expression in developing endosperm (Grimwade et

al., 1996) and was not set up for robust quantitative analysis. The presence of distinct

bands of expected sizes confirms expression in developing seeds; quantitation will need

further work.

Table 5.5 Primers used for expression analysis of ER-localising Cyp genes*

Names of Primer Sequence Expected size (Annealing Temperature)

TaCYP23-1 WC4 5’CGCACAAGGTCTACTTCGA3’ 496 bp (54

oC)

CYPBR1 5’CTGTCGGCAATGACAACC3’

TaCYP24-1

CYP21-1F2 5’GGCCGTCGGGTTCCT3’ 542 bp (52oC)

CYP21-1R 5’CCCCTTCAATGGCGT3’

TaCYP26-2

CYP23-1F2 5’ACGCCTCGGATCCCAACC3’ 447 bp (63oC)

CYP23-1R2 5’GGGTTGGCAGGCGCTCT3’

*Taken from original Table 2.9; provided here for convenience.

Page 183: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

161

500bp

100bp

M S L 6 10 14 18 25 30 G

A

M S L 6 10 14 18 25 30 G

600bp

100bp

B

M S L 6 10 14 18 25 30 G

500bp

100bp

C

500bp

100bp

M S L 6 10 14 18 25 30

D

M S L 6 10 14 18 25 30 G

500bp

100bp

E

M S L 6 10 14 18 25 30

600bp

100bp

F M S L 6 10 14 18 25 30

500bp

100bp

G

500bp

100bp

M S L 6 10 14 18 25 30

H Fig 5.9 RT-PCR products amplified from the first-strand cDNA or genomic DNA of various tissues and developing seeds of wheat First set of samples (A, B, C, D), A: TaCYP23-1; B: TaCYP24-1; C: TaCYP26-2; D: actin gene. Second set of samples (E, F, G, H), E: TaCYP23-1; F: TaCYP24-1; G: TaCYP26-2; H: actin. M: GeneRuler

TM DNA ladder; S: stem, L: leaves, G: genomic DNA, 6-30: developing seeds at

different DAA (days after anthesis). The PCR products were separated on 1.0% agarose gels.

Page 184: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

162

5.4 Discussion

5.4.1 The Rice and wheat Cyps comprise large and divergent families, with some

duplicated genes

This study has identified 27 loci encoding 33 putative Cyps in rice, including five loci

potentially encoding alternative splice forms. The putative proteins range from 16.2 to

72.9 kDa. The Cyps in rice are located in different cellular locations, as reported for

Arabidopsis (Romano et al., 2004a). Gene structures of Cyps in rice varied from

intronless to 15-exon. Five of the six intronless genes (OsCYP16, OsCYP18-1,

OsCYP18-3, OsCYP19-1, OsCYP19-2) encoded cytosolic Cyps, the same number as in

Arabidopsis (He et al., 2004). OsCYP18-3 and OsCYP19-2 were reported as Cyp2 and

Cyp1 respectively; and Cyp2, with an adenyl rich region at 5’ of the transcript, might be

translated during stress conditions (Buchhoz et al., 1994). OsCYP24-1 (CypB in chapter

3) shows a putative promoter with tissues specific and ER stress responsive elements

(3.3.10). Some rice genes are in close physical vicinity, suggesting a multiple gene

duplication events, leading to tandem copies such as loci for OsCYP22-2 and OsCYP24-

1+OsCYP24-2 which are separated by only 1014 bp, or loci for OsCYP43 and

OsCYP44 on different chromosomes. Twenty-two TAs in wheat were identified to

encode putative Cyps ranging from 15.5 to 70 kDa, also in five cellular locations.

TaCYP18-1 has been reported earlier as TaCYP18-3 on chromosome 6AS (Johnson and

Bhave, 2004b). TaCYP23-1 is the TaCypB-A on 7AL (sections 3.3.5, 4.3.3) and its

promoter from 2n wheat contained tissues specific elements (section 3.3.10). Some of

the Cyps group together and are conserved in comparable areas, suggesting their genes

may be homeoalleles or duplicates.

5.4.2 Single domain cytosolic Cyps

This study identified nine single domain cytosol Cyps in rice and eight in wheat. The

residues R55, F60, H126 in hCypA shown to be essential for PPIase activity (Zydowsky

et al., 1992) were substituted by Q, I or Y respectively, in various combinations in

OsCYP16, OsCYP18-1 and TaCYP16-2 (Tables 5.1, 5.3), suggesting that Q/I/Y may

have roles in PPIase activity, or that these isoforms have no enzymatic roles. Further

studies should be conducted to test the PPIase activity and CsA binding of these Cyps or

their orthogues in Arabidopsis. The residue W121 in hCypA, essential for CsA binding

(Bossard et al., 1991) was replaced by H or S in various rice or wheat isoforms,

Page 185: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

163

suggesting the residues H and S may fulfil the role of CsA binding/immunosuppression.

Binding of calcineurin (CN) to the CsA-CypA complex can increase stability and avoid

the proteolytic cleavage of this complex (Hornbogen et al., 1992). The R69 essential

for CN binding (Rascher et al., 1998) was replaced by A or Q, or was lacking in some

isoforms from both plants. The PPIase and/or chaperone activity of such Cyps or their

orthologues (AtCYP18-1, AtCYP18-2 and AtCYP22-1) in Arabidopsis or in other

organisms has not been addressed. Glycosylation seems to have a role in protecting the

protein from digestion by proteinase K (Hirtzlin et al., 1995). N-glycosylation is

associated with N71 and N108 in hCypA; N71 was replaced by T or D in various rice

and wheat Cyps, but N108 was strictly conserved. Likewise, of the O-glycosylation

sites T73 and S110 in hCypA (Pelle et al., 2002), T73 was replaced by H, K or R, while

S110 was conserved in all. Further, the residue G between the N-linked glycosylation

and O-linked glycosylation is conserved in all Cyps except OsCYP16 (Fig 5.5A). The

impact of these partially conserved sites on glycosylation and stability of these Cyps,

and their activities as PPIases and/or chaperones, is unclear.

The insertion between α-helix-II and β-strand-III is a characteristic of plant Cyps (Saito

et al., 1999; Johnson and Bhave, 2004b), its length being variable with 8, 7, 4, 3 or 1 aa.

Also, there is a deletion of 5 aa in this region in some Cyps. OsCYP20 contains a 12 aa

insertion between β-strand-IV and β-strand-V, outside the pocket (β-strand-III to β-

strand-VI) for CsA binding and PPIase activity (Pflugl et al., 1993). However, the 12 aa

deletion of OsCYP20 happens inside the pocket for CsA binding and PPIase activity,

suggesting it may influence its PPIase activity. Further study should assay for the

PPIase activity of OsCYP20 for addressing the influence of deletion.

The 18 kDa Cyp isoforms are reported to regulate K+ channels in guard cell in Vicia

faba (Luan et al., 1993), plant growth in tomato (Oh et al., 2006) and Solanum

sogarandinum (Kielbowicz-Matuk et al., 2007) and stress response induced by

pathogens in potato (Dubery, 2007). The 20 kDa isoforms with unclear cellular location

are reported to be responsible for stress induced by drought in sorghum (Sharma and

Singh 2003; 2006). Their equivalents, i.e., TaCYP18-1, TaCYP18-2 and TaCYP19 in

wheat and OsCYP18-2, OsCYP18-3, OsCYP19-1 in rice) need to be tested for similar

roles.

Page 186: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

164

5.4.3 Multi-domain cytosolic Cyps

Six multi-domain cytosolic Cyps in rice and two in wheat have been identified. H126

was replaced with N in OsCYP57 and TaCYP31-2, W121 replaced by H and R69

replaced by A or missing in some isoforms (Tables 5.1, 5.3; Fig 5.5B). AtCYP71 with

a deletion at this position acts as a highly conserved histone remodeling factor involved

in gene silencing (Li et al., 2007), and AtCYP40 (with A) has been recently shown to be

involved in regulation of vegetative phase development (Smith et al., 2009). Thus CN

binding may not influence some activities of Cyps. N71 was replaced by D/S/T in all

these Cyps. AtCYP40 and AtCYP71 with D and AtCYP65 with T at this position do

show PPIase and/or chaperone functions (Li et al., 2007; Wiborg et al., 2008; Smith et

al., 2009); thus these replacements do not appear to affect some roles.

There are 6-8 aa insertions between α-helix-II and β-strand-III, corresponding to the 7

aa insertion characteristic of plant Cyps (see above). Also, 1-2 aa insertions or deletions

exist between β-strand-IV to β-strand-VI, which may not influence the pocket (β-strand-

III to β-strand-VI ) for CsA binding and PPIase activity (Pflugl et al., 1993). N-terminal

variable extensions (19 aa in TaCYP46-1 to 477 aa in OsCYP73) exist in six of the

multi-domain cytosolic Cyps (OsCYP43, OsCYP44, OsCYP51, OsCYP58, OsCYP73,

TaCYP46-1). The WD-40 repeat, a protein-protein interaction unit, consists of about 40

aa with W-D in the centre (reviewed in He et al., 2004). OsCYP73 presents three WD-

40 repeats, similar to its AtCYP71, while OsCYP58 has two, and all the other functional

residues are conserved (Fig 5.5B). Thus OsCYP58 and OsCYP73 may also be involved

in histone remodeling (Li et al., 2007). OsCYP43, OsCYP44, TaCYP46-1 exhibit a

TPR motif shown to interact with heat shock protein (hsp90) complex (Ratajczak et al.,

1993). The human Cyp40 with TRP show chaperone functions (Mok et al., 2006).

OsCYP43, OsCYP44, TaCYP46-1 share the important residues listed in Table 5.4 and

the TRP consensus with their orthologue AtCYP40, thus these isoforms may also

regulate miR156-regulated members responsible for vegetative phase change (Berardini

et al., 2001; Smith et al., 2009).

Page 187: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

165

5.4.4 ER Cyps

Five ER-localised Cyps in rice and three in wheat were identified. The various isoforms

show replacements of H126 by Y, W121 by R and H, and/or R69 by S/L/G (Tables 5.1,

5.3; Fig 5.5C). The N71 is replaced by D in five Cyps and R in two; and N108 is

replaced by G or A in one Cyp each. Further studies are required to test the

glycosylation status and/or PPIase activity of the relevant ER isoforms.

The plant-specific seven amino acid insertion between α-helix-II and β-strand-III (Saito

et al., 1999; Johnson and Bhave, 2004b) exists in four rice and two wheat Cyps but is

absent in OsCYP26-1 and TaCYP26-2. A 5-aa deletion between β-strand-I and β-

strand-II, a 4-aa insertion between β-strand-I and β-strand-II, and a 3-aa insertion

between α-helix-III and β-strand-VIII occur in OsCYP26-1 and TaCYP26-2. All these

insertions or deletions are outside of the pocket (β-strands III to β-strand-VI) for CsA

binding and PPIase activity (Pflugl et al., 1993) and this may have no relevance to the

PPIase activity. The N-terminal ER-targeting sequences (Price et al., 1991) exist in all

these Cyps with variable lengths. The AtCyp5 (AtCYP19-4, Romano et al., 2004a) in

Arabidopsis is suggested to have a potential cleavage site for the signal peptide between

A23 and K24 (Saito et al., 1999). The rice and wheat Cyps present the putative

cleavage sites between A39 and K40 (OsCYP24-1; rice CypB in chapter 3), A44 and

K45 (OsCYP24-2) and G34 and K35 (TaCYP23-1; TaCypB7B, chapter 3). C-terminal

ER-localisation residues are present in all the Cyps with different lengths, with the four

residues being similar but not identical to the characteristic KDEL/HDEL/HEEL ER-

retention/retrieval signals (Frigerio and Pelham, 1993; Derkx and Madrid, 2001); 11

residues (OsCYP23 and TaCYP24-1) are similar to the hCypB (Boldbaatar et al., 2008).

The role of the unusually long 36-residue C-terminus of OsCYP26-1 and TaCYP26-2 in

ER retention needs to be confirmed, e.g., by deletion of this sequence in these or their

orthologue AtCYP23-1 and checking their cellular locations.

The orthologues AtCYP19-4 and AtCYP20-1 of TaCYP23-1, OsCYP24-1, OsCYP24-2

can regulate the protein GNOM required for coordination of cell polarity along the

embryo axis (Grebe et al., 2000) and PP2A (protein phosphatase 2A) involved in auxin

transport and growth response (Jackson and Soll, 1999). OsCYP23 and TaCYP24-1

contain an 11-residue C-terminal, similar in length (but not sequence) to the ER-

localisation residues of hCyP-22b/p (NP_000933) that acts as a transcriptional inducer

Page 188: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

166

(Rycyzyn and Clevenger, 2002) and plays crucial roles in protecting cells against ER

stress (Kim et al., 2008). Further studies should focus on characterising the genes

encoding the newly identified ER isoforms TaCYP24-1 and TaCYP26-2, and testing the

chaperone or cooperative roles of all three ER isoforms, TaCYP23-1, TaCYP24-1,

TaCYP26-2, in wheat.

5.4.5 Chloroplast Cyps

Eight chloroplast Cyps in rice and five in wheat have been identified. The R55, F60,

and H126 were replaced by various residues and W121 by V/N/ I in different isoforms

(Tables 5.1; 5.3). The residues essential for CN binding, N- and O-glycosylation are not

conserved in a majority of these Cyps. Further studies are needed to test whether the

alterations influence PPIase activity. No insertion is present between α-helix-II and β-

strand-III in these Cyps. Insertions (11 or 24 aa) are present in several rice and wheat

Cyps between β-strand-IV to β-strand-V, located in the pocket (β-strands III to β-strand-

VI) for CsA binding and PPIase activity (Pflugl et al., 1993). The PPIase activity of

TLP40 with this insertion has been confirmed (Fulgosi et al., 1998), thus the relevant

wheat and rice isoforms may retain PPIase activity. The C/T targeting signals occurred

in all Cyps, with variable lengths. The leucine zipper motif involved in dimerisation

occurred in TaCYP46-2 and OsCYP47; their likely orthologue AtCYP38 with this motif

plays a critical role in the assembly and maintenance of PSII supercomplexes (Fu et al.,

2007; Sirpio et al., 2008). The orthologue of TaCYP26-3 and OsCYP27 - AtCYP20-2 -

plays an important role in catalysing the correct folding and integration of proteins in

the thylakoid membrane (Edvardsson et al., 2003; Romano et al., 2004b). The

orthologue of TaCYP26-1 and OsCYP25, AtCYP20-3 functions in repairing the

photodamaged PSII (Cai et al., 2008). Thus TaCYP26-1, TaCYP26-2 and TaCYP46-2

are excellent candidates for further study in this direction.

5.4.6 Nuclear Cyps

Four nuclear Cyps in rice and one in wheat have been identified. The R55 is replaced

by K, W121 is replaced by H, Y or R, and R69 is replaced by N or G or deleted in

different isoforms (Tables 5.1; 5.3; Fig 5.5D). N71 is replaced by D or S or T.

AtCYP59 containing T corresponding to R55, H corresponding to W121, deletion at

R69 for CN binding, and T corresponding to N71 has chaperone and/or PPIase activity

(Gullerova et al., 2006); thus the rice and wheat isoforms with such substitutions may

Page 189: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

167

also be PPIase active or glycosylated. Eight amino acid insertion corresponding to the

plant Cyps insertion between α-helix-II and β-strand-III occurs in OsCYP49, OsCYP70,

and TaCYP70. A major insertion (10-32 aa) exists between β-strand-IV and β-strand-V

in OsCYP63 and OsCYP65, located in the pocket (β-strands III to β-strand-VI) for CsA

binding and PPIase activity (Pflugl et al., 1993). AtCYP59 with this insertion shows

chaperone and /or PPIase activity, so the insertion may not influence PPIase function.

The Arg/Lys rich domain for interaction with RNA (reviewed in He et al., 2004) and

involved in nuclear localisation and connecting transcription to pre-mRNA processing

(Gullerova et al., 2006) occurs in all these nuclear Cyps. The orthologue of TaCYP70

and OsCYP70, AtCYP63, has been confirmed to be localised in nucleus and play a role

in regulating the phosphorylation/dephosphorylation of signal recognition proteins and

other spliceosome components (Lorkovi et al., 2004). Further study should be

conducted on wheat and rice isoforms in this context.

5.4.7 Mitochondrial Cyps

Four mitochondrial Cyps (one in rice, three in wheat) have been identified. The

residues R55, F60, H126 are replaced by various residues in several isoforms, R69 by

F/L, and W121 by D in all isoforms (Tables 5.1; 5.3; Fig 5.5D), suggesting D may also

be involved in CsA contact. Further, N71, N108, T73 and S110 are replaced by D, I or

G in all Cyps. Four amino acid deletion occurs between α-helix-II and β-strand-III in

all, while some Cyps in other cellular locations present an insertion in this area (Saito et

al., 1999; Johnson and Bhave, 2004b).

5.4.8 Chromosomal locations of Cyps in rice and wheat

The twenty-seven rice loci encoding up to thirty-three Cyps are scattered on all

chromosomes except 12. The maximum number (six) is on Chromosome 6, and only

one on Chromosomes 5, 10, and 11. The distance between two Cyps on the same

chromosome arms ranges from 1014bp to 9.9Mb. The putative positions of two wheat

Cyps have been identified, TaCYP26-1 being on the short arm of 3A and TaCYP23

assessed to be on the long arms of chromosomes 1 and 7 groups but experimentally

placed on the long arm of chromosomes 7A, 7B and 7D (see section 4.3.3). The loci for

TaCYP23, identified by cDNA probes BE590822 on chromosome 1 and BE406148 on

chromosome 7, may be duplicates sharing high identity on cDNA level.

Page 190: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

168

In summary, the Cyps in wheat and rice with substituted residues at PPIase activity

sites, CsA contact and glycosylation sites need to be tested for PPIase activity. The

functions of the likely equivalents of cytosolic TaCYP46-1, ER localised TaCYP24-1

and TaCYP26-2, chloroplast TaCYP26-1, TaCYP26-2, TaCYP46-2 and nuclear

TaCYP70 have been reported in other organisms but not in wheat or rice. This work is

essential due to diverse functions of such isoforms. Cyp with uncertain cellular location

may have roles in stress response, induced by drought. The ER-localised Cyps may co-

operate with each other to perform chaperone functions for regulating storage protein

deposition processes as well as numerous other proteins, as shown in literature.

Currently, only one ER isoform has been characterized (TaCYP23-1, as part of this

thesis), and there is no information on TaCYP24-1 and TaCYP26-2. Due to particular

interests in the ER-localised isoforms in storage protein processes, further study should

focus on the roles of all three such isoforms - TaCYP23-1, TaCYP24-1 and TaCYP26-2

- and their interactions with candidate proteins including seed storage proteins, using

systems such as the yeast-two hybrid. All identified TAs in wheat can be used for gene

mapping and expression analyses.

Page 191: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

169

Chapter 6

A COMPARATIVE MOLECULAR AND PHYLOGENETIC ANALYSIS OF THE PROTEIN

DISULPHIDE ISOMERASE (PDI) FAMILY IN RICE AND WHEAT

Page 192: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

170

6 A comparative molecular and phylogenetic analysis of the

protein disulphide isomerase (PDI) family in rice and wheat

6.1 Abstract

The protein disulphide isomerase (PDI) are a family of proteins containing thioredoxin

(TRX) domains that catalyse the formation and isomerisation of disulphide bonds

during protein folding processes and have additional chaperone and regulatory roles.

The ER-localized PDI isoform has been shown to have specific functions in segregation

of proglutelin and prolamin polypeptides in rice and to be differentially expressed in the

wheat endosperm. Other functions of PDI include development of ovule structure and

embryo sac and guidance of pollen tube in Arabidopsis, regulation of gene translation,

and protection from the pathogen (fungi) infection in wheat. The ER-localized PDI in

rice has been shown to have specific functions in segregation of proglutelin and

prolamin polypeptides. Our previous work showed that the PDI isoforms in wheat on

group 4 chromosomes are orthologous to the rice PDI gene close to the esp2

(endosperm storage protein) locus that regulates the seed storage protein body

formation. Using the reported loci encoding PDIs in Arabidopsis as queries to search

the rice genomic database and wheat TA database, 28 putative PDI members encoding

by 19 loci in rice (seven loci possibly encoding alternate splice forms) and 27 putative

PDIs in wheat were identified. They fell into five groups, i.e. PDIL1 (6, rice; 6, wheat);

PDIL2 (7, rice; 5, wheat); PDIL5 (6, rice; 13, wheat); QSOXL (2, rice; 1, wheat); APRL

(7, rice; 2, wheat). The gene structures in rice ranged from 3-exons to 15-exons; the

lengths of exons ranged from 22 bp to 1054 bp and those of introns from 74 bp to 1345

bp. The encoded proteins showed that in addition to the three reported PDIs, five more

putative ER-localised PDIs were identified in wheat. Expression patterns for three

reported PDI homologues (TaPDIL1-1, TaPDIL1-2, TaPDIL1-3), show firstly, that

there is no silencing of the genes during polyploidy in developing seeds, stems and

leaves, and are consistent with PDI playing a role in vegetative tissues as well as in the

developing endosperm.

Page 193: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

171

6.2 Introduction

The protein disulphide isomerases (PDI) are a group of proteins containing thioredoxin

(TRX) domains that interact with nascent polypeptides to catalyse the formation and

isomerisation of disulphide bonds during protein folding processes (Creighton et al.,

1980). (see sections 1.5 and 1.6 for details). PDI was first found to catalyse both the

oxidation and isomerisation of disulfide bonds of nascent polypeptides in the ER

through the refolding of denatured glyceraldehyde-3-phosphate dehydrogenase (Cai et

al., 1994). PDI also functions in other cellular compartments, and participates in

regulation of actin nucleation and cell-to-cell interaction through activation of integrins

(reviewed in Noiva, 1999). Other members in PDI group have functions in apoptosis

during ER stress caused by accumulation of misfolded proteins (Jeong et al., 2008) and

peptide binding and protein retention in the ER (reviewed in Kim et al., 2009). The

larger family of PDI-like proteins, termed PDIL, is very diverse, with five major classes

including PDI, quiescin-sulfhydryl oxidase-like (QSOXL) and adenosine 5’-

phosphosulfate reductase-like (APRL) groups (Jacquot et al., 2002; Houston et al.,

2005).

The complexity of the PDIL family, consisting of 22 members in Arabidopsis, gives a

clue to the diversity of plant PDILs. Six PDI members are upregulated in response to

ER stress induced by treating seedlings with chemicals (Lu and Christopher, 2008a),

one member is required for normal seed development as a chaperone (Farquharson,

2008; Ondzighi et al., 2008) and one member has functions in embryo sac maturation

and pollen tube guidance (Wang et al., 2008). The chloroplast localised PDI in

Arabidopsis interacts with other proteins to regulate enzymes associated with starch

metabolism (Lu and Christopher, 2006; 2008b). The ER-localised PDI, associated with

the esp2 (endosperm storage protein) locus, has specific functions in segregation of

proglutelin and prolamin polypeptides in rice (Takemoto et al., 2002). Our previous

work showed that the three PDI homeoalleles in wheat are located on group 4

chromosomes, and their putative orthologue in rice is close to the esp2, hence they may

have similar functions.

This chapter describes the use of computational tools to identify the complete PDIL

family in rice (Oryza sativa ssp japonica cv. Nipponbare) from Rice Annotation

Page 194: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

172

Release 6, and in wheat (Triticum aestivum L.) from the Plant Transcription Assembly

database; analysis of gene structures of PDILs in rice; phylogenetic relations of PDILs

in rice, wheat and Arabidopsis, identification of grain quality QTLs that co-localise at

the genes encoding PDILs in rice and wheat, and preliminary expression analysis of

genes encoding PDIs in wheat.

6.3 Results

6.3.1 Identification of genomic sequences of PDIL genes in rice

A search for PDIL family members in rice (Oryza sativa ssp japonica cv. Nipponbare)

was conducted in the Rice Genome Annotation Database Release 6

(http://rice.plantbiology.msu.edu/osa1.shtml) using the reported genomic sequences of

PDIL loci Arabidopsis (Houston et al., 2005) as queries (methods detailed in section

2.19). This led to identification of nineteen PDIL loci, resulting in 28 coding sequences

(CDS; exons contigues) due to some potential alternative splice forms (Table 6.1).

Eleven loci encoded single splice forms, seven potentially encoded two splice forms

(LOC_Os01g23740, LOC_Os02g34940, LOC_Os02g51850, LOC_Os03g17860,

LOC_Os05g06430, LOC_Os05g47930, LOC_Os07g34030) and LOC_Os09g27830

presented three splice forms (Fig. 6.1; alternative splice forms shown in Appendix IV).

In summary, of the possible alternative forms, (i) OsPDIL1-3 was shorter than

OsPDIL1-3a by 159 bp in exon I; (ii) OsPDIL2-1 was shorter than OsPDIL2-1a in

intron IX by 3 bp and longer in exon X by 3 bp; (iii) OsPDIL2-2 was shorter than

OsPDIL2-2a in exon IX by 4 bp and longer than it in intron IX-exon X by 466 bp; (iv)

OsPDIL5-1 and OsPDIL5-1a differed from exon III to the 3’-end; (v) OsPDIL5-4 was

longer than OsPDIL5-4a in the entire exon I-intron IV section by 2405 bp; (vi)

OsQSOXL1 was longer than OsQSOXL1a in partial intron XI-exon XII section by 131

bp; (vii) OsAPRL3 was longer than OsAPRL3a in part of intron III to exon IV by 598

bp; and (viii) OsPDIL2-3, OsPDIL2-3a and OsPDIL2-3b varied from exon VI to the 3’-

end.

Page 195: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

173

6.3.2 Identification of expressed sequences of PDIL genes in rice

Twenty-two expressed PDILs were also retrieved from the rice Transcript Assembly

(TA) database (see section 2.19). Of these, 13 were the same as those reported by

Houston et al. (2005) from an EST database, six reported by Houston et al. (2005) were

replaced by other names, and three were new. Of the 22, 18 were comprised of single

ESTs and four comprised of multiple ESTs. Six of the 28 CDSs (exon contigs)

mentioned above did not have a corresponding TA. Of these, five corresponded to

OsPDIL2-2a, OsPDIL2-3b, OsPDIL5-1a, OsPDIL5-4a and OsQSOXL1a, suggesting

these splice forms may not be expressed, or at least not in the tissues that the ESTs were

from. No EST corresponding to OsPDIL5-3 was noted, suggesting a similar situation.

6.3.3 Predictions of intron/exons structures of rice PDIL genes

The lengths of PDIL genes ranged from 2171 bp (encoded at LOC_Os08g31814) to

6757 bp (encoded at LOC_Os07g34030), while the CDSs ranged from 378 bp

(OsPDIL5-1a) to 1692 bp (OsPDIL1-4) (Table 6.1). The gene structures generated by

comparisons of genomic sequences with CDS varied from 3-exons-2-introns (OsPDIL5-

1a) to the fairly complex 15-exons-14-introns (OsPDIL5-4) (Fig 6.2); these are

discussed separately later.

6.3.4 Grouping of putative PDIL proteins in rice

The putative protein sequences translated from the 28 CDSs ranged from 13.9 to 62.2

kDa (125 to 563 amino acids) (Table 6.1). Based on characteristics of the PDI active

site(s) (see section 1.5), these were divided into five groups, i.e., PDIL1, PDIL2, PDIL5,

QSOXL (quiescin-sulfhydryl oxidase-like) and APRL (adenosine 5’-phosphosulfate

reductases-like), as defined by Houston et al. (2005) (Fig. 6.2, Fig. 6.4). The lowest

inter-group identity was 6% (OsPDIL5-1a to OsPDIL1-3) and the highest was 37 %

(PDIL1-1 to PDIL5-3) (Table 6.2). The putative amino acid sequences including signal

peptides (SP) and functional domains were compared to those in wheat and other plants;

(detailed in section 6.3.7). The key characteristics of each group are described below.

Page 196: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

174

Fig 6.1 Rice PDIL gene structures The gene structures were generated by comparison of genomic sequences with corresponding CDSs downloaded from the Rice Annotation Release 6 (http://rice.plantbiology.msu.edu/osa1.shtml) with Gene Structure Display Server (GSDS) (http://gsds.cbi.pku.edu.cn). The blue lines indicate extra region in genomic sequences compared to the CDS, green boxes indicate exons and grey lines indicate introns. Regions marked in red indicate sections encoding the putative catalytic site(s).

Page 197: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

175

Table 6.1 PDIL gene family in rice

Name Locus GS

a

(bp) CDS

b

(bp) Exons cDNA/ ESTs

c

Protein (aa/KDa)

cellular locations

d

OsPDIL1-1e Os11g09280 3817 1539 11 AK068268 512/56.9 CP

1, ER

2

OsPDIL1-2 Os04g35600 3072 1554 11 AY739308 517/57.3 n/a1, ER

2

OsPDIL1-3 Os02g34940 4751 1479 10 AK073161 492/53.3 CP1, ER

2

OsPDIL1-3a Os02g34940 1638 10 AK072252 545/59.1 CP1, ER

2

OsPDIL1-4 Os02g01010 4864 1692 12 AK071514 563/62.2 CP1, ER

2

OsPDIL1-5 Os06g06790 4643 1602 12 AK073970 533/59.0 CP1, ER

2

OsPDIL2-1 Os05g06430 3360 1101 11 AK098931 366/39.9 CP1

,ER2

OsPDIL2-1a Os05g06430 1104 11 AK099341 367/40.0 CP1 ,ER

2

OsPDIL2-2 Os01g23740 3882 1116 11 AK066111 371/40.7 CP1

,ER2

OsPDIL2-2a Os01g23740 951 9 n/a 316/34.4 CP1

,ER2

OsPDIL2-3 Os09g27830 4984 1326 9 AK062254 442/47.3 CP1,ER

2

OsPDIL2-3a Os09g27830 1188 7 AK072941 395/43.5 CP1,ER

2

OsPDIL2-3b Os09g27830 1083 7 n/a 360/38.9 CP1,ER

2

OsPDIL5-1 Os03g17860 2351 444 4 AK063663 147/16.3 CP1,ER

2

OsPDIl5-1a Os03g17860 378 3 n/a 125/13.9 CP1,ER

2

OsPDIL5-2 Os04g35290 3012 1275 5 AK069367 424/47.0 PM1,ER

2

OsPDIL5-3 Os02g34530 2311 1281 5 n/a 426/47.1 EC1, ER

2

OsPDIL5-4 Os07g34030 6757 1458 15 AK099660 485/54.4 C1,n/a

2

OsPDIL5-4a Os07g34030 1191 12 n/a 396/45.0 C1,n/a

2

OsQSOXL1 Os05g47930 5020 1542 12 AK121660 513/57.8 ER1,2

OsQSOXL1a Os05g47930 1557 11 n/a 518/58.4 ER1,2

OsAPRL1 Os07g32570 3296 1428 3 XM478340

(AU062587) 475/50.6 CP1,2

OsAPRL2 Os06g11740 2126 849 4 AY739306 282/31.6 n/a1.2

OsAPRL3 Os02g51850 2545 936 4 XM_467860 (CA763645) 311/34.8 CP

1, ER

2

OsAPRL3a Os02g51850 624 3 CB644946 207/22.7 CP1, ER

2

OsAPRL4 Os08g31814 2171 846 4 AY739307 281/30.7 CP1,n/a

2

OsAPRL5 Os03g59170 3123 906 4 AK073308 301/33.0 CP, ER2

OsAPRL6 Os12g35640 3146 903 4 CA767512 300/33.0 n/a1,2

aGS: length of genomic sequence;

bCDS: length of coding sequence or exon contigs;

cTAs

identified in this work and also reported as ESTs (Houston et al., 2005) (not shaded) or TAs identified only in this work (shaded);

dCL (cellular locations) predicated using

1WoLF PSORT

Prediction (http://psort.ims.u-tokyo.ac.jp) and 2TargetP 1.1

(http://www.cbs.dtu.dk/services/TargetP) (C: cytosol; CP: chloroplast; EC: extracellular; PM: plasma membrane);

ereported PDI (Takemoto et al., 2002; Johnson et al., 2006). Loci shown in

bold possibly encode >1 splice type. All TAs/ESTs in column 6 were used as queries for generating the maps of PDIL chromosomal locations (Fig. 6.6).

The OsPDIL1 group comprised of six members (OsPDILl-1, OSPDIL1-2, OsPDIL1-3,

OsPDIL1-3a, OsPDI1-4, OsPDI1-5), encoded by five loci. The lengths/molecular

weights of the putative full-length proteins (including any SPs) ranged from 492 aa/53.3

kDa (OsPDIL1-3) to 563 aa/62.2 kDa (OsPDIL1-4) and their identities (excluding any

alternative splice forms) ranged from 21% to 62% (Tables 6.1, 6.2). The SPs were

predicted by SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP) and all of

Page 198: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

176

them contained the SPs as reported human PDI (hPDI, P07237) (Ferrari and Soling,

1999) (Fig 6.4). The cleavage site was predicted to be between residue A25 and E26

(OsPDIL1-1), G23 and V24 (OsPDIL1-2), A61 and A62 (OsPDIL1-3), A22 and E23

(OsPDIL1-3a), A22 and S23 (OsPDIL1-4), and A22 and R23 (OsPDIL1-5). Based on

this, the mature proteins were determined to be 52 to 59 kDa. The PDIL1 genes

encoded proteins with two active sites, one each at the N- and C-termini, connected by

334-341 aa (Fig 6.2). OsPDIL1-1 represents the rice PDI gene reported to have an

important role in seed storage protein body (PB) formation (Takemoto et al., 2002)

(section 1.7). The product of OsPDIL1-3 was longer than OsPDIL1-3a by 53 aa at the

N-terminus (discussed later). These two may be alternative splice forms, and TAs

(AK073161 and AK072252) were noted encoding these (Table 6.1), indicating both are

expressed. Two putative active sites with the conserved motif WCGHC were conserved

in four members (OsPDIL1-1, OSPDIL1-2, OsPDIL1-3, OsPDIL1-3a) (Fig 6.2).

OsPDIL1-4 contained an N-terminal ‘WCAHC’ and a C-terminal ‘WCGHC’, while

OsPDIL1-5 contained N-terminal ‘WCERS’ and C-terminal ‘WCVDC’. The C-

terminal KDEL of all these members has also been reported in Arabidopsis (Houston et

al., 2005). Using TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP) and WoLF

PSORT (http://psort.ims.u-tokyo.ac.jp) (section 2.22), all six members were predicted to

be in the ER lumen. However, five out of six were also predicted to be in the

chloroplast (Table 6.1), at >90% with program TargetP 1.1 or >50% degree of

confidence with program WoLF PSORT.

The OsPDIL2 group had seven members, each with two active sites (each WCGHC) at

the N-terminus, connected by 114-131aa (Fig 6.2). The putative proteins ranged from

316 aa/ 34.4 kDa (OsPDIL2-2a) to 442 aa/47.3 kDa (OsPDIL2-3) with identities

(excluding alternative forms) of 28 to 82% (Tables 6.1, 6.2). All exhibited SPs, with

potential cleavage between A29 and D30 (OsPDIL2-1, OsPDIL2-1a), A27 and A28

(OsPDI2-2, OsPDIL2-2a), A18 and S19 (OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b) (Fig

6.4), the estimated sizes of mature proteins being 31 to 46 kDa. OsPDIL2-1 and

OsPDIL2-1a were represented by TAs AK098931 and AK099341, respectively,

indicating both are expressed, and their putative proteins differed by two residues, i.e.,

an insertion of N (at position 311 of OsPDI2-1a) and a K-to-R substitution (at position

312 of OsPDIL2-1a). OsPDIL2-2 was longer than OsPDIL2-2a by 56 aa at the C-

terminus. OsPDIL2-3, OsPDIL2-3a and OsPDIL2-3b may be different splice forms, the

Page 199: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

177

first two being represented by an EST/TA. OsPDIL2-3a and OsPDIL2-3b were shorter

than OsPDIL2-3 by 47 aa and 82 aa at he C-terminus, respectively. The C-terminal

NDEL (OsPDIL2-3), LLST (OsPDIL2-3a), CLLR (OsPDIL2-3b), TFSS (OsPDIL2-1,

OsPDIL2-1a, OsPDIL2-2), SAAK (OsPDIL2-2a) are novel, compared to VASS

(AtPDIL2-1), KDDL (AtPDIL2-2), or KDEL (AtPDIL2-3) in Arabidopsis (Houston et

al., 2005). All six may be in the ER lumen or chloroplast.

The six OsPDIL5 members ranged from 125 aa/13.9 kDa to 485 aa/54.4 kDa with

identities (excluding alternative forms) of 7-74% (Table 6.1, Table 6.2). Each had an

N-terminal active site, WCGHC (OsPDIL5-3 and OsPDIL5-4) or a variant, e.g.,

WCKHC (OsPDIL5-1 and OsPDIL5-2), WCYWS (OsPDIL5-4 and OsPDIL5-4a) (Fig

6.2, Fig. 6.4). Alignment with an hPDI member (Erp18, O95881) showed all members

contained the SP (Jeong et al., 2008) with cleavage sites predicted between A29 and

E30 (OsPDIL5-1 and OsPDIL5-1a), A35 and E36 (OsPDIL5-2) and A28 and G29

(OsPDIL5-3). Four members (OsPDIL5-1, OsPDIL5-1a, OsPDIL5-2, OsPDIL5-3)

contained predicted cleavage sites, leading to mature proteins of 12 kDa (OsPDIL5-1a)

to 44 kDa (OsPDIL5-3). OsPDIL5-1 and OsPDIL5-1a differed in length and sequence

from position 121 to C-terminus, while OsPDIL5-4 and OsPDIL5-4a differed from the

N-terminus to residue 98. The C-terminal GKNI of OsPDIL5-4 and OsPDIL5-4a are

reported in Arabidopsis (Houston et al., 2005), while the LQDS, NLRL, AHEE and

AHED (of OsPDIL5-1, OsPDIL5-1a, OsPDIL5-2, OsPDIL5-3, respectively) are new.

The proteins are predicated to be located in ER, and/or chloroplast, and other locations.

The OsQSOXLs included possible alternative splice forms OsQSOXL1 and

OsQSOXL1a, encoding 513 aa/57.8 kDa or 518 aa/58.4 kDa proteins with 98% identity

(Table 6.1; Table 6.2; Fig 6.2). They contained an SP (Thorpe et al., 2002) with the

predicted cleavage site between A30 and R31 and mature proteins of 55 kDa

(OsQSOXL) or 56kDa (OsQSOXL1a). The C-terminal KNWN and LKKI of

OsQSOXL and OsQSOXLa are novel, compared to those of AtQSOX1 (REKE) and

AtQSOX2 (PRRR) (Houston et al., 2005). The proteins are predicted to be located in

the ER.

The seven members with variant active sites at the C-terminus (WCPFC; APRL1) or N-

terminus (WCPFS; 6 others) were grouped in the OsAPRL group. They ranged from

207 aa/ 22.7 kDa to 475 aa/50.6 kDa, with identities (excluding alternative forms) of

Page 200: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

178

13-66% (Table 6.1, Table 6.2; Fig. 6.2). The chloroplast transit peptide predicted by

ChloroP 1.1 Server (http://www.cbs.dtu.dk/services/ChloroP) was noted in OsAPRL1

(63 aa), as in Arabidopsis (Gutierrez-Marcos et al., 1996), leading to a mature protein of

44 kDa. The C-terminal NSLR (OsAPRL1), PSTS (OsAPRL2), NELR (OsAPRL3),

LVFS (OsAPRL3a), PSLS (OsAPRL4), SRQA (OsAPRL5) and AVLD (OsAPRL6)

were novel, compared to those of APRLs (AtAPR1 and AtAPR3, NLVR; AtAPR2,

NLLR; AtAPR4, SSSQ; AtAPR5, SDQS; AtAPR6, SASQ; AtAPR7, SQSA) in

Arabidopsis (Houston et al., 2005). OsAPRL3 and OsAPRL3a may be alternative

forms, with a TA (CB644946) noted for OsAPRL3a. APRL1 was predicted to be only

in chloroplast and others predicted in chloroplast or ER.

OsQSOXL1

OsQSOXLa

OsPDIL2-3b

KDEL341aa

OsPDIL1-1341aa KDEL

OsPDIL1-3a337aa KDEL

OsPDIL1-4334aa KDEL

OsPDIL1-5

114aa TFSS

NDEL131aaOsPDIL2-3

131aa LLST OsPDIL2-3a

CLLR 131aa

OsPDIL1-3

340aa KDEL

OsPDIL1-2

KDEL341aa

OsPDIL2-1

OsPDIL2-1a OsPDIL2-2

SAAKOsPDIL2-2a

114aa

LQDSOsPDIL5-1

NLRLOsPDIL5-1a

AHEE OsPDIL5-2

AHED OsPDIL5-3

GKNIOsPDIL5-4

GKNIOsPDIL5-4a

KNWN

LKKI

NSLR OsAPRL1PSTS

OsAPRL2NELR

OsAPRL3

LVFS OsAPRL3aPSLS

OsAPRL4SRQA

AVLDOsAPRL5

OsAPRL6

Fig 6.2 Schematic of the structures of PDILs in rice. Colour bars indicate positions of the catalytic site(s), i.e., WCGHC (blue); WCAHC (red); WCERS (yellow); WCVDC (orange); WCKHC (pink); WCYWS (green); WCPAC (purple); WCPFC in OsAPRL1 or WCPFS in other OsAPRLs (dark blue). The number above the line indicates the length between two active sites. The C-terminal tetrapeptide sequences are indicated.

Page 201: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

179

Table 6.2 Identities (%) between putative amino acid sequences and between the coding sequences of PDILs in rice*

Id (%) CDS PDIL1 PDIL2 PDIL5 QSOXL APRL

AA 1-1

1-2

1-3

1-3a

1-4

1-5

2-1

2-1a

2-2

2-2a

2-3

2-3a

2-3b

5-1

5-1a

5-2

5-3

5-4

5-4a 1 1a 1 2 3 3a 4 5 6

PDIL1

1-1 62 56 56 37 35 26 26 26 23 29 27 25 12 11 36 37 22 21 28 28 25 16 17 12 15 17 15

1-2 53 61 61 38 33 25 25 25 23 29 27 25 12 10 35 35 22 22 26 26 25 15 16 11 15 17 15

1-3 56 61 90 21 22 18 18 18 16 23 21 19 8 6 22 22 19 19 24 23 25 16 17 12 15 17 16

1-3a 51 55 90 40 37 22 22 23 21 27 25 23 10 9 34 34 23 20 24 24 26 16 17 12 14 17 15

1-4 25 23 24 22 46 23 23 22 19 25 23 21 10 8 27 28 22 19 27 27 23 14 16 11 14 14 15

1-5 15 15 16 15 22 21 21 21 18 25 23 21 10 8 27 29 23 20 27 27 25 14 16 11 14 16 15

PDIL2

2-1 14 12 13 12 11 9 99 82 71 31 36 37 20 17 29 27 19 20 21 20 22 20 23 17 20 20 21

2-1a 14 12 13 12 11 9 99 82 71 31 36 37 20 17 29 27 19 20 21 20 22 20 23 17 20 20 21

2-2 14 11 13 12 11 8 82 81 85 32 37 38 21 18 28 28 20 20 21 21 22 20 23 18 20 20 20

2-2a 13 11 12 11 11 7 71 70 85 28 33 34 25 21 25 25 17 16 19 18 19 23 26 21 23 23 24

2-3 15 13 14 12 12 11 19 19 20 19 78 78 14 12 29 29 20 20 26 25 21 15 16 13 16 15 15

2-3a 15 12 13 12 12 11 20 20 21 21 68 87 15 13 30 29 22 22 23 22 22 19 21 14 18 19 19

2-3b 14 12 13 11 11 11 21 21 22 23 77 75 17 14 28 28 21 21 22 22 19 18 20 15 20 18 18

PDIL5

5-1 7 6 5 5 5 4 14 14 15 18 8 9 10 84 13 13 10 9 10 10 8 13 13 19 16 13 12

5-1a 6 6 5 4 5 4 12 12 13 15 7 8 9 83 12 12 8 7 8 8 7 11 11 16 14 11 11

5-2 19 18 20 18 14 12 14 14 15 14 13 15 13 9 9 74 24 24 24 24 27 17 18 14 17 19 19

5-3 19 19 19 17 14 13 14 14 13 13 13 15 13 8 8 68 25 24 24 24 29 18 19 13 17 19 19

5-4 4 5 5 4 4 4 4 4 3 2 5 5 4 1 1 6 6 82 22 21 21 16 18 13 16 19 18

5-4a 5 6 5 5 5 5 4 4 4 3 6 5 5 2 2 7 7 80 22 21 20 17 20 13 15 20 19

QSOXL

1 9 9 8 8 8 6 9 9 9 9 10 10 10 5 5 8 8 9 12 98 25 22 23 15 21 22 20

1a 9 8 8 8 8 6 9 9 9 9 10 10 10 5 5 8 8 9 12 98 24 22 23 15 21 22 20

APRL

1 7 7 7 6 8 9 6 6 5 5 7 8 6 2 2 8 8 3 5 7 7 19 19 13 17 19 20

2 8 7 8 7 6 6 10 10 10 11 6 6 7 10 8 9 8 2 4 8 8 8 66 44 42 40 38

3 8 6 8 7 7 8 10 10 10 12 7 7 9 9 7 10 8 2 3 8 8 7 55 58 45 40 39

3a 7 4 5 5 6 7 8 8 8 9 5 6 6 13 10 8 7 1 2 5 5 4 37 56 41 31 31

4 6 6 6 6 5 7 9 9 9 10 7 7 8 8 6 7 7 1 3 6 6 6 36 32 30 32 31

5 6 6 7 6 7 9 8 8 9 10 7 7 9 7 6 9 9 2 4 6 6 6 27 28 20 21 51

6 7 6 6 5 6 8 8 8 9 10 7 8 8 8 7 11 9 2 4 6 6 5 21 24 18 19 39

*Identities (%) of CDS shown above the diagonal and identities of putative protein sequences shown under the diagonal. The identities were obtained based on alignments of CDSs (data not shown) obtained from the Rice Genome Annotation Database Release 6 (http://rice.plantbiology.msu.edu/osa1.shtml) and the predicted amino acids sequences (Fig. 6.2) by pairwise comparisons in BioEdit. Lines between columns are not aligned between row 1 and the rest of the table.

Page 202: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

180

6.3.5 Analysis of the rice PDIL gene structures

As explained in section 6.3.3, the PDIL genes had a range of intron/exon structures.

The lengths of individual exons varied from 22 to 1054bp (Table 6.3) and those of

introns from 74 to 1345 bp (data not shown). All putative intron/exon junctions were

the archetypical GT/AG except for intron IV of OsQSOXL1 and OsQSOXL1a

(AG/GC; Appendix V). Genes for OsPDIL1-1 and OsPDIL1-2 had the same 10-exon

structure, the sizes of exons II, III, IV, VIII, IX were conserved and the two active sites

(WCGHC) were encoded in exon II and IX, respectively (Fig 6.1). OsPDIL1-3 and

OsPDIL1-3a presented 9 exons and sites WCGHC in exon II and XIII. Exon II (325

bp) of OsPDIL1-3 (or OsPDIL1-3a) seemed to be split in OsPDIL1-1 and OsPDIL1-2

(exon II and III, 31 and 288 bp) (Fig 6.2). Sizes of exon III to VIII of OsPDIL1-3 or

OsPDI1-3a were extremely similar to those of exon IV to IX of OsPDIL1-1 or

OsPDIL1-2 (e.g. exon III of OsPDIL1-3 or OsPDIL1-3a, and exon IV of OsPDIL1-1 or

OsPDIL1-2, are 189 bp). The identities of CDS and putative amino acid sequences of

OsPDIL1-3 to OsPDIl1-3a were both 90%. Further, the CDS (i.e. contigue of exons I-

IX) of OsPDIL1-3 showed highest identities to CDS (exon I-X) of OsPDIL1-1 (56%)

and OsPDIL1-2 (61%), with respective protein identities of 56 or 61% (Table 6.2),

suggesting LOC_Os11g09280, LOC_Os04g35600 and LOC_Os02g34940 may be

duplicates dispersed on three chromosomes. OsPDIL1-4 and OsPDIL1-5 had 12 exons

and conserved lengths of exons II, V and VI but varied in lengths/positions of most

introns.

The genes encoding OsPDIL2-1, OsPDIL2-1a, OsPDIL2-2 and OsPDIL2-2a showed

conservation of sizes of exons II to VIII (Table 6.3; Fig 6.2). The identities (on CDS

and protein levels both) between the pairs were 99% and between OsPDIL2-1 and

OsPDIL2-2 were 82% (Table 6.2). LOC_Os05g06430 and LOC_Os01g23740 thus

appear to be duplicates. The gene encoding OsPDIL2-3 has a different structure and

more limited identity to OsPDIL2-1 and OsPDIL2-2 (19-20% on CDS, 31-32% on

protein level).

The 5-exon genes encoding OsPDIL5-2 and OsPDIL5-3 showed conservation in length

(but not sequence) of exon IV (308bp) and 68% identity on CDS and 74% on amino

acid sequence level (Fig 6.1; Table 6.3). LOC_Os04g35290 and LOC_Os02g34530

Page 203: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

181

encoding these are also possibly duplicate genes. In comparison, the OsPDIL5-1

encoding gene has 4 exons and limited identity to these (8-9% on CDS, 13% on amino

acid levels).

Genes encoding QSOXL1 (or 1-a) has 11 (or 12) exon structures and limited identity to

all other groups. Gene encoding OsAPRL1 had only 3 exons, while five others had four

exons. Genes those encoding OsAPRL2, OsAPRL3, OsAPRL3a and OsAPRL4

showed conserved length (but not sequence) of exon II (188 bp); and OsAPRL2 and

OsAPRL3 were also conserved in length of exon III (125 bp) (Table 6.3). The identity

between OsAPRL3 and OsAPRL3a was 56% on CDS and 58% on amino acid sequence

level, very similar to that between OsAPRL2 and OsAPRL3 (55% on CDS, 66% on

amino acid level). In comparison, the identities of OsAPRL2 and OsAPRL3 encoding

genes with OsAPRL1, OsAPRL4, OsAPRL5 and OsAPRL6 were much lower (7-36%)

at CDS levels. Thus the loci LOC_Os06g11740 and LOC_Os02g51850 may be

duplicate genes (Table 6.2).

Page 204: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

182

Table 6.3 Summary of exon sizes (bp) of PDIL genes in rice*

Exon

I Exon

II Exon

III Exon

IV Exon

V Exon

VI Exon

VII Exon VIII

Exon IX

Exon X

Exon XI

Exon XII

Exon XIII

Exon XIV

Exon XV

OsPDIL1-1 203 31 288 189 126 138 120 118 113 213

OsPDIL1-2 179 31 288 189 126 138 123 118 113 249

OsPDIL1-3 158 325 189 126 138 117 118 113 195

OsPDIL1-3a 317 325 189 126 138 117 119 113 195

OsPDIL1-4 503 130 169 121 81 87 75 67 81 135 57 186

OsPDIL1-5 488 130 166 119 81 87 72 69 78 141 54 117

OsPDIL2-1 173 85 98 56 118 28 92 157 125 100 69

OsPDIL2-1a 173 85 98 56 118 28 92 157 125 103 69

OsPDIL2-2 188 85 98 56 118 28 92 157 125 100 69

OsPDIL2-2a 188 85 98 56 118 28 92 157 129

OsPDIL2-3 126 159 114 182 100 177 136 157 175

OsPDIL2-3a 126 159 114 182 100 402 105

OsPDIL2-3b 126 159 114 182 100 177 225

OsPDIL5-1 126 59 176 83

OsPDIl5-1a 126 59 193

OsPDIL5-2 240 104 371 308 252

OsPDIL5-3 252 104 374 308 240

OsPDIL5-4 41 91 95 58 185 58 41 75 57 67 147 225 162 78 78

OsPDIL5-4a 23 183 55 41 75 57 67 147 225 162 78 78

OsQSOXL1 224 25 93 180 75 69 74 154 41 147 438 22

OsQSOXL1a 224 25 93 180 75 69 74 154 41 147 475

OsAPRL1 58 316 1054

OsAPRL2 162 188 125 374

OsAPRL3 177 188 125 446

OsAPRL3a 177 188 259

OsAPRL4 252 188 125 281

OsAPRL5 183 182 125 416

OsAPRL6 192 176 125 410

The sizes of exons (from start codon to stop codon) were calculated based on the gene structures (Fig 5.1) generated with gene structure display server

program (http://gsds.cbi.pku.edu.cn).

Page 205: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

183

6.3.6 PDIL coding sequences in wheat

The TIGR Plant Transcript Assemblies database (http://plantta.jcvi.org) was queried as

in Section 6.3.1 and led to identification of twenty-seven TAs encoding putative PDILs

in wheat. These ranged from 584-2444 bp and encoded putative proteins of 14.7 kDa

(130 aa) to 63.7 kDa (585 aa) (including SPs), grouping into the same five groups as

rice, based on TRX catalytic site number, position, residues and other motifs. These

comprised of TaPDIL1 (6 members), PDIL2 (5), a larger PDIL5 (13), QSOXL (1) and

APRL (2) (Fig 6.3; Table 6.4). Their key characteristics are described below. The

putative amino acid sequences were compared to those in rice and other plants (see

later; section 6.3.7).

The putative full-length TaPDIL1 proteins ranged from 492 aa/53.3 kDa (PDIL1-5),

512-516aa/56kDa (PDIL1-1, 1-2, 1-3, 1-4) to 585 aa/63.7 kDa (PDIL1-6). The SPs

were predicted by SignalP 3.0 Server (http://www.cbs.dtu.dk/services/SignalP) with

cleavage sites between A25 and E26 for four members (TaPDIL1-1, TaPDIL 1-2,

TaPDIL 1-3, TaPDIL 1-4), A22 and E23 (TaPDIL1-5) or A28 and A29 (TaPDIL1-6).

Based on this, the mature proteins were estimated to be 52 to 61 kDa. All PDIL1s had

two conserved TRX sites WCGHC, one each at the N- and C-terminus, connected by

336-341 aa, and a conserved C-terminal KDEL. TaPDIL1-1, TaPDIL1-2 and TaPDIL1-

3 were 100% identical to the cDNAs (wPDI1, wPDI2, wPDI3) reported previously by

M. Bhave’s group corresponding to the homeologous genes on group 4 chromosomes,

(Johnson et al., 2001) or CPDI-4A, CPDI-4B, and CPDI-4D (Ciaffi et al., 2006).

TaPDIL1-4 showed 83-84% on coding sequence level and 85% on amino acid level

with TaPDIL1-1, TaPDIL1-2 and TaPDIL1-3, indicating it is the duplicate of the three

homeologous genes.

The five identified TaPDIL2 members encoded putative proteins of 210 aa/22.5 kDa to

440 aa/47.2 kDa (Fig 6.3, Table 6.4). Their predicted SPs had cleavage sites between

G30 and D31 (TaPDIL2-1, TaPDIL2-2), A29 and D30 (TaPDIL2-3), or A22 and L23

(TaPDIL2-4, TaPDIL2-5), the mature proteins being 20-49 kDa. The proteins had two

conserved N-terminal active sites (WCGHC), connected by 114 aa (TaPDIL2-1,

TaPDIL2-2, TaPDIL2-3) or 132 aa (TaPDIL2-4, TaPDIL2-5). The proteins were

predicted to be in the ER; however, the C-terminal AFSS (TaPDIL2-1), KSGN

(TaPDIL2-2), TFSS (TaPDIL2-3), AART (TaPDIL2-4) or NDEL (TaPDIL2-5) are

Page 206: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

184

new, compared to PDIL2s in Arabidopsis (Houston et al., 2005). The pairs TaPDIL2-2

and TaPDIL2-1 (98.5% identity) and TaPDIL2-4 and TaPDIL2-5 (95.7% identity) may

be duplicates or homeoalleles of each other.

The 13 TaPDIL5s (Fig 6.3, Table 6.4) encoded putative proteins ranging from 130

aa/14.7 kDa to 485 aa/54.4 kDa, with most predicted to be in ER. All were also

predicted to have a SP except for TaPDIL5-13, with the cleavage sites predicted

between residues A32 and E33 (TaPDIL5-1, TaPDIL5-3), A30 and E31 (TaPDIL5-2),

A39 and E30 (TaPDIL5-4), G30 and D31 (TaPDIL5-5), A25 and E26 (TaPDIL5-6,

TaPDIL5-7), A30 and E31 (TaPDIL5-8), A24 and E25 (TaPDIL5-9), A22 and L23

(TaPDIL5-10), G24 and G25 (TaPDIL5-11), A35 and E36 (TaPDIL5-12). The mature

proteins were thus estimated to be 12 to 44 kDa. The conserved site WCGHC’ occurred

in nine members, with three (TaPDIL5-1, TaPDIL5-2, TaPDIL5-3) having WCKHC

and one (TaPDIL5-13) WCYWS.

Only one QsOXL member was identified, as in rice, the putative 301 aa/32.9 kDa

protein exhibiting an active site WCPAC and being predicted in ER and elsewhere. The

SP was predicted as above, its cleavage site between A25 and L26 and the mature

protein being 31 kDa. SPs have been reported in Arabidopsis and human QsOXLs

(Thorpe et al., 2002). The C-terminal LAWK is new, compared to QsOXL in

Arabidopsis (Houston et al., 2005).

Two APRL members were identified, with active site WCPYC at C-terminus

(TaAPRL1) (compared to WCPFC in rice) or WCPFS at N-terminus (TaAPRL2;

identical to rice). The predicted proteins were 463 aa/50.5 kDa (TaAPRL1) or 282

aa/31.6 kDa (TaAPRL2), the former predicted in chloroplast only and the latter in

diverse locations. Chloroplast transit peptides predicted by ChloroP 1.1 Server

(http://www.cbs.dtu.dk/services/ChloroP) showed TaAPRL1 contained this peptide (64

aa), as in Arabidopsis (Gutierrez-Marcos et al., 1996), the mature proteins being

estimated at 45 kDa. The C-terminal SSSQ and PSTS of TaAPRL1 and TaARPL2,

respectively, are new, compared to those of Arabidopsis APRLs (Houston et al., 2005).

Page 207: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

185

TaPDIL5-12

TaPDIL5-11

KDEL339aaTaPDIL1-1

TaPDIL1-2

TaPDIL1-3

340aa KDEL

341aa KDELTaPDIL1-5

336aa KDELTaPDIL1-6

114aa AFSS

KSGN114aaTaPDIL2-2

114aa TFSS TaPDIL2-3

AART 132aaTaPDIL2-4

TaPDIL2-5

TaPDIL1-4

TaPDIL2-1

132aa NDEL

ENLNTaPDIL5-1

DVDRTaPDIL5-2

EDEL

TaPDIL5-3LQDS

TaPDIL5-4MRGV

TaPDIL5-5HWTG

TaPDIL5-6PPRG

TaPDIL5-7VHDE

TaPDIL5-8LEDL

TaPDIL5-9EIGS

TaPDIL5-10AHQE

AHEE

GKNITaPDIL5-13

LAWKTaQsOXL1

NSLRTaAPRL1

PSTSTaAPRL2

Fig 6.3 Schematic of the structures of PDILs in wheat. Colour bar indicates the five residues in the catalytic sites: i.e. WCGHC (blue); WCKHC (pink); WCYWS (green); WCPAC (purple); WCPYC (red); WCPFS (dark blue). The number above line indicates the length between two active sites. The C-terminal tetrapeptide sequences are indicated.

Page 208: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

186

Table 6.4 PDIL family in wheat

Name TA number TA

(bp) Exons Protein

(aa/KDa) Cellular location

a

TaPDIL1-1b TA63630_4565 2395 10 515/56.6 CP

1, ER

2

TaPDIL1-2b TA63634_4565 1884 10 512/56.4 CP

1, ER

2

TaPDIL1-3b TA63632_4565 1893 10 515/56.6 CP

1, ER

2

TaPDIL1-4 AK068268 1878 n/a 512/56.8 CP1, ER

2

TaPDIL1-5 AK073161 1816 n/a 492/53.3 ER1,2

TaPDIL1-6 TA76289_4565 1972 n/a 585/63.7 ER1,2

TaPDIL2-1 TA55349_4565 1430 n/a 367/40.3 CP1, ER

2

TaPDIL2-2 CK218055 1130 n/a 259/28.4 CP1, ER

2

TaPDIL2-3 NM_185280 1101 n/a 366/39.9 CP1, ER

2

TaPDIL2-4 TA67032_4565 713 n/a 210/22.5 ER1,2

TaPDIL2-5 TA67031_4565 1577 n/a 440/47.2 CP1, ER

2

TaPDIL5-1 CA627363 600 n/a 148/16.7 M1,2

TaPDIL5-2 TA74480_4565 745 n/a 149/16.6 V1, ER

2

TaPDIL5-3 CA626641 584 n/a 130/14.7 n/a1, M

2

TaPDIL5-4 AK063663 686 n/a 147/16.3 n/a1, ER

2

TaPDIL5-5 TA55340_4565 825 n/a 202/22.3 CP1, ER

2

TaPDIL5-6 DR736972 1143 n/a 288/31.7 CP1, ER

2

TaPDIL5-7 CV775131 724 n/a 212/23.2 CP1, ER

2

TaPDIL5-8 TA71882_4565 1719 n/a 417/46.6 EC1, ER

2

TaPDIL5-9 DR739734 1144 n/a 234/25.9 EC1, ER

2

TaPDIL5-10 CK204275 856 n/a 202/21.8 EC1, ER

2

TaPDIL5-11 TA76778_4565 1570 n/a 414/46.1 PM1, ER

1,2

TaPDIL5-12 AK069367 1645 n/a 423/47 PM1, ER

1,2

TaPDIL5-13 AK099660 1947 n/a 485/54.4 n/a1,2

TaQSOXL CK207082 1068 n/a 301/32.9 ER1,2

TaAPRL1 TA69080_4565 2444 n/a 463/50.5 CP1,2

TaAPRL2 AY739306 1134 n/a 282/31.6 n/a1,2

aCellular locations predicated using

1WoLF PSORT Prediction (http://psort.ims.u-tokyo.ac.jp)

and 2TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP). (CP: chloroplast; M: mitochondria;

EC: extracellular; PM: plasma membrane; V: vacuole). bTaPDI1-1, TaPDIL1-2, TaPDIL1-3

reported as wPDI1, wPDI2, and wPDI3 (Johnson et al., 2001) or CPDI-4A, CPDI-4B, and CPDI-4D ( Ciaffi et al., 2006), respectively.

6.3.7 Comparison of the putative PDIL amino acid sequences of rice and wheat to

each other and to other plant PDILs

The putative amino acid sequences of PDIL1s, translated from the CDSs in rice and

TAs in wheat, were aligned with human PDI (hPDI; P07237) for predicting secondary

structures (Fig 6.4A). All PDIL1s in rice and wheat contained SPs at N-terminus for

ER targeting (Price et al., 1991), four domains (a, b, b’, and a’) (Freedman et al., 2002;

Wilkinson and Gilbert, 2004), the x-linker between b’ and a’, and the c-extension with

an ER-localisation signal (Freedman et al., 2002) (section 1.4.3). The length of x-linker

appears conserved, with only a two-residue insertion in OsPDIL1-2. The SPs varied in

length and sequence, from 22 aa (OsPDIL1-2) to 61 aa (TaPDIL1-3). Based on

Page 209: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

187

alignment with hPDI1, all domains showed small (1-5 residue) insertions/deletions in

various rice and wheat PDIL1 members, some shared between >1 proteins, others

unique to a particular protein. The size of x-linker was conserved with only a two-

residue insertion at position 498-499 in OsPDIL1-2. The active sites CGHC in domain

a were variant in two out of six OsPDIL1s, as mentioned above, but conserved in all

TaPDIL1s, and the active site in a’ was conserved in all except OsPDIL1-5 (WCVDC).

Variants have also been noted in AtPDIL1-3 (WCGAC) and AtPDIL1-5 and AtPDIL1-

6 (WCARS) (Houston et al., 2005). The c extension ranged from 26-47 aa and the C-

terminal ER-localization KDEL were conserved in PDIL1 members in both plants, as

also in Arabidopsis.

The sequences of putative PDIL2 proteins were aligned with human PDI hP5 (Hayano

and Kikuchi, 1995) (Genbank Q15084) and alfalfa P5 (Ferrari and Soling, 1999) (Fig

6.4B) to predict secondary structures. Four out of seven members in rice (OsPDIL2-1,

OsPDIL2-1a, OsPDIL2-2, OsPDIL2-2a) and four out of five members in wheat

(TaPDIL2-1, TaPDIL2-2, TaPDIL2-3, TaPDIL2-4) showed similar secondary structures

as for alfalfa P5, with three domains (ao, a, D) (Ferrari and Soling, 1999). OsPDIL2-3

and TaPDIL2-5 showed similar secondary structures as reported for human P5, with

four domains (ao, a, b, c) (Ferrari and Soling, 1999); while OsPDIL2-3a was short of c,

and OsPDIL2-3b was short of b and c. OsPDIL2-3 and TaPDIL2-5 contained C-

terminal NDEL for ER retention (He et al., 2004).

The 19 putative PDIL5 members were aligned with human ERp18 (Liu et al., 2003)

which appears to correspond to this group (Fig 6.4C). OsPDIL5-1 and OsPDIL5-1a

contained only the a domain (Jeong et al., 2008; Kim et al., 2009), while others

(OsPDIL5-2, OsPDIL5-3, OsPDIL5-4, OsPDIL5-4a) contained a domain and extension

at C-terminus. The section of a domain was highly similar, with two main insertions

(>6 residues) in OsPDIL5-4, OsPDIL5-4a and TaPDIL5-13. The active sites were

variant in both rice and wheat, i.e., WCKHC (OsPDIL5-1, OsPDIL5-2, TaPDIL5-1,

TaPDIL5-2, TaPDIL5-3, TaPDIL5-4) or WCYWS (OsPDIL5-4, OsPDIL5-4a,

TaPDIL5-13) found in AtPDIL5-1 or AtPDIL5-3 and AtPDIL5-4 (Houston et al.,

2005). OsPDIL5-4a and TaPDIL5-13 contained a 90 aa extension at N-terminus.

Compared to

Page 210: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

188

ERp18, 12 members contained extra sequences at C-terminus, as noted in AtPDIL5-2,

AtPDIL5-3 and AtPDIL5-4.

The three putative QSOXL proteins aligned with human HsQSOXL (HSU97276)

showed they had a/a’ domain (WAV-KVA) of PDI with the motif WCPAC, and an

ERV1 domain (DFI-CYL) including its three main parts: (i) section with the active site

CXDC; (ii) section with the consensus motif (HNXVNXR/KL) for interacting with the

ADP motif of FAD group; (iii) section with consensus motif (ELCXXC) (Thorpe et al.,

2002) (Fig 6.4). TaQSOXL was highly homologous to rice with active site WCPAC

found in AtQSOX1 and AtQSOX2 in Arabidopsis (Houston et al., 2005). AtQSOXl do

not have a typical ER retention signal (Fig 6.4D) but have been isolated from ER.

There is also evidence for gene duplications in this family before duplication of the a/a’

TRX domains, and continued evolution through alternative splicing, e.g., in human

HsQSOX1 (Thorpe et al., 2002).

The sequences of the nine putative APRL proteins were aligned with those of

Arabidopsis (PRH-19, PRH-26, PRH-43, Gutierrez-Marcos et al., 1996; or AtAPR1,

AtARP3, AtAPR2, respectively, Houston et al., 2005) in order to find active sites and

degrees of homology (Fig 6.4E). OsAPRL1 and TaAPRL1 presented the active sites

WCPFC or WCPYC at C-terminus and lack the N-terminal site, as in Arabidopsis

APRLs (AtAPR1, AtARP3, AtAPR2) (Gutierrez-Marcos et al., 1996; Houston et al.,

2005), while others contained WCPFS at the N-terminus but not at C-terminus, as in

case of other Arabidopsis APRLs (AtAPRL4, AtAPRL5, AtAPRL6, AtAPRL7)

(Houston et al., 2005).

Page 211: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

189

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hPDI -----------------------------------------------------MLRR---ALLCLAVAALVR-----------------------------------ADAPEEE------------------------------------

AtPDIL1-1 -----------------------------------------------------.AM.----GFT.FSILVLS---------------------------------LC.SSIRS.E-----------------------------------

AtPDIL1-2 -----------------------------------------------------.AFK----GFACFSIL.LLS--------------------------------LFVSSIRS.------------------------------------

AtPDIL1-3 -----------------------------------------------------.ASSSTSIS.L.F.SFILLLVNSRAENASSGSDLD-EELAFLAAEESK----EQSHGGGSYHEEEHDHQHRDFENYDDLEQGGGEF-HHGDHGYEEE

AtPDIL1-4 -----------------------------------------------------.AF.--VL..FSLT.L.IFSAVSPSFAASSSDDVDDEDLSFLEDLKEDDVPGADSLSSSTGFDEFEGGEEEDPDMYNDDDDEEGDFSDLGNPDSDPL

AtPDIL1-5 ---------------------------------------------MSLIPKPISKVSTFTFI.LILLSFTIIIAYSSPDSNVESNEP--------------GFDSDLDQLLAVDEQLQEDRPEQQ----------------------SEA

AtPDIL1-6 ---------------------------------------------MLTKPKPNSKFS-ILFTFL.LLSF.IFVARSS-DVAVEAGSE--------------EELDDLEQLLAVDEQLQEERPEQQ----------------------SEA

OsPDIL1-1 -----------------------------------------------------.AISKAWIS.L..L.VVLSAPAAR-----------------------------AEE.AAA.------------------------------------

OsPDIL1-2 -----------------------------------------------------.AVN---LV.SF.L.I.IS------------------------------------SS.TAVG----------------------------------V

OsPDIL1-3 MWPRAPATPPPPPWPSKPSAASRSALRRLDLDDGRRQGTEGEENHAPLLCSPA.ASS---TAFAA.F.L.LL-----------------------------------.SSAAA.G-----------------------------------

OsPDIL1-3a -----------------------------------------------------.ASS---TAFAA.F.L.LL-----------------------------------.SSAAA.G-----------------------------------

OsPDIL1-4 -------------------------------------------------------M.SRSL..VALATL.LHASASAS----------DDDLDYLIDNA--------D.I.ANDPDGWLQEGSPD------DDDDDDLFHHG------QA

OsPDIL1-5 ----------------------------------------------------MRA..VVA.AAV.LLF.V.AVARLDLDDDG-------------------DDSEVLDELLAVDE--EEERGELGGG-----------------GEAAAA

TaPDIL1-1 -----------------------------------------------------.AISKVWIS.L..L.VVLSAPAAR-----------------------------AEE.AAA.------------------------------------

TaPDIL1-2 -----------------------------------------------------.AICKVWIS.L..L.VVLSAPAAR-----------------------------AEE.AAA.------------------------------------

TaPDIL1-3 -----------------------------------------------------.AICKAWIS.L..L.VVLSAPAAR-----------------------------AEE.AAAA------------------------------------

TaPDIL1-4 -----------------------------------------------------.AISKAWIS.L..L.VVLSAPAAR-----------------------------AEE.AAA.------------------------------------

TaPDIL1-5 -----------------------------------------------------.ASS---TAFAA.F.L.LL-----------------------------------.SSAAA.G-----------------------------------

TaPDIL1-6 --------------------------------------------------MAA.PMPRSLL.IL.LATP.LILPLAAAAVPTSNP---DIDLEYLIKNAGL-----DDPT.ATTATDPEDDGAPDFPGLDADYDDEDLFGDDDGPEEDSS

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hPDI -------DHVLVLRKSNFAEALAAHKYLLVEFYAPWCGHCKALAPEYAKAAGKLKAEGSEIRLAKVDATEESD--LAQQYGVRGYPTIKFFRNGDTASPKEYTAGREADDIVNWLKKRTGPAATTLRDG--AAAESLVESSEVAVIGFFK

AtPDIL1-1 ---TETKEF..T.DHT..TDTINK.DFIV............Q.....E...SA.SSNVPPVV...I..S..TNREF.T..E.Q.F....I....GK.-VQ..NGP...EG..TY...QS...SAEIKS--ADD.SEV.SDKK.V.V.I.P

AtPDIL1-2 ----ETKEF..T.DH...T.TISK.DFIV...........QK.....E...SE.SSHNPPLA...I..S..ANKEF.NE.KIQ.F..L.IL...GKS-VQD.NGP...EG..TY...QS...SVEIKS--ADS.TEV.GEKN.VAV.V.P

AtPDIL1-3 PLPPVDEKD.A..T.D..T.FVGNNSFAM.........A.Q..T....A..TE..G---LAA...I.....G.--...K.EIQ.F..VFL.VD.EMR--.T.EGE.TK.G..T....KAS.SIHNITT--KEE..RVLSAEPKL.F..LN

AtPDIL1-4 PTPEIDEKD.V.IKER..TDVIENNQ.V............QS......A..TE..ED--GVV...I.....NE--...E.R.Q.F..LL..VD.EH---.P..G..TKET..T.V..KI..GVYN.TT--LDD..KVLT.GNKV.L.YLN

AtPDIL1-5 ETVSKAQRI..E.NGDYTKRVIDGNEFVM.LG.....ARSAE.M.RF.E..TA..EI..SVLM..I.G--DRYSKI.SELEIK.F..LLL.V..---TSLT.NG.SS.E...I.VQ.K..APII..NT--VDE.PRFLDKYHTF.L.L.E

AtPDIL1-6 ETVSKAQRI.VE.NGD.TKRLIDGNE.VM.LG.....ARSAE.M.RF.E..TD..EI..SVLM..I.G--.RYSKV.S.LEIK.F..LLL.V..---TSQS..G.FSSEE..I.VQ.K..ASTIK.DT--VDE.SGFLKKHHTFIL.L.E

OsPDIL1-1 EGGDAAAEA..T.DADG.D..V.K.PFMV............K.....E...QE.SKHDPP.V......ND.KNKP..TK.EIQ.F..L.I...QGKN-IQ..KGP...EG..EY...QV...SKEIKS--PED.TN.IDDKKIYIV.I.S

OsPDIL1-2 DATEELKEA..T.DAG..S.VV.K.PFIV.K..........Q.....E...SI.RKNELPVV......YN.RNKE.KDK...YS.....IMK..GSD-VRG.GGP....G..EY..RQV...SLK.ES--AEE.AHS.VDKG.ILV.V.P

OsPDIL1-3 -------EA..T.DAG..T.VVG..DFIV...........NQ.....EA..AA.RSHDPPVV......SADLNRG..GEH..Q.....RIL.DRGAR-SHN.AGP.D.AG..AY..RQA...SVEIAASASPP.ADSIANDG.V.V.V.P

OsPDIL1-3a -------EA..T.DAG..T.VVG..DFIV...........NQ.....EA..AA.RSHDPPVV......SADLNRG..GEH..Q.....RIL.DRGAR-SHN.AGP.D.AG..AY..RQA...SVEIAASASPP.ADSIANDG.V.V.V.P

OsPDIL1-4 QDHPIDET..FL.SAA..SDF..S.RHVM........A..Q....D..A..AD.SPLAHQVA........DT.--...K.D.Q.F...L..ID.-VP--.D.NGA.TKEA..S.VN.KLA.GVQNITT--VDE..KILTGEDK.ILAVLD

OsPDIL1-5 EAVRRAQSM....DND.ARR.VEENAEV.LLG.....ERSAQ.M.RF.E..AA.R.M..AVAF..L.G--.RYPKA.SAV..K.F..VLL.V..---TEHQF.GLHTK.A..T.VR.K..AP.SRIQS--KDS..EFLKKDQTFAV.L..

TaPDIL1-1 EAA-AAPEA..T.HAD..DD.I.K.PFI.............S.....E...QL.SKHDPA.V......ND.KNKP..GK.E.Q.F..L.I....GKN-IQ..KGP...EG..EY...QV...SKEIKA--PED.T-YL.DGKIHIV.V.T

TaPDIL1-2 EAA-AAPEA..T.HAD..DD.I.K.PFI.............S.....E...QL.SKHDPA.V......ND.KNKP..GK.E.Q.F..L.I....GKN-IQ..KGP...EG..EY...QV...SKEIKA--PED.T-YL.DGKIHIV.V.T

TaPDIL1-3 EEA-AAPEA..T.HAD..DD.I.K.PFI.............S.....E...QL.SKHDPA.V......ND.KNKP..GK.E.Q.F..L.I....GKN-IQ..KGP...EG..EY...QV...SKEIKA--PED.T-YL.DGKIHIV.V.T

TaPDIL1-4 EGGDAAAEA..T.DADG.D..V.K.PFMV............K.....E...QE.SKHDPP.V......ND.KNKP..TK.EIQ.F..L.I...QGKN-IQ..KGP...EG..EY...QV...SKEIKS--PED.TN.IDDKKIYIV.I.S

TaPDIL1-5 -------EA..T.DAG..T.VVG..DFIV...........NQ.....EA..AA.RSHDPPVV......SADLNRG..GEH..Q.....RIL.DRGAR-SHN.AGP.D.AG..AY..RQA...SVEIAASASPP.ADSIANDG.V.V.V.P

TaPDIL1-6 HPSAADEA...L.TAA..TSV...RRHVM...........R....H..A..SA.AEQ.VDVA........DH.--...AH..Q....LL..ID.-VP--RD.AGE.TK.A..A.IS.KL...VQN.TT--ADE..KI.TGDD...LAYLD

A

a

TRX

b

Page 212: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

190

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hPDI DVESDSAKQFLQAAEAIDDIPFGIT----SNSDVFSKYQLDKDG--VVLFKK-FDEGRNNFEGEVTKENLLDFIKHNQLPLVIEFTEQTAPKIFGG----EIKTHILLFLPKSVSDYDGKLSNFKTAAESFKGKILFIFIDS-DHTDNQR

AtPDIL1-1 KLSGSEFDS.MAI..KL-RSELDFAHT--.DAKLLPRGESSVT.PV.R...P-...QFVDSK-DFDG.A.EK.V.ESSI..ITV.DKDPNNHPYVIKFFESTN.KAM..INFTGEGAESLK.KYREV.T.N..QG.SFLLG--.AENS.G

AtPDIL1-2 KLSG.EFDS.MAL..KL-RADYDFAHT--LDAKFLPRGES-VE.PA.R...P-...LFVDSK-DFNG.A.EK.V.ESSI...TV.DSDPNNHPYVAKFFESPA.KAMM.VNFTGATAEALK.KYREV.T.N.DQS.AFLVG--.AESS.G

AtPDIL1-3 SLVG-.ESEE.A..SRL-EDDLSFYQTASPDIAKLFEIETQVKRPAL..L..E-E.KLAR.D.NF..TAIAE.VSA.KV....N..REG.S-----LIFESSVKNQ.ILFA.ANE-SEKH.PTLREV.K.....FV.VYVQMDNEDYGEA

AtPDIL1-4 SLVG-VEHDQ.N..SKA-EDDVNFYQTVNPDVAKMFHLDPESKRPAL..V..E-E.KISH.D..FV.SA.VS.VSA.K.A..SV..RE...-----EIFESAIKKQ..LFVTKNE-SEKV.TE.QE..K.....LI.VSV.LDNEDYGKP

AtPDIL1-5 KF.GSE-HNEFVK.AKS-.DEIQFIETRD.DVAKLLFPD.KSNNVFIG.V.PE-A.RYTVYD.SYKM.KI.E.LGS.KF..FTKL..TNTV-----WVYSSPVKLQVMLFS.ADD-FQKLAQPLEDI.RK..S.LM..YV.ITNENLAMP

AtPDIL1-6 KS.DS.GHDEFVK.ASL-.NEIQFVETSSIDVAKLLFPN.KTNNVF.G.V.TE-A.KYTSYD.PCQA.KIVE.LNS.KF...TKL..SNTV-----RVYSSPVKLQVMVFS.TDD-FESLAQPLEDI.RK..S.LML.Y..ISNENLAMP

OsPDIL1-1 ELSGTEYTN.IEV..KL-RSDYDFGHT--LHANHLPRGDAAVERPL.R...P-...LVVDSK-DFDVTA.EK..DASST.K.VT.DKNPDNHPYLLKFFQSSAAKAM...NF.TGPFESFK.VYYG...E..D.EIKFL.G--.IEAS.G

OsPDIL1-2 EFAGMEYEN.MVV..KM-RADYDFFHT--.DASILPRGDQSVK.PI.R...P-...LFVDS.-DFG.DA.EK..EVSGF.M.VTYDADPTNHK.LERYYSTPSSKAM..VSFGDDRIESFK.QIHE..RK.S.NNISFL.G--.VA.AD.

OsPDIL1-3 ELSGSEFES.MAV..KM-RADYDFRHT--TDAG.LPRGDRTVR.PL.R...P-...LFVDSQ-DFDRDA.EK..ESSGF.T.VT.DTSP.NQKYLLKYFDNAG.KAM...SF.DDRAEEFRTQ.HE..NQYSANNISFL.G--.V.AS.G

OsPDIL1-3a ELSGSEFES.MAV..KM-RADYDFRHT--TDAG.LPRGDRTVR.PL.R...P-...LFVDSQ-DFDRDA.EK..ESSGF.T.VT.DTSP.NQKYLLKYFDNAG.KAM...SF.DDRAEEFRTQ.HE..NQYSANNISFL.G--.V.AS.G

OsPDIL1-4 SLSG-AHSDEIA..SRL-EDAINFYQTSNPDVAKLFHLDPAAKRPSL..L..QEE.KLTFYD.PFKASAIA..VSA.K....NTL.QE...-----SIFDNPIKKQI.LFVVANE-SSKF.PI..E.SK.....L..V.VERDNEEVGEP

OsPDIL1-5 NF.GAE-YEEFVK.ATS-ENEVQFVETNDR.VAKILFPGIASEEQFLG.V.SE-P.KFEK.N.AFEEKEIIQ.VEL.KF..ITV..DLNSG-----KVYGSPIKLQVFTFAEAYD-FEDLE.MIQEV.RG..T..ML.YV.TAEEKLAKP

TaPDIL1-1 EFSGTEFTN..EL..KL-RSDYDFGHT--VHANHLPRGDAAVERPL.R...P-...LVVDSK-DFDVSA.EK..DASST.K.VT.DKNPDNHPYLLKYFQSNAPKAM...NF.TGPFESFK.AYYG.V.E.S..DVKFL.G--.IEAS.G

TaPDIL1-2 EFSGTEFTN..EV..KL-RSDYDFGHT--VHANHLPRGDAAVERPL.R...P-...LVVDSK-DFDVSA.EK..EASST.K.VT.DKNPDNHPYLLKFFQSNAPKAM...NF.TGPFESFKKAYYG.V.E.S..DVKFL.G--.IEAS.G

TaPDIL1-3 EFSGTEFTN..EV..KL-RSDYDFGHT--VHANHLPRGDAAVERPL.R...P-...LVVDSK-DFDVSA.EK..DASST.K.VT.DKNPDNHPYLLKFFQTNAPKAM...NF.TGPFESFK.AYYG.V.E.S..DVKFL.G--.IEAS.G

TaPDIL1-4 ELSGTEYTN.IEV..KL-RSDYDFGHT--LHANHLPRGDAAVERPL.R...P-...LVVDSK-DFDVTA.EK..DASST.K.VT.DKNPDNHPYLLKFFQSSAAKAM...NF.TGPFESFK.VYYG...E..D.EIKFL.G--.IEAS.G

TaPDIL1-5 ELSGSEFES.MAV..KM-RADYDFRHT--TDAG.LPRGDRTVR.PL.R...P-...LFVDSQ-DFDRDA.EK..ESSGF.T.VT.DTSP.NQKYLLKYFDNAG.KAM...SF.DDRAEEFRTQ.HE..NQYSANNISFL.G--.V.AS.G

TaPDIL1-6 HLSG-AHSDE.A..SRL-EDTISFYQTTSPDVAKLFHIDPEAKRPS...L..E-E.KLTV.D..FRASAIAE.VSA.KI..ITTL.QE...-----AIFDNPIKKQI.LFAVAKE-SPQF.PII.ET.K.....L..V.VERDNEEVGEP

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hPDI ILEFFGLKKEECPAVRLITLEEEMTKYKPESEELTAERITEFCHRFL--EGKIKPHLMSQERAGDWDKQPVKVPVGKNFEDVAFDEKKNVFVEFYAPWCGHCKQLAPIWDKLGETYKDH--ENIVIAKMDSTANEVE--AVKVHS-FPTL

AtPDIL1-1 AFQY...EESQV.LIIIQ----TADDK.YLKTNVEVDQ.ESWVKD.K--D...A..KK..PIP-AENNE....V.SDSLD.IVLNSG...LL..........QK....L.EVAVS.QSD--SSV....L.A...DFPKDTFD.KG-...I

AtPDIL1-2 AFQY...EESQV.LIIIQ----TPDNK.YLKVNVEVDQ.ESWFKD.Q--D..VAV.KK..PIP-AENNE....V.AESLD.IV.KSG...LI..........QK....L.EVALSFQND--PSVI...L.A...DIPSDTFD.KG-...I

AtPDIL1-3 VSG...VTGAAPKVLVYTGN--.DMRKFILDG...VNN.KTLAED..--AD.L..FYK.DPLP-ENNDGD...I..N..DEIVL..S.D.LL.I........QSFE..YN...KYL.GI--DSL.V....G.S..HP--RA.ADG-...I

AtPDIL1-4 VA.Y..VSGNGPKLIGYTGN--.DP.KYFFDG.IQSDK.KI.GED..--ND.L..FYK.DPIP-EKNDED..IV..D..DEIVL.DS.D.LL.V........QA.E.MYN..AKHLRSI--DSL..T...G.T..HP--KA.AEG-...I

AtPDIL1-5 F.IL..IEAGNKTV.AAFDN--NLNSKYLLESDPSPNS.E...SGLA--H.TVSRYYR.EPVP-.NENASIVTV...T.DGLVLNSRE..LL.VHT...VN.EA.SKQIE..AKHF.--GF..L.F.RI.AS...HT--KLQ.DDKY.II

AtPDIL1-6 F.TL..IEDAKKTV.AAFDN--NLNSKYLLESDPSPSN.E...FGLA--H.TVSAYYK..PIP-.NQNAS.VAV..RT.DE.VLRSSE..LL.VHT...IN.EA.SKQVE..SQHF.--GF..L.F.RI.AS...HP--KLT.DD-Y..I

OsPDIL1-1 AFQY...REDQV.LIIIQ----DGESK.FLKAHVEPDQ.VSWLKEYF--D..LS.FRK.EPIP-EVNDE....V.AD.VH.FV.KSG...L............K....L.EAAT.L.SD--KDV......A...D.P-SEFD.QG-Y...

OsPDIL1-2 VFQY...RESDV.LLFV.----AS.GK-YLNPTMDPDQ.IPWLKQYIVEY.NLT.YVK.EPIP-KVND.....V.AD.ID.IV.NSG...LL..........RKF.L.LEEIAVSLQ.D--QD.......G.V.DIP-TDFT.EG-Y..I

OsPDIL1-3 AFQY....ES.V.L.FIL----ASKSK-YIKPTVEPDQ.LPYLKE.T--..TLA..VK.EPIP-EVND....TV.AD.LRE.V.NSG...LL..........QK....LEEVAVSL..D--.DV......G...D.P-SDFA.EG-Y.SM

OsPDIL1-3a AFQY....ES.V.L.FIL----ASKSK-YIKPTVEPDQ.LPYLKE.T--..TLA..VK.EPIP-EVND....TV.AD.LRE.V.NSG...LL..........QK....LEEVAVSL..D--.DV......G...D.P-SDFA.EG-Y.SM

OsPDIL1-4 VANY..ITGQ.TTVLAYTGN--.DARNFFLDG.ISV.N.KR.AED..--.E.LT.FYK.EPVP-ESNEGD..IV....LDQIVL..S.DALL.I........QE.E.TYN...KHLRGI--DSL......G....HP--RA.PDG-...I

OsPDIL1-5 F.TLY..EP-.K.T.TAFDT--SKGTKYLMEA.IN.KNLQD..LSL.--..TLP.YFR.EPVP-E-E.G.IEKV..RT.DSSVLESPQ...L.VH....VD.EAISKNVE..AKHFN.LGQT.LKF.RI.ASV..HP--KLQINN-Y...

TaPDIL1-1 AFQY....EDQA.LILIQ----DSDSK.FLK.QVE.GQ.VAWLKDYF--D..LT.FRK.EPIP-EANNE....V.AD.IH..V.KSG...LI...........K....L.EAAA.LQSE--.DV....I.A...D.P-GEFD.QG-Y...

TaPDIL1-2 AFQY....EDQA.LILIQ----DSDSK.FLK.QVE.GQ.VAWLKDYF--D..LT.FRK.EPIP-EANNE....V.AD.VH..V.KSG...LI...........K....L.EAAA.LQSE--.DV......A...D.P-SEFD.QG-Y...

TaPDIL1-3 AFQY....EDQA.LILIQ----DSDSK.FLK.QVE.GQ.VAWLKDYF--D..LT.FRK.EPIP-EANNE....V.AD.VH..V.KSG...LI...........K....L.EAAA.LQSE--.DV......A...D.P-SEFD.QG-Y...

TaPDIL1-4 AFQY...REDQV.LIIIQ----DGESK.FLKAHVEPDQ.VSWLKEYF--D..LS.FRK.EPIP-EVNDE....V.AD.VH.FV.KSG...L............K....L.EAAT.L.SD--KDV......A...D.P-SEFD.QG-Y...

TaPDIL1-5 AFQY....ES.V.L.FIL----ASKSK-YIKPTVEPDQ.LPYLKE.T--..TLA..VK.EPIP-EVND....TV.AD.LRE.V.NSG...LL..........QK....LEEVAVSL..D--.DV......G...D.P-SDFA.EG-Y.SM

TaPDIL1-6 VANY..IAGQ.TTVLAYTGN--.DA.KFFF.G.ISLDT.K..AQD..--.D.LT.SYK.DPVP-ESNDED...V...SLDQIVL..S.D.LL.V........QS.E..YN..AKYLRGI--DSL......G.N..HP--RA.PDG-...I

b’

x a’

TRX

Page 213: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

191

610 620 630 640 650 660 670 680

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

hPDI KFFPASADR-TVIDYNGERTLDGFKKFLE-------SGGQDGAGDDDDLEDLEEAEEPDMEED-------DDQKAVKDEL

AtPDIL1-1 Y.KS..GN---.VV.E.D..KED.IS.VD---------KNKD-----------TVG..KK.--------EETTEE.....

AtPDIL1-2 Y.RS..GN---.VV.E.D..KED.IN.V.---------KNSEKKPTSHG.ESTKS...KKT--------EET--.A....

AtPDIL1-3 L...GGNKSFDP.AVDVD..VVELY...KKHASIPFKLEKPATPE--------PVISTMKSDE------KIEGDSS....

AtPDIL1-4 L....GNKTSEP.TVDTD..VVA.Y...RKHATIPFKLEKPASTESPKTAESTPKV.TTETKESPDSTTKSS.SDS....

AtPDIL1-5 LLYKSGEKE-KPLKLSTKLSAKDIAV.IN---------EELLKPKNGS---------------------------A....

AtPDIL1-6 LLYKTGEKE-NPLKLSTKSSAKDMAVLIN---------KEL-KWK.QS---------------------------G....

OsPDIL1-1 Y.VTP.GK---MVP.ESG..A.EIVD.IK---------KNKE---TAGQ-----.K.KAES---------APAEPL....

OsPDIL1-2 Y.YSS.GN---LLS.D.A..AEEIIS.IN---------ENR.PKAGAAAAVD.KTQIDAV..EVT-----SSSEP.....

OsPDIL1-3 Y.YSSGGN---LLP.D.-..AEEIID.IT---------KNK.SRPGEAT----------------------TTES.....

OsPDIL1-3a Y.YSSGGN---LLP.D.-..AEEIID.IT---------KNK.SRPGEAT----------------------TTES.....

OsPDIL1-4 L.Y..GKKSFEP.TFE.D..VVEMY..IKKHASIPFKLKRPDSSATKTEK.QST.STNLRG.R-------SSGTNF....

OsPDIL1-5 LLY..QDKS-NP.KLSKKSN.KDMA..VK---------EKLQIA.VETVA---------------------AGDI.....

TaPDIL1-1 Y.VTP.GK---KVS.E.G..A.EIVDYIK---------KNKE---TAGQAAAAAT.KAAEP---------AATEPL....

TaPDIL1-2 Y.VTP.GK---KVS.E.G..A.EIVDYIK---------KNKE---TAGQ---AAT.KAAEP---------AATEPL....

TaPDIL1-3 Y.VTP.GK---KVS.E.G..A.EIVDYIK---------KNKE---TAGQAAAADT.KAAEP---------AATEPL....

TaPDIL1-4 Y.VTP.GK---MVP.ESG..A.EIVD.IK---------KNKE---TAGQ-----.K.KAES---------APAEPL....

TaPDIL1-5 Y.YSSGGN---LLP.D.-..AEEIID.IT---------KNK.SRPGEAT----------------------TTES.....

TaPDIL1-6 L.Y..GKKSFEP.TFE.D..VVEMY...KKHAAIPFKLKRPDSSAAQTDDSSST..----G.K-------SSSSKP....

c

Page 214: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

192

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

P5(Alfalfa MKMEMHQIWSRIALASFAFAILFVS------------VSADDVVVLTEENFEKEVGH-DKGALVEFYAPWCGHCKKLAPEYEKLPNSFKKAKSVLIAKVDCDEHKSVCSKYGVSGYPTIQWFPKGSLEPKKFEGPRTAESLAEFVNTEGG

AtPDIL2-1 --.AKS...FGF..L----.L.L..------------AV........DDS......K-..........................GA.................Q....T....................Q.Y....N..A...Y..K...

OsPDIL2-1 --.ATP..S-.K..---.SLL.L.AAAAAVS-----TA.....LA...ST......Q-.RA.......................GA.............................................Y..Q....A...Y..S.AA

OsPDIL2-1a --.ATP..S-.K..---.SLL.L.AAAAAVS-----TA.....LA...ST......Q-.RA.......................GA.............................................Y..Q....A...Y..S.AA

OsPDIL2-2 --.AIPR.SP.KT.PL..ALA.ALAWAFAAP----AFADG....A...ST......Q-.R........................GA........F....................................Y..Q.S..A..........

OsPDIL2-2a --.AIPR.SP.KT.PL..ALA.ALAWAFAAP----AFADG....A...ST......Q-.R........................GA........F....................................Y..Q.S..A..........

TaPDIL2-1 --.ATP..Y-.KT.---LPVL.LLAAAALYP----AAADG.E.LA...ST......Q-.R........................AA.............................................Y..Q....A.T.Y..S.AA

TaPDIL2-2 --.ATP..Y-.KT.---LPVL.LLAAAALYP----AAADG.E.LA...ST......Q-.R......................R.AA...........RG................................Y..Q....A.T.Y..S.AA

TaPDIL2-3 --.ATP..S-.K..---.SLL.L.AAAAAVS-----TA.....LA...ST......Q-.RA.......................GA.............................................Y..Q....A...Y..S.AA

TaPDIL2-4 ---MRPA.L--------.AIL.LLAAAAS-PAAAL-YSAGSP.LQ.NPN..K-K.LNANGVV....F........Q.T.IW..AAGVL.GVAT.AALDA.AHKELA--QQ..IR.F...KV.LP.KP-.VDY..A.DVKPIVN.ALSQVK

P5(Human) ----------------M.LLV.GLVSCTFFLAVNGLYS.S...IE..PS..NR..IQS.SLW............QR.T..WK.AATAL.DVVK.GAVDA.KHHSLG--GQ...Q.F...KI.GSNKNR.EDYQ.G..G.AIVDAALSALR

AtPDIL2-2 ---MYKS----------TVFPICCLLFALFDRGNALYG.SSP.LQ..PS..KSK.LNSNGVV....F.......QS.T.TW..VASTL.GIAT.AAIDA.AHKSV.--QD...R.F...KV.VP.KP-.IDYQ.A.D.K.ISQ.AIKQIK

AtPDIL2-3 ---MYKSPL--------TLLT.LTICFGFFDLSSALYG.SSP..Q..AS..KSK.LNSNGVV....F........A.T.TW..VA.IL.GVAT.AAIDA.AHQSAA--QD..IK.F...KV.VP.KA-.IDYQ.A.D.K.I.N.AYKQIK

OsPDIL2-3 ---MRPAVA--------.ALL.VAAAVAASPVSAL-YSAGSP.LQFNPN..KSK.LNSNGVV....F.......QQ.T.IW..AAGVL.GVAT.AALDA.AHKELA--QE..IR.F...KV.VP.KP-.VDYQ.A.DVKPIV..ALSQVK

OsPDIL2-3a ---MRPAVA--------.ALL.VAAAVAASPVSAL-YSAGSP.LQFNPN..KSK.LNSNGVV....F.......QQ.T.IW..AAGVL.GVAT.AALDA.AHKELA--QE..IR.F...KV.VP.KP-.VDYQ.A.DVKPIV..ALSQVK

OsPDIL2-3b ---MRPAVA--------.ALL.VAAAVAASPVSAL-YSAGSP.LQFNPN..KSK.LNSNGVV....F.......QQ.T.IW..AAGVL.GVAT.AALDA.AHKELA--QE..IR.F...KV.VP.KP-.VDYQ.A.DVKPIV..ALSQVK

TaPDIL2-5 ---MRPA.L--------.ALL.LLAAAAS-PAAAL-YSAGSP.LQ.NPN..K-K.LNANGVV....F........Q.T.IW..AAGVL.GVAT.AALDA.AHKELA--QQ..IR.F...KV.LP.KP-.VDY..A.DVKPIVN.ALSQVK

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

P5(Alfalfa ---------------------TNVKIATAPSHVVVLTPETFNEVVLDGTKDVLVEFYAPWCGHCKSLAPIYEKVAAVFKSEDD--VVIANLDADKYRDLAEKYDVSGFPTLKFFPKGNKAGEDYGGGRDLDDFVAFINEKSGTSRDAKGQ

AtPDIL2-1 ---------------------....L.AV.QN......DN.D.I...QN....................T.....T...Q.EG--.........AHKA.G...G............D....H..D.........S...........S...

OsPDIL2-1 ---------------------......AV..S.........DS....E.................H.......L.S.Y.QDEG--..........HTA.....G....................D...E.....K.....C.....S...

OsPDIL2-1a ---------------------......AV..S.........DS....E.................H.......L.S.Y.QDEG--..........HTA.....G....................D...E.....K.....C.....S...

OsPDIL2-2 ---------------------....L..I..S....G.DN.DSI...EN..I.............H.......L.S.Y.LD.G--..........HK......G...Y................D...E.....K.....C.....T...

OsPDIL2-2a ---------------------....L..I..S....G.DN.DSI...EN..I.............H.......L.S.Y.LD.G--..........HK......G...Y................D...E.....K.....C.....T...

TaPDIL2-1 ---------------------......AV..S.....E...DS....E...........................S...QDEG--...........TS.....G..................E.ES..E.....K...........S...

TaPDIL2-2 ---------------------......AV..S.....E...DS....E...........................S...QDEG--...........TS.....G..................E.ES..E.....K.......N-------

TaPDIL2-3 ---------------------......AV..S.........DS....E.................H.......L.S.Y.QDEG--..........HTA.....G....................D...E.....K.....C.....S...

TaPDIL2-4 GLLRDRLDGKTSGGSSGXTSGGXSEKINE.NES.E.NSSN.D.L.CQSKDLWI...F........K...EWKRA.RT-------------------------------------------------------------------------

P5(Human) QLVKDRLGGRSGGYSSGKQGRSDSSS---KKD.IE..DDS.DKN...SEDVWM............N.E.EWAAA.SEV.EQTKGK.KL.AV..TVNQV..SR.GIR....I.I.Q..-ESPV..D...TRS.I.SRALDLFSDNAPPPEL

AtPDIL2-2 ALLKDRLDGKTSG--TKNGGGSSE.KKSE..AS.E.NSSN.D.L.TESKELWI...F........K...EWK.A.NNL.GK----.KLGHVNC.AEQSIKSRFK.Q....ILV.GSDKSSPVP.E.A.SASAIES.AL.QLESNAGPAEV

AtPDIL2-3 GLLSDRLEGKS-----KPTGGGSKEKKSE..AS.E.NASN.DDL.IESNELWI...F........K...EWKRA.KNLQGK----.KLGHVNC.VEQSIMSRFK.Q....ILV.GPDKSSPYP.E.A.SASAIES.AS.LVES.AGPVEV

OsPDIL2-3 ALLRDRLNGKTSAGSGGKKSGGSSEK-.E..ASIE.NSQN.DKL.TKSKDLWI...F........K...EWK.A.KNL.GQ----.KLGHV.C.AEKS.MS..K.E....ILV.GADKESPFP.Q.A.VASAIES.AL.QLEANAAPPEV

OsPDIL2-3a ALLRDRLNGKTSAGSGGKKSGGSSEK-.E..ASIE.NSQN.DKL.TKSKDLWI...F........K...EWK.A.KNL.GQ----.KLGHV.C.AEKS.MS..K.E....ILV.GADKESPFP.Q.A.VASAIES.AL.QLEANAAPPEV

OsPDIL2-3b ALLRDRLNGKTSAGSGGKKSGGSSEK-.E..ASIE.NSQN.DKL.TKSKDLWI...F........K...EWK.A.KNL.GQ----.KLGHV.C.AEKS.MS..K.E....ILV.GADKESPFP.Q.A.VASAIES.AL.QLEANAAPPEV

TaPDIL2-5 GLLRDRLDGKTSGGSSGKTSGGSSEKKHE.NES.E.NSSN.D.L.VKSKDLWI...F........K...EWKRA.KNL.GQ----.KLGHV.C.SDKS.MS..K.E....ILV.GADKESPFP.Q.A.AASAIES.AL.QLEANAAPPEV

ao

a

TRX

TRX

B

Page 215: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

193

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

P5(Alfalfa LTSEAGIVEDLDELVKEFVAANDEEKKAVFARIEEEVKKLEGSAS-RYGKIYLKVSKKYLEKGSDYAKNEIQRLERLLEKSISPAKADELTLKKNILSTYA-------------------------------------------------

AtPDIL2-1 ...K.....S..A....L...SED.....LS.....AST.K..TT-....L...LA.S.I.......SK.TE..G.V.G.....V........R...T.FVASS----------------------------------------------

OsPDIL2-1 .........S.AP.....LG.ANDKR.EALSKM..D.A..T.P.A-K.....VNSA..IM....E.T.K.SE..Q.M.......S....FVI.......FSS------------------------------------------------

OsPDIL2-1a .........S.AP.....LG.ANDKR.EALSKM..D.A..T.P.AN......VNSA..IM....E.T.K.SE..Q.M.......S....FVI.......FSS------------------------------------------------

OsPDIL2-2 ......RIAS..A.A...LG.ANDKR.EILSNM....V..S...A-KH..V.IAIA..I.D..H..T.K.TE....M.......S....FII...V...FSS------------------------------------------------

OsPDIL2-2a ......RIAS..A.A...LG.ANDKR.EILSNM....V..S...A-K-------------------------------------------------------------------------------------------------------

TaPDIL2-1 ......L.AS..A.....HS.A.DKR.EILSK....AA..S.P.V-KH....VN.A..I.Q.....T.K.TE..H.........S....FAI......AFSS------------------------------------------------

TaPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaPDIL2-3 .........S.AP.....LG.ANDKR.EALSKM..D.A..T.P.A-K.....VNSA..IM....E.T.K.SE..Q.M.......S....FVI.......FSS------------------------------------------------

TaPDIL2-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

P5(Human) .EIINEDIAKRTCEEHQLCVVAVLPHILD-----TGAAGRNSYLEVLLKLADKYKK.MWGWLWTEAGAQSELETALGIGGFGY..M.AINAR.MKFALLKGSFSEQGINEFLRELSFGRGSTAPVGGGAFPTIVEREPWDGRDGELPVED

AtPDIL2-2 TELTGPD.MEDKCGSAAICFVSFLPDILD-----SKAEGRNKYLEMLLSVADKFKKDP.GFVWVAAG.QPDLEKRVGVGGYGY..MVALNAK.GAYAPLKSGFEVKHLKDFVKEAAKGGKGNLPIDG--TMEIVKTEAWDGKDGEVVDAD

AtPDIL2-3 TELTGPD.MEKKCGSAAICFISFLPDILD-----SKAEGRNKYLEMLLSVAEKFKKQP.SFMWVAAVTQMDLEKRVNVGGYGY..MVAMNVK.GVYAPLKSAFELQHLLEFVKDAGTGGKGNVPMNG--TPEIVKTKEWDGKDGELIEED

OsPDIL2-3 SELTGPDAMEEKCASAAICFVSFLPDILD-----SKAEGRNKYLELLLSVAEKFKKSP.SFVWTAAG.QADLEKQVGVGGYGY..MVALNVK.GAYAPLRSAFQLDEITEFVKEAGRGGKGNLPLDG--TPTIVQSEPWDGKDGEVIEED

OsPDIL2-3a SELTGPVSFRDINK.ILLWRQWSGIDVLTRWFGFCRTPWKRNVLLLPFALYLSFQISWI---------QRPKEETST.SCY---YLLLRNLKR--------------VHTVLSGQLLGSKLILRSKL--ELVVMAIQRWLLST-------

OsPDIL2-3b SELTGPDAMEEKCASAAICFVSFLPDILD-----SKAEGRNKYLELLLSVAEKFKKSP.--------RQDSTK.VVDFIPFYLSFLVLLCL.R---------------------------------------------------------

TaPDIL2-5 SELTSAD.MEEKCASAAICFVSFLPDILD-----SKAEGRNKYLELLLSVAEKFKKSP.SFVWAGAG.QADLEKQVGVGGYGY..MVALNVK.GAYAPLRSAFELAEITEFVKEAGRGGKGNLPLEG--APTVVQSEPWDGKDGEVIEED

460 470

. . . . | . . . . | . . . . | . . . . | . .

P5(Alfalfa ----------------------

AtPDIL2-1 ----------------------

OsPDIL2-1 ----------------------

OsPDIL2-1a ----------------------

OsPDIL2-2 ----------------------

OsPDIL2-2a ----------------------

TaPDIL2-1 ----------------------

TaPDIL2-2 ----------------------

TaPDIL2-3 ----------------------

TaPDIL2-4 ----------------------

P5(Human) DIDLSDVELDDLG-----KDEL

AtPDIL2-2 EFSLEDLMGNDDEASTESKDDL

AtPDIL2-3 EFSLDELMGGDD--AVGSKDEL

OsPDIL2-3 EFSLEELMADNS----PVNDEL

OsPDIL2-3a ----------------------

OsPDIL2-3b ----------------------

TaPDIL2-5 EFSLEELMADSS----APNDEL

b

D

c

Page 216: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

194

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

ERp18 ----------------------------------------------------------------------------------------------METRPRLGATCLLGFSFLLLVISSDGHNGLG-------------KGFGDHIHWRTL

AtPDIL5-1 -------------------------------------------------------------------------------------------------MTLGARLVAPMIIL..FIP---IELVKA------------------EVITL.P

AtPDIL5-2 -----------------------------------------------------------------------------------------------------MRSLK.LLCWISFLTL.ISISAS----------SDDQFTLDGTVLEL.D

AtPDIL5-3 MVSSTKLKSVDFYRKIPRDLTEASLSGAGLSIVAALFMMFLFGMELSSYLEVNTTTAVIVDKSSDGDFLRIDFNISFPALSCEFASVDVSDVLGTNRLNITKTVRKFPIDPH.RSTGAEF.S..ALHNINHG--EETKEE.P.GAIPL.S

AtPDIL5-4 MVSTSKIKSVDFYRKIPRDLTEASLSGAGLSIIAALSMIFLFGMELNNYLAVSTSTSVIVDRSADGDFLRLDFNISFPSLSCEFASVDVSDVLGTNRLNVTKTIRKFSIDSNMRPTG.EF.A.EVLSLINHG--DETGEEIVEDSVPL.G

OsPDIL5-1 -------------------------------------------------------------------------------------------------MDLAPGRRARLLVA.A..---VLVALAAR--------------S.AEVITL.E

OsPDIL5-1a -------------------------------------------------------------------------------------------------MDLAPGRRARLLVA.A..---VLVALAAR--------------S.AEVITL.E

OsPDIL5-2 --------------------------------------------------------------------------------------------MAAT.TRP.PLLL..LLPP...LLL.FHAAAAA---------AAEEFPRDGRVIELDE

OsPDIL5-3 --------------------------------------------------------------------------------------------MGKP.L.PVVVVVV.LLLVVV.PATTC.ADAG.GG-----EAEEFQIPRDGRVLELDD

OsPDIL5-4 -----------------------------------------------------------------------------------------MSVMFW.QLNITKTVRKYSIDRN.VPTG.EF.P.PIPTVSKHG--DDVEENHD.GSVPLSS

OsPDIL5-4a MISSSKLKSVDFYRKIPRDLTEASLSGAGLSIVAALAMVFLFGMELSNYLAVNTSTSVIVDRSSDGEFLRIDFNLSFPALSCEFASVDVSDVLGTNRLNITKTVRKYSIDRN.VPTG.EF.P.PIPTVSKHG--DDVEENHD.GSVPLSS

TaPDIL5-1 -------------------------------------------------------------------------------------------------MDLGAPARRRLPIR....SLTVLVVLTAR--------------SSAEVITL.E

TaPDIL5-2 ---------------------------------------------------------------------------------------------------MDP.RRSRLPTH....AVTLLAALAAR--------------S.AEVITL.E

TaPDIL5-3 -------------------------------------------------------------------------------------------------MDLGAPARRRLPIR....SLTVLVVLTAR--------------SSAEVITL.E

TaPDIL5-4 -------------------------------------------------------------------------------------------------MDLAPGRRARLLVA.A..---VLVALAAR--------------S.AEVITL.E

TaPDIL5-5 -------------------------------------------------------------------------------------------------MATPQIYRKTLLPV...LAAAALYPAAAD---------------..EVLAL.E

TaPDIL5-6 -------------------------------------------------------------------------------------------------MAICKVWIS.LLALAVVLSAPAARAEEA-------AAAEEAAAAPEAVLTLHA

TaPDIL5-7 -------------------------------------------------------------------------------------------------MAICK.WIS.LLALAVVLSAPAARAEEA-------AAAAEEAAAPEAVLTLHA

TaPDIL5-8 --------------------------------------------------------------------------------------------MAPP---PPPPPLP.LLLL.P.LLAPFSATA-----------AAEEFPRDGKVIDLDD

TaPDIL5-9 --------------------------------------------------------------------------------------------MAPP---PPP--LP.LLLP.-.LLAAFS--------------AAEEFPRDGKVIDLDD

TaPDIL5-10 -------------------------------------------------------------------------------------------------------MRPAILAA...LLAAAASPAAALY------------SA.SPVLQLNP

TaPDIL5-11 ---------------------------------------------------------------------------------------------------MAVDKQR.LPL.V.ALVTAC--LVS.GE-----EPARFQIPRDGSVVELDE

TaPDIL5-12 --------------------------------------------------------------------------------------------MAAT.TRP.PLLL..LLPP...LLL.FHAAAAA---------AAEEFPRDGRVIELDE

TaPDIL5-13 MISSSKLKSVDFYRKIPRDLTEASLSGAGLSIVAALAMVFLFGMELSNYLAVNTSTSVIVDRSSDGEFLRIDFNLSFPALSCEFASVDVSDVLGTNRLNITKTVRKYSIDRN.VPTG.EF.P.PIPTVSKHG--DDVEENHD.GSVPLSS

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

ERp18 EDGKKEAAASGLPLMVIIHKSWCGACKALKPKFAESTEISELS------HNFVMVNLEDE---EEPKDEDFSPDGGYIPRILFLDPSGKVHP-----EIINENGNPSYKYFYVSAEQVVQGMKEAQERLTGDAFRKKHLEDEL-------

AtPDIL5-1 .TFSDKIKEKDTAWF.KFCVP..KH..K.GNLWEDLGKAM.GD------DEIEVGEVDCG--TSRAVCTKVEIHS--Y.TFMLFYNGEE---------VSKYK.KRDVESLKAFVVEETEK----------AAEKAQLEDKEL-------

AtPDIL5-2 SNFDSAIST-FDCIF.DFYAP...H..R.N.ELDAAAP.LAKLK-----QPI.IAK.NAD--KYSRLARKIEI.A--F.TLMLYNHGVP----------MEYY.PRKADLLVRYLKKF.A---PDVAVLESDSTVKEFVEDAGTFFPVFI

AtPDIL5-3 ASFEALSHH-FPI.V.NFNAP..YWSNR...SWEKAAN.IKQRYDPEADGRVLLG.VDCT--E.PALCKRNHIQ.--Y.S.RIFRKGSDLREDHGHH.HESYY.DRDTDSIVKMV.GL.APIHPETHKVALDGKSNDTVKHLKK-GPVTG

AtPDIL5-4 RNFDTFTHQ-FPI.V.NFYAP..YW.NL...SWEKAAKQIKERYDPEMDGRVILAKVDCT--Q.GDLCRRNHIQ.--Y.S.RIFRKGSDLKDDNAHHDHESYY.DRDTESLVKMVVSL.EPIHLEPHNLALEDKSDNSSRTLKK-APSTG

OsPDIL5-1 .TFSDKIKEKDTVWF.KFCVP..KH..N.GTLWEDLGKVM.GA------DEIEIGQVDCG--VSK.VCSKVDIHS--Y.TFKVFYEGEE---------VAKYK.PRNVESLKNFVSDEAE-------------KAGEAKLQDS-------

OsPDIL5-1a .TFSDKIKEKDTVWF.KFCVP..KH..N.GTLWEDLGKVM.GA------DEIEIGQVDCG--VSK.VCSKVDIHS--Y.TFKVFYEGEE---------VAKYK.-----NLRL-------------------------------------

OsPDIL5-2 SSFEAALG.-IDY.F.DFYAP...H..R.A.ELD.AAPVLAGLS-----EPIIVAKVNAD--KYRKLGSKYGV..--F.TLMLFIHGVP----------.EYT.SRKADLLVRNLNKF.A---PDVSILESDSAIKSFVENAGTSFPMFI

OsPDIL5-3 GNFDAAVR.-AGL.F.DFYAP...H..R.A.QLD.AAPVLAGLS-----TPI.VAKVNAD--KYKKLGSKYGV..--F.TLMLF.HGTP----------TEYT.SRKADLLVENLKKL.A---PDVSVLESDSAIKSFVEDAGMGFPLFL

OsPDIL5-4 RNFDSYSHQ-YPV.V.NFYAP..YWSNR...SWEKTAK.MRERYDPEMDGRIILAKVDCT--E.IDLCRRHHIQ.--Y.S.RIFRKGSDLKENQGHHDHESYY.DRDTESLVAAM.TY.ANIPKDAHVLALEDKSNKTVDPAKRPAPLTS

OsPDIL5-4a RNFDSYSHQ-YPV.V.NFYAP..YWSNR...SWEKTAK.MRERYDPEMDGRIILAKVDCT--E.IDLCRRHHIQ.--Y.S.RIFRKGSDLKENQGHHDHESYY.DRDTESLVAAM.TY.ANIPKDAHVLALEDKSNKTVDPAKRPAPLTS

TaPDIL5-1 .TFSDKIKEKDTVWF.QFCVP..KH..N.GTLWEDLGKVM.GA------DEIEIGQVDCG--VSK.VCSKVDIHS--Y.TFKVFYEGEE---------VVKYK.PKDVESLKNFVLNEAE------------KASEENLN----------

TaPDIL5-2 .TFSDKIKEKDTVWF.QFCVP..KH..S.GTLWEDLGKVI.GT------DEIEIGKVDCG--ASK.VCSKVDIHS--Y.TFKVFYDGEE---------VAKYK.PRDVEALKTFVLKEAE------------KAGEVRLEDEL-------

TaPDIL5-3 .TFSDKIKEKDTVWF.QFCVP..KH..N.GTLWEDLGKVM.GA------DEIEIGQVDCG--VSK.VCSKVDIHS--Y.TFKVFYEGEE---------VVKYK.PRDVDR----------------------------------------

TaPDIL5-4 .TFSDKIKEKDTVWF.KFCVP..KH..N.GTLWEDLGKVM.GA------DEIEIGQVDCG--VSK.VCSKVDIHS--Y.TFKVFYEGEE---------VAKYK.PRNVESLKNFVSDEAE-------------KAGEAKLQDS-------

TaPDIL5-5 STFE..VGQ-DRGAL.EFYAP...H..K.A.EYEKLAASFKKA------KSVLIAKVDCD--EHKSVCSKYGVS.--Y.T.QWFPKGSLE--------PKKYE.QRTAEALTEYVNSEAA---TNVKIAAVPSSVVVLTEET--------

TaPDIL5-6 DNFDDAI.K-HPFIL.EFYAP...H..S.A.EYDKAAQLLSKHD-----PAI.LAKVDANDEKNK.LAGKYEVQ.--F.TLKIFRNG..N--------.QEYK.PREAEGIVEYLKKQ.G---PASKEIK-APEDATYLEDGKIHIVGVF

TaPDIL5-7 DNFDDAI.K-HPFIL.EFYAP...H..S.A.EYEKAAQLLSKHD-----PAI.LAKVDANDEKNK.LAGKYEVQ.--F.TLKIFRNGX.N--------.QEYK.PREAEGIVEYLKKQ.G---PASRRSR-HLKMPLTLKNARSTLLVFS

TaPDIL5-8 SNFEAALSS-IDF.F.DFYAP...H..R.A.ELD.AAPVLAGLS-----EPIMVAKVNAD--KYRKLGSKYGV..--F.TLMLFIHGVP----------.EYT.SRKADLLVRNLKKF.A---PDVSTLESDSAIKSFVENAGTSFPMFI

TaPDIL5-9 SNFEAALSS-IDF.F.DFYAP...H..R.A.ELD.AAPVLAGLS-----EPIMVAKVNAD--KYRKLGSKYGV..--F.TLMLFIHGVP----------.EYT.SRKADLLVRNLKKF.A---PDVSTLESDSAIKSFVENAGTSFPMFI

TaPDIL5-10 NNF..VLN.-NGVVL.EFFAP...H..Q.T.IWEKAAGVLKG--------VATVAA.DAD--AHKELAQQYGIR.--F.T.KVFL.GKP---------PVDYE.ARDV.PIVNF.LSQ.K---GLLRDRLDGKTSGGFSGKT--------

TaPDIL5-11 GNFEAAV..-VDF.F.DF.AP...H..R.S.QLD.AAPVLAGLS-----TPI.VAKVNA.--KYKKLRSKYGV..--F.TLMLF.HGVP----------TEYT.SRKAGQLVE.LRKL.A---PDVSVLKSDAAIKSFVQEAGVGFPLFI

TaPDIL5-12 SSFEAALG.-IDY.F.DFYAP...H..R.A.ELD.AAPVLAGLS-----EPIIVAKVNAD--KYRKLGSKYGV..--F.TLMLFIHGVP----------.EYT.SREADLLVRNLNKF.A---PDVSILESDSAIKSFVENAGTSFPMFI

TaPDIL5-13 RNFDSYSHQ-YPV.V.NFYAP..YWSNR...SWEKTAK.MRERYDPEMDGRIILAKVDCT--E.IDLCRRHHIQ.--Y.S.RIFRKGSDLKENQGHHDHESYY.DRDTESLVAAM.TY.ANIPKDAHVLALEDKSNKTVDPAKRPAPLTS

aTRX

C

Page 217: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

195

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

ERp18 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

AtPDIL5-2 GFGLNESIISGLGRKYKKKAWF.VS.EVS..TMVSYDFDKAPALVANHPTYNEHSVFYGPFED-GFLEEFVKQSFLPLILPINHDTLKLLKDDERKIVLTIVEDE-THESLEKLYKALRAAAHANRDLVFGYVGVKQFEEFVDSFHVDKK

AtPDIL5-3 GCRVEGYVRVKKVPGNLVISAHSGAHSFDSSQMNMSHVVSHFSFGRMISPRLLTDMKRLLPYLGLSHDRLDGKAFINQH-EFGANVTIEHYLQTVKTEVITRRSGQEHSLIEEYEYTAHSSVAQT-----YYLPVAKFHFELSPMQILIT

AtPDIL5-4 GCRVEGYMRVKKVPGNLMVSARSGSHSFDSSQMNMSHVVNHLSFGRRIMPQKFSEFKRLSPYLGLSHDRLDGRSFINQR-DLGPNVTIEHYLQIVKTEVVKS-NGQ--ALVEAYEYTAHSSVAHS-----YYLPVAKFHFELSPMQVLIT

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-2 GFGVNESLIAGYGGKYKKRAWF.VA.DFS..FMVTYDFDKVPALVSLHPKYKEQSVFYGPFEG-SFLEDFIRQSLLPLTVPINTETLKMLDDDDRKVVLAILEDD-SDETSSQLVKVLRSAANANRDLVFGYVGIKQWDEFVETFDISKS

OsPDIL5-3 GFGVDESLIVEYGAKYKNRAWFSVA.DFS..MMVFYDFDKVPALVSVNPKYREQSIFYGPFDDGAFLEDFIRNSLLPLVVPMNRETVKMLNDDGRKVVLMILQDDESDENSPRLIKVLRSAASANRDLVFGYVGVNQWEEFTETF-DVKS

OsPDIL5-4 GCRIEGFVRVKKVPGSVVISARSGSHSFDPSQINVSHYVTQFSFGKRLSAKMFNELKRLTPYVGGHHDRLAGQSYIVKHGDVNANVTIEHYLQIVKTELVTLRSSKELKLVEEYEYTAHSSLVHS-----FYVPVVKFHFEPSPMQVLVT

OsPDIL5-4a GCRIEGFVRVKKVPGSVVISARSGSHSFDPSQINVSHYVTQFSFGKRLSAKMFNELKRLTPYVGGHHDRLAGQSYIVKHGDVNANVTIEHYLQIVKTELVTLRSSKELKLVEEYEYTAHSSLVHS-----FYVPVVKFHFEPSPMQVLVT

TaPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-5 ---FDS-----VVLDETKDVLGE.YAPWVVTAR--VLLRYMRRWPLVSSKMRGV------------------------------------------------------------------------------------------------

TaPDIL5-6 TEFSGTEFTNFLEV.EKLRSDYD.GHTVHANH.PRGDAAVERPLVRLFKPFDELVVDSKDFDV-SALEKFIEASSTPKVVTFDKNPDNHP---------YLLKSSRAMLPGHALFELLHWTG----------------------------

TaPDIL5-7 LNSAALSLQNFLEV.EKLRPEYD.GHTVHCNIPPRG------------------------------------------------------------------------------------------------------------------

TaPDIL5-8 GFGVNESLIAEYGGKYKKRAWF.VA.DFS..WMATYDFNKIPALVAVHPKYNEQSVFYGPFEG-RFLEDFVRQSLLPLTVPINTETLKLLDDDDRKVVLAILEDD-SDVNSTQLVKILRSAAHANRDLVFGYVGVKQWEEFVETFDVSKS

TaPDIL5-9 GFGVNDSLIAEYGGKYKKRAWF.VA.DFS..WMATYDFNKIPALVAVHPKYNEQSVFYGPFEG-RFLEDL--------------------------------------------------------------------------------

TaPDIL5-10 ---SGGXSEKKHEPNESVELNFEVLDELVRQSKDLWIVEFFAPWVWALQEIGS-------------------------------------------------------------------------------------------------

TaPDIL5-11 GFGVDESSIAEYGARYKKKAWFSTA.DFS..LMAVYDFDKIPALVSLNPKYNEQSVFYGPFEG-TFLEDFIRQSLLPMTVPINAETVKMLKDDDRKVVLAVLQDD-SDETSMRLIKILRSAANANHDLVFGYVGVNQWEEFTEPFHDSKS

TaPDIL5-12 GFGVNESLIAGYGGKYKKRAWF.VA.DFS..FMVTYDFDKVPALVSLHPKYKEQSVFYGPFEG-SFLEDFIRQSLLPLTVPINTETLKMLDDDDRKVVLAILEDD-SDETSSQLVKVLRSAANANRDLVFGYVGIKQWDEFVETFDISKS

TaPDIL5-13 GCRIEGFVRVKKVPGSVVISARSGSHSFDPSQINVSHYVTQFSFGKRLSAKMFNELKRLTPYVGGHHDRLAGQSYIVKHGDVNANVTIEHYLQIVKTELVTLRSSKELKLVEEYEYTAHSSLVHS-----FYVPVVKFHFEPSPMQVLVT

460 470 480 490 500 510 520 530 540 550 560 570

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

ERp18 ----------------------------------------------------------------------------------------------------------------

AtPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------

AtPDIL5-2 TNLPKIVVWDGDEEYDQVTGIETITQEEDHLTQVSRFLEGYREGRTEKKKINGPSFMGFINSMIGIRSVYILVFLVAVIMMLRSLGQVEEPTGVRTATAVRERVDQATTVPEDESSEHKPSDKKED

AtPDIL5-3 ENPKSFSHFITNLCAIIGGVFTVAGILDSIFHNTVRLVKKVELGKNI-------------------------------------------------------------------------------

AtPDIL5-4 ENSKSFSHFITNVCAIIGGVFTVAGILDSILHHSMTLMKKIELGKNF-------------------------------------------------------------------------------

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-2 SQLPKLIVWDRNEEYEVVEGSEKLE-EGDQASQISQFLEGYRAGRTTKKKVSGPSFMGFLNSLVSLNSLYILICVFALLGVMIYFTGQ--DDTPQVRRAHEE------------------------

OsPDIL5-3 SELPTMIVWDKKEEYEIVEGSERLE-EGDYGSQISRFLEGYRAGRTIKKKVGDR-----SPTLLGVNAVYILVFLVAVLVLLMYFSGQGEEDQRPRQRAHED------------------------

OsPDIL5-4 ELPKSFSHFITNVCAIIGGVFTVAGILDSIFHNTLRLVKKVELGKNI-------------------------------------------------------------------------------

OsPDIL5-4a ELPKSFSHFITNVCAIIGGVFTVAGILDSIFHNTLRLVKKVELGKNI-------------------------------------------------------------------------------

TaPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-2 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-3 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-5 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-6 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-7 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-8 SQLPKLLVWDRNEEYELVEGSEKLE-EGDQASQLSQFLEGYRAGRTIKKKVSGPSFMGFMHSLVSMNSLYILMFVVALLGVMMYFTGQ--DDT-QPRRVHDE------------------------

TaPDIL5-9 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-10 ------------------------------------------------------------------------------------------------------------------------------

TaPDIL5-11 SQLPKLVVWDKDEKYEVVEGLEKLE-EGDHGSQISRFLEAYRAGRTIKKTFGRR-----FPTLLGVNALYILLLLVAVLVVLMFFSGQGEEDRQP-TRAHQE------------------------

TaPDIL5-12 SQLPKLIVWDRNEEYEVVEGSEKLE-EGDQASQISQFLEGYRAGRTTKKKVSGPSFMGFLNSLVSLNSLYILICVFALLGVMIYFTGQ--DDTPQVRRAHEE------------------------

TaPDIL5-13 ELPKSFSHFITNVCAIIGGVFTVAGILDSIFHNTLRLVKKVELGKNI-------------------------------------------------------------------------------

Page 218: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

196

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

HsQSOXL MRRCNSGSGPPPSLLLLLLWLLAVPGANAAPRSALYSPSDPLTLLQADTVRGAVLG---------------------SRSAWAVEFFASWCGHCIAFAPTWKALAEDVKAWRPALYLAALDCAEETNSAVCRDFNIPGFPTVRFFKAFTK

AtQSOX1 ------M.LIHLF...G..S.E.AASFSPG-SRSILR------DIGSNV------ADQKDNAIELNATNFDSVFQDSPAKYAVL....H..PA.RNYK.HYEKV.RLFNGADAVYPGVV.MTRVDCAIKMNVKLCDKFSINHYPMLFWAP

AtQSOX2 ------M.LVHLL.FAG.V--I.ASSSSPG-SRLILR------EIS----------DQKDKAVELNTTNFDSVLKDTPAKYAV.....H..PA.RNYK.HYEKV.RLFNGPDAIHPGIV.MTRVDCAMKTNTKLCDKFSVSHYPMLFWGP

OsQSOXL1 ------MAAAAVARRVV.VLV..AASLA....G.AAR------S.GGREGP.E---VDADAAVDLNATNFDAFLKASLEPWAV.....H..PA.RNYK.HYEKV.KLFNGRDA.HPGLI.MARVDCA.K.NI.LCNRFSVDHYP.LLWGP

OsQSOXL1a ------MAAAAVARRVV.VLV..AASLA....G.AAR------S.GGREGP.E---VDADAAVDLNATNFDAFLKASLEPWAV.....H..PA.RNYK.HYEKV.KLFNGRDA.HPGLI.MARVDCA.K.NI.LCNRFSVDHYP.LLWGP

TaQsOXL1 ------MAPAAAW---V..LV...ASSL.G-.AGALR------S.GVGDGA..GAAAQGDYAVDLNATSFDAFLTASREQCGV.....H..PA.RNYK.HYEKV.KLFNGPDA.HPGRI.MARVDCA.K.NV.LCSRFSVDHYP.LLWGP

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

HsQSOXL NGSGAVFPVAGADVQTLRERLIDALESHHDTWPPACPPLEPAKLEEIDGFFARNNEEYLALIFEKGGSYLGREVALDLSQHKGVAVRRVLNTEANVVRKFGVTDFPSCYLLFRNGSVSRVPVLMESRSFYTAYLQRLSGLTREAAQTTVA

AtQSOX1 PKR---.-.G.SWGPKQEKNE.SVVNEW--------------RTADLLLNWINKQIGSSYGLDDQKLG--NLLSN-ISD.EQISQAIF--------------------------------------------------------------

AtQSOX2 PTK---.-.S.SWEPKKDKSE.LVIDDG--------------RTA.RLLNWINKQIGSSYGLDDQKFKNEHALSN-LTDYNQISQAVY--------------------------------------------------------------

OsQSOXL1 PTK---.-ASAKWDPKQENNE.KLIDDG--------------RTA.RLLKWIN.QMKSSFSLED.KYENENMLPKNASDPEQI.QAIY--------------------------------------------------------------

OsQSOXL1a PTK---.-ASAKWDPKQENNE.KLIDDG--------------RTA.RLLKWIN.QMKSSFSLED.KYENENMLPKNASDPEQI.QAIY--------------------------------------------------------------

TaQsOXL1 PPK---.-ANTKWDRKQEKSD.KLIDDG--------------RTA.RLLKWINKQL.SSFTLDD.KYENENVLPNNASDPKQV.QAIY--------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

HsQSOXL PTTANKIAPTVWKLADRSKIYMADLESALHYILRIEVGRFPVLEGQRLVALKKFVAVLAKYFPGRPLVQNFLHSVNEWLKRQKRNKIPYSFFKTALDDRKEGAV------LAKKVNWIGCQGSEPHFRGFPCSLWVLFHFLTVQAARQNV

AtQSOX1 -----------------------.I.E.TEEAFD.ILAHKAIKSSETSASFIR.LQL.VAHH.S.RCRTGSAEILVNFDDICPSGECS.DQE-SGAK.SLRNFH--ICGKDVPRGYYRF.R..KNET...S.G....M.S.S.RIE----

AtQSOX2 -----------------------.V.E.TAEAFD.ILAHKAIKSSETSASFIR.IQL..AHHLS.RCRKGAAEILVNYDDLCPSGNCS.EK--SGGN.TLGNFP--ICGKDVPRGYYMF.R..KNDT...S.G....M.S.S.RIE----

OsQSOXL1 -----------------------.V.E.TAQA.Q.ILE.KTIKP-KNRDS.IR.LQI.VARH.SKRCRRGSAELLINFDDHWSS.LSLS.QEGSK.LESVAEENHWICGKEVPRGY.LF.R..KSET...S.G....M.S...RIG----

OsQSOXL1a -----------------------.V.E.TAQA.Q.ILE.KTIKP-KNRDS.IR.LQI.VARH.SKRCRRGSAELLINFDDHWSS.LSLS.QEGSK.LESVAEENHWICGKEVPRGY.LF.R..KSET...S.G....M.S...RIG----

TaQsOXL1 -----------------------.V.E.TAHA.Q.XLEHKMIKA-DTRDS.IR.LQI.VAHH.SQECRXGSAXLLINFDDHWPS.LSLR.TDSSK.WESVAADT---------------TKSGKGGAP.SG.LA.K--------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

HsQSOXL DHSQEAAKAKEVLPAIRGYVHYFFGCRDCASHFEQMAAASMHRVGSPNAAVLWLWSSHNRVNARLAGAP----SEDPQFPKVQWPPRELCSACHNERLDVP---VWDVEATLNFLKAHFSPSNIILDFPAAGSAARRDVQNVAAAPELAM

AtQSOX1 -----DGESQFAFT..CDFINN..M.D..RR..HD.CLSVKTPFKKARDIA.....T..K..E..KKDEDSLGTG..K...MI...KQ..PS.YLSSTEKN--ID..HDQVYK...KYYGQKLVSVYKKNGE.VSKEE.IAA.EEMAVPT

AtQSOX2 -----DGESHFAFTT.CDF.NN..M.DE.RL..ND.CLSVKTPFKKARDF...V..T..K..E..LKDEASLGTG..K...II...K...PL.YLSSNQKS--IE..H.HVYK...NYYG.KLVS.YKEKSV.RSKEETVSATEDLTV.T

OsQSOXL1 -----DGESQSTFTS.CDFI.N..I.EE.RK..YE.CSSVSAPFRTARELS.....T..K..M..MKEEKDMGTG..L....T...NQ..PS.YRSSKVTDGAVD.NED.VYQ..VNYYGKKLVSSYKETYMESLQQQEKKIVSEDSSIS

OsQSOXL1a -----DGESQSTFTS.CDFI.N..I.EE.RK..YE.CSSVSAPFRTARELS.....T..K..M..MKEEKDMGTG..L....T...NQ..PS.YRSSKVTDGAVD.NED.VYQ..VNYYGKKLVSSYKETYMESLQQQEKKIVSEDSSIS

TaQsOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

HsQSOXL GALELESRNSTLDPGKPEMMKSPTNTTPHVPAEGPEASRPPKLHPGLRAAPGQEPPEHMAELQRNEQEQPLGQWHLSKRDTGAALLAESRAEKNRLWGPLEVRRVGRSSKQLVDIPEGQLEARAGRGRGQWLQVLGGGFSYLDISLCVGL

AtQSOX1 N..VVP------------------------------------VGAA.AI.LASCAFGAL.CYW.TQ.KNRKYNYNPHYLKRYNSNYMVMNTFS.TESEREKE.-----------------------------------------------

AtQSOX2 N..VVP------------------------------------IGAA.AI.IASCAFGAL.CYW.TQ.KNRKPRRR---------------------------------------------------------------------------

OsQSOXL1 N.ASVP------------------------------------IGAA.GV.IASCTFGAL.CFW.AQ.KNRKQRKNWN-------------------------------------------------------------------------

OsQSOXL1a N.ASVP------------------------------------IGAA.GV.IASCTFGAL.CFW.AQ.KNRKYSH..RSLKKI--------------------------------------------------------------------

TaQsOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

HsQSOXL YSLSFMGLLAMYTYFQAKIRALKGHAGHPAA

AtQSOX1 -------------------------------

AtQSOX2 -------------------------------

OsQSOXL1 -------------------------------

OsQSOXL1a -------------------------------

TaQsOXL1 -------------------------------

D

a/a’

TRX

ERV1

i ii iii

Page 219: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

197

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AtAPR1 MAMSVNVSSSSSSGIINSRFGVSLEPKVSQIGSLRLLDRVHVAPV-SLNLSGKRSSSVKPLN-AEPKTK-DSMIPLAATMVAEIAEEVEVVE------IEDFEELAKKLENASPLEIMDKALEKYGNDIAIAFSGAEDVALIEYAHLTGR

AtAPR2 ..LA.TS..TAI..SSF..S.A.S.S.AL..C.I..S..T.LS---------Q.RY.M....-..SHSRSE.WVTR.S.LI.PEV..-KGG.------V....Q......D............RF.DQ.................R...K

AtAPR3 ..LAI........A.SS.S.PS.-DL..TK.......N.TN.SAA-..S.......-..A..-VQSI..-E.IV------AS.VT.KLD...------V........R................F.........................

OsAPRL1 ..SATASI..H.VALR--------DL.AAR..AVKQQVAAAP.AG-TAAARAQ.ARA.R..RA...ARQPV.ASAA..PAA.PV..DAAAAAVDAPAPAV.Y.A..QE.QG........R..AMF.S..................K....

TaAPRL1 ..SATASI..H.IALR--------DL.AAR..AV.QQVA.VP.GLPATAPK.Q.ARA.R..CA...AR.PV.ASAASSP-..PVE..ASA.A------AV.Y.A..QE.VG........R..DMF.SE.................K....

AtAPR4 -------MEKEILLLLLVIMFLTVADVDA-VRVPFCATKSAKDSIFG------------------LRDQTC.VSGVESDERPRFVAVT.GD.RWLQIALDMIHK-N.CDYV.LLFYASWCPFSRSFRPSFDVI.SLYSSIPHFAIKESSI

AtAPR5 -------MD.RV.ILFVCAIA..CFTSG.ASSPVDFSVCNYEFELFRFD.E----------------------AKCPPSLYPTPPI..DGDS--LDRLMASQHGN.---YMSVLFYASWCPFSRAVRPKFDML.SMFPQIQHLAVEHSQA

AtAPR6 -------MEKKLTLLLLVVVVLFVNLTNATVRVQICPRESAKDYILG------------------FRD.S-------.LHRPGFV--T.GDDRWLQMAADMVDKKN.CDYA.LLFYASWCPFSRLVRPSFDLM.LLYSSVPHFAIEESSV

AtAPR7 -------MNLWV.IFLV.AIAG.CL.SGFAY----VDVCN.EFE.FRSVIE----------------------QKCPRSLYPSPPI..DGDL--LDKLMDANHGN.---YISILFYTSRCPFSRAVRPKFDVL.SMFPHITHLIVEQSQA

OsAPRL2 ----------MRWWPALPLLLLAVAVAGAGDAAPVCTRPSAAEAIVG-------------------SPEACR----SPLRR--PLGVT.GDDAILARAVNLLHA-N.EDFA.VLFYASWCPFSQECRLRFEKLACIFPTIRHLAIEESTV

OsAPRL3 ------MATRLLCWTAL-LLPIIAATAAASPLPEACPVPTAAEEILG-------------------PGGTCT----TLDRRGDPVGVI.GD.VTLAKA.TLLHM-N.DDYI.VLFYASWCPFSQECKPNFEILASLFPSIRHFAFEESSI

OsAPRL3a ------MATRLLCWTAL-LLPIIAATAAASPLPEACPVPTAAEEILG-------------------PGGTCT----TLDRRGDPVGVI.GD.VTLAKA.TLLHM-N.DDYI.VLFYASWCPFSQECKPNFEILASLFPSIRHFAFEESSI

OsAPRL4 ..AATASA.A.A.AAAFLLLPLLAAAATAG--HGVCPRQPAA.A.LPRQAPAAS...SSSSSS--SSSSSCPAAG-SPGHR.HHVGV..GDDFVLQKAVTLVLQ-NREDFV.ILFYASWCPFS.IFRTDFQKL.SFFPTIAHFSFEESRI

OsAPRL5 -------MTRCAVVAAVAAVLLVAGAAAAGG.EEEEAPSTCAR-RGPGFVD--------------ALAS---RC.CIR-IEPSPPV..RGEA--IAKELNLRHRGV---TYSVLFYAAWCPFSSKFRP.FE.L.TMFPQIYHFTVEESSA

OsAPRL6 -------MAARLLAPLLLLLLLAPL.PPAAAAEPEEAR--CPRERLPPFVA--------------AAAAAALRPSCR.SAERCP...INGE.--LVKELSGK..-----CT.VLFYASWCPFSQRMRPVFDDL.SMFPRIKHLAVEQ.NA

TaAPRL2 ----------MRWWPALPLLLLAVAVAGAGDAAPVCTRPSAAEAIVG-------------------SPEACR----SPLRR--PLGVT.GDDAILARAVNLLHA-N.EDFA.VLFYASWCPFSQECRLRFEKLACIFPTIRHLAIEESTV

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AtAPR1 PFRVFSLDTGRLNPETYRFFDAVEKHYGIRIEYMFPDSVEVQGLVRSKGLFSFYEDGHQECCRVRKVRPLRRALKGLKAWITGQRKDQSPGTRSEIPVVQVDPVFEGLDGGVGSLVKWNPVANVEGNDVWNFLRTMDVPVNTLHAAGYIS

AtAPR2 ..................L......Q...........A....A...N..................................................I......................L.....A..............A...Q..V.

AtAPR3 .Y................L..T...............A....A...N................I.............R......................................................................V.

OsAPRL1 .................QL..K...............AG...A...A................A..........R..R...............AA........S....A..A............D.K...T...A......A...Q..V.

TaAPRL1 .................EL..K.......H......EAS...D..................................................AS........S.......A...I........D.K.I.T..............Q..V.

AtAPR4 KPSTL.KYGVHGF.TLLLLNST--MRARY.GTR.LDSL.AFYSD.TGIETLDKTSLERSV---SVPHLGNENNTEPENCPF.WA.-SPENML.Q.TYLALAIVFVLLRLLHLIY-PTLVVFMKFTWRRIAQNM.LE---SLLE.TV.FL.

AtAPR5 LPS...RYGIHSL.SILMVNQT--LNARYHGRKDLISLI.FYEEATGLQPVQYVAE.EPTG---------LN.GD.NLITWLRKGTSIREIFKQDPFL.LSLLFICLQMAILVF-PIAESRMRALWASYVAN.NLGRFGEISQLFNRG.H

AtAPR6 KASTL.KYGVHGF.TIILMNST--MLVVY.GSRTLDSL.AFYTD.TGIETMDERWVERNR---LVPHF----HAEPENCPFPWA.RSPENLL.Q.TYLTLATVFVLLRLLHLI.-PTMVVFVKFTWGR.S-NM.LG---NPLE.TVTMYL

AtAPR7 LPS...RYGIHSL.SILMVNQT--MKMRYHGPKDLASLIQFYKETTGLKPVQYMDE.EPTS---------LDT-D.NLITWLHNGSSIREIAER.PYM.LALMFLSLKLAILIF-PIMGSRLKTLWALYVPH.SLGILGETSQLFGRALH

OsAPRL2 RL.TRYRYGIHGY.TLFLINST--VRVRYHGPRTVKSLAAFYND.SGINPSMDPAV.-------DDNIEPK.DCEQE.CLFWSA.-TPENILQPDTYLTLAASFVILRLLYLF-YP.ITAFVKRTWSRRTL.-------TCLEQGKHKFN

OsAPRL3 RPSII.RYGIHGF.TLFLLNST--MRVRYHGPRTVKSLAAFYRD.SGFDVSMTS.AVLH----SVDGIE.KKDAEQENCPFWWA.-SPEKILQQDTYLALATAFVILRLLYLL-FP.IGSF.KRAWRRHTL.P------NLVGVHEYFFT

OsAPRL3a RPSII.RYGIHGF.TLFLLNST--MRVRYHGPRTVKSLAAFYRD.SG--------------------------APIITCGVWT--------------LSLSISLVLVVFLH--------------FQ.STEQ.------CYVSLNELVF.

OsAPRL4 KP.ML.RYGV.AF.TLFLVNST--MRVRYHGSRTMNSLAMFYKD.TGMNPV.LDAISLERMEE.VNIIENDKKTEQGDSLFMFA.-SPDRLLHQDTCLALASSFVLMRLLCFL-.P.L.ACVKQAWRMQFY------------ELKRLFP

OsAPRL5 MPSL..RYGV.GF.AILLVNETTMVR.W--GPKDLSSL.DFYKETTGFDPIAYFDVD-------------HQDST.DFRPV.PGDRSLRKIAKD.PF.LLAVLFIILKVAAHFV-PIVVSHLKTFLVVRVQN.NLGIRRGSSQLLERALN

OsAPRL6 MPA.L.RYGV.SF.SILIACGP--YA.WPVGSKELDSL.N.YTA.TGQEPIAYLGPRKW-----------SA.RT.STQHVKLWKSSIIEALK..PYLAFSILFICLKILVAFF-P.FFSCIKGIWVQYFRHANLGILAKL.QLLECVPH

TaAPRL2 RL.TRYRYGIHGY.TLFLINST--VRVRYHGPRTVKSLAAFYND.SGINPSMDPAV.-------DDNIEPK.DCEQE.CLFWSA.-TPENILQPDTYLTLAASFVILRLLYLF-YP.ITAFVKRTWSRRTL.-------TCLEQGKHKFN

TRX

E

Page 220: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

198

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AtAPR1 IGCEPCTKAVLPGQHEREGRWWWEDAKAKECGLHKGNVKENSD--------DAKVNGESKSAVADIFKSENLVTLSRQGIENLMKLENRKEPWIVVLYAPWCPFCQAMEASYDELADKLAGS--GIKVAKFRADGDQKEFAKQELQLGSF

AtAPR2 .......RP............................I..EDG-----------AADSKPA..QE..E.N.V.A..KG.V...L.......A.L..................I...E....K--.V.........E..............

AtAPR3 .......R.............................I...TNG-------N.TA.VNGTAS.....N...V.N.................A...................F.......G..--.V............D...K.......

OsAPRL1 .......RP............................IDDQGGAAAAAAHKAGGA..NGSAGAP...E.SGV.S.T.A.V...LR..S.A...L..................L...ER.G.AGG.V..G......E..A..Q.....Q..

TaAPRL1 .......RP.................T.......N..IDKEGQAPKVGVN----G..SAEASAP...Q.QAI.N.T.P.....LR....A...LT........Y........V...E..S..--...........E..P..QA....Q..

AtAPR4 RAVQ-------LCM.R.SNLQGGAMNARAWASKSLAT.SIGDSSSSNRRSSSSQ------------------------------------------------------------------------------------------------

AtAPR5 MVDVRRLWLK.SLVKT.N-FHERAKNAQAWAS-SLAS.SLGQTSSDQS------------------------------------------------------------------------------------------------------

AtAPR6 KEP---------CMS--SNLQEGAMNARAWASKSLAT.SIAESSSSSRSVSASQ------------------------------------------------------------------------------------------------

AtAPR7 MIDVRRLWIK.RLTKT.N-FQERAKN-------ALAS.SLGKSSSQSA------------------------------------------------------------------------------------------------------

OsAPRL2 ----------RVYPSKQGNLHDGARHATAWASKSLAS.SIGEPSTS--------------------------------------------------------------------------------------------------------

OsAPRL3 YLEQARH.FFRLYPSK.GNLQEGARNATAWASKSLAS.SIGEPSTIGRTNSTNELR----------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL4 ---------------------------------SLS------------------------------------------------------------------------------------------------------------------

OsAPRL5 VLDVKRLCSK.RLSNKTRDLRKGASNARAWAS-SFTS.SLGESSSSRQA-----------------------------------------------------------------------------------------------------

OsAPRL6 AVDLRKIWSKCRLMG-------GAMNSRVWAS-SLASMSFGERSSPRAAVL.--------------------------------------------------------------------------------------------------

TaAPRL2 ----------RVYPSKQGNLHDGARHATAWASKSLAS.SIGEPSTS--------------------------------------------------------------------------------------------------------

460 470 480

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

AtAPR1 PTILVFPKNSSRPIKYPSEKRDVESLTSFLNLVR

AtAPR2 ....L...RAP.A......H...D..M..V..L.

AtAPR3 .......................D..........

OsAPRL1 ....L..SRTA............D..LA.V.SL.

TaAPRL1 ....L..GRTVK...........Q..LA.V.SL.

AtAPR4 ----------------------------------

AtAPR5 ----------------------------------

AtAPR6 ----------------------------------

AtAPR7 ----------------------------------

OsAPRL2 ----------------------------------

OsAPRL3 ----------------------------------

OsAPRL3a ----------------------------------

OsAPRL4 ----------------------------------

OsAPRL5 ----------------------------------

OsAPRL6 ----------------------------------

TaAPRL2 ----------------------------------

TRX

Fig 6.4 Alignment of the putative amino acid sequences of the five groups of PDILs in rice and wheat. A: PDIL1; B: PDIL2; C: PDIL5; D: QSOXL; E: APRL. The putative catalytic sites (TRX), Erv1-like sites, and the C-terminal ER-localisation signal (KDEL) are framed. Identical residues are shaded blue and similar are shaded grey. The domains in secondary structures are indicated with bars.

Page 221: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

199

6.3.8 The relationship of PDILs in rice and wheat to those in Arabidopsis and

other organisms

The phylogenetic relationships of the five PDIL groups in the three plant species with

the human PDILs (hPDI; hP5; ERp18) were determined by analysis of alignments of the

putative amino acid sequences, with the Neighbor-Joining program in MEGA 4.0

(http://www.megasoftware.net) (alignment data were shown in Fig 6.4). The

phylogenetic tree of PDIL1s showed Arabidopsis (2 members), rice (4), and wheat (5)

were most closely related to hPDI (Fig 6.5; Table 6.5). The genes encoding TaPDIL1-

1, TaPDIL1-2 and TaPDIL1-3 are homeoalleles located on group 4 chromosomes

(Ciaffi et al., 1999), their putative proteins showing 85% identity to the OsPDIL1-1 that

has been shown to have critical roles in storage protein assortment (Takemoto et al.,

2002), and one of the homeoalleles is shown to be syntenic to the rice gene (Johnson et

al., 2006). Interestingly, the newly identified, highly related TaPDIL1-4 (predicted to

be located on group 4 chromosomes; section 6.3.9, Table 6.6) is 100% identical to

OsPDIL1-1 on amino acid sequence level, suggesting further work is required to see

whether this is also a candidate for storage protein folding and assortment. All five

PDIL1s in wheat were 50-56% identical to AtPDIL1-1 and AtPDIL1-2. TaPDIL1-5

exhibited 60-100% identity to OsPDIL1-2, OsPDIL1-3, and OsPDIL1-3a. The

orthologues of TaPDIL1-6 appear to be OsPDIL1-4, AtPDIL1-3 and AtPDIL1-4, with

50-70% identity.

The phylogenetic tree of PDIL2 group was generated similarly, for wheat (5 members),

rice (7), Arabidopsis (3), and a human PDI (hP5) (alignment data were shown in Fig

6.4) (Fig 6.5B). Three wheat PDIL2s (TaPDI2-1, TaPDIL2-2, TaPDIL2-3) appear to be

orthologues of four rice ones (OsPDIL2-1, OsPDIL2-1a, OsPDIL2-2, OsPDIL2-2a) and

Arabidopsis AtPDIL2-1, the identity between them being 70-100%. The genes

encoding TaPDIL2-1, TaPDIL2-2 and TaPDIL2-3 could thus be duplicates or

homeoalleles. TaPDIL2-4 and TaPDIL2-5 may be orthologues of three members in rice

encoded by one locus (OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b) (Table 6.1) and two in

Arabidopsis (AtPDIL2-2, AtPDIL2-3), the identity between them being 65-82% (on the

comparable parts). The genes encoding TaPDIL2-4 and TaPDIL2-5 may thus be

duplicates. All active sites in Arabidopsis PDIL2 were the conserved WCGHC (data

Page 222: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

200

not shown) and the molecular weights of proteins, calculated as above, ranged from 39

kDa (AtPDIL2-1) to 48 kDa (AtPDIL2-2 and AtPDIL2-3) (Table 6.5).

The phylogenetic tree of PDIL5 generated for wheat (13 members), rice (6),

Arabidopsis (4), human (2) (alignment data were shown in Fig 6.4) (Fig 6.5C) showed

four members in wheat (TaDPIL5-1, TaPDIL5-2, TaPDIL5-3, TaPDIL5-4) were likely

orthologues of OsPDIL5-1 and OsPDIL5-1a encoded by one locus (Table 6.1) in rice

and AtPDIL5-1 in Arabidopsis, the identity between them being 60-72%. The genes

encoding the four members in wheat may thus be alleles or duplicates. No orthologue

of TaPDIL5-5, TaPDIL5-6, TaPDIL5-7 could be identified in rice and Arabidopsis.

TaPDIL5-6 and TaPDIL5-7 shared 82% identity in comparable parts and may be

duplicates or homeoallelic. Three members of wheat (TaPDIL5-8, TaPDIL5-9,

TaPDIL5-12) were likely orthologues of OsPDIL5-2 and AtPDIL5-2 and the identity

between them was 55-80%. The genes encoding these three may again be allelic or

duplicates. No orthologue of TaPDIL5-10 was found in rice and Arabidopsis.

TaPDIL5-11 may be an orthologue of OsPDIL5-3 (73% identity) and AtPDIL5-2 (43%

identity). TaPDIL5-13 may be an orthologue of OsPDIL5-4 and OsPDIL5-4a encoded

by one locus (Table 6.1) and AtPDIL5-3 (54 kDa) and AtPDIL5-4 (54 kDa) the identity

between them being 70-98% (comparable parts). Genes encoding AtPDIL5-3 and

AtPDIL5-4 may be duplicates located on Chromosome 3 and 4, respectively (Houston

et al., 2005). The active sites in three out of four members of PDIL5 in Arabidopsis

were not conserved, with WCKHC (AtPDIL5-1), WCYWS (AtPDIL5-3), and WCYWC

(AtPDIL5-4) being noted. The molecular weights of AtPDIL5-3 and AtPDIL5-4 were

close to the purified 52 kDa PDI (PDI-52) localized in chloroplast.

The phylogenetic tree of QSOXL group (alignment data were shown in Fig 6.4) showed

that TaQSOXL1 may be an orthologue of OsQSOXL and OsQSOXLa encoded by one

locus (Table 6.1) and AtQSOX1 and AtQSOX2 (Fig 6.5D, Table 6.5). The tree based

on alignment of amino acid sequences of APRL members (alignment data were shown

in Fig 6.5) in wheat (2), rice (7), Arabidopsis (7) (data not shown) (Fig 6.5D) suggested

that TaAPRL1 may be orthologous to OsAPRL1 and three members (AtAPR1,

AtAPR2, AtAPR3) in Arabidopsis, the identity between them being 64-81%. The genes

encoding the three members in Arabidopsis appear to be duplicates located on

Chromosome 4

Page 223: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

201

(AtAPR1 and AtAPR3) and Chromosome 1 (AtAPR2) (Houston et al., 2005).

TaAPRL2 appears to be an orthologue of four members (OsAPRL2, OsAPRL3,

OsAPRL3a, OSAPRL4) in rice and AtAPR4 and AtAPR6 in Arabidopsis, identity

between them being 40-100%. AtAPR4 and AtAPR6 shared 65% identity and the

genes encoding them are possible duplicates located on Chromosome 1 and 4,

respectively (Houston et al., 2005).

TaPDIL1-2

TaPDIL1-3

TaPDIL1-1

OsPDIL1-1

TaPDIL1-4

AtPDIL1-1

AtPDIL1-2

OsPDIL1-2

OsPDIL1-3

OsPDIL1-3a

TaPDIL1-5

hPDI

AtPDIL1-5

AtPDIL1-6

OsPDIL1-5

AtPDIL1-3

AtPDIL1-4

OsPDIL1-4

TaPDIL1-6

100

100

100

75

100

100

100

100

100

100

47100

100

84

100A

Page 224: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

202

OsPDIL2-1

OsPDIL2-1a

TaPDIL2-3

TaPDIL2-1

TaPDIL2-2

OsPDIL2-2

OsPDIL2-2a

P5(Alfalfa

AtPDIL2-1

P5(Human)

AtPDIL2-2

AtPDIL2-3

TaPDIL2-4

TaPDIL2-5

OsPDIL2-3a

OsPDIL2-3

OsPDIL2-3b100

85

100

77

100

100

83

100

100

62

93

100

B

C OsPDIL5-1

TaPDIL5-4

OsPDIL5-1a

TaPDIL5-1

TaPDIL5-3

TaPDIL5-2

AtPDIL5-1

AtPDIL5-3

AtPDIL5-4

TaPDIL5-13

OsPDIL5-4

OsPDIL5-4a

TaPDIL5-5

TaPDIL5-10

TaPDIL5-6

TaPDIL5-7

AtPDIL5-2

OsPDIL5-3

TaPDIL5-11

OsPDIL5-2

TaPDIL5-12

TaPDIL5-8

TaPDIL5-9

ERp18

53

100

64

100

100

99

83

99

55

83

100

68

95

83

87100

99

98

Page 225: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

203

OsQSOXL1

OsQSOXL1a

TaQsOXL1

AtQSOX1

AtQSOX2

HsQSOXL

100

100

59D

OsAPRL2

TaAPRL2

OsAPRL3

OsAPRL3a

OsAPRL4

AtAPR4

AtAPR6

OsAPRL6

AtAPR5

AtAPR7

OsAPRL5

OsAPRL1

TaAPRL1

AtAPR2

AtAPR1

AtAPR391

78

100

100

100

55

100

55

79

59

69

E

Fig 6.5 Phylogenetic analysis of PDILs in Arabidopsis, rice, and wheat. A: PDIL1s; B: PDIL2s; C: PDIL5s; D: QSOXLs and APRLs. Trees were generated by Neighbor-Joining of the Bootstrap Test of Phylogeny in MEGA 4.0 program (http://www.megasoftware.net/mega.html), based on alignments of respective PDIL group members in the three species by ‘ClustalW Multiple Alignment’ application in Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) (Alignment figures were shown in Fig 6.4).

Page 226: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

204

Table 6.5 PDIL members in wheat and their potential orthologues in other plants*

Wheat Rice Arabidopsis (MW: kDa)

Others Functions (see section 1.5)

TaPDIL1-1 OsPDIL1-1 AtPDIL1-1 (56) AtPDIL1-2 (56)

GmPDIL-1 GmPDIL-2 (Soybean) hPDI (human)

•Segregation of prolamins and pro-glutelins in ER lumen through chaperone activity in rice (Takemoto et al., 2002).

•Proper seed development and regulation of timing of PCD by chaperoning and inhibiting Cys proteases. (Ondzighi et al., 2008).

•Role in the folding of storage protein by both the thiol-oxidoreductase activity and as molecular chaperone. (Kamauchi et al., 2008; 2007).

•ER-stress response (Lu and Christopher, 2008a).

• Purified 60 kDa PDI (TaDPIL1-6), co-localized with storage proteins in dense protein bodies (Shimoni et al., 1995b).

TaPDIL1-2 TaPDIL1-3 TaPDIL1-4 TaPDIL1-5 OsPDIL1-2,

OsPDIL1-3a, OsPDIL1-3

TaPDIL1-6

OsPDIL1-4

AtPDIL1-3 (64) AtPDIL1-4 (66)

n/a OsPDIL1-5 AtPDIL1-5 (60) AtPDIL1-6 (60)

n/a n/a

TaPDIL2-1 OsPDIL2-1, OsPDIL2-1a, OsPDIL2-2, OsPDIL2-2a

AtPDIL2-1 (39) n/a Function in ovule structure and embryo sac development and pollen tube guidance, through its roles in maturation of secreted or plasma membrane proteins in Arabidopsis (Wang et al., 2008)

TaPDIL2-2

TaPDIL2-3

TaPDIL2-4 OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b

AtPDIL2-2 (48) AtPDIL2-3 (48)

GmPDIM (Soybean) hP5 (human)

•GmPDIM shown to play a role in the folding of storage protein as both thiol-oxidoreductase and molecular chaperone (Kamauchi et al., 2008; 2007). •ER-stress response (Lu and Christopher, 2008a).

TaPDIL2-5

TaPDIL5-1 OsPDIL5-1, OsPDIL5-1a

AtPDIL5-1 (17)

n/a n/a TaPDIL5-2 TaPDIL5-3 TaPDIL5-4 TaPDIL5-5 n/a n/a n/a n/a TaPDIL5-6 n/a n/a n/a n/a

TaPDIL5-7 n/a n/a n/a n/a TaPDIL5-8 OsPDIL5-2 AtPDIL5-2 (50) n/a n/a TaPDIL5-9 TaPDIL5-10 n/a n/a n/a n/a TaPDIL5-11 OsPDIL5-3 AtPDIL5-2 (50) n/a n/a

TaPDIL5-12 OsPDIL5-2 TaPDIL5-13 OsPDIL5-4,

OsPDIL5-4a AtPDIL5-3 (54) AtPDIL5-4 (54)

n/a n/a

TaQSOXL OsQSOXL1; OsQSOXLa

AtQSOX1; AtQSOX2

n/a n/a

TaAPRL1 OsAPRL1 AtARP1, AtAPR2, AtAPR3

n/a n/a

TaAPRL2 OsAPRL2, OsAPRL3, OsAPRL3a, OsAPRL4

AtAPR4, AtAPR6, AtAPR7

n/a n/a

* The names of PDIL members are: wheat and rice (as given in this study); Arabidopsis (Houston et al., 2005); soybean (Kamauchi et al., 2008); human (Hatahet and Ruddock, 2007).

Page 227: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

205

6.3.9 Chromosomal localisation of PDILs in rice and prediction of chromosomal

location of PDILs in wheat

The map of chromosomal locations of the nineteen putative PDIL loci in rice was

generated from Oryza sativa genome view (http://www.ncbi.nlm.nih.gov) with

representative ESTs listed in Table 6.1 (Fig 6.6). The loci were distributed on all

chromosomes except 10. The distance between two loci on the same arm ranged from

200 kb (OsPDIL1-3 to OsPDIL5-3) to 11 Mb (OsPDIL5-3 to OsAPRL3). Genes on the

same chromosome and transcribed in the same direction included OsPDIL5-3 and

OsAPRL3 on chromosome 2 and OsPDIL1-2 and OsPDIL5-2 on chromosome 4, while

the divergently transcribed ones included OsPDIL1-3 and OsPDIL5-3 on chromosome

2, OsPDIL1-5 and OsAPRL2 on 6, and OsPDIL5-4 and OsAPRL1 on 7 (transcription

directions data not shown) .

Fig 6.6 Likely Locations of rice PDILs on chromosomes The map was generated from the Oryza sativa (rice) genome view in the NCBI Map viewer database (http://www.ncbi.nlm.nih.gov) with representative cDNA/ESTs as queries.

The chromosomal locations of the putative wheat PDIL loci were identified

progressively as detailed in chapter 2 (example shown in Fig 2.1). Searching in the

‘landmark or region’ for each of the nineteen rice PDIL loci on the

(http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/) led to identification of five

wheat bin-mapped markers (Table 6.5, Appendix VII). These were entered into

‘Mapped Loci for EST-derived Probes’ query in GrainGenes structured query language

(SQL) database (http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi), leading to

identification of cDNA probes used for Southern blotting. The results showed that (i)

Page 228: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

206

the bin-mapped marker CNL220BE398523 had been mapped to wheat chromosome 4

(as reported by Johnson et al., 2006); (ii) CSU046BE444859 to chromosome 1 (C-1DS:

3-0.48 1BS:10-0.50-0.84) by two probes (5’ probe: BE444859, 3’ probe: BQ161460);

(iii) UCD078BF201426 to chromosome 6; (iv) NDS021BE500255 to chromosome 1;

(v) KSU035BE403404 to chromosome 1 and 2; and (vi) NDS252BE445181 to

chromosome 5. The wheat PDIL bin-mapping data derived from the rice genome

browser is detailed in Table 6.6.

Table 6.6 Wheat and rice putative PDIL orthologues and their chromosomal locations Rice locus* Chromo-some and position of locus (bp)* PDIL gene

Wheat bin mapped Marker*

Probes for southern blotting*

Chromosome location (cM)*

PDIL gene in wheat

Id(%)**

Os11g09280 Chr11: 4960745-4964540

OsPDIL1-1 CNL220 BE398523

5’BE398523; 3’BQ167770

4AL5-0.66-1.00; C-4BL1-0.71; 4DS1-0.53-0.67

TaPDIl1-1 97.1

TaPDIL1-2 99.7

TaPDIL1-3 97.7 TaPDIL1-4 88.7

Os01g23740 Chr1: 13336110-13339991

OsPDIL2-2

CSU046 BE444859

5’BE444859; 3’ BQ161460

C-1DS: 3-0.48; 1BS:10-0.50-0.84

TaPDIL2-1 99.3

TaPDIL2-2 98.7

TaPDIL2-3 86.7 Os04g35290 Chr4: 21274652-21277663

OsPDIL5-2 UCD078 BF201426

5’ BF201426; 3’ BQ170402

C-6AL: 4-0.55; 6BL: 3-0.36-0.40; 6DL: 6-0.29-0.47

TaPDIL5-8 70.1

Os02g34530 Chr2: 20694520-20696830

OsPDIL5-3

TaPDIL5-9 70.5

TaPDIL5-11 100

TaPDIL5-12 70.1 Os05g47930 Chr5: 27390774-27395793

OsQSOXL NDS021 BE500255

5’ BE500255 3’ CD454155

1DL: 2-0.41-1.00 TaQSOXL 91.1

Os07g32570 Chr7: 19408263-19411558

OsAPRL1

KSU035 BE403404

5’ BE403404 3’ CD373598

1AL: 1-0.17-0.61, C-1BL: 6-0.32; C-2AS: 5-0.78, C-2BS: 1-0.53, C-2DS: 1-0.33

TaAPRL1 97.0

Os12g35640 Chr12: 21632781-1635926

OsAPRL6 NDS252 BE445181

5’ BE445181 3’ CD452815

5AS1-0.40-0.75, 5BS: 4-0.43-0.56

n/a

*Information about loci with position and wheat bin mapped marker is from TIGR Rice Genome Annotation (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/); sequences of probes from EST database (http://www.ncbi.nlm.nih.gov); chromosome location from GrainGenes structured

query language (SQL) database (http://wheat.pw.usda.gov/cgi-bin/westsql/map_locus.cgi). ) The bin-mapped marker CNL220BE398523 was reported to be mapped to chromosome 4 (Johnson et al.,

2006). **Sequence identity of the 5’probe with the corresponding section of sequence of the TA encoding wheat PDIL.

Sequences of 5’ probes were searched in the EST database

(http://www.ncbi.nlm.nih.gov) and aligned with the corresponding wheat TAs for

identity calculation (Table 6.6). The cDNA sequence of BE398523 showed significant

identities (97.1%, 99.7%, 97.7% respectively) with TAs of TaPDIL1-1, TaPDIL1-2,

TaPDIL1-3; and 88.7% identity with TA of TaPDIL1-4. BE444859 showed significant

identities (99.3%, 98.7%, and 86.7 % respectively) with TAs of TaPDIL2-1, TaPDIL2-

2, and TaPDIL2-3 in overlapping sections. BF201426 similarly aligned with

corresponding sections of TAs of TaPDIL5-8, TaPDIL5-9, TaPDIL5-11 and TaPDIL5-

12 (70.1%, 70.5%, 100% and 70.1% identities). BE500225 aligned with TaQSOXL1

Page 229: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

207

with 91.1% identity and BE403404 with TaAPRL1 with 97% identity. A map was then

generated from NCBI Map viewer (http://www.ncbi.nlm.nih.gov) using the probes as

queries (Fig 6.7). Three genes (TaPDIL1-1, TaPDIL1-2, and TaPDIL1-3) were

reported to be located on the 4 chromosome groups (Johnson et al., 2006) plus one

(TaPDIL1-4) was also predicted to be located on the chromosome 4. In addition, ten

more genes were located as: TaPDIL2-1, TaPDIL2-2 and TaPDIL2-3 on the short arms

of the chromosome 1B or 1D; TaPDIL5-8, TaPDIL5-9, TaPDIL5-11, TaPDIL5-12 on

the long arms of 6A, 6B, and 6D; TaAPRL on 1A, 2A, 2B, and 2D; and TaQsOXL on

the long arm of 1D. QTLs co-localizing with PDIL family in rice or the corresponding

chromosome in wheat were then identified based on this information.

Fig 6.7 Likely chromosomal locations of wheat PDILs The map was generated from the Oryza sativa (rice) genome view in the NCBI Map viewer database (http://www.ncbi.nlm.nih.gov) with representative cDNA/ESTs as queries.

6.3.10 Identification of quantitative trait loci likely to be associated with PDILs in

rice and wheat

The reported quantitative trait loci associated with rice grain quality or plant

development traits were identified by browsing the Oryza sativa ssp. japonica Group

genome database (http://gramene.org) (Appendix IX). The distribution of quality QTL

accession IDs ranged from two IDs on the chromosome 4 to seventeen on the

chromosome 6. Interestingly, the total protein content QTL (AGFU022) (0-116cM on

chromosome 6) was located on the 3.6Mb region that happended to contain OsPDIL1-5,

Page 230: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

208

and consistency viscosity QTL (CQAG19) (17.3cM on chromosome 6) was located on

the 3.9 Mb region that contained the OsAPRL2 gene. Total protein content and

consistency viscosity traits are relevant to the food industry, as introduced in Chapter 1.

The QTLs related to wheat grain quality were identified preliminarily by searching the

integrated wheat science database (http://www.shigen.nig.ac.jp). The search focussed on

chromosomes 1A, 1B, 1D, 2A, 2B, 2D, 6A, 6B and 6D as these contained the PDIL

genes (see above). QTLs related to sedimentation value of flour located on 6AL and

QTLs for endosperm colour were on 2A, with associated marker Xgwm45 (6.1cM) and

on 6B, with associated marker Xgwm193 (13.2cM) (Pozniak et al., 2006). QTL related

to mixograph peak time located on 1DL (Campbell et al., 2001) and that related to

alveograph dough strength located on 1A with associated marker Xfba92 (84cM), 1B

(associated marker Xmta14), and 6B (associated marker Xfbb250). QTL related to

protein content located on 6A with associated marker XE38M60200 (59cM) (Perretant

et al., 2000), and that related to dough rheological properties located on 1AL, 1B, 1D

and 2BL (Ma et al., 2005).

6.3.11 Expression analysis of selected PDILs in different tissues from Arabidopsis

microarray data

Prediction of expression of selected PDILs (PDIL1, PDIL2 and PDIL5 members) in

different tissues and developing seeds in Arabidopsis was conducted using the BAR

(Botany Array Resource) Arabidopsis eFP (Electronic Fluorescent Pictograph) browser

(http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Data were obtained by

exploring the microarray data of expression of approximately 22,000 genes in

Arabidopsis thaliana represented on the ATH1 GeneChip from Affymetrix (Winter et

al., 2007). AGI IDs of loci for PDILs in Arabidopsis were used as queries to search the

eFP browser, and expression values were obtained. The data were analysed in

Microsoft Excel (Fig 6.8). Interestingly, the most expressed genes in different tissues

were AtPDIL1-1, AtPDIL1-2, AtPDIL1-3, AtPDIL1-4, AtPDIL2-1, AtPDIL2-3,

AtPDIL5-1, AtPDIL5-2 and AtPDIL5-4, and exhibit the conserved active sites

WCGHC/WCKHC/ WCYWC (Fig 6.4). The less-expressed genes were AtPDIL1-5,

AtPDIL1-6, AtPDIL1-3, and their active sites are not conserved (Fig 6.4). AtPDIL1-1

is the orthologue of TaPDIL1-1, TaPDIL1-2, TaPDIL1-3, and TaPDIL1-4 in wheat. It

Page 231: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

209

was selected for the expression analysis in developing seeds. AtPDIL1-1 was expressed

highly (absolute expression >1000) in imbibed seed and developing seed (stages 5, 6,

7). AtPDIL2-1 expressed highly (level >1000) in imbibed and developing seed (stages

3, 4, 5, 6, 7), root, and shoot apex. The expression image of AtPDIL1-1 in developing

seeds was obtained directly in the same database (Fig 6.8) and was very low at seed

stage 3w, increased to the highest level at stage 6 w, and then decreased in seed stage

10.

0

1000

2000

3000

4000

5000

6000

Dry s

eed

Imbib

ed s

eed, 2

4 h

Caulin

e Le

af

Cotyle

don

Root

Flowerin

g

Shoot

Apex

Stem

Mat

ure P

olle

n

Seeds

sta

ge 3

w

Seeds

sta

ge 4

w

Seeds

sta

ge 5

w

Seeds

sta

ge 6

w

Seeds

Sta

ge 7

w

Seeds

Sta

ge 8

w

Seeds

Sta

ge 9

Seeds

Sta

ge 1

0

Veget

ative

Ros

ette

AtPDIL5-4

AtPDIL5-3

AtPDIL5-2

AtPDIL5-1

AtPDIL2-3

AtPDIL2-2

AtPDIL2-1

AtPDIL1-6

AtPDIL1-5

AtPDIL1-4

AtPDIL1-3

AtPDIL1-2

AtPDIL1-1

Fig 6.8 PDIL expression levels in different tissues in Arabidopsis (upper) and expression of AtPDIL1-1 in developing seeds (below). Data obtained from Arabidopsis eFP (Electronic Fluorescent Pictograph) browser database (http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cg) (Winter et al., 2007). Data of expression value were transferred to Microsoft Excel for producing the Figure of absolute expression.

AtPDIL1-1

Page 232: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

210

6.3.12 Preliminary expression analysis of three homeologous PDI genes in different

tissues and developing seeds in wheat

Preliminary analysis of expression of the wheat homeologues PDIL1-1, PDIL1-2,

PDIL1-3,1, located on 4AL, 4BS, and 4DS and likely to be putative orthologues

(Johnson et al., 2006) of the rice gene related to storage protein assortment (Takemoto

et al., 2002), was conducted by semi-quantitative reverse transcriptase PCR (RT-PCR).

First-strand cDNA synthesized from total RNA from stems, leaves and developing

seeds (6, 10, 14, 18, 25 and 30DAA) was amplified with various primers (allele-specific

primer pairs PDI-A3FPDI-A4R, PDI-B2F/PDI-B3R, PDI-D5F/PDI-D6R, and house-

keeping control ACTIN; Table 2.8) (Johnson and Bhave, 2004a). Amplification of

gDNA was also conducted for comparisons, to check that the RNA had no gDNA

contamination. The experiment was repeated and the fig has two full sets.

The RT-PCR results are shown in Fig 6.9 (first set of samples: panels A, B, C, D;

second set of samples: panels E, F, G, H). The PCR products were ~650bp (TaPDIL1-

1), ~700bp (TaPDIL1-2) and ~750bp (TaPDIL1-3), corresponding to the expected sizes

for cDNA alone (Table 6.7) and much smaller than those expected from gDNA due to

introns (~1800bp for TaPDIL1-1 and TaPDIL1-2, ~1000bp for TaPDIL1-3) (Johnson

and Bhave, 2004b; Ciaffi et al., 2006), confirming the good quality and lack of gDNA

contamination of RNA preparations. Products of simultaneous amplifications with the

ACTIN primer pair were as expected (410bp). Some variation was noted in the two sets

of samples and hence the results cannot be compared between them. However, both

experiments show firstly that all three PDIL1 homeologous genes are expressed and

there is no silencing of them during polyploidy, as has been reported for certain wheat

genes (He et al., 2003), and confirm that PDI is expressed in developing seeds as

previously reported (Grimwade et al., 1996). Since this locus is orthologus to the rice

locus shown to be directly involved in assortment of storage protein subtypes in rice and

deposition of two different types of protein bodies (Takemoto et al., 2002), the wheat

genes may also play such functions during this key event in the developing endosperm.

Page 233: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

211

M S L 6 10 14 18 25 30 G

2000bp

1030bp

500bp

100bp

A

M S L 6 10 14 18 25 30 G

2000bp

1030bp

500bp

100bp

B M S L 6 10 14 18 25 30 G

1030bp

500bp

100bp

C

500bp

100bp

M S L 6 10 14 18 25 30

D

700bp 500bp

100bp

M S L 6 10 14 18 25 30

E

800bp 500bp

100bp

M S L 6 10 14 18 25 30

F

700bp 500bp

100bp

M S L 6 10 14 18 25 30

G

500bp

100bp

M S L 6 10 14 18 25 30

H Fig 6.9 RT-PCR products amplified from the first-strand cDNA or genomic DNA of various tissues and developing seeds of wheat. First set (panels A, B, C, D), A: TaPDI L1-1; B: TaPDIL1-2; C: TaPDIL1-3; D: actin gene. Second set (panels E, F, G, H), E: TaPDIL1-1; F: TaPDIL1-2; G: TaPDIL1-3; H: actin gene. M: GeneRuler

TM DNA ladder; S: stem, L: leave, G: genomic DNA, 6-30: developing seeds at

different DAA. The PCR products were separated on 1.0% agarose gels.

Page 234: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

212

6.4 Discussion

6.4.1 Rice and wheat PDILs comprise large and diverse families

This study has identified 19 loci encoding 28 putative PDILs in rice, including seven

loci possibly encoding different splice forms. The putative proteins ranged from 22.7

kDa to 59.1 kDa and fell into five groups as reported in Arabidopsis (Houston et al.,

2005), i.e., PDIL1s (6), PDIL2s (7), PDIL5s (6), QSOXL (2) and APRL (7). The gene

structures varied from 3-exon to 15-exon. OsPDIL1-1 is reported to be close to esp2

locus on chromosome 11 (Johnson et al., 2006) and the protein encoded by it may

function in segregation of proglutelin and prolamin polypeptides within the ER lumen

(Takemoto et al., 2002). The 19 loci in rice were dispersed on 11 chromosomes, with

the maximum number on chromosome 2 (four loci) and one each on five different ones.

Some genes may be duplicates dispersed on different chromosomes, i.e., Os11g09280,

Os04g35600 and Os02g34940; Os05g06430 and Os01g23740; Os04g35290 and

Os02g34530; Os06g11740 and Os02g51850.

Twenty-seven TAs encoding putative PDILs in wheat have also been identified from

TIGR Plant Transcript Assemblies database. The size of the 27 PDILs ranged from

14.7 kDa to 63.7 kDa and they fell into the same five groups, i.e., PDIL1 (6), PDIL2

(5), PDIL5 (13), QSOXL (1) and APRL (2). TaPDI1-1, TaPDIL1-2, and TaPDIL1-3

have been reported previously as wPDI1, wPDI2, and wPDI3 (Johnson et al., 2001) or

CPDI-4A, CPDI-4B, and CPDI-4D (Ciaffi et al., 2006). The genes encoding these,

located on chromosomes 4A, 4B, and 4D, are possibly homeoalleles (Ciaffi, M,

Dominici, L, Tanzarella, O and Porceddu, E 1999). Some of the PDILs grouped

together and were conserved in comparable parts; e.g., TaPDIL2-2 and TaPDIL2-1

share 98.5% identity and TaPDIL2-4 and TaPDIL2-5 share 95.7 % identity on cDNA

level; suggesting these genes may be alleles or duplicates.

6.4.2 The PDIL1 group

This study identified six PDIL1 members each in rice and wheat, encoded by five and

six loci, respectively. All PDIL1s present four domains (a, b, b’, and a’) (Freedman et

al., 2002; Wilkinson and Gilbert, 2004), x-linker between b’ and a’, and insertion

/deletion (1-5 aa) in all domains in various rice and wheat members. The length of x-

linker appears conserved except for a two-residue insertion in OsPDIL1-2. The two

Page 235: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

213

active site motifs WCGHC (Kemmink et al., 1997) located in domain a at N-terminus

are variant in OsPDIL1-4 (WCAHC) and OsPDIL1-5 (WCERS), and in a’ at C-

terminus in OsPDIL1-5 (WCVDC). Variants are also reported in AtPDIL1-3

(WCGAC) and AtPDIL1-5 and AtPDIL1-6 (WCARS) (Houston et al., 2005). The

thioredoxin (TRX) active site motif WCXXC of PDI shows both disulfide isomerisation

and reduction/oxidation activities (Holmgren, 1985), but the variant WCGHS can

catalyse only disulfide isomerisation and not reduction/oxidation (Woycechowsky et al.,

2000; Serrato et al., 2008). Assays of both activities of these PDIL1s are required to

understand the effects of alterations at the active sites. All PDIL1s in rice and wheat are

predicted to contain the signal peptide at N-terminus for ER targeting (Price et al., 1991)

with varied lengths, from 22 aa (OsPDIL1-2) to 61 aa (TaPDIL1-3). All also show c-

extensions of 24 aa (OsPDIL1-1) to 44 aa (OsPDIL1-4) and the signature C-terminal

tetrapeptide KDEL for ER retention/ retrieval (Freedman et al., 2002), and as expected,

are predicted to be ER-located.

A 60 kDa PDI has been identified in the lumen of ER and found to co-localise with

storage proteins in the dense protein bodies in wheat (Shimoni et al., 1995b). The

mature proteins (TaPDIL1-1, TaPDIL1-2, TaPDIL1-3, TaPDIL1-4) (exclusive of the

SP) are predicted to be 54 kDa, and glycosylation may increase its mass by 6 kDa

(Hirtzlin et al., 1995), making the same (60 kDa) as the reported PDI glycoprotein in

wheat ER (Shimoni et al., 1995b). On amino acid sequence level, TaPDIL1-4 is 85%

identity with TaPDIL1-1, TaPDIl1-2, TaPDIL1-3, and 100% identical to OsPDIL1-1

which regulates segregation of proglutelin and prolamin polypeptides in rice (Takemoto

et al., 2002). This suggests TaPDIL1-4 may be another candidate for storage protein

folding related functions. The orthologues AtPDIL1-1, AtPDIl1-2, AtPDIL1-3, five

PDIL1 in rice and all PDIL1 in wheat may be responsible for ER stress response (Lu

and Christopher, 2008a). The orthologues GmPDIL-1 and GmPDIL-2 play a role in the

folding of storage proteins as both thiol-oxidoreductases and molecular chaperones

(Kamauchi et al., 2007; 2008). Thus all PDIL1s may be responsible for roles in folding

of storage proteins and/or ER stress response, by both enzymatic and chaperone

functions. The possibly allelic genes encoding TaPDIL1-1, TaPDIL1-2, TaPDIL1-3 are

expressed in developing seeds as well as stems and leaves. This is not unexpected, as

the first wheat PDI cDNA (corresponding to TaPDIL1-1, based on its cDNA sequence)

was isolated

Page 236: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

214

from root tip library (Shimoni et al., 1995a). TaPDI1-1, TaPDIL1-2, TaPDIL1-3 may

thus play a role in vegetative tissues as well as developing endosperm. Further study

should focus on characterising the genes encoding TaPDIL1-4, TaPDI1-5, TaPDIL1-6

as well as testing for PDIL1 interactions by systems such as the yeast-two hybrid.

6.4.3 The PDIL2 group

This study identified seven PDIL2s (encoded by three loci) in rice, and five in wheat.

Four members in rice and wheat each show N-terminal domains ao and a (Ferrari and

Soling, 1999); OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b and TaPDIL2-5 present N-

terminal ao and a domains and C-terminal b (Ferrari and Soling, 1999).

Insertions/deletions exists in ao (2 aa), a (2 or 4 aa), b (5-14 aa) in various rice and wheat

members. All PDIL2s shows the conserved active site motif (WCGHC) in ao and a and

all have been predicted to contain a signal peptide at N-terminus for ER targeting (Price

et al., 1991), varying from 18 aa (OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b) to 29 aa

(OsPDIL2-1, OsPDIL2-1a). OsPDIL2-1, OsPDIL2-1a and TaPDIL2-3 shows part D

(Ferrari and Soling, 1999) with one residue insertion/deletion. OsPDIL2-3 and

TaPDIL2-5 have a c-extension of 34 aa and C-terminal NDEL for ER-retention as

reported in AtFKBP15-2 (He et al., 2004). Further study may be needed to confirm

their cellular locations and confirm the residues essential for ER-retention.

Of the orthologues of OsPDIL2-3 and TaPDIL2-5, human P5 has oxidase, isomerase

and chaperone activities (Ellgaard and Ruddock, 2005; Kim et al., 2009), GmPDIM

plays a role in folding of storage proteins by both thiol-oxidoreductase and chaperone

roles (Kamauchi et al., 2008; 2007), and AtPDIL2-2 and AtPDIL2-3 are responsible for

ER stress response in Arabidopsis (Lu and Christopher, 2008a). These observations

suggest OsPDIL2-3 and TaPDIL2-5 may have similar functions. Further study should

be conducted on these proteins/genes and their expression in developing seeds.

Page 237: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

215

6.4.4 The PDIL5 group

Six PDIL5 (encoded by four loci) in rice and 13 in wheat were identified, all presenting

only the a domain (Jeong et al., 2008; Kim et al., 2009) with two main insertions (>6

residues) in OsPDIL5-4, OsPDIL5-4a and TaPDIL5-13. The active sites were variant in

both rice and wheat, i.e., WCKHC (OsPDIL5-1, OsPDIL5-2, TaPDIL5-1, TaPDIL5-2,

TaPDIL5-3, TaPDIL5-4) as found in AtPDIL5-1 or WCYWS (OsPDIL5-4, OsPDIL5-

4a, TaPDIL5-13) in AtPDIL5-3 and AtPDIL5-4 (Houston et al., 2005). As for PDIL1s,

further study should assay the enzymatic activities of these proteins. Five PDIL5

members in rice and twelve in wheat have been predicted to have the SP for N-targeting

(Price et al., 1991), but with varied lengths. OsPDIL5-4a and TaPDIL5-13 show a 90

aa extension at the N-terminus with no predictable cleavage site, suggesting they may

be in locations other than ER. The cytosolic PDIL5-1 in maize is possibly an

orthologue of OsPDIL5-1, TaPDIL5-1, TaPDIL5-2, TaPDIL5-3 and TaPDIL5-4 and

has a molecular chaperone role (Houston et al., 2005). Most members (twelve) contain

extra sequences at the C-terminus, as found in AtPDIL5-2, AtPDIL5-3 and AtPDIL5-4

(Houston et al., 2005). The extension may contain the b domain for peptide binding

(Freedman et al., 2002), but this is as yet unconfirmed. The human ERp18 with N-

terminal SP and C-terminal EDEL is responsible for apoptosis, during ER stress caused

by accumulation of misfolded proteins (Jeong et al., 2008). TaPDIL5-2 shows a similar

structure, including the C-terminal EDEL, suggesting it may function as a chaperone for

regulation of misfolded proteins and requiring further study.

6.4.5 The QSOXL group

This study identified two QSOXL (encoded by one locus) in rice, and one in wheat.

OsQSOXL and OsQSOXLa present a/a’ domain with the motif WCPAC, and an ERV1

domain including its three parts (Thorpe et al., 2002). TaQSOXL lacks the ERV1

domain, and thus may not have the sulfhydryl oxidase activity (Lee et al., 2000; Thorpe

et al., 2002). All QSOXLs have been predicted to have the SP for N-targeting (Price et

al., 1991), with lengths 25 aa or 30 aa. The proteins are predicated to be located in the

ER, but show unusual C-termini, i.e., KNWN and LKKI of OsQSOXL and

OsQSOXLa, compared to those reported for AtQSOX1 and AtQSOX2 (Houston et al.,

2005), needing further study.

Page 238: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

216

6.4.6 The APRL group

Seven APRLs (encoded by six loci) in rice and two in wheat were identified. OsAPRL1

and TaAPRL1 exhibit the active sites WCPFC or WCPYC at the C-terminus and lack

the N-terminal active site, as in case of Arabidopsis APRLs (AtAPR1, AtAPR2,

AtAPR3) (Gutierrez-Marcos et al., 1996; Houston et al., 2005). Other members

contained WCPFS at the N-terminus but not at the C-terminus, as in the case of other

Arabidopsis APRLs (AtAPRL4, AtAPRL5, AtAPRL6, AtAPRL7) (Houston et al.,

2005). Further studies should assay for both oxidoreductase and isomerase enzyme

activities of the variant forms. OsAPRL1 and TaAPRL1 shows chloroplast transit

peptides, as noted in PRH-19, PRH-26 and PRH-43 of Arabidopsis (Gutierrez-Marcos

et al., 1996). The intracellular location and biochemical activities of these isoforms also

need further study.

6.4.7 Chromosomal locations of PDILs in rice and wheat

Nineteen loci putatively encoding PDILs in rice are scattered on all chromosomes

except chromosome 10. The putative chromosomal positions of nine genes encoding

wheat PDILs were identified, TaPDIL2-1, TaPDIL2-2, and TaPDIL2-3 being on the

short arms of chromosome 1B or 1D; TaPDIL5-8, TaPDIL5-9, TaPDIL5-11, TaPDIL5-

12 on the long arms of 6A, 6B, and 6D; TaAPRL on 1A, 2A, 2B, and 2D; and TaQsOXL

on the long arm of 1D.

A search for QTLs on these chromosomes shows the total protein content QTL

(AGFU022) (0-116cM on chr6) is located on the 3.6Mb region that may contain the

OsPDIL1-5 gene, and consistency viscosity QTL (CQAG19) (17.3cM on chr6) was

located on the 3.9 Mb region that may contain OsAPRL2 (Appendix IX). QTLs related

to sedimentation value of flour are located on chromosome 6AL, endosperm colour on

2A (Pozniak et al., 2006), mixograph peak time on 1DL (Campbell et al., 2001),

alveograph dough strength on 1A, 1B, and 6B, protein content on 6A (Perretant et al.,

2000), and dough rheological properties on 1AL, 1B, 1D, and 2BL (Ma et al., 2005).

Total protein content and consistency viscosity influence the grain quality traits relevant

to the food industry. Many genes in the area of these QTLs may be potential candidates

for such traits; finer mapping and analysis of any sequence diversity and its effects are

required to address such association.

Page 239: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

217

In summary, the identified PDILs in rice and wheat with substituted residues at the

active site motif can be used for confirmation of functional residues required for both

types (oxidoreductase and isomerase) of enzymatic activities of PDI. The functions of

orthologs of TaPDIL1-1, TaPDIL1-2, TaPDIL1-3, TaPDIL1-4, TaPDIL1-5, TaPDIL1-

6, TaPDIL2-5, TaPDIL5-1, TaPDIL5-2, TaPDIL5-3 and TaPDIL5-4 have been

addressed in other organisms, suggesting these may have function in catalytic roles

and/or chaperones in regulation of seed storage protein folding and deposition. Further

studies should focus on characterizing the genes encoding these PDILs and testing the

interaction of various isoforms with each other and other ER chaperones, including

Cyps. All identified TAs encoding PDILs in wheat can be used for further work in gene

characterisation and mapping. There is also a need to look for natural variants of these

genes in wheat cultivars and landraces, as well as wild relatives of wheat of various

ploidy levels, to identify any association with stress response or grain quality.

Page 240: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

218

Chapter 7

GENERAL DISCUSSION

Page 241: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

219

7 General discussion

A major aim of this thesis was to test the hypothesis that genes encoding cyclophilins

and protein disulphide isomerase-like genes comprise multigene families in wheat, and

to identify new candidate that may be potentially associated with enzymatic and/or

chaperone roles in protein folding, plant development, stress tolerance and/or important

agronomic traits. In order to address this hypothesis, the thesis describes the

identification of such gene families by bioinformatics methods. The experimental

isolation and characterisation of the Cyclophilin B gene in wheat, its physical and

genetic mapping by experimental methods and identification of the corresponding gene

in rice by bioinformatics approaches were other major aims. Identification of the

putative promoter sequences of these genes in wheat (by experimental methods) and in

rice (by bioinformatics tools) and preliminary analysis of expression of selected genes

in wheat are also described. The key results are summarised below, followed by a brief

discussion on future directions

7.1 General discussion

7.1.1 Cyclophilin B shows potential location in the ER

The wheat putative cyclophilin B protein deduced from TaCypB-B in T. aestivum cv

Rosella exhibits a length of 213 amino acids and contains all residues essential for

catalytic activity and immunosuppressant drug binding, as reported for human cytosolic

cyclophiln A and ER-localised cyclophilin B (Pflügl et al. 1993; Price et al., 1991). In

addition, it contains the C-terminal tetrapeptide signal EVPL which has acidic and

hydrophobic residues and partially corresponds to ELPM of purified maize microsomal

cyclophilin (Sheldon and Venis, 1996) and ELPL of Arabidopsis cyclophilins, which

are confirmed to be localized in ER (Saito et al., 1999). The wheat CypB identified

here is thus highly likely to be ER-localized and similar to other such proteins, it is a

strong candidate for diverse enzymatic or chaperone roles in the ER lumen, including

roles in storage protein processes.

7.1.2 Putative ER localized cyclophilin and protein disulphide isomerases may

have roles in ER stress response

In addition to cyclophilin B, two other potential ER localised cyclophilins (TaCYP24-1

and TaCYP26-2) also contain N-terminal ER-targeting sequences and C-terminal

Page 242: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

220

extensions (Chapter 5). Orthologues of wheat CypB (TaCYP23-1,Chapter 5) in

Arabidopsis have roles for regulating the protein GNOM required for coordination of

cell polarity along the embryo axis (Grebe et al., 2000) and PP2A (protein phosphatase

2A) for auxin transport and growth response (Jackson and Soll, 1999). TaCYP24-1 has

the same length but not sequence of the C-terminal extension as the human ER-localised

cyclophilin (hCyP-22b/p, NP_000933), acting as a transcriptional inducer (Rycyzyn and

Clevenger, 2002) and playing crucial roles in protecting cells against ER stress (Kim et

al., 2008). Wheat TaCYP24-1 may thus have functions in ER stress response.

The putative promoter sequences of CypB genes in rice and 2n wheat contain relevant

conserved regulatory regulatory sequences such as the GC-rich motif shown to be

critical for initiation of transcription (Pugh, et al., 1991; Sargsyan et al., 2002), the E-

box (Stålberg et al., 1996; Simeone et al., 2006) and Dof core (Vicente-Carbajosa et al.,

1997; Lillemo et al., 2002; Simeone at al., 2006) for tissue specific expression,

endosperm motif (prolamin-box) (Colot et al., 1987; Lillemo et al., 2002; Simeone et

al., 2006) and dyad repeats for endosperm specific expression (Leah et al., 1994;

Lillemo et al., 2002), and AT-rich motif for seed-specific enhancer (Allen et al.,1989;

Marraccini et al., 1999). These support the observed up-regulation of Cyp genes in the

developing wheat endosperm (Grimwade et al., 1996). The presence of an ER stress

responsive element (ERSE-II) (Yoshida et al., 1988; Kokame et al., 2001) in the rice

CypB promoter also supports a role in stress response.

The PDIL1 group in wheat contains the N-terminal signal peptide for ER-targeting and

C-terminal KDEL for ER retention and their orthologues in Arabidopsis may have roles

in ER stress response (Lu and Christopher, 2008a) through folding and regulation of

storage protein by both the thiol-oxidoreductase and chaperone/co-chaperones

(Kamauchi et al., 2007; 2008). The allelic genes encoding TaPDIL1-1, TaPDIL1-2,

TaPDIL1-3 are expressed in developing seeds as well as stems and leaves, the first

cDNA of TaPDIL1-1 having been isolated from root tip library (Shimoni et al., 1995a),

suggesting they may play a role in vegetative tissues as well as developing seeds.

TaPDIL1-4 shows 100% identity to OsPDIL1-1 in rice on amino acid sequence level

and OsPDIL1-1 has been proven to play a key role in regulating the segregation of

proglutelin and prolamin polypeptides during formation of two types of storage protein

bodies in rice grain (Takemoto et al., 2002). TaPDIL2-5 contains N-terminal ER

Page 243: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

221

targeting signal peptide, and a C-terminal NDEL, noted in an Arabidopsis ER-PPIase

(AtFKBP15-2) (He et al., 2004), and its orthologues in Arabidopsis (AtPDIL2-2 and

AtPDIL2-3) may have roles for ER stress response (Lu and Christopher, 2008a) through

folding and regulation of storage proteins by its roles as a thiol-oxidoreductase and

chaperone (Kamauchi et al., 2008; 2007). TaPDIL5-2 shows a similar structure to

human ERp18, which is responsible for apoptosis during ER stress caused by

accumulation of misfolded proteins (Jeong et al., 2008); a similar role for TaPDIL5-2 is

thus plausible and needs to be investigated.

7.1.3 Plant cyclophilins in other cellular locations show a variety of functions

The Cyps show a range of functions through both catalytic and chaperone roles in

different cellular locations. Orthologues of cytosolic Cyps (TaCYP18-1, TaCYP18-2,

TaCYP19) have roles in regulating plant growth in tomato (Oh et al., 2006) and in

Solanum sogarandinum (Kielbowicz-Matuk et al., 2007), and are involved in stress

response in potato induced by pathogens (Dubery, 2007). Its orthologue in Arabidopsis

is required for vegetative phase change (Berardini et al., 2001) by regulation of

miR156-regulated members (Smith et al., 2009). An orthologue of the chloroplastic

TaCYP26-1 functions in repairing the photodamaged photosystem II (PSII) in

Arabidopsis (Cai et al., 2008). TaCYP46-2 contains a leucine zipper motif at N-

terminus and its potential orthologue AtCYP38 - with conserved functional residues and

a leucine zipper motif - plays a critical role in the assembly and maintenance of PSII

supercomplexes (Fu et al., 2007; Sirpio et al., 2008). Similar roles seem plausible for

the relevant wheat and rice orthologues.

7.2 Future directions

The findings of the current study have provided invaluable information about the

cyclophilin B genes in wheat. Further, analysis of the Cyp and PDI superfamilies has

led to identification of additional ER-localised isoforms of these foldase enzymes, and

several members which have orthologues in other species known to play chaperone or

regulatory roles. The work has thus led to identification of several new candidates for

potential roles in folding and regulation of storage protein processes and ER stress

response. The following research directions should produce further insights into these

areas:

Page 244: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

222

• Data on wheat orthologues at rice CypB locus indicates that wheat CypB gene

(designated as TaCypB7A, TaCypB7B, TaCypB7D in chapter 4; TaCYPB23-1 in

Chapter 5) may be on chromosomes 1 and 7. The location on chromosome 7 has

been confirmed (chapter 4) but that on chromosome 1 is currently unsupported and

needs further work, e.g., by Southern blotting of DNA of various ploidy levels, or

use of other stocks of nullisomic/tetrasomic or deletion lines.

• The putative wheat CypB with unusual C-terminal EVPL is predicted to be located

in ER. While varying from the classical KDEL, it is partially similar to variant

sequences of some ER-Cyps in maize and Arabidopsis. This CypB is thus a strong

candidate for ER-localisation and consequent roles in storage protein processes. Its

cellular location needs to be confirmed, e.g., by immunological techniques and

manipulation of gene sequence.

• Its roles can be investigated by expression of the protein, and/or study of deletion or

other mutant lines, and/or studies of its orthologues in rice or Arabidopsis.

• Several other identified putative ER-localised wheat Cyps may (also) play important

roles as catalysts/chaperones in storage protein folding and protein body formation.

• The identified TA sequences encoding ER-localised wheat Cyps provide important

tools for full characterisation of their genes in T. aestivum and/or its progenitors as

well as identifying their functions. The cellular locations of TaCYP24-1 and

TaCYP26-2 also need to be confirmed and their ER retention addressed.

• ER-Cyps, and Cyps with leucine zippers, may form homo- or heterodimers or

cooperate with other chaperones in performing their roles. The protein-protein

interactions within/between Cyps and/or with other ER chaperones and/or storage

proteins can be tested by systems such as yeast-two hybrid.

• All identified wheat/rice Cyps with substitutions at catalytic sites can be tested for

drug binding, enzymatic and/or chaperone abilities for confirmation of essential

residues.

• The putative ER-localised PDILs (TaPDIL1-4, TaPDIL1-5, TaPDIL1-6, TaPDIL2-

5, TaPDIL5-2) in wheat may similarly play important roles in catalysis/regulation of

storage protein folding and deposition, and/or response to internal ER stress that

occurs due to intense protein synthetic activities. The identified TAs provide

important tools for characterisation of their genes and functions in T. aestivum

and/or its progenitors.

Page 245: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

223

• Of these, TaPDIL1-4 is 100% identical to OsPDIL1-1 on amino acid level and may

be duplicates of TaPDIL1-1, TaPDIL1-2, and TaPDIL1-3 with 83-84% identity on

coding sequence level and 85% identity on amino acid level. OsPDIL1-1 is proven

to regulate segregation of proglutelin and prolamin polypeptides in rice (Takemoto

et al., 2002). The molecular weight of glycosylation protein TaPDIL1-4 is 60 kDa,

close to the reported PDI glycoprotein co-localising with storage proteins in the

dense protein bodies in wheat endosperm (Shimoni et al., 1995). TaPDIL1-4 may

thus be another candidate for storage protein folding and assortment roles, requiring

detailed study including gene characterisation and mapping.

• All identified Cyp and PDIL genes can be used for mapping purposes and

identification of any QTL-related wheat quality traits co-localising with these genes.

Page 246: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

224

References

ABARE (2008a) Australia Bureau of Agriculture and Resource Economics, Australia

crop report 2008

(http://www.abareconomics.com/publications_html/cr/cr_08/cr08_Dec.pdf;

accessed 03 2009).

ABARE (2008b) Australia Bureau of Agriculture and Resource Economics, Australia

commodity 2006

(http://www.abareconomics.com/publications_html/ac/ac_06/ac_06.html;

accessed

03 2009).

Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S,

Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum

leaf and glume blotch and correlations with other morphological traits in

hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111: 325-336.

Alergand T, Peled-Zehavi H, Katz Y, Danon A (2006) The chloroplast protein disulfide

isomerase RB60 reacts with a regulatory disulfide of the RNA-binding protein

RB47. Plant Cell Physiol 47: 540-548.

Allaby R, Brown T (2000) Identification of a 5S rDNA spacer type specific Triticum

urartu and wheats containing the T. urartu genome. Genome 43: 250-254.

Allen RD, Bernier F, Lessard PA, Beachy RN (1989) Nuclear Factors Interact with a

Soybean [beta]-Conglycinin Enhancer. Plant Cell 1: 623-631.

Altschuler Y, Galili G (1994) Role of conserved cysteines of a wheat gliadin in its

transport and assembly into protein bodies in Xenopus oocytes. J Biol Chem

269: 6677–6682.

Altschuler Y, Harel R, Galili G (1993) Role of the N- and C-terminal regions of a wheat

-gliadin in its transport via the endoplasmic reticulum of Xenopus oocytes.

Plant Cell 5: 443–450.

Anderson S, Gallinger S, Roder J, Frey J, Young H, Ortaldo J (1993) A cyclophilin-

related protein involved in the function of natural killer cells. Proc Natl Acad Sci

U S A. 90: 542–546.

Appella E, Anderson C (2007) Post-translational modifications – S-palmitoylation,

proline isomerization, disulfide bond isomerization. FEBS J 274: 5201-5201.

Page 247: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

225

Appenzeller-Herzog C, Ellgaard L (2008a) The human PDI family: Versatility packed

into a single fold. Biochim Biophys Acta 1738: 535-548.

Appenzeller-Herzog C, Ellgaard L (2008b) In vivo reduction-oxidation state of protein

disulfide isomerase: The two active sites independently occur in the reduced and

oxidized forms. Antioxid Redox Signal 10: 55-64.

Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P,

Stoger E (2004) Unexpected deposition patterns of recombinant proteins in post-

endoplasmic reticulum compartments of wheat endosperm. Plant Physiol. 136:

3457-3466.

Batey IL, Hayden MJ, Cai S, Sharp PJ, Cornish GB, Morell MK, Appels R (2002)

Genetic mapping of commercially significant starch characteristics in wheat

crosses. Aust J Agric Res 52: 1287-1296.

Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill

EW, Sayen MR, Gottlieb RA, Dorn II GW, Bobbins J, Molkentin JD (2005)

Loss of cyclophilin D reveals a critical role for mitochondrial permeability

transition in cell death. Nature 434: 658-662.

Barisic K MS, Noegel A. A, Gerisch G, Segall JE (1991) cDNA sequence of cyclophilin

from Dictyostelium discoideum. Dev Genet. 12: 50-53.

Barro F, Rooke L, Bekes F, Gras P, Tatham A, Fido R, Lazzeri P, Shewry P, Barcelo P

(1997) Transformation of wheat with high molecular weight subunit genes

results in improved functional properties. Nat Biotechnol 15: 1295 - 1299.

Baynton CE, Potthoff SJ, McCullough AJ, Schuler MA (1996) U-rich tracts enhance 3′

splice site recognition in plant nuclei. Plant J 10: 703-711.

Berardini T, Bollman K, Sun H, PR S (2001) Regulation of vegetative phase change in

Arabidopsis thaliana by cyclophilin 40. Science 291: 2405-2407

Birney E, Kumar S, Krainer A (1993) Analysis of the RNA-recognition motif and RS

and RGG domains: conservation in metazoan pre-mRNA splicing factors

Nucleic Acids Res 21: 5803-5816.

Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content

in durum wheat. Theor Appl Genet 112: 1195–1204.

Boden G, Duan X, Homko C, Molina E, Song W, Perez O, Cheung P, Merali S (2008)

Increase in endoplasmic reticulum stress–related proteins and genes in adipose

tissue of obese, insulin-resistant individuals. Diabetes 57: 2438-2444.

Page 248: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

226

Boldbaatar D, Kilonzo R, Battur B, Umemiya R, Liao M, Tanaka T, Xuan X & Fujisaki

K (2008) Identification of two forms of cyclophilin from the hard tick

Haemaphysalis longicornis. Process Biochem. 43: 615-625

Bose S, Mucke M, Freedman RB (1994) The characterization of a cyclophilin-type

peptidyl prolyl cis-trans-isomerase from the endoplasmic-reticulum lumen.

Biochem J. 300: 871-875.

Bossard MJ, Koser PL, Brandt M, Bergsma DJ, Levy MA (1991) A single Trp121 to

Ala121 mutation in human cyclophilin alters cyclosporin A affinity and

peptidyl-prolyl isomerase activity. Biochem Biophys Res Commun 176: 1142-

1148.

Boston RS, Viitanen PV, Vierling E (1996) Molecular chaperones and protein folding

in plants. Plant Molecular Biology 32: 191 - 222.

Bozkurt O, Unver T, Akkaya M (2008) Genes associated with resistance to wheat

yellow rust disease identified by differential display analysis. Physiol Mol Plant

Path 71: 251-259.

Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine

kinase Itk by the peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci

USA 99: 1899–1904.

Breiman A, Graur D (1995) Wheat Evolution. Israel Journal of Plant Sciences 43: 85-

89.

Buchholz WG, Harris-Haller L, DeRose RT, Hall TC (1994) Cyclophilins are encoded

by a small gene family in rice. Plant Mol Biol 25: 837 - 843.

Bulleid N & Freedman R (1988) Defective co-translational formation of disulphide

bonds in protein disulphide-isomerase-deficient microsomes. Nature 335: 649 -

651.

Cai H, Wang C, Tsou C (1994) Chaperone-like activity of protein disulfide isomerase in

the refolding of a protein with no disulfide bonds. J Biol Chem 269: 24550-

24552.

Cai W, Ma J, Guo J, Zhang L (2008) Function of ROC4 in the efficient repair of

photodamaged photosystem II in Arabidopsis. Photochem Photobiol 84: 1343-

1348

Campbell K, Finney P, Bergman C, Gualberto D, Anderson J, Giroux M, Siritunga D,

Zhu J, Gendre F, Roué C, Vérel A, Sorrells M (2001) Quantitative trait loci

Page 249: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

227

associated with milling and baking quality in a soft x hard wheat cross Crop Sci

41: 1275-1285

Carmichael D, Morin J, Dixon J (1977) Purification and characterization of a

thiol:protein disulfide oxidoreductase from bovine liver. J Biol Chem 252: 7163-

7167.

Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S,

Harker N, Pallotta M, Cornish GB, Sharifiou MR, Rampling LR, McLauchlan

A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P

(2001) Construction of three linkage maps in bread wheat, Triticum aestivum.

Aust J Agric Res 52: 1089-1119.

Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX (2007) Ectopic

expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella

halophila, confers salt tolerance in fission yeast and tobacco cells. Plant Cell

Rep 26: 237-245.

Cho E, Kim M (2008) A red algal cyclophilin has an effect on development and growth

in Nicotiana tabacum. Plant Physiol Biochem 46: 868-874

Chou I, Gasser C (1997) Characterization of the cyclophilin gene family of Arabidopsis

thaliana and phylogenetic analysis of known cyclophilin proteins. Plant Mol

Biol 35: 873 - 892.

Ciaffi M, Paolacci A, D'Aloisio E, Tanzarella O, Porceddu E (2006) Cloning and

characterization of wheat PDI (protein disulfide isomerase) homoeologous genes

and promoter sequences. Gene 366: 209–218.

Ciaffi M, Dominici L, Tanzarella O, Porceddu E (1999) Chromosomal assignment of

gene sequences coding for protein disulphide isomerase (PDI) in wheat. Theor

Appl Genet 98: 405 - 410.

Ciaffi M, Tozzi L, Borghi B, Corbellini M & Lafiandra D (1996) Effect of heat shock

during grain filling on the gluten protein composition of bread wheat. J Cereal

Sci 24: 91-100

Colot V, Robert LS, Kavanagh TA, Bevan MW, Thompson RD (1987) Localization of

sequences in wheat endosperm protein genes which confer tissue-specific

expression in tobacco. EMBO J 6: 3559-3564.

Coughlan J, Hastings C, Winfrey R (1996) Molecular characterisation of plant

endoplasmic reticulum identification of protein disulfide-isomerase as the major

reticuloplasmin. Eur J Biochem 235: 215 - 224.

Page 250: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

228

Creighton T, Hillson D, Freedman R (1980) Catalysis by protein-disulphide isomerase

of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol

142: 43-62.

Crofts AJ, Washida H, Okita TW, Ogawa M, Toshihiro K, Satoh H (2004) Targeting of

proteins to endoplasmic reticulum-derived compartments in plants. The

importance of RNA localization. Plant Physiol 136: 3414-3419

Crooke E & Wickner W (1987) Trigger factor: a soluble protein that folds pro-OmpA

into a membrane-assembly-competent form. Proc Natl Acad Sci USA 84: 5216–

5220.

Darby N, Creighton T (1995) Functional properties of the individual thioredoxin-like

domains of protein disulfide isomerase. Biochemistry 34: 11725-11735.

Darby N, Penkaa E, Vincentelli R (1998) The multi-domain structure of protein

disulfide isomerase is essential for high catalytic efficiency. J Mol Biol 276:

239-247

Denecke J, De Rycke R, Botterman J (1992) Plant and mammalian sorting signals for

protein retention in the endoplasmic reticulum contain a conserved epitope.

EMBO J 11: 2345-2355.

Derkx P, Madrid S (2001) The foldase CYPB is a component of the secretory pathway

of Aspergillus niger and contains the endoplasmic reticulum retention signal

HEEL. Mol Genet Genom 266: 537-545.

Digeon JF, Guiderdoni E, Alary R, Nicole MF, Joudrier P, Gautier MF, (1999) Cloning

of a wheat puroindoline gene promoter by IPCR and analysis of promoter

regions required for tissue-specific expression in transgenic rice seeds. Plant

Mol Biol 39: 1101-1112.

Dixon D, Van Lith M, Edwards R, Benham A (2003) Cloning and initial

characterization of the Arabidopsis thaliana endoplasmic reticulum

oxidoreductins. Antioxid Redox Signal 5: 389-396.

Dominguez-Solis J, He Z, Lima A, Ting J, Buchanan B, Luan S (2008) A cyclophilin

links redox and light signals to cysteine biosynthesis and stress responses in

chloroplasts. Proc Nat Acad Sci USA 105: 16386-16391.

Dubery I (2007) An elicitor- and pathogen-induced cDNA from potato encodes a stress-

responsive cyclophilin. Biol Plant 51: 327-332.

Page 251: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

229

Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of

polyploid wheat under domestication. Science 316: 1862 - 1866.

Dubourg B, Kamphausen T, Weiwad M, Jahreis G, Feunteun J, Fischer G, Modjtahedi

N (2004) The human nuclear SRcyp is a cell cycle-regulated cyclophilin. J Bio

Chem 279: 22322-22330.

Duina A, Chang H, Marsh J, Lindquist S, Gaber R (1996) A cyclophilin function in

hsp90-dependent signal transduction. Science 274: 1713-1715.

Dupont F, Altenbach S (2003) Molecular and biochemical impacts of environmental

factors on wheat grain development and protein synthesis J Cereal Sci 38: 133-

146

DuPont F, Hurkman W, Vensel W, Chan R, Lopez R, Tanaka C, Altenbach S (2006)

Differential accumulation of sulfur-rich and sulfur-poor wheat flour proteins is

affected by temperature and mineral nutrition during grain development. J

Cereal Sci 44: 101-112.

DuPont F, William J, Charlene K, Ronald C (1998) BiP, HSP70, NDK and PDI in

wheat endosperm. I. Accumulation of mRNA and protein during grain

development. Physiol Plantarum 103: 70-79.

Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii

gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97: 657-670.

Edvardsson A, Eshaghi S, Vener A, Andersson B (2003) The major peptidyl-prolyl

isomerase activity in thylakoid lumen of plant chloroplasts belongs to a novel

cyclophilin TLP20. FEBS Lett 542: 137-141.

Ellgaard L, Ruddock L (2005) The human protein disulphide isomerase family:

substrate interactions and functional properties. EMBO Rep 6: 28-32.

Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87: 295-307.

Farquharson K (2008) A protein disulfide isomerase plays a role in programmed cell

death. Plant cell : DOI: 10.1105/tpc.108.200810.

Ferrari D, Soling H (1999) The protein disulphide-isomerase family: unravelling a

string of folds. Biochem J 339: 1-10.

Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side.

Trends Genet 24: 24-32.

Page 252: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

230

Fischer G, Bang H, Mech C (1984) Determination of enzymatic catalysis for the cis-

trans-isomerization of peptide binding in proline-containing peptides. Biochim

Biophys Acta 43: 1101-1111.

Fonseca C, Soiffer R, Ho V, Vanneman M, Jinushi M, Ritz J, Neuberg D, Stone R,

DeAngelo D, Dranoff G (2009) Protein disulfide isomerases are antibody targets

during immune-mediated tumor destruction. Blood 113: 1681-1688.

Forster M, Sivick K, Park Y, Arvan P, Lencer WI, Tsai B (2006) Protein disulfide

isomerase-like proteins play opposing roles during retrotranslocation. J Cell Biol

173: 853–859.

Freedman R, Klappa P, Ruddock L (2002) Protein disulfide isomerases exploit synergy

between catalytic and specific binding domains. EMBO Rep 3: 136-140.

Frigerio G, Pelham HRB (1993) A Saccharomyces cerevisiae cyclophilin resident in the

endoplasmic reticulum. J Mol Biol 233: 183-188

Fu A, He Z, Hye S, Lima A, Buchanan B, Luan S (2007) A chloroplast cyclophilin

functions in the assembly and maintenance of photosystem II in Arabidopsis

thaliana. Proc Natl Acad Sci USA 104: 15947-15952

Fu X (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663-680.

Fu X, Wang P, Zhu B (2008) Protein disulfide isomerase is a multifunctional regulator

of estrogenic status in target cells. J Steroid Biochem Mol Biol 112: 127-137

Fulgosi H, Vener A, Altschmied L, Herrmann R, Andersson B (1998) A novel multi-

functional chloroplast protein: identification of a 40 kDa immunophilin-like

protein located in the thylakoid lumen. EMBO J 17: 1577-1587.

Galat A (1993) Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem

216: 689-707.

Galat A (1999) Variations of sequences and amino acid compositions of proteins that

sustain their biological functions: an analysis of the cyclophilin family of

proteins. Arch Biochem Biophys 371: 149-162.

Galat A (2003) Peptidylprolyl cis/trans isomerases (immunophilins): biological

diversity targets functions. Curr Top Med Chem 3: 1315-1347.

Galat A (2004) Function-dependent clustering of orthologues and paralogues of

cyclophilins. Proteins Struct Funct Bioinf 56: 808-820.

Galili G (2004) ER-derived compartments are formed by highly regulated processes and

have special functions in plants Plant Physiol 136: 3411-3413.

Page 253: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

231

Galili G, Sengupta-Gopalan C, Ceriotti A (1998) The endoplasmic reticulum of plant

cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol

Biol 38: 1-29.

Galili S AY, Millet E, Feldman M. (2000 ) RFLP-based analysis of three RbcS

subfamilies in diploid and polyploid species of wheat. Mol Gen Genet. 263:

674-680.

Gama A, Santos D, Lopes da Silva JA (2000) Influence of wheat polysaccharides on the

rheological properties of gluten and doughs. In: Shewry P, Tatham AS (eds),

Wheat gluten. The Royal Society of Chemistry, Cambridge, pp. 503-506.

Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-

based identification of novel factors enhancing heterologous protein secretion in

yeasts. Appl Environ Microbiol 73: 6499-6507.

Gasser CS, Gunning DA, Budelier KA, Brown SM (1990) Structure and expression of

cytosolic cyclophilin/peptidyl-prolyl cis-trans isomerase of higher plants and

production of active tomato cyclophilin in Escherichia coli. Proc Natl Acad Sci

USA 87: 9519-9523.

Gavela Y, von Heijne G (1990) A conserved cleavage-site motif in chloroplast transit

peptides. FEBS Lett 261: 455-458.

Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW (2001) Biochemical, genetic,

and molecular characterization of wheat endosperm proteins. AACC 78: 635-

646.

Gill B, Kimber G (1974) Giemsa C-banding and the evolution of wheat. Proc Nat Acad

Sci USA 71: 4086-4090.

Godoy A, Lazzaro A, Casalongué C, Segundo SB (2000) Expression of a Solanum

tuberosum cyclophilin gene is regulated by fungal infection and abiotic stress

conditions. Plant Sci 152: 123-134

Goldberger R, Epstein C, Anfinsen C (1964) Purification and properties of a

microsomal enzyme system catalyzing the reactivation of reduced ribonuclease

and lysozyme. J Biol Chem 239: 1406-1410.

Grebe M, Gadea J, Steinmann T, Kientz M, Rahfeld JU, Salchert K, Koncz C, Jürgens

G (2000) A conserved domain of the Arabidopsis GNOM protein mediates

subunit interaction and Cyclophilin 5 binding. Plant Cell 12: 343-356.

Page 254: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

232

Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA (1996) Comparison of

the expression patterns of genes coding for wheat gluten proteins and proteins

involved in the secretory pathway in developing caryopses of wheat. Plant Mol

Biol 30: 1067-1073.

Groos C, Bervas E, Chanliaud E, Charmet G (2007) Genetic analysis of bread-making

quality scores in bread wheat using a recombinant inbred line population. Theor

Appl Genet 115: 313-323.

Gruber C, Cemazar M, Clark R, Horibe T, Renda R, Anderson M, Craik D (2007) A

Novel plant protein-disulfide isomerase involved in the oxidative folding of

cysteine knot defense proteins. J Biol Chem 282: 20435-20446.

Gruber C, Cemazar M, Heras B, Martin J, Craik D (2006) Protein disulfide isomerase:

the structure of oxidative folding. Trends Biochem Sci 31: 455-464

Gruber C, Cemazar M, Mechler A, Martin L, Craik D (2009) Biochemical and

biophysical characterization of a novel plant protein disulfide isomerase.

Biopolymers 92: 35-43.

Grynberg A, Nicolas J, Drapron R (1977) Presence of a protein disulfide isomerase (EC

5.3.4.1) in wheat germ. C R Acad Sci Hebd Seances Acad Sci D 284: 235-238.

Gullerova M, Barta A, Lorkovic Z (2007) Rct1, a nuclear RNA recognition motif-

containing cyclophilin, regulates phosphorylation of the RNA polymerase II C-

terminal domain. Mol Cell Biol 27: 3601-3611

Gullerova M, Barta A, Lorkovi ZJ (2006) AtCyp59 is a multidomain cyclophilin from

Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain

of the RNA polymerase II RNA 12: 631-643.

Gutierrez-Marcos J, Roberts M, Campbell E, Wray J (1996) Three members of a novel

small gene-family from Arabidopsis thaliana able to complement functionally an

Escherichia coli mutant defective in PAPS reductase activity encode proteins

with a thioredoxin-like domain and “APS reductase” activity Proc Nat Acad Sci

USA 93: 13377-13382.

Haendler B, Keller R, Hiestand P, Kocher H, Wegmann G, Movva N (1989) Yeast

cyclophilin: isolation and characterization of the protein, cDNA and gene. Gene

83: 39-46.

Hamelberg D, Mecammon J (2009) Mechanistic insight into the role of transition-state

stabilization in cyclophilin A. J Am Chem Soc 131: 147-152

Page 255: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

233

Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984)

Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:

544-547.

Hara-Nishimura I, Matsushima R, Shimada T, Nishimura M (2004) Diversity and

formation of endoplasmic reticulum-derived compartments in plants. Are these

compartments specific to plant cells? Plant Physiol 136: 3435-3439

Harding M, Galat A, Uehling D, Schreiber S (1989) A receptor for the immuno-

suppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758-

760.

Harding M, Handschumacher R, Speicher D (1986) Isolation and amino acid sequence

of cyclophilin. J Biol Chem 261: 8547-8555.

Hatahet F, Ruddock L (2007) Substrate recognition by the protein disulfide isomerases.

FEBS J 274: 5223-5234.

Hayano T, Kikuchi M (1995) Cloning and sequencing of the cDNA encoding human

P5. Gene 164: 377-378.

Hayano T, Kikuchi M (1995) Molecular cloning of the cDNA encoding a novel protein

disulfide isomerase-related protein (PDIR). FEBS Lett 372: 210-214

He P, Friebe BR, Gill BS, Zhou JM (2003) Allopolyploidy alters gene expression in the

highly stable hexaploid wheat. Plant Mol Biol 52: 401-414.

He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl

isomerases in Arabidopsis. Plant Physiol. 134: 1248-1267.

Heck JA, Meng X, Frick DN (2009) Cyclophilin B stimulates RNA synthesis by the

HCV RNA dependent RNA polymerase. Biochem Pharmacol 77: 1173-1180.

Herman E, Larkins B (1999) Protein storage bodies and vacuoles. Plant Cell 11: 601-

614.

Herman E, Schmidt M (2004) Endoplasmic reticulum to vacuole trafficking of

endoplasmic reticulum bodies provides an alternate pathway for protein transfer

to the vacuole. Plant Physiol 136: 3440-3446.

Herrler M, Bang H, Marahiel M (1994) Cloning and characterization of ppiB, a Bacillus

subtilis gene which encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans

isomerase. Mol Microbiol 11: 1073-1083.

Page 256: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

234

Hirtzlin J, Färber PM, Franklin RM, Bell A (1995) Molecular and biochemical

characterization of a Plasmodium falciparum cyclophilin containing a cleavable

signal sequence. FEBS J 232: 765-772.

Holmgren A (1985) Thioredoxin. Ann Rev Biochem 54: 237-271.

Horibe T, Kikuchi M, Kawakami K (2008) Interaction of human protein disulfide

isomerase and human P5 with drug compounds: Analysis using biosensor

technology. Process Biochem 43: 1330-1337.

Hornbogen T, Pieper R, Hoffmann K, Kleinkauf H, Zocher R (1992) Two new

cyclophilins from Fusarium sambucinum and Aspergillus niger: resistance of

cyclophilin/cyclosporin A complexes against proteolysis. Biochem Biophys Res

Commun 187: 791-796.

Houston N, Fan C, Xiang Q, Schulze J (2005) Phylogenetic analyses identify 10 classes

of the protein disulfide isomerase family in plants, including single-domain

protein disulfide isomerase-related proteins. Plant Physiol 137: 762-778.

Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002)

Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase

of the Triticum/Aegilops complex and the evolutionary history of polyploid

wheat. Proc Natl Acad Sci USA 99: 8133-8138.

Huang D, Chen H, Lin Y (2005) Isolation and expression of protein disulfide isomerase

cDNA from sweet potato (Ipomoea batatas [L.] Lam 'Tainong 57') storage roots.

Plant Sci 169: 776-784.

Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ,

Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits

in a doubled haploid population derived from two Canadian wheats (Triticum

aestivum L.) Theor Appl Genet 113: 753-766.

Hur S, Bruice T (2002) The mechanism of cis-trans isomerization of prolyl peptides by

cyclophilin. J Am Chem Soc 124: 7303-7313.

Hurkman W, Vensel W, Tanaka C, Whitehand L, Altenbach S (2009) Effect of high

temperature on albumin and globulin accumulation in the endosperm proteome

of the developing wheat grainq. J Cereal Sci 49: 12-23.

Hwang I (2008) Sorting and anterograde trafficking at the Golgi apparatus. Plant

Physiol 148: 673-683

Page 257: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

235

Jackson KS, Soll D (1999) Mutations in a new Arabidopsis cyclophilin disrupt its

interaction with protein phosphatase 2A. Mol Gen Genet 262: 830-838.

Jacquot J, Gelhaye E, Rouhier N, Corbier C, Didierjean C, Aubry A (2002)

Thioredoxins and related proteins in photosynthetic organisms: molecular basis

for thiol dependent regulation. Biochem Pharmacol 64: 1065-1069.

Jeong W, Lee D, Park S, Rhee S (2008) ERp16, an endoplasmic reticulum-resident

thiol-disulfide oxidoreductase. J Biol Chem 283: 25557-25566.

Jia G, Chen P, Qin G, Bai G, Wang X, Wang S, Zhou B, Zhang S, Liu D (2005) QTLs

for Fusarium head blight response in a wheat DH population of

Wangshuibai/Alondra‘s’. Euphytica 146: 183-19.

Jiang J, Gill B (1994) New 18S·26S ribosomal RNA gene loci: chromosomal landmarks

for the evolution of polyploid wheats. Chromosoma 103: 179-185.

Johnson JC, Clark B, Bhave M (2001) Isolation and characterisation of cDNAs

encoding protein disulphide isomerases and cyclophilins in wheat. J Cereal Sci

34: 159-171.

Johnson JC, Bhave M (2004a) Molecular characterisation of the protein disulphide

isomerase genes of wheat. Plant Sci 167: 397-410.

Johnson JC, Bhave M (2004b) Characterisation and physical mapping of cyclophilin A

genes and identification of new classes of cyclophilins in wheat. J Cereal Sci 40:

137-150.

Johnson JC, Appels R, Bhave M (2006) The PDI genes of wheat and their syntenic

relationship to the esp2 locus of rice. Funct Integr Genomics 6: 104-121.

Joseph JD, Heitman J, Means AR (1999) Molecular cloning and characterization of

Aspergillus nidulans cyclophilin B. Fungal Genet Biol 27: 55-66.

Kainuma K, Ookura T, Kawamura Y (1995) Purification and characterization of protein

disulfide isomerase from soybean. J Biochem 117: 208-215.

Kallen J, Claus S, Mauro G, Gerhard W, Hans W, Kurt W, Malcolm D (1991) Structure

of human cyclophilin and its binding site for cyclosporin A determined by X-ray

crystallography and NMR spectroscopy. Nature 353: 276 - 279.

Kallen J, Walkinshaw MD (1992) The X-ray structure of a tetrapeptide bound to the

active site of human cyclophilin A. FEBS Lett 300: 286-290.

Page 258: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

236

Kamauchi S, Wadahama H, Iwasaki K, Nakamoto Y, Nishizawa K, Ishimoto M,

Kawada T, Urade R (2008) Molecular cloning and characterization of two

soybean protein disulfide isomerases as molecular chaperones for seed storage

proteins. FEBS J 275: 2644-2658.

Kammholz J, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF,

Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and

characterisation of wheat genetic mapping populations. Aust J Agr Res 52: 1079

- 1088.

Kawagoe Y, Suzuki K, Tasaki M, Yasuda H, Akagi K, Katoh E, Nishizawa N, Ogawa

M, Takaiwa F (2005) The critical role of disulfide bond formation in protein

sorting in the endosperm of rice. Plant Cell 17: 1141-1153.

Ke H, Zydowsky LD, Liu J, Walsh CT (1991) Crystal structure of recombinant human

T-cell cyclophilin A at 2.5 Å resolution. Proc Natl Acad Sci USA 88: 9483-

9487.

Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM

(1999) Quantitative trait loci for resistance against powdery mildew in a

segregating wheat x spelt population. Theor Appl Genet 98: 903-912.

Kemmink J, Darby N, Dijkstra K, Nilges M, Creighton T (1997) The folding catalyst

protein disulfide isomerase is constructed of active and inactive thioredoxin

modules. Curr Biol 7: 239-245.

Kiełbowicz-Matuk A, Rey P, Rorat T (2007) The abundance of a single domain

cyclophilin in Solanaceae is regulated as a function of organ type and high

temperature and not by other environmental constraints. Physiol Plant 131: 387-

398.

Kim J, Choi T, Ding Y, Kim Y, Ha K, Lee K, Kang I, Ha J, Kaufman R, Lee J, Choe

W, Kim S (2008) Overexpressed cyclophilin B suppresses apoptosis associated

with ROS and Ca2+ homeostasis after ER stress. J Cell Sci 121: 3636-3648.

Kim J, Lee M, Jang C, Heo H, Park K, Kim H, Kang M, Kim S, Kim J, Hyun D, Seo Y

(2008) Molecular characterization of a cDNA encoding disulfide isomerase

during barley kernel development. Russ J Plant Physiol 55: 676-686.

Kim WT, Vincent RF, Hari BK, Thomas WO (1988) Formation of wheat protein

bodies: Involvement of the Golgi apparatus in gliadin transport. Planta 176: 173-

182.

Page 259: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

237

Kim Y, Kang K, Kim I, Lee Y, Oh C, Ryoo J, Jeong E, Ahn K (2009) Molecular

mechanisms of MHC class I-antigen processing: redox considerations. Antioxid

Redox Signal 11: 907-936.

Kimber G, Athwal R (1972) A reassessment of the course of evolution of wheat. Proc

Natl Acad Sci USA 69: 912–915.

Klappa P, Freedman RB, Zimmermann R (1995) Protein disulphide isomerase and a

lumenal cyclophilin-type peptidyl prolyl cis-trans isomerase are in transient

contact with secretory proteins during late stages of translocation. Eur J

Biochem 232: 755-764.

Klappa P, Freedman R, Langenbuch M, Lan M, Robinson G, Ruddock L (2001) The

pancreas-specific protein disulphide-isomerase PDIp interacts with a

hydroxyaryl group in ligands. Biochem J 354: 553-559.

Kokame K, Kato H, Miyata T (2001) Identification of ERSE-II, a new cis-acting

element responsible for the ATF6-dependent mammalian unfolded protein

response. J Biol Chem 276: 9199-9205.

Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic

control of milling yield, dough rheology and baking quality of wheat. Theor

Appl Genet 112: 1487-1495.

Krzywicka A, Beisson J, Keller AM, Cohen J, Jerka-Dziadosz M, Klotz C (2001)

KIN241: a gene involved in cell morphogenesis in Paramecium tetraurelia

reveals a novel protein family of cyclophilin-RNA interacting proteins (CRIPs)

conserved from fission yeast to man. Mol Microbiol 42: 257-267.

Kumari S, Singh P, Singla-Pareek S, Pareek A (2009) Heterologous expression of a

salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli

and S. cerevisiae confers tolerance towards multiple abiotic stresses. Mol

Biotech 42: 195-204.

La Rota M, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat

ESTs reveals the complexity of genome relationships between rice and wheat.

Funct Integr Genomics 4: 34-46.

LaMantia M, Miura T, Tachikawa H, Kaplan H, Lennarz W, Mizunaga T (1991)

Glycosylation site binding protein and protein disulfide isomerase are identical

and essential for cell viability in yeast. Proc Natl Acad Sci USA 88: 4453-4457.

Page 260: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

238

Landrieu I, Veylder L, Fruchart J, Odaert B, Casteels P, Portetelle D, Montagu M, Inzé

D, Lippens G (2000) The Arabidopsis thaliana PIN1At gene encodes a single-

domain phosphorylation-dependent peptidyl prolyl cis/trans isomerase. J Biol

Chem 275: 10577-10581.

Langridge P, Lagudah E, Holton T, Appels R, Sharp P, Chalmers K (2001) Trends in

genetic and genome analyses in wheat: A review. Aust J Agric Res 52: 1043-

1077

Larkins B, Hurkman W (1987) Synthesis and deposition of zein in protein bodies of

maize endosperm. Plant Physiol 62: 256-263.

Laudencia C, Stamova B, Lazo G, Cui X, Anderson O (2006) Analysis of the wheat

endosperm transcriptome. J Appl Genet 47: 287-302.

Laxa M, Konig J, Dietz K, Kandlbinder A (2007) Role of the cysteine residues in

Arabidopsis thaliana cyclophilin CYP20-3 in peptidyl-prolyl cis-trans isomerase

and redox-related functions. Biochem J 401: 287-297.

Leah R, Skriver K, Knudsen S, Ruud-Hansen J, Raikhel NV, Mundy J (1994)

Identification of an enhancer/silencer sequence directing the aleurone-specific

expression of a barley chitinase gene. Plant J 6: 579-89.

Lee J, Hofhaus G, Lisowsky T (2000) Erv1p from Saccharomyces cerevisiae is a FAD-

linked sulfhydryl oxidase. FEBS J 477: 62-66

Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of

wheat storage proteins to vacuoles. J Cell Biol 119: 1117-1128.

Leverson J, Ness S (1998) Point mutations in v-Myb disrupt a cyclophilin-catalysed

negative regulatory mechanism. Mol Cell 1: 203-211.

Li QB and Guy CL (2001) Evidence for non-circadian light/dark-regulated expression

of Hsp70s in spinach leaves. Plant Physiol 125: 1633-1642.

Li CP, Larkins BA (1996) Expression of protein disulfide isomerase is elevated in the

endosperm of the maize floury-2 mutant. Plant Mol Biol 30: 873-882.

Li H, He Z, Lu G, Sung C, Alonso J, Ecker J, Luan S (2007) A WD40 domain

cyclophilin interacts with histone H3 and functions in gene repression and

organogenesis in Arabidopsis. Plant cell 19: 2403-2416.

Page 261: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

239

Li Y, Song Y, Zhou R, Branlard G, Jia J (2009) Detection of QTLs for bread-making

quality in wheat using a recombinant inbred line population. Plant Breeding 128:

235-243.

Lillemo M, Marco CS, Craig MF (2002) Analysis of puroindoline a and b sequences

from Triticum aestivum cv. 'Penawawa' and related diploid taxa. Euphytica126:

321-331.

Lin D, Lechleiter J (2002) Mitochondrial targeted cyclophilin D protects cells from cell

death by peptidyl prolyl isomerization. J Biol Chem 277: 31134-31141.

Lippuner V, Chou I, Scott S, Ettinger W, Theg S, Gasser C (1994) Cloning and

characterization of chloroplast and cytosolic forms of cyclophilin from

Arabidopsis thaliana. J Biol Chem 269: 7863-7868.

Liu F, Rong Y, Zeng L, Zhang X, Han Z (2003) Isolation and characterization of a

novel human thioredoxin-like gene hTLP19 encoding a secretory protein. Gene

315: 71-78.

Lorkovi Z, Lopato S, Pexa M, Lehner R, Barta A (2004) Interactions of Arabidopsis RS

domain containing cyclophilins with SR proteins and U1 and U11 small nuclear

ribonucleoprotein-specific proteins suggest their involvement in Pre-mRNA

splicing. J Biol Chem 279: 33890-33898.

Loussert C, Popineaua Y, Mangavel C (2008) Protein bodies ontogeny and localization

of prolamin components in the developing endosperm of wheat caryopses. J

Cereal Sci 47: 445-456

Lovat P, Corazzari M, Armstrong J, Martin S, Pagliarini V, Hill D, Brown A, Piacentini

M, Birch-Machin M, Redfern C (2008) Increasing melanoma cell death using

inhibitors of protein disulfide isomerases to abrogate survival responses to

endoplasmic reticulum stress. Cancer Res 68: 5363-5369.

Lu D, Christopher D (2006) Immunolocalization of a protein disulfide isomerase to

Arabidopsis thaliana chloroplasts and its association with starch biogenesis.

Plant Sci 167: 1-9.

Lu D, Christopher D (2008a) Endoplasmic reticulum stress activates the expression of a

sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the

response in Arabidopsis thaliana. Mol Genet Genomics 280: 199-210.

Page 262: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

240

Lu D, Christopher D (2008b) The effect of irradiance and redox-modifying reagents on

the 52 kDa protein disulfide isomerase of Arabidopsis chloroplasts Biol Plant

52: 42-48.

Luan S, Albers M, Schreiber S (1994a) Light-regulated, tissue-specific immunophilins

in a higher plant. Proc Natl Acad Sci USA 91: 984–988.

Luan S, Lane W, Schreiber S (1994b) pCyP B: A chloroplast-localized, heat shock-

responsive cyclophilin from fava bean. Plant Cell 6: 885-892.

Luan S, Li W, Rusnak F, Assmann S, Schreiber S (1993) Immunosuppressants

implicate protein phosphatase regulation of K+ channels in guard cells. Proc

Natl Acad Sci USA 90: 2202–2206.

Luu T, Bhattacharya P, Chan W (2008) Cyclophilin-40 has a cellular role in the aryl

hydrocarbon receptor signaling. FEBS Letters 582: 3167-3173

Lyles M, Gilbert H (1991) Catalysis of the oxidative folding of ribonuclease A by

protein disulfide isomerase: dependence of the rate on the composition of the

redox buffer. Biochem 30: 613-619.

Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic

characterisation of dough rheological properties in a wheat doubled haploid

population: additive genetic effects and epistatic interactions. Theor Appl Genet

111: 410-422.

Manukyan D, Bruehl M, Massberg S, Engelmann B (2008) Protein disulfide isomerase

as a trigger for tissue factor-dependent fibrin generation. Thromb Res 122: 19-

22.

Markus M, Benezra R (1999) Two isoforms of protein disulfide isomerase alter the

dimerization status of E2A proteins by a redox mechanism. J Biol Chem 274:

1040-1049.

Marraccini P, Deshayes A, Pétiard V, Rogers WJ (1999) Molecular cloning of the

complete 11S seed storage protein gene of Coffea arabica and promoter analysis

in transgenic tobacco plants. Plant Physiol Biochem 37: 273-282

Martin J (1995) Thioredoxin - a fold for all reasons. Structure 3: 245-250

McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG,

McCallum BD (2006 ) QTL analysis of quality traits in the spring wheat cross

RL4452×`AC Domain'. Plant Breeding 125: 565-575.

Page 263: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

241

Meunier L, Usherwood Y, Chung K, Hendershot LM (2002) A subset of chaperones

and folding enzymes form multiprotein complexes in endoplasmic reticulum to

bind nascent proteins. Mol Biol Cell 13: 4456-4469.

Michelet L, Zaffagnini M, Vanacker H, Marechal P, Marchand C, Schroda M, Lemaire

S, Decottignies P (2008) In vivo targets of S-thiolation in Chlamydomonas

reinhardtii. J Biol Chem 283: 21571-21578.

Mizunaga T, Katakura Y, Miura T, Maruyama Y (1990) Purification and

characterization of yeast protein disulfide isomerase. J Biochem 108: 846-851.

Mogelsvang S, Simpson DJ (1998) Changes in the levels of seven proteins involved in

polypeptide folding and transport during endosperm development of two barley

genotypes differing in storage protein localisation. Plant Mol Biol 36: 541-552.

Mok D, Allan R, Carrello A, Wangoo K, Walkinshaw M, Ratajczak T (2006) The

chaperone function of cyclophilin 40 maps to a cleft between the prolyl

isomerase and tetratricopeptide repeat domains. FEBS Lett 580: 2761-2768.

Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration

and temperature on plant growth. Plant Cell Environ 22: 659–682.

Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives, in Quisenberry

K S, Reitz LP (eds), Wheat and wheat improvement, American Society of

Agriculture, Madison, pp.19-87.

Mortillaro M, Berezney R (1998) Matrin CYP, an SR-rich cyclophilin that associates

with the nuclear matrix and splicing factors J Biol Chem. 273: 8183-8192.

Motohashi K, Kondoh A, Stumpp M, Hisabori T (2001) Comprehensive survey of

proteins targeted by chloroplast thioredoxin Proc Nat Acad Sci USA 98: 11224-

11229

Motohashi K, Koyama F, Nakanishi Y, Ueoka-Nakanishi H, Hisabori T (2003)

Chloroplast cyclophilin is a target protein of thioredoxin. J Biol Chem 278:

31848-31852.

Muccilli V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra D (2005) Characterization

of B- and C-type low molecular weight glutenin subunits by electrospray

ionization mass spectrometry and matrix-assisted laser desorption/ionization

mass spectrometry. Proteomics 5: 719 - 728.

Nakamura T, Lipton S (2009) Cell death: Protein misfolding and neurodegenerative

diseases. Apoptosis 14: 455-468.

Page 264: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

242

Nguyen V, Wallis K, Howard M, Haapalainen A, Salo K, Saaranen M, Sidhu A,

Wierenga R, Freedman R, Ruddock L, Williamson R (2008) Alternative

conformations of the x region of human protein disulphide-isomerase modulate

exposure of the substrate binding b' domain. J Mol Biol 383: 1144-1155.

Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the

endoplasmic reticulum. Semin Cell Dev Biol 1999: 481-493

Norgaard P, Westphal V, Tachibana C, Alsoe L, Holst B, Winther J (2001) Functional

differences in yeast protein disulfide isomerases. J Cell Bio 152: 553-562.

NUE (2003) World wheat, corn, and rice production.

(http://nue.okstate.edu/Crop_Information/World_Wheat_Production.htm;

accessed 01 2009).

Obeid M (2008) ERP57 membrane translocation dictates the immunogenicity of tumor

cell death by controlling the membrane translocation of calreticulin. J Immunol

181: 2533-2543

Oh K, Ivanchenko MG, White TJ, Lomax TL (2006) The diageotropica gene of tomato

encodes a cyclophilin: a novel player in auxin signaling. Planta 224: 133-144.

Ondzighi C, Christopher D, Chob E, Chang S, Staehelin L (2008) Arabidopsis protein

disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles

before programmed cell death of the endothelium in developing seeds. Plant Cell

20: 2205-2220

Parkkonen T, Kivirikko KI, Pihlajaniemi T (1988) Molecular cloning of a

multifunctional chicken protein acting as the prolyl 4-hydroxylase beta-subunit,

protein disulphide-isomerase and a cellular thyroid-hormone-binding protein.

Comparison of cDNA-deduced amino acid sequences with those in other

species. Biochem J 256: 1005–1011.

Payne P (1987) Genetics of wheat storage proteins and the effect of allelic variation on

bread-making quality. Ann Rev Plant Physiol 38: 141-153.

Peleg Z, Cakmak I, Ozturk L, Yazici, A, Yan J, Budak H, Korol AB, Fahima T, Saranga

Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations

in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:

353-369.

Pellé R, McOdimbaa F, Chuma F, Wasawo D, Pearson TW, Murphy NB (2002) The

African trypanosome cyclophilin A homologue contains unusual conserved

Page 265: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

243

central and N-terminal domains and is developmentally regulated. Gene 290:

181-191

Perretant M, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier M,

Branlard G, Bernard S (2000) QTL analysis of bread-making quality in wheat

using a doubled haploid population. Theor Appl Genet 100: 1167-1175.

Pflügl G, Kallen J, Schirmer T, Jansonius JN, Zurini MGM, Walkinshaw MD (1993) X-

ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature

361: 91-94.

Pomeranz Y (1988) Chemical composition of kernel structures, in Pomeranz Y (eds),

Wheat: chemistry and technology. AACC, St Paul, MN, USA, pp. 97-158.

Pozniak C, Knox R, Clarke F, Clarke J (2006) Identification of QTL and association of

a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl

Genet 114: 525-537.

Price ER, Jin M, Lim D, Pati S, Walsh CT, McKeon FD (1994) Cyclophilin B

trafficking through the secretory pathway is altered by binding of cyclosporin A.

Proc Natl Acad Sci USA 91: 3931-3935.

Price ER, Zydowsky LD, Jin MJ, Baker CH, McKeon FD, Walsh CT (1991) Human

cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase

with a signal sequence. Proc Natl Acad Sci USA 88: 1903-1907.

Primm TP, Gilbert HF (2001) Hormone binding by protein disulfide isomerase, a high

capacity hormone reservoir of the endoplasmic reticulum. J Biol Chem 276:

281-286.

Prior A, Uhrig J, Heins L, Wiesmann A, Lillig C, Stoltze C, Soll J, Schwenn J (1999)

Structural and kinetic properties of adenylyl sulfate reductase from

Catharanthus roseus cell cultures. Biochim Biophys Acta 1430: 25-38

Pugh BF, Tjian R (1991) Transcription from a TATA-less promoter requires a

multisubunit TFIID complex. Genes Dev 5: 1935-1945.

Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N,

Pljevljakusi D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P,

Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y,

Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A,

Dodig D (2004) A high-density genetic map of hexaploid wheat (Triticum

aestivum L.) from the cross Chinese Spring x SQ1 and its use to compare QTLs

for grain yield across a range of environments. Theor Appl Genet 110: 865-880.

Page 266: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

244

Ramos M, Mares R, Magana P, Ortega J, Cornejo-Bravoa J (2008) In silico

identification of the protein disulfide isomerase family from a protozoan

parasite. Comput Biol Chem 32: 67-71.

Rancy P, Thorpe C (2008) Oxidative protein folding in vitro: a study of the cooperation

between quiescin-sulfhydryl oxidase and protein disulfide isomerase. Biochem

47: 12047-12056.

Rascher C, Pahl A, Pecht A, Brune K, Solbach W, Bang H (1998) Leishmania major

parasites express cyclophilin isoforms with an unusual interaction with

calcineurin. Biochem J. 334: 659-667.

Ratajczak T, Carrello A, Mark P, Warner B, Simpson R, Moritz R, House A (1993) The

cyclophilin component of the unactivated estrogen receptor contains a

tetratricopeptide repeat domain and shares identity with p59 (FKBP59). J Biol

Chem 268: 13187-13192.

Ray S, Anderson J, Urmeev F, Goodwin S (2003) Rapid induction of a protein disulfide

isomerase and defense-related genes in wheat in response to the hemibiotrophic

fungal pathogen Mycosphaerella graminicola. Plant Mol Biol 53: 701-714.

Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of

photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:

1189-1202.

Roden LT, Miflin BJ, Freedman RB (1982) Protein disulphide-isomerase is located in

the endoplasmic reticulum of developing wheat endosperm. FEBS Lett 138:

121-124.

Romano P, Edvardsson A, Ruban A, Andersson B, Vener A, Gray J, Horton P (2004b)

Arabidopsis AtCYP20-2 is a light-regulated cyclophilin-type peptidyl-prolyl cis-

trans isomerase associated with the photosynthetic membranes. Plant Physiol

134: 1244-1247.

Romano PGN, Horton P, Gray JE (2004a) The Arabidopsis cyclophilin gene family.

Plant Physiol 134: 1268-1282.

Rycyzyn M, Clevenger C (2002) The intranuclear prolactin/cyclophilin B complex as a

transcriptional inducer. Proc Natl Acad Sci USA 99: 6790-6795.

Saito T, Niwa Y, Ashida H, Tanaka K, Kawamukai M, Matsuda H, Nakagawa T (1999)

Expression of a gene for cyclophilin which contains an amino-terminal

endoplasmic reticulum-targeting signal. Plant Cell Physiol 40: 77-87

Page 267: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

245

Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S,

Masumura T (2009) A green fluorescent protein fused to rice prolamin forms

protein body-like structures in transgenic rice. J Exp Biol 60: 615-627.

Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and

geography of wild cereal domestication in the near east Genetics 3: 429-441.

Sambrook J, Russell DW (2001) 'Molecular Cloning: A Laboratory Manual.' (Cold

Spring Harbor Laboratory Press, New York)

Sanmartín M, Ordóñez A, Sohn E, Robert S, Sánchez-Serrano J, Surpin M, Raikhel N,

Rojo E (2007) Divergent functions of VTI12 and VTI11 in trafficking to storage

and lytic vacuoles in Arabidopsis. Proc Nat Acad Sci USA 104: 3645-3650

Sargsyana E, Baryshev M, Backlund M, Sharipo A, Mkrtchian S (2002) Genomic

organization and promoter characterization of the gene encoding a putative

endoplasmic reticulum chaperone, ERp29 Gene 285: 127-139.

Schmid F, Grafl R, Wrba A, Beintema J (1986) Role of proline peptide bond

isomerization in unfolding and refolding of ribonuclease. Proc Natl Acad Sci

USA 83: 872-876.

Schonbrunner E, Mayer S, Tropschug M, Fischer G, Takahashi N & Schmid F (1991)

Catalysis of protein folding by cyclophilins from different species. J Biol Chem

266: 3630-3635.

Sears ER (1966) Nullisomic-tetrasomic combination in hexaploid wheat, in Riley R,

Lewis KR (eds), Chromosome manipulations and plant genetics, Oliver and

Body, London, pp. 29-45.

Sears ER (1969) Wheat Cytogenetics. Annu Rev Genet 3: 451-468.

Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms

for wheat breeding under a changing climate. J Exp Bot 60: 2791-2804.

Serrato A, Guilleminot J, Meyer Y, Vignols F (2008) AtCXXS: atypical members of the

Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide

isomerase activity. Physiol Plant 133: 611-622.

Shapiguzov A, Edvardsson A, Vener A (2006) Profound redox sensitivity of peptidyl-

prolyl isomerase activity in Arabidopsis thylakoid lumen. FEBS Letters 580:

3671-3676.

Page 268: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

246

Sharma A, Singh P (2003) Effect of water stress on expression of a 20 kD cyclophilin-

like protein in drought susceptible and tolerant cultivars of sorghum. J Plant

Biochem Biotechnol 12: 77-80.

Sharma A, Singh P (2006) Peptidyl prolyl cis-trans isomerase activity: A potential

marker for water stress tolerance in sorghum (Sorghum bicolor). Physiol Mol

Biol Plant 12: 91-94.

Sharma A, Wajapeyee N, Yadav V, Singh P (2004) Stress-induced changes in peptidyl-

prolyl cis-trans isomerase activity of Sorghum bicolor. Biol Plantarum 47: 367-

371.

Sheldon PS, Venis MA (1996) Purification and characterization of cytosolic and

microsomal cyclophilins from maize (Zea mays). Biochem J 315: 965-970.

Shewry P (1999) The synthesis, processing, and deposition of gluten proteins in the

developing wheat grain. Cereal Foods World 44: 587-589.

Shewry P (2009) Wheat. J Exp Biol 60: 1537-1553

Shewry P, Napier J, Tatham A (1995) Seed storage proteins: structures and

biosynthesis. Plant Cell 7: 945-956.

Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and

role in grain utilization. J Exp Bot 53: 947-958.

Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of

gluten: an elastic protein from wheat grain. Phil Trans R Soc Lond B 357: 133-

142.

Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The

high molecular weight subunits of wheat glutenin and their role in determining

wheat processing properties. Adv Food Nutr Res 45: 219-230.

Shimoni Y, Segal C, Zhu XZ, Calili C (1995a) Nucleotide sequence of a wheat cDNA

encoding protein disulfide isomerase. Plant Physiol. 107: 281.

Shimoni Y, Zhu X, Levanony H, Segal G, Galili G (1995b) Purification,

characterization, and intracellular localization of glycosylated protein disulfide

isomerase from wheat grains. Plant Physiol 108: 327-335.

Shorrosh B, Subramaniam J, Schubert K, Dixon R (1993) Expression and localization

of plant protein disulfide isomerase. Plant Physiol 103: 719-726.

Page 269: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

247

Short D, Heron I, Birse-Archbold J, Kerr L, Sharkey J, McCulloch J (2007) Apoptosis

induced by staurosporine alters chaperone and endoplasmic reticulum proteins:

Identification by quantitative proteomics. Proteomics 7: 3085-3096

Simeone MC, Gedye KR, Mason-Gamer R, Gill BS, Morris, CF (2006) Conserved

regulatory elements identified from a comparative puroindoline gene sequence

survey of Triticum and Aegilops diploid taxa. J Cereal Sci 44: 21-33.

Simpson CG, Clark G, Davidson D, Smith P, Brown JWS (1996) Mutation of putative

branchpoint consensus sequences in plant introns reduces splicing efficiency

Plant J 9: 369-380.

Sirpio S, Khrouchtchov A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener A, Scheller

H, Jensen P, Haldrup A, Aro EM (2008) AtCYP38 ensures early biogenesis,

correct assembly and sustenance of photosystem II. Plant J 55: 639-651

Sliskovic I, Raturi A, Mutus B (2005) Characterization of the S-denitrosation activity of

protein disulfide isomerase. J Biol Chem 280: 8733-8741.

Smith M, Willmann M, Wu G, Berardini T, Moller B, Weijers D, Poethig R (2009)

Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Nat Acad

Sci USA 106: 5424-5429.

Smith T, Ferreira LR, Hebert C, Norris , KJ, Sauk JJ, (1995) Hsp47 and cyclophilin B

traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate

vesicles. J Biol Chem 270: 18323-18328.

Song J, Wang C (1995) Chaperone-like activity of protein disulfide-isomerase in the

refolding of rhodanese. Eur J Biochem 231: 312-316.

Stålberg K, Ellerstöm M, Ezcurra I, Ablov S, Rask L (1996) Disruption of an

overlapping E-box/ABRE motif abolished high transcription of the napA

storage-protein promoter in transgenic Brassica napus seeds. Planta 199: 515-

519.

Sykes K, Gething M, Sambrook J (1993) Proline isomerases function during heat shock.

Proc Natl Acad Sci USA 90: 5853–5857.

Takaki Y, Muta T, Iwanaga S (1997) A peptidyl-prolyl cis/trans-isomerase (Cyclophilin

G) in Regulated Secretory Granules. J Biol Chem 272: 28615-28621.

Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The

rice mutant esp2 greatly accumulates the glutelin precursor and deletes the

protein disulfide isomerase. Plant Physiol. 128: 1212-1222.

Page 270: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

248

Theriault Y, Logan T, Meadows R, Yu L, Olejniczak E, Holzman T, Simmer R, Fesik S

(1993) Solution structure of the cyclosporin A/cyclophilin complex by NMR.

Nature 361: 88-91.

Thorpe C, Hoober K, Raje S, Glynn N, Burnside J, Turi G, Coppock D (2002)

Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in

eukaryotes. Arch Biochem Biophys 405: 1-12.

Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B, Shewry PR (2009) Trafficking of

storage proteins in developing grain of wheat. J Exp Biol 60: 979-991.

Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated by

signals initiated by both photosystems II and I. Proc Nat Acad Sci USA 98:

12289-12294.

Tremmel D, Duarte M, Videira A, Tropschug M (2007) FKBP22 is part of

chaperone/folding catalyst complexes in the endoplasmic reticulum of

Neurospora crassa. FEBS Lett 581: 2036-2040

Triboi E, Martre P, Triboi-Blondel A (2003) Environmentally-induced changes in

protein composition in developing grains of wheat are related to changes in total

protein content. J Exp Bot 54: 1731-1742.

Ushioda R, Hoseki J, Araki K, Jansen G, Thomas D, Nagata K (2008) ERdj5 is required

as a disulfide reductase for degradation of misfolded proteins in the ER. Science

321: 569-572.

van Lith M, Hartigan N, Hatch J, Benham A (2005) PDILT: A divergent testis-specific

PDI with a non-classical SXXC motif that engages in disulfide dependent

interactions in the endoplasmic reticulum. J Biol Chem 280: 1376-1383.

Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ (1997) A maize zinc-finger

protein binds the prolamin box in zein gene promoters and interacts with the

basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci USA

94: 7685-90.

Vitale A, Ceriotti A (2004) Protein quality control mechanisms and protein storage in

the endoplasmic reticulum. A conflict of interests? Plant Physiol 136: 3420-

3426,.

Vitale A, Galili G (2001) The endomembrane system and the problem of protein sorting

Plant Physiol 125: 115-118

Page 271: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

249

Vitu E, Gross E, Greenblatt H, Sevier C, Kaiser C, Fass D (2008) Yeast Mpd1p reveals

the structural diversity of the protein disulfide isomerase family. J Mol Biol 384:

631-640

Vuori K, Pihlajaniemi R, Myllyla T, Kivirikko KI (1992) Site-directed mutagenesis of

human protein disulphide isomerase: effect on the assembly, activity and

endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera

frugiperda insect cells. EMBO J. 11: 4213-4217.

Wadahama H, Kamauchi S, Nakamoto Y, Nishizawa K, Ishimoto M, Kawada T, Urade

R (2008) A novel plant protein disulfide isomerase family homologous to animal

P5 – molecular cloning and characterization as a functional protein for folding of

soybean seed-storage proteins. FEBS J 275: 399 - 410.

Walsh C, Zydowsky L, McKeon F (1992) Cyclosporin A, the cyclophilin class of

peptidyl prolyl isomerases, and blockade of T cell signal transduction. J Biol

Chem 267: 13115-13118.

Wang H, Boavida L, Ron M, McCormick S (2008) Truncation of a protein disulfide

isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube

guidance in Arabidopsis thaliana. Plant Cell 20: 3300-3311

Wang L, Li S, Sidhu A, Zhu L, Liang Y, Freedman RB, Wang C (2009) Reconstitution

of human Ero1-Lα/protein-disulfide isomerase oxidative folding pathway in

vitro position-dependent differences in role between the a and a′ domains of

protein-disulfide isomerase. J Biol Chem 284: 199-206.

Wang P, Heitman J (2005) The cyclophilins. Genome Biol 6: 226-232.

Wang Y, Han R, Zhang W, Yuan Y, Zhang X, Long Y, Mi H (2008) Human CyP33

binds specifically to mRNA and binding stimulates PPIase activity of hCyP33.

FEBS Lett 582: 835-839

Wells W, Xu D, Yang Y, Rocque P (1990) Mammalian thioltransferase (glutaredoxin)

and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol

Chem 265: 15361-15364.

Wetterau JR, Combs KA, McLean LR, Spinner SN, Aggerbeck LP (1991) Protein

disulfide isomerase appears necessary to maintain the catalytically active

structure of the microsomal triglyceride transfer protein. Biochem 30: 9728-

9735.

Page 272: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

250

Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PVV (2000) Temperature

variability and the yield of annual crops. Agric Ecosys Environ 82: 159-167.

Wiborg J, O'Shea C, Skriver K (2008) Biochemical function of typical and variant

Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J 413: 447-

457

Wilkinson B, Gilbert H (2004) Protein disulfide isomerase. Biochim Biophys Acta

1699: 35-44.

Wilson R, Lees J, Bulleid N (1998) Protein disulfide Isomerase acts as a molecular

chaperone during the assembly of procollagen. J Biol Chem 273: 9637-9643.

Winter D, Vinegar B, Nahal H, Ammar R, Wilson G, Provart N (2007) An “electronic

fluorescent pictograph” browser for exploring and analyzing large-scale

biological data sets. PLoS ONE 2: e718.

Woycechowsky K, Raines R (2000) Native disulfide bond formation in proteins. Curr

Opin Chem Biol 4: 533-539.

Wrobel RL, OBrian GR, Boston RS (1997) Comparative analysis of BiP gene

expression in maize endosperm. Gene 204: 105-113.

Wu H, Wensley E, Bhave M (2009) Identification and analysis of genes encoding a

novel ER-localised Cyclophilin B in wheat potentially involved in storage

protein folding. Plant Sci 176: 420-432.

Yao Y, Zhou Y, Wang C (1997) Both the isomerase and chaperone activities of protein

disulfide isomerase are required for the reactivation of reduced and denatured

acidic phospholipase A2. EMBO J 16: 651-658.

Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting

endoplasmic reticulum stress response element responsible for transcriptional

induction of mammalian glucose-regulated proteins. Involvement of basic

leucine zipper transcription factors. J Biol Chem. 273: 33741-33749.

Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana

HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode

resistances in wheat. Mol Breeding. 10.1007/s11032-009-9381-9.

Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz L, Ho SI, Walsh CT (1992)

Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase

activity from cyclosporin A binding and calcineurin inhibition. Protein Sci. 1:

1092-109.

Page 273: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

251

Appendices Appendix I Tentative Consensus (TC) sequence (TC264488) for primers design

Primer sequences designed for isolation of Cyclophilin B in wheat are shaded. Forward arrows indicate forward primers; and reverse arrows indicate reverse primers. Start codon (S.C.) and stop codon (S.T.) are bolded and underlined.

Page 274: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

252

Appendix II Sequences data from individual clones and /or direct PCR products in wheat

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ATACGATCCGAGATGGCGATGAGGGCGTGGAGGAGGAGCGCGGCGGCGAGGGCCCCGGCGCACCTGTGCCTGTGGCTGGCGCTCGTCGCCGCCACCCTGGTGCTCGCCCAGGTGCTCATCCACCTCGTCCGTCTTCCGCGAACCCATCCC

TaA1 .........A............................................................................................................................................

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ......................................................................................................................................C..........C...T

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 .................................C....................................................................................................A...............

TdA2 ......................................................................................................................................................

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ......................................................................................................................................C..........C...T

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 .................................C....................................................................................................A...............

TuA ......................................................................................................................................C..........C...T

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ...............................................................................................................---------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 CTTACTTTTCCGCTTGCCGATTTGTTCGCCGATCTGATCGTTTCTCTGATACGGTTAATCGTTGCCCTCGCGCTGATGTCTGAACCTGTCTGCCGCGGATCCGGATGGCTTATATGTCTTCGGCGCTGCTGATTTGTTAGGGTTTGGTGT

TaA1 ......................................................................................................................................................

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 .........................................................................................................C...........------------------...........A...

TdA2 ......................................................................................................................................................

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 .........................................................................................................C...........------------------...........A...

TuA ...TAC.......CGCT.CCCCCTC....TCC..C.TG..CCGA......-..T.CCTCT.C.A.GA.T..T.----.CTGAT.T....T...........G..GC..A...G....G..T..G.T.....G.C............A.--

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GGTTGGTGTCTCTGTATGGGATGCGTACTTACGATTTTCTTCCTTGTTTTCAGGGCAAGAAATCCAACCTGTCTGAGGTGACGCACAAGGTCTACTTCGACATCGAGATCGACGGCAAGCCCGCAGGTCTGTGCTGAACCCCTGGCCACA

TaA1 ......................................................................................................................................................

TaB1 ---------------------------------------------------------------------------------.....................................................................

TaB6 ---------------------------------------------------------------------------------.....................................................................

TaA4 --C........G.......-......G.....A........TG.G....C.....T.....G..G........G.............................T.....................................G....A...

TaB2 ---------------------------------------------------------------------------------......................T.....................................G....A...

TaA5 ......................................................................T............................................................................G..

TdA2 ......................................................................................................................................................

TdB1 ---------------------------------------------------------------------------------.....................................................................

TdA1 --C........G.......-......G.....A.........G.G....C.....T.....G..G........G.............................T.G...................................G....A...

TdB3 ---------------------------------------------------------------------------------......................T.G...................................G....A...

Aet1 ......................................................................T............................................................................G..

TuA --C........G.......-......G.....A........TG.G....C.....T.....G..G........G.............................T.....................................G....A...

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 -----------------------------------------------------.........................................................................------------------------

Exon I

S.T.

Intron I

HaeIII

Exon II Intron II

A

HaeIII

Page 275: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

253

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 AATTTGTTTTCATATCAGCGGGATGTATCATCCCAGTATGGGGCAGGCAGTAGACTGCTACTAATACAACCGATATTGCATGCCTGATTCCTAGTCCTAGCCTAGAAAGCACGGTTTGTAGTTACACTTCGAGTGATTCCTTTTGATTAG

TaA1 ......................................................................................................................................................

TaB1 ......................................................................................................................................................

TaB6 ......................................................................................................................................................

TaA4 G....A......G.......C...........T...........G.A...............G.............C...............G.C...............C..............G.G..........A......C....

TaB2 G....A......G.......C...........T...........G.A...............G.............C...............G.C...............C..............G.G..........A......C....

TaA5 G....A......G.......C...............C.........A...............G........A....C.........T....------.G...........C.............G..G.T...............C..T.

TdA2 ......................................................................................................................................................

TdB1 ......................................................................................................................................................

TdA1 G....A......G..T....C...........T...........G.A...............G.............C...............G.C............G..C..............G.G..........A......C....

TdB3 G....A......G..T....C...........T...........G.A...............G.............C...............G.C............G..C..............G.G..........A......C....

Aet1 G....A......G.......C...............C.........A...............G........A....C.........T....------.G...........C.............G..G.T...............C..T.

TuA GG...A......G.......C...........T...........G.A...............G.............C...............GTC...............C..............G.G..........A......C....

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GATCGTTGAAAAA--TGTGAGATTGACATTGAAATTGAATTTCCATGTTTAGATGGCTGCACTGCACCTAATTTTGTTTTATGTTTA---GTGAGAAAAATATTCACTGGTGTGCTATGCATGTACGTTCTTAATGGTTTAACTCCTTTT

TaA1 .............--........................................................................---............................................................

TaB1 .............--........................................................................---............................................................

TaB6 .............--........................................................................---............................................................

TaA4 .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TaB2 .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TaA5 .............AT........C..................T...................C..G.....................TAA............................T......T.......T..--.GC.TCT....C

TdA2 ......C.....G--........................................................................---............................................................

TdB1 ......C.....G--........................................................................---............................................................

TdA1 .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TdB3 .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

Aet1 .............AT........C..................T...................CA.G.....................TAA............................T......T.......T..--.GC.TCT....C

TuA .......T.---------------------..GGC.......T............C................CA.............---..........................------------.......A--------------

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 CATTGTTTGATTGATCCGCTGGCATTTAAATTGATTCTGAATTGTCATAGGTCGGGTTGTCATGGGACTTTTCGGCAAGGCTGTTCCTAAAACCGCAGGTATCATCTCCTTACTGTTTGAGTTAAAAACCATGTACTCATCTATTGGATG

TaA1 ......................................................................................................................................................

TaB1 ......................................................................................................................................................

TaB6 ......................................................................................................................................................

TaA4 ----..............T..........................................................................................C.G.....C................................

TaB2 ----..............T..........................................................................................C.G.....C................................

TaA5 ..................G..................................................................................................C......C...............T..C......

TdA2 ...................................................................................................................................C..................

TdB1 ...................................................................................................................................C..................

TdA1 ----..............T..........................................................................................C.G.....C................................

TdB3 ----..............T..........................................................................................C.G.....C................................

Aet1 ..................G..................................................................................................C......C...............T..C......

TuA ----..............T..........................................................................................C.G.....C................................

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 --------------------------------------------------................................................----------------------------------------------------

Exon III Intron III

HaeIII

Page 276: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

254

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ACAGAAATGCTAATGGCTTGATATCTTTTGTTCTACAGAGAACTTCAGAGCACTCTGCACAGGTATGCTTCCCTACCACTTGCGCTGTTTTCTATATGTTATAAGCGTTATGCCGTCTGCTTGTTGAAGTTTCTAGATGATTAGTCTGAT

TaA1 ......................................................................................................................................................

TaB1 ......................................................................................................................................................

TaB6 ......................................................................................................................................................

TaA4 ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TaB2 ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TaA5 ..................C.....................................................G...T............-----------.C.TT.T...C...............G......C................

TdA2 ......................................................................................................................................................

TdB1 ......................................................................................................................................................

TdA1 ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TdB3 ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

Aet1 ........................................................................G...T............-----------.C.TT.T...C...............G......C................

TuA ...............................C.................................................AT........T.G.......C...........T....A......T......T.G...............

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 --------------------------------------.............G..........----------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GGCAAGGCTGGCTATTGGAATAAAAT-TTGCTCTATACAATCACAGTTGCTTTGTTATTTTGGCTCACATCTTCAAGTAATTTAGCCAATCAAATGTAATTGGCTTCCTCAGAAAGTCAAAACATAATTGTACAGTGGAAATTATATACT

TaA1 ..........................-...........................................................................................................................

TaB1 ..........................-...........................................................................................................................

TaB6 ..........................-...........................................................................................................................

TaA4 ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TaB2 ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TaA5 ............GT............-C........C....T..T...A...-............A--..........T................A......C...........................C...A...........----

TdA2 ..........................-..............................................A............................................................................

TdB1 ..........................-..............................................A............................................................................

TdA1 ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TdB3 ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

Aet1 ............GT............-C........C....T..T...A...-............A--..........T................A......C...........................C...A...........----

TuA ............C............AA.........TT...................C.............................T.......A.G.............................C..C......-........----

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GTAACTAATTTGATGCATGCTATGCTTGTAACATGGAAACGTTG--CTTGCCTTTTTCTTATAAAAGAAGGAAGCTATCTGTATTGTTCCCTTGTTATTTCAAATCCAAGTATACCTTTCTAGACACGACA---TAGAGAGAATGGTGGC

TaA1 ............................................--.....................................................................................---................

TaB1 ............................................--...................................................C.................................---................

TaB6 ............................................--.....................................................................................---................

TaA4 -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TaB2 -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TaA5 -.....C.............................C..A.C..TG...A........C.TG..G........T...C..........T...CA.................T....A..........A.G.ATG................

TdA2 ............................................--.....................................................................................ACG................

TdB1 ............................................--.....................................................................................ACG................

TdA1 -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TdB3 -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

Aet1 -.....C.............................C..A.C..TG...A........C.CG..G........T...C..........T...CA.................T....A..........A.G.ATG................

TuA -...................................C..A.C..TG...A........C.TG..G............C..........T...CA.................T....A..........A.G.ACG..............A.

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon IV Intron IV

HaeIII

Page 277: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

255

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 AGCCTGTTTGCCTGCAAATTTTTGGGCATGATCTGTTTAAATCCCAAGCTCCCTAGAGCATCATTGAAGGGTTCTAAGTTGTATGTTCTACACAGTCTCTAGTAGTAGCCCTGTGTGTGGA-TTTTGATTGTTCATCCCTCCTCTACCAT

TaA1 .........................................................................................................................-............................

TaB1 .........................................................................................................................-............................

TaB6 .........................................................................................................................-............................

TaA4 ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TaB2 ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TaA5 .........T........G.......G..C............T....A.C....C......A........-.....T......A.....G...G.....A..G..............CA..A..................TG--------

TdA2 .........................................................................................................................-............................

TdB1 .........................................................................................................................-............................

TdA1 ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TdB3 ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

Aet1 .........T........G.......G..C............T....A.C....C......A........-.....T......A.....G...G.....A..G..............CA..A..................TG--------

TuA ..................G.......G...............T...........C......A.......T......T......A.-----------...A..G..............CAT.A..................TG--------

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GGTTCTAAAAGAAATCCCTCTACCATACAAGTGCCCAAATATGAATGTCAATAAGAAAAAA-GAGAAGAAAT-AGATAACTGGTTGAATTTGTAGTTGGCTGGTGCCTAGCTGAATATATC--AGAGTATTTTACTTCATGGAAA--AAG

TaA1 .............................................................-..........-................................................A--.....................--...

TaB1 .............................................................-..........-................................................A--.....................--...

TaB6 .............................................................-..........-................................................A--.....................--...

TaA4 -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TaB2 -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TaA5 -----------------..................T.................T.......-..........T.AG.......C...G..C.......T..A........-------.C.AA--.TA..............A...GA...

TdA2 ..........A........G.........................................-..........-................................................A--.....................--...

TdB1 ..........A........G.........................................-..........-................................................A--.....................--...

TdA1 -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TdB3 -----------------.................-T.............T...T.......A..........G.AG...........G..C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

Aet1 -----------------..................T.................T.......-..........T.AG.......C...G..C.......T..A........-------.C.AA--.TA..............A...GA...

TuA -----------------.................-T.............T...T.......A..........G.AG..............C.......T..A........TCT.....G..AA..TA......G.......A.C.AA...

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GTGGATAAATGTTGTCATACTCTTCATA--------TTCCACCATAGAGTATTACGAAAGCCTATCATTATTTACTGCATATATCATTATATTCAGAATATCTGCTTTATTAGTACTACAGTCTGTATGGTAGCTT--------GATATC

TaA1 ............................--------....................................................................................................--------......

TaB1 ............................--------......................G.............................................................................--------......

TaB6 ............................--------....................................................................................................--------......

TaA4 ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

TaB2 ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

TaA5 ........C...C..T.C..........AGTTCATA.....A.........................C..............-................................A....A.......A.......CTCTCTAT...G..

TdA2 ............................--------....................................................................................................--------......

TdB1 ............................--------....................................................................................................--------......

TdA1 ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

TdB3 ........C...C..T.C...--.....--------......................G.............................G....................C..................T.......CTCTCTAT......

Aet1 ........C...C..T.C..........AGTTCATA.....A.........................C..............-................................A....A.......A.......CTCTCTAT...G..

TuA ........C...C..T.C...--.....--------......................G.............................G....................C.............C....T.......CTCTCTAT......

TuD2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

HaeIII

Page 278: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

256

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 TGCCACTGGTTGCTGACCATGCCCCACTTAATTGTCATACAGGTGAGAAAGGCATGGGCAACAGCGGCAAACCTCTCCACTACAAGGGGAGTTCGTTCCACAGAATTATCCCCAGCTTCATGATCCAAGGAGGGGACTTCACTCTTGGCG

TaA1 .......................................................................................................-----------------------------------------------

TaB1 ......................................................................................................................................................

TaB6 ......................................................................................................................................................

TaA4 ...T.G.....................................A..........................G................................-----------------------------------------------

TaB2 ...T.G.....................................A..........................G...............................................................................

TaA5 ...T.G..........................C..........A........T..................................................-----------------------------------------------

TdA2 .....G.................................................................................................-----------------------------------------------

TdB1 .....G................................................................................................................................................

TdA1 ...T.G.....................................A.G........................G................................-----------------------------------------------

TdB3 ...T.G.....................................A.G........................G..............................................................T................

Aet1 ...T.G..........................C..........A........T................................................................................C..........C...T.

TuA ...T.G.....................................A..........................G................................-----------------------------------------------

TuD2 --------------------------------------.....A........T.................G..............................................................T................

TaCD4 ------------------------------------------............................................................................................................

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ATGGAAGGGGCGGTGAATCAATCTATGGCACAAAGTTCGCCGATGAGAACTTCAAGCTCAAGCACACTGGACCAGGTAATGATCCGTGTTTCTTGAAATCCAGTTC-CAACTGCAAGTGA-AC-GATAGAATGATAGCCGGGGTTAAGAT

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ..........................................................................................................-.............-..-..........................

TaB6 ..........................................................................................................-.............-..-..........................

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 .........................C.................................................................T..............-............CT..-.G.....A.....G.C..........

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ..........................................................................................................-.............-..-..........................

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 .........................C................................................................................-............CT..-.G.....A.....G.C..........

Aet1 ..........T..............C...........................................................T................T..TG......G...A.CTC.-.T.............CT.......CC

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 .........................C................................................................................-............CT..-.G.....G.....G.C..........

TaCD4 ...........................................................................---------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GTCCTCCTTTTTCATTGACTGGTTGTTGGTGCAGGCTACCTTTCCATGGCCAATGCTGGGAGAGATACCAATGGATCCCAGTTCTTCATCACCACTGTAACCACGAGCTGGTAATT-TTCATGA--CTCTGTGATTGCAGCAGTTTGTAC

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ....................................................................................................................-.......--........................

TaB6 ....................................................................................................................-.......--........................

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ..........................C.........................................................................................-.......TT..T.............T....CG.

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ....................................................................................................................-.......CT..--....................

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ..........................C.........................................................................................-.......TT..T.............T....CG.

Aet1 A.........................C............................................C.............................T..............C....C..TG..T...A..C....T.A.....G.

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 ..........................C.........................................................................................-.......TT..T.......A.....T....CG.

TaCD4 ----------------------------------............................................................................----------------------------------------

Exon V

Intron V

Exon VI Intron VI

Page 279: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

257

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 TAAGCCTTT-TATTCTGCTTGAA-------CTTTGTTGTTGATGATCTACATTTTGTATGTTAGGTTGGACGGCAAGCACGTCGTGTTCGGCAAGGTGTTGTCTGGAATGGACGTGGTCTACAAGGTTGAGGCCGAGGGCAAGCAGAACG

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 .........-.............-------........................................................................................................................

TaB6 .........-.............-------........................................................................................................................

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 .G.AT....C.G.......G...-------..C.A...........A....C.C.....TC.........T...............................................................................

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 .........-.............-------........................................................................................................................

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 .G.AT....C.G.......G...-------..C.A...........A....C.C.....TC.........T...............................................................................

Aet1 ...A.....-.G.....T.G.G.GTTGGGA................A....C.C.....TC.........T........................................................C......................

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 .G.AT....C.G.......G-------GAA..CCA...........A....C.C.....TC.........T...............................................................................

TaCD4 ----------------------------------------------------------------......................................................................................

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 GGACGCCAAAGAGCAAGGTTGTCATTGCCGACAGCGGTGAAGTGCCGCTGTGATGAGACCTGAAATGGGCTCTGGTGGAA-GCTACGGTGACTAGTTTTCGTTGTAGAACCGTTACTAGCCGGTCTGTTTTTTGTTTTCGTGTACTTTTG

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ..................................--------------------------------------------------------------------------------------------------------------------

TaB6 ..................................--------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ..................................--------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ..................................--------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ..................................--------------------------------------------------------------------------------------------------------------------

Aet1 ....A...........A...........T........G..................--.......C..T...........A.................C..........G.....T..T....A.-------.A.............CC.

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 .........................C...........A..............................T...........A...................A..............T.GT.G..A.-------...............CC.

TaCD4 ................................................................................-...................................................................C.

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 TGTGAAATTCAGACGACAAGGATTCTC----TTGCTATAAGAAAGTATAATGACTTGCGGATTTACCCGTGATCTGGCTGGCAACTTTGAAGGCATCACACACCACCGT-----------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ......-..T.....G....TT..T..CTCT..A......A......C..........----...............................T...............-----------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 ......-..T.....G...A.C..T.TCTCT.-A......A..........A......----....T.A....A...A..............TGC..TT.TTATTTTT.CTTGGATGTTTTGCTGGGTTATTTGCCTTGGAGAAAGTGCT

TaCD4 ...........................----...........................----C..............................................-----------------------------------------

Exon VII

HaeIII

S. P.

Page 280: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

258

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 GATATGCGCCTTTTGATTTGAACGATTATCGATCGTCAGCAAACAAATATTCTCGCTTAGTACTGCAAGTGCAGCGGCCGATACCTCCCGCCTGGTGATTGTTTTTTTATGAGGACCAATCTCACAGTAGTTTTATACTTGAAAATCTTT

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 AAAGAAACATTTCTGGCTTTACGCTTTAAAAGGTCTGAAAACTGTTGGGAGCACTACCCTATGACCTTTGTGTCGATGAAGCTCCACCACTGCCCGGTAGAGGAGAATCTCCAACAAACCTCCACCACCATAGACCACAGTAGTATTCTT

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 TTTCCCTGGCAGAAAAAGAAATATTCTTTGTTAAAAAAAGAGAAAGAAATATTCTCTTACAATCCTATTTGTTTTTCTTATACGATAATAATCTACGGTCCGCATCTTCTTCTCATACGATTGGTACTATGAATATACGTAAAAAAAGTA

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

Page 281: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

259

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 AACAGAGTCCGCGGTTTTAAGAAATAGGAAAAGAAAAGGAGTTATGCAAAGACACGGCGAGCAACCCTAGAAGCCGCATCTTCCACTCAACCAATATATTTTTCTTTCATCTAGTATATCATATTAAAAAAAAGGAGGAATCCTACAATC

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB6 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA4 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaB2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TaA5 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA2 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdA1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TdB3 ------------------------------------------------------------------------------------------------------------------------------------------------------

Aet1 ------------------------------------------------------------------------------------------------------------------------------------------------------

TuA ------------------------------------------------------------------------------------------------------------------------------------------------------

TuD2 AGCATCAGGGCCGCTGGCTCCAGATCGGACGGTGGAGCGGGCAGAGCCGCGCGCCCAGGGGGCCTAATAATTGGCGTCCCCCCATCCGCCCCCGAGCCGCCCCCAAACCCCGTCCCGTCAAACGCAAAGAAGACAAGCGCAGCAAGTAGG

TaCD4 ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

TaC1 ----------------------------------------

TaA1 ----------------------------------------

TaB1 ----------------------------------------

TaB6 ----------------------------------------

TaA4 ----------------------------------------

TaB2 ----------------------------------------

TaA5 ----------------------------------------

TdA2 ----------------------------------------

TdB1 ----------------------------------------

TdA1 ----------------------------------------

TdB3 ----------------------------------------

Aet1 ----------------------------------------

TuA ----------------------------------------

TuD2 GTTAGGAGAGCCGACGGCGGCGGCGGCGGCGGAAAGCGAG

TaCD4 ----------------------------------------

Page 282: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

260

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) AGAGAATCTTTGTATGTGGTTTGGGGCAGTGAAGCGACCGCGTTGCCCCAGAGTAGGAATGATATTCTCTATGCGGGTGGAGGGCATGTTTTTTCGCTGGTGGAGGGCCCTATTCCCCGTTTCATTTGTGTGTGTTTTCGTTGGTGGAGC

TuCypB-A(P) ------------------------------------------------------------------------------------------------------------------------------------------------------

Rice (P) ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) ACGAATGGAGCTATATATTTGACGAGTCGTTTGGATTCCAGACGGTTTAGGTATCCGGTGGATCTTATCTAGATTTGGTCGGCTTTCGTGGTACTCGGAGATTGTACAACCCC-TTATCGACATCCTTTTCTCCGGGTTGTCAGCATTTC

TuCypB-A(P) ------------------------------------------------------------------------------------------------------------------------------------------------------

Rice (P) -----------------------------------------------------------------------AGAAGCT.AATAACGA.CT.....TACTT.CC..GA.TT..TA.C..T.GAG.ATG.G.GCA..TCA.TAGT..CA.G.

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) CTAGTCTGCATCAACGACTTCCCGACCGTTGCTTCTACAAACTCATGGATTTCAAAAAGTTAGGATCGTCGATGCGAAGGCCTAGAAGCGGCATCAAGCTATGCCCACGACACGCCGCCGATGGATGCGGGACGAAGAAGACTTCGGCTC

TuCypB-A(P) ------------------------------------------------------------------------------------------------------------------------------------------------------

Rice (P) A.T..T..G.G.CTGTTTC.G.T..TTA.AATG.GAC.TGCT.TG..T.A..GTTGT.AAAT.AGAGTGTTC.CTC..TATT.TCCCAT....ATTCAGAT..GAT.T.CA.T..AAG.T-.AT..A.AT.CGA.CAC.ATG.CATAT..

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) CCCTAAGATTTTGAATGTATTTCTATTTTTTCTGCAAGGGTGTCTTTTTATAAGGACCGATGATACTTAATAACGAAGGGAGTAGTAATCACAACAAACGCGTGATACACCTACTTACTAGACCCAACATGATAGAGCTGTAACAAACCC

TuCypB-A(P) ------------------------------------------------------------------------------------------------------------------------------------------------------

Rice (P) .T..TT.....A..T.A.TGAG.GGA..A...CATG.ATTATCAA...G..T.T...T-..A.ATTAA.TA.TTT.TAAA.A..AACT.A.T..AT.GTTTAAA.C..G.A.TT...AGCCTTGT.CA.GA.A.TTCT.T.T.T...AAA

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) AAGTTCTTAATTAACCGCAAGATCTAAATGTATTATTTTCATGAACATAATTCTTGTTTACCCCCATCCGTTTCAAAATAAGTGTTATGGTTTTAGTTCAATACCACGACACTTAGTTTTGAACGGTGGATCAACTCTCTAAAAAGAGTC

TuCypB-A(P) ---------------------------------------------------------------------------------------------------------GA.CTC.AA.T.....C..T....T.TCGT.TGGCTTCC...AGT

Rice (P) ..T..AAAGCG.TGAGCA..T.ATCCGT.TCTA..A..AG.AT..GG.TTAGT...A..GTGAAGT.TG.A..TTT...GGCACG..AAA.AAG.C.AG.C..ATTAAGT.T.A.T.A..T..AAA.TAT.TGTT.T.T-------.AAT

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) AAAATACTTGTGTGCTTCTTTGTGAAGGGTGAAATAGTGTTAGAAGAGAGAGAAAG-AGTTTTTTTGCATAACAGG-GAAAAAGAG-TTAGCAGTAGGGTTTATATTTTGGTACCCACTGAAATTACCGAAATTTCAGAAGTTTGGTGAT

TuCypB-A(P) T.GC.T...A-...TAAAAGC..TCG.CTCA...ACT.T.CT....TTT.T...GTT..AA.C.GGAGGAG.TCA.-A.C.CGCCC-...AT..........G................A......G...........---.........

Rice (P) ...C.T..AAACAAAAAG.A.T..G.AAAAA.T.A.CCT...AC..TTTAGA..GCT.AAC.A.GCT..C.GT.AATA.C.CCC.AAC..A.TT.CAAAC.A.GCC.AA.T.GAAA.GAAC..C.CGAT.G.A.CT.A..T...TA..C.

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) TTTTTTAATCATATTTTGTAGTTATAAGAAGTTGATAGAATATAAAGTGAGTGG-AATCTAGTGTTCCTTATGCGAGGAGGAGTGGAATTTGGTGCTAGGAGTTGCTGTTGCAAAGCAAAAGAGCAGTCATGGGTGCAGTCGGGGGCGAG

TuCypB-A(P) .....-......T.................A.......G...............-...T.G.......G....T..........................................................A....G............

Rice (P) C.C..G.TCG..T.A.CTGCA.C.CC.CTCCC.C..TT-.C.C...ACA.CCC.C....G.AA...A.A-----A.AA.AA.AA.C.CC.CAA..AGT.TGA..AA...G.AGTTAA.C.C..AG.TCTT..CT..-..A.A.AAC.CGA

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

AetCypB-D(P) CAGCTTGTGA-----GGCCGTGGTCTGACTGTTCGACCCCACCTGTCAGCCGAACGAGCAGCTCTGTTTATCTCGCCCGTGGACTCTCCCTCTCGGAGACCGCGTAGTGGAACGAGTAAACAGATCTGCTCTCTCCCTCTCTTTCTCTCT

TuCypB-A(P) ....C.....TGTGA......A.......A.C................A..A....GC......C........................T........G.T..............C.............C.....--------.......

Rice (P) ..--C..AC.TGTAG....C--AC...T.A.GCA.CG.ATCG..T...C..TCTT.GCT.CTAT.TC..CGTGGA.T.T...G.AGAGTG---..........AGT.....G.A.CAG.T.TATC.AT.CA..C.ATC...GA..CT..A

1210 1220 1230 1240

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

AetCypB-D(P) CGTCCGCGGCGATACGATCCGAGATG---------------------

TuCypB-A(P) ....................A.....---------------------

Rice (P) TTC.T..CCG.CGG...G.GAGAGA.AGGCGGAGGAGATCCGAGATG

B

Page 283: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

261

A: sequence from clones or directly PCR product with CypB gene sections in wheat species. B: sequence from clones with promoter sections of TuCypB-A in T. urartu and AetCypB-D in Ae. tauschii. Dots indicate bases identical to the top line; broken lines indicate gaps and incomplete amplification at 5’and 3’ends. Start codon (ATG) and stop codon (TGA) are shown in bold and underlined; HaeIII digested sites are showed in bold. The six introns are shaded.

Page 284: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

262

Appendix III Nucleotide sequence of promoter, genomic DNA and cDNA of the putative rice CypB gene and its deduced amino acid sequence -1000 ERSE-II

AGAAGCTTAA TAACGAGCTG TACTTACTTA CCGTGAATTC CTATCATTGG AGTATGTGTG CACGTCATTA GTGCCATGCA

-920 Prolamin-box

TTGTTTGGAG CCTGTTTCTG CTGATTATAA TGTGACCTGC TTTGTGTAAT TGTTGTAAAA TGAGAGTGTT CTCTCAATAT

-840

TTTCCCATGG CAATTCAGAT TGGATATGCA ATGCAAGCTT ATATACATGC GAACACAATG TCATATTCCT CTTTGATTTA

-760

GATTATTGAG CGGATTATTC CATGAATTAT CAATTTGATT ATGACTATAA ATTAAATAAT TTATAAAAAT AAACTTAATA

-680

AATAGTTTAA AACACGCATT TTTAAGCCTT GTACAAGAAA ATTCTTTTTA TAAAAAAAAT TTAAAGCGTT GAGCAAATAA

-600

TCCGTTTCTA TAATTAGAAT AAGGTTTAGT TTGATTGTGA AGTTTGGATT TTTAATGGCA CGTAAAATAA GACTAGACTA

-520 TATA-box

ATTAAGTATT AATTATTTAA AAATTATTTG TTTTTTAAAT AAACTTCTAA ACAAAAAGTA TTTGGAAAAA AATAAACCTT

-440 Prolamin-box

TAACAGTTTA GAAAGCTAAA CTATGCTCAC AGTAAATAAC ACCCAAACTA ACTTTCAAAC TAAGCCTAAG TTGAAAAGAA

-360 AT-rich

CAACTCGATA GAATCTAAAA TTTTTATGCT CTCTTGATCG ATTTATCTGC ATCACCACTC CCTCATTTAC ACAAAACAAC

-280 CAAT-box CAAT-box

CCGCAATCGA AAGTTACAAA AAAAAAAAGC ACCTCAATGA GTGTGATTAA TGTGGAGTTA AACACGAAGA TCTTTGCTTG

-200 E-box

AGACAGAACC CGACACTGAC ATGTAGGGCC CACCTGTCAG GCAGCGCATC GCTTTCACCC TCTTGGCTAC TATTTCTTCG

-120 GC-rich CT-leader box

TGGACTCTTG GGCAGAGTGC GGAGACCGCA GTGTGGAGCA ACAGATCTAT CCATCCATCC CATCCTCGAT CCTTCATTCC

-40 S.C. ~~~~~~~~40

TGCCCGGCGG CGAGCGAGAG AGAGGCGGAG GAGATCCGAG ATGGCGGGGA GCGGGTGGAG GAGGATCCCG GCGGTGAGGA

~ ATGGCGGGGA GCGGGTGGAG GAGGATCCCG GCGGTGAGGA

M--A--G--S --G--W--R- -R--I--P-- A--V--R--R

120

GGCCGCCCAT GTCGCGCCCG GCCTCGGTCT GCCTCTGGAT CGTGCTCGTC GCCGCCACCC TGGCGCTCGC CCAGGTGCTC

GGCCGCCCAT GTCGCGCCCG GCCTCGGTCT GCCTCTGGAT CGTGCTCGTC GCCGCCACCC TGGCGCTCGC CCAG------

--P--P--M- -S--R--P-- A--S--V--C --L--W--I- -V--L--V-- A--A--T--L --A--L--A- -Q--------

200

ATCCACCTCG TCCGTCTCCA CTCTCCACCA CGCCTCGCTC CTCCTCCTGC TTCCCCGTAT CTGCGTGTGA TGTGATGCGT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

280

GTGCTCTCCG ATCTGATTCG ATTGTTTGTG CTCGTGCGCT GATTTCTTGA TCTGTTTGAT CTGTGGATCC AATTGGCCCT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

360

GGTGTGCTGA TTTGTTAGAA TTTTGAGTGG TGCCTCTATG TGCATCTATG CGTACTCACC TTTTTTTTTT TGTTGCTGTT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

440

TAGGCGAAGA AATCGAAGGC GGATTTGACT GAGGTCACCC ACAAGGTCTA CTTCGACGTC GAGATTGATG GCAAGCCCGC

---GCGAAGA AATCGAAGGC GGATTTGACT GAGGTCACCC ACAAGGTCTA CTTCGACGTC GAGATTGATG GCAAGCCCGC

---A--K--K --S--K--A- -D--L--T-- E--V--T--H --K--V--Y- -F--D--V-- E--I--D--G --K--P--A-

520

AGGTTTGTGT TGGCCCCCTA TGTTTAGCTC TACTACCATA TCAGCATAAT ATATAAGTCT TCAGGCAGAA AGAAGAAAAG

AG-------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

-G-------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

600

ATATGCATAG TTTGATGTGT CTAGCATTAG CAAATACGGA GCAGTAACAA TTTAATTTGC ATTAATTGTG TCCCACCGTT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

680

GTGTATAAGT GACTTGTGAT GGGCTGATGT CATATGCAGT GATTATTACA GTTAGAGTTA TCAGCATTTG AGATTGACCT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

760

GAAGCTAACT CTATTATGAT GAGAATTTAG CTTCTTCTAT TGTTGTTTAT GTTTAAGGAG AAACGTTGAT GTGATATTTG

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

840

TGTATGTACT ATTTATAATG TCTTTCCTGT TAATGATTGC CTTACTGACA TTTATTATTT TTTCTTGTAT TGCCATAGGA

---------- ---------- ---------- ---------- ---------- ---------- ---------- --------GA

Page 285: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

263

920

CGGGTTGTCA TGGGACTTTT CGGGAAGACT GTTCCTAAAA CGGCAGGTAC CATTTGCTTA TCATTTAGTT AGGTAACAGG

CGGGTTGTCA TGGGACTTTT CGGGAAGACT GTTCCTAAAA CGGCAG---- ---------- ---------- ----------

R--V--V--M --G--L--F- -G--K--T-- V--P--K--T --A--E---- ---------- ---------- ----------

1000

AAATTCATTG TCATATCACA AATGCTAATG ATTCACTATA TCTTTTTTTT TTCCTACAGA GAACTTCCGA GCACTTTGCA

---------- ---------- ---------- ---------- ---------- ---------A GAACTTCCGA GCACTTTGCA

---------- ---------- ---------- ---------- ---------- ---------- -N--F--R-- A--L--C--T

1080

CAGGTATGCT CCCTGATGAT TTATACTGTT TTTATTACAT TAGATGTGTT CATTCATCTT CTGCTAGAGT TTCCAGATGG

CAG------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

--G------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

1160

TTAATCCCAT GGCAAGCTTG GTAGTGGCAG CATGTAGAAT TTCCAGCATT GAATAACACT TTCTTTGCCA CTTTAACCTG

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

1240

AAATTATTTT TGAATGCACA ACTTTTGTGT CATTATCAAG TTTGGCCAAT CAAATATACT GTTACAGTTG ACTAGTTAAA

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

1320

AATTGATGCA AAAATACATC AGCTCAGCTG TTGTCATTAT TCATACGCAA GTGTAGAATA TTATGAAAAC CCATAAAAGT

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

1400

ATTTACTTCA TATAATGAGA GAGATCCCAT TCTGGACAGC GAATAGCACT ACAATCTGTG TGGTAGCATT CCCTGATGCC

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------

1480

TACTTGTGGT TATTATACGT AATCTAAGTT TGGGTTTGAT GTAGCGCTTT CAACTTTGTT GTTATACAGG AGAGAAAGGA

---------- ---------- ---------- ---------- ---------- ---------- ---------G AGAGAAAGGA

---------- ---------- ---------- ---------- ---------- ---------- ---------- -E--K--G--

1560

ACTGGAAAGA GTGGCAAAGC ACTCCACTTC AAGGGAAGTG CATTCCACAG AATTATACCC AGCTTTATGA TCCAAGGAGG

ACTGGAAAGA GTGGCAAAGC ACTCCACTTC AAGGGAAGTG CATTCCACAG AATTATACCC AGCTTTATGA TCCAAGGAGG

T--G--K--S --G--K--A- -L--H--F-- K--G--S--A --F--H--R- -I--I--P-- S--F--M--I --Q--G--G-

1640

TGACTTCACA CTTGGTGATG GAAGGGGTGG TGAATCTATC TATGGGACGA AGTTCGCCGA TGAAAACTTC AAGATCAAGC

-D--F--T-- L--G--D--G --R--G--G- -E--S--I-- Y--G--T--K --F--A--D- -E--N--F-- K--I--K--H

1720

ACACCGGACC AGGTAATTTT CGTTATTTCC TGAACCATTT TTTTACTACA CTATAGACGC ATTATTTGTG TGGTAGACCA

ACACCGGACC AG-------- ---------- ---------- ---------- ---------- ---------- ----------

--T--G--P- -G-------- ---------- ---------- ---------- ---------- ---------- ----------

1800

TCAAATCATC CTTGTTTGAT TTGATCTCAT GTTTATGCAG GCCTCCTGTC CATGGCCAAT GCTGGGAGAG ACACAAACGG

---------- ---------- ---------- ---------- GCCTCCTGTC CATGGCCAAT GCTGGGAGAG ACACAAACGG

---------- ---------- ---------- ---------- --L--L--S- -M--A--N-- A--G--R--D --T--N--G-

1880

GTCCCAGTTT TTCATCACCA CTGTAACCAC CAGCTGGTAA TCGTCGTTTC CTCACTAGCC TTTGTAATCA TAGCAGCACT

GTCCCAGTTT TTCATCACCA CTGTAACCAC CAGCTG---- ---------- ---------- ---------- ----------

-S--Q--F-- F--I--T--T --V--T--T- -S--W----- ---------- ---------- ---------- ----------

1960

ATTTCTAATT TGTACTGAAG ACACTTCAAT CTGTTGAAAC TATTTATTTG ATTAGGTTGG ACGGGAAGCA CGTCGTGTTC

---------- ---------- ---------- ---------- ---------- -----GTTGG ACGGGAAGCA CGTCGTGTTC

---------- ---------- ---------- ---------- ---------- ------L--D --G--K--H- -V--V--F--

2040

GGTAAGGTGC TGTCTGGAAT GGATGTGGTT TACAAGATTG AAGCTGAGGG CCAGCAGAGT GGGTCACCGA AGAGCAAAGT

GGTAAGGTGC TGTCTGGAAT GGATGTGGTT TACAAGATTG AAGCTGAGGG CCAGCAGAGT GGGTCACCGA AGAGCAAAGT

G--K--V--L --S--G--M- -D--V--V-- Y--K--I--E --A--E--G- -Q--Q--S-- G--S--P--K --S--K--V-

2074

TGTCATCGCG GACAGCGGCG AACTGCCGAT GTAA

TGTCATCGCG GACAGCGGCG AACTGCCGAT GTAA

-V--I--A-- D--S--G--E --L--P--M- -* The minus numbers on the left side indicate position from start codon (S.C.) in the promoter sequence. All the regulated elements identified are bold and underlined; and names of the elements are presented above the element motifs. The putative CypB genomic sequence is presented in the first line with the numbers indicating the genomic base pair from start codon. Second line presents the CypB cDNA and the third line presents its amino acid sequence. Broken lines indicate the introns of CypB genomic sequence at the top line; *indicates stop codon of the translation.

Page 286: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

264

Appendix IV Blots obtained from GrainGenes for probes matching wheat Cyps and PDILs

Page 287: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

265

Page 288: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

266

Page 289: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

267

Page 290: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

268

Appendix V DNA alignments showing the alternative splice forms encoding rice Cyps and PDILs

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CTCTTGGCTACTATTTCTTCGTGGACTCTTGGGCAGAGTGCGGAGACCGCAGTGTGGAGCAACAGATCTATCCATCCATCCCATCCTCGATCCTTCATTCCTGCCCGGCGGCGAGCGAGAGAGAGGCGGAGGAGATCCGAGATGGCGGGG

OsCYP24-2 ---------------------------------------------------------------------------------------------------------------------------------------------.........

OsCYP24-1 ---------------------------------------------------------------------------------------------------------------------------------------------.........

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 AGCGGGTGGAGGAGGATCCCGGCGGTGAGGAGGCCGCCCATGTCGCGCCCGGCCTCGGTCTGCCTCTGGATCGTGCTCGTCGCCGCCACCCTGGCGCTCGCCCAGGTGCTCATCCACCTCGTCCGTCTCCACTCTCCACCACGCCTCGCT

OsCYP24-2 ........................................................................................................................------------------------------

OsCYP24-1 .........................................................................................................---------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CCTCCTCCTGCTTCCCCGTATCTGCGTGTGATGTGATGCGTGTGCTCTCCGATCTGATTCGATTGTTTGTGCTCGTGCGCTGATTTCTTGATCTGTTTGATCTGTGGATCCAATTGGCCCTGGTGTGCTGATTTGTTAGAATTTTGAGTG

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 GTGCCTCTATGTGCATCTATGCGTACTCACCTTTTTTTTTTTGTTGCTGTTTAGGCGAAGAAATCGAAGGCGGATTTGACTGAGGTCACCCACAAGGTCTACTTCGACGTCGAGATTGATGGCAAGCCCGCAGGTTTGTGTTGGCCCCCT

OsCYP24-2 ------------------------------------------------------................................................................................----------------

OsCYP24-1 ------------------------------------------------------................................................................................----------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 ATGTTTAGCTCTACTACCATATCAGCATAATATATAAGTCTTCAGGCAGAAAGAAGAAAAGATATGCATAGTTTGATGTGTCTAGCATTAGCAAATACGGAGCAGTAACAATTTAATTTGCATTAATTGTGTCCCACCGTTGTGTATAAG

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TGACTTGTGATGGGCTGATGTCATATGCAGTGATTATTACAGTTAGAGTTATCAGCATTTGAGATTGACCTGAAGCTAACTCTATTATGATGAGAATTTAGCTTCTTCTATTGTTGTTTATGTTTAAGGAGAAACGTTGATGTGATATTT

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 GTGTATGTACTATTTATAATGTCTTTCCTGTTAATGATTGCCTTACTGACATTTATTATTTTTTCTTGTATTGCCATAGGACGGGTTGTCATGGGACTTTTCGGGAAGACTGTTCCTAAAACGGCAGGTACCATTTGCTTATCATTTAGT

OsCYP24-2 --------------------------------------------------------------------------------...............................................-----------------------

OsCYP24-1 --------------------------------------------------------------------------------...............................................-----------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TAGGTAACAGGAAATTCATTGTCATATCACAAATGCTAATGATTCACTATATCTTTTTTTTTTCCTACAGAGAACTTCCGAGCACTTTGCACAGGTATGCTCCCTGATGATTTATACTGTTTTTATTACATTAGATGTGTTCATTCATCT

OsCYP24-2 ----------------------------------------------------------------------........................--------------------------------------------------------

OsCYP24-1 ----------------------------------------------------------------------........................--------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TCTGCTAGAGTTTCCAGATGGTTAATCCCATGGCAAGCTTGGTAGTGGCAGCATGTAGAATTTCCAGCATTGAATAACACTTTCTTTGCCACTTTAACCTGAAATTATTTTTGAATGCACAACTTTTGTGTCATTATCAAGTTTGGCCAA

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

AExon I

ExonI

Intron IIntron I

Exon II

Exon II

Intron II

Intron II

Exon III

Exon III

Intron III

Intron III

Exon IV

Exon IV

Intron IV

Intron VI

Page 291: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

269

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TCAAATATACTGTTACAGTTGACTAGTTAAAAATTGATGCAAAAATACATCAGCTCAGCTGTTGTCATTATTCATACGCAAGTGTAGAATATTATGAAAACCCATAAAAGTATTTACTTCATATAATGAGAGAGATCCCATTCTGGACAG

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CGAATAGCACTACAATCTGTGTGGTAGCATTCCCTGATGCCTACTTGTGGTTATTATACGTAATCTAAGTTTGGGTTTGATGTAGCGCTTTCAACTTTGTTGTTATACAGGAGAGAAAGGAACTGGAAAGAGTGGCAAAGCACTCCACTT

OsCYP24-2 --------------------------------------------------------------------------------------------------------------........................................

OsCYP24-1 --------------------------------------------------------------------------------------------------------------........................................

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CAAGGGAAGTGCATTCCACAGAATTATACCCAGCTTTATGATCCAAGGAGGTGACTTCACACTTGGTGATGGAAGGGGTGGTGAATCTATCTATGGGACGAAGTTCGCCGATGAAAACTTCAAGATCAAGCACACCGGACCAGGTAATTT

OsCYP24-2 ...............................................................................................................................................-------

OsCYP24-1 ...............................................................................................................................................-------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TCGTTATTTCCTGAACCATTTTTTTACTACACTATAGACGCATTATTTGTGTGGTAGACCATCAAATCATCCTTGTTTGATTTGATCTCATGTTTATGCAGGCCTCCTGTCCATGGCCAATGCTGGGAGAGACACAAACGGGTCCCAGTT

OsCYP24-2 -----------------------------------------------------------------------------------------------------.................................................

OsCYP24-1 -----------------------------------------------------------------------------------------------------.................................................

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TTTCATCACCACTGTAACCACCAGCTGGTAATCGTCGTTTCCTCACTAGCCTTTGTAATCATAGCAGCACTATTTCTAATTTGTACTGAAGACACTTCAATCTGTTGAAACTATTTATTTGATTAGGTTGGACGGGAAGCACGTCGTGTT

OsCYP24-2 .............................---------------------------------------------------------------------------------------------------......................

OsCYP24-1 .............................---------------------------------------------------------------------------------------------------......................

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CGGTAAGGTGCTGTCTGGAATGGATGTGGTTTACAAGATTGAAGCTGAGGGCCAGCAGAGTGGGTCACCGAAGAGCAAAGTTGTCATCGCGGACAGCGGCGAACTGCCGATGTAATGAGCTGAAATGATGTTTCACTGAAGCTACTGCTA

OsCYP24-2 ...................................................................................................................-----------------------------------

OsCYP24-1 ...................................................................................................................-----------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 CTGCTTCTCGTTGTAGAACTGTTATTAGCTGCTCTGTTTTGCTATGCTTCTACCCCGAATCTGGTTGGAGTAAATTTCTGTTAGACTATAACAGCGTGCTTATATCGCCTCTTAGTTGTGGGCGATTTGGAGTGAACTAGCATAAAAAGG

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

06g49480 TCGAAACTTTACTTAAGTCGTCTTCTTGTTCTAAGTCGAATTATACTTTGAAGTGACTTGCTTACTGTTGAGCGCTTG------------------------------------------------------------------------

OsCYP24-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP24-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon V

Exon V

Intron V

Intron V

Exon VI

Exon VI

Intron VI

Intron VI

Exon VII

Exon VII

Page 292: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

270

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AGCTCACTGGCTGGGGATAGACGAGACGGCGACCACGACGATGACGATGACGACGACGACGGCGACGGCAGCAACGGCATCCCCACCACCACCCCCATCTCCGGTTCCTCCCCTCCCCGCGTCTCAACCCACCGGAAATCCATTCAAAAG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 CACCCGCGCTCCCGCACCAATCCACCGCACGCCATGGCGTCGCGAGCGGCGGCCGCGATGGTGCTCGCCGGTGCCCTTCCTGTGTTTCCCGGCCGTCCCCTGGTCGCAGCCGGCGCCAGGTGCTGCGACGGCGGCATTCGCGGGAGGGTC

OsCYP50 ---------------------------------.....................................................................................................................

OsCYP46 ---------------------------------.....................................................................................................................

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TCCTGCTCCTCCCACCGTCGCTCGGACCATCCCTCCTGCGCGGCTGAGGTGAGCACGCGCTGGTTGCTGGTCTCTCCTCATCCAAATGGCTTCCAAAGCTGTAGCGTTCGCTTCAGTTTAATCGTGTGGTTGTCTGGTTTGGTGCAGGAG

OsCYP50 ......................................................................................................................................................

OsCYP46 ................................................---------------------------------------------------------------------------------------------------...

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGAGGAGTGGTGGAGCTGCTCAAGGGCGCGGTCGCGGCGCTCGCCGTCATCGCCCAGATTTCCGTGTCGCTCCCGGCGGACGCGATCCTCTACTCGCCGGACACGAACGTGCCGAGGACGGGGGAGCTGGCGCTGAGGAGGGCCATCCCC

OsCYP50 ......................................................................................................................................................

OsCYP46 ......................................................................................................................................................

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GCGAACCCAAACATGAAGACCATACAGGTAAACTGCATCAGAATCGGCGGCGATGCATATCGCTTAGTACGGTTGGCTGGGCGTTGTTCTTAGATTGTGCGAGCCCATTTGCCAGGAATCGCTGGAGGACATTTCGTATTTGCTGAGGAT

OsCYP50 ...........................----------------------------------------------------------------------------------------...................................

OsCYP46 ...........................----------------------------------------------------------------------------------------...................................

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 ACCGCAGAGGAAGCCGTATGGCTCCATGGAAGGAGACGTAAAAAAGGCCATGAAGGTAATAAGTTGACTCTGTGTCTTCTTCATAAGCATTTTTCTAGCAACAATGTTTTGCTTCTTCTATGCATTGTGAACTTCTTATTGAACTTGCTG

OsCYP50 .......................................................-----------------------------------------------------------------------------------------------

OsCYP46 .......................................................-----------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AGCTGTTGTCCTGAATGCTGATATATAGAACAAATGCGCTCTGGATGCAGATAGCAATGGACAACAAGGATGCGATCTTGGCAAGTATACCTGTAGAACTCAAGGAAAAGGGCTCGAAGTTATATACCTCCTTGCTTGAAGAGAAGGTCA

OsCYP50 --------------------------------------------------................................................................................................----

OsCYP46 --------------------------------------------------................................................................................................----

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GTAGGTTCTAGGATGTGCTCATGGTGAATTGCAGTTTATGAAACAGATCAAATTCTGGTTTTCACTTGTACTTATTTATAAATTATACCTGAGCTACTTTGGAATCAACTGCAGGGTGGTTTGCAAACTCTCTTGAAATATATAAAGGAA

OsCYP50 ------------------------------------------------------------------------------------------------------------------....................................

OsCYP46 ------------------------------------------------------------------------------------------------------------------....................................

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AATGATCCTGACAGACTTTCGGTTGCACTTGCTTCTTCTCTTGATACTGTTGCTGAATTGGAGCTGTTACAGGTAACTGTACTAAACTGAATAGAAGTTTCATTATGTTTAAAGGAGGATGATTATACTCCGGCGATGATCGGATTACTT

OsCYP50 ........................................................................------------------------------------------------------------------------------

OsCYP46 ........................................................................------------------------------------------------------------------------------

B

Exon I

Exon I

Intron I Exon II

Intron I

Intron II

Exon II

Exon III

Intron II

Intron III

Exon III

Exon IV

Intron III

Intron V

Exon IV

Exon V

Intron IV

Intron V

Page 293: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

271

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AAAGGGGGAAATTTCTTTCAACAGGCTCCAGGTTTATCCTTCCTCTTACCACAACAATATTTGGAATATCCAAGGTAACTTTTGTTGATCTCTCCAAAGCTTAAAATCTAAATGTTTCTTTGTCTCTAGAATTATTGTGAGGGAAGGGCA

OsCYP50 ------------------------..................................................----------------------------------------------------------------------------

OsCYP46 ------------------------..................................................----------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GAGATAGGTCCGAAGATTGAAGGTGACATTTGATTATACTGAGTTACTGACATGCATGGTTCTATGTCCTGCAAACAAGTATAAGCTCTATGTCAGTATAAGTTTTAAGATAACCAGGTCTCTGCCCCCAAGTTCTTGATGGTAATAATC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AAAGCTGCCGCTATTAGTAGGTTTTCAAAATGAATTCAATAGAAAACTTACCAGTTTTTCCATTGTTGCAAATTAATTGGTTTTGACAAACTTGCCATTTTATCATATTTGCAAACTCACTATTTATTGCTGGTGTCACCCTTCATATAT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TTCATGGAGTAGAAACTGTCGAATAAAAAGTACTTTCTAGTTAATTCCAAGTGGGAACTTATTTTTATTTATAACATATATCATCACATAGTATTATAAAATCATTAAGGCCAGATTGGTACAGGGTGGCAAGAAAACCTCACAAGCATT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TTTCTTTTCGAACTCTTGAGGAATGGTGAATTTTTCTTGGGTTCTGATTGGCTGATCGCTTCAGCAGCAATGTCGGTAAATTTGAGCGCATGTTTTTAGTTTACTTAGTCGTCCTTTAGGTCCCCTGTTTTTCTTCTGTTTTGGGTCTTT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGGGTCGGTGAAGTATGGGCCCAGGTTGTTGTCCAAGTTGTCCATTTTAGGTGCGCACTTTTGCGCCAGAGCGAGTCGTGTCCTTGTCGCGCCCGGCACATTCTGATCATGTGGGATGGCACACGACACGGTGGAACGTGTCATGTGCAT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GAAGGCCTCAATGGAAACTACTTTGGGCCTCCTGTAATCCGTATAAACAACAGTGGAGAAAACTGAGAAAAGCTACAGTGAGATTGCGCAGCGCCAAATTCATTCGCGTCTCTGTTCTTTGTTCTTGTGAGTGTTCCTTCAATCCCAGGG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGATCGCTGACAAGCAATACACTCAGTATGTGTAGCTGATTAGCAGATTATGTAAGGTGGTGTTTGGATGGGAGGGGGACTAAAATAAGTCCCTCCCATCCCAAACAGGCCCTAAGTGTAATGGTGCTTTGAACATTCCATCCCTGTGGC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 ACTTATATTAAGCATGCAATCATTCCTCCAGTCTGTAACGAAATGTTCATTTGTACATTTAATTTAAACAGCTCGCTTTTAATAGGCTAGCAGGAAGAGGAGTTGTTGAATTCTCAGTGGAGAAAGGTGATGGTTCAACATTCTTTCCAA

OsCYP50 -------------------------------------------------------------------------------------.................................................................

OsCYP46 -------------------------------------------------------------------------------------.................................................................

Exon V

Exon VI

Intron V

Intron VI

Exon VI

Exon VII

Page 294: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

272

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 CTGCTGGTGGTGAACCAAAAAGTGTTGCTACAATTCAGGTGGCTTTGAATGGCTGTGTAATTGTCTGGTATCATAAACTGCAGTCTTTTGACATTGAGAAATAAGAACCTTATCCTTGGTTGTTATCTTTTGTCATACCATGGTGTGCAA

OsCYP50 ......................................----------------------------------------------------------------------------------------------------------------

OsCYP46 ......................................----------------------------------------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GAGTATGGTTCTGTATACAGTTGCAGTTATAAAATTCCACGTGTCAGCTATTGATTTCTTTACTAATTTCCAGGTAGTGATTGATGGATATTCTGCCCCACTGACTGCTGGAAACTTTGCGAAATTGGTAAGGTAGCTTAACTCCAACCT

OsCYP50 -------------------------------------------------------------------------......................................................-----------------------

OsCYP46 -------------------------------------------------------------------------......................................................-----------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 CATCTCACTATTGATTATTTCCTGCCAATAGCTCTGCCTTCTGACATATATGATAAAGATCATCGAAATGATTGTGTTCATCGACATAACATCTTCGAGAACATCAATTTAAGATTTCATGTTTCTGCGATGTGCTAAAAAAATTTCCTT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TACTAGCTCTTGATTTTCTTTTCAGTAGTTAGGTTACATCATCTGATCCAATGAAATGAACTTTTCTTCAGGTGTTGGATGGGGCATATGATGGGATAAAACTGAAATGTGCAAGTCAGGCAATTATTGCAGACAACGAGAATGGAAAGA

OsCYP50 -----------------------------------------------------------------------...............................................................................

OsCYP46 -----------------------------------------------------------------------...............................................................................

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AAGGTTACACTGTTCCATTAGAGGTCATGCCTGCTGGGCAGTTTGAACCGTTATACAGAACTCCGCTAAGTATTCAGGTCAGTATTCCACACTGTTAGGTCTGTTCTGAAGGGGTATTTGGATCTAAATCATCAATCAAAATCCTTACGA

OsCYP50 .............................................................................-------------------------------------------------------------------------

OsCYP46 .............................................................................-------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TTTAGTTCAAACTGGAAGTGTATGTAAAAAGGATATTAAAGAAAGCCCACTCATCTGGACTACCCTGTAAATGCCAGTGAAATCTGAGAGTTACCGTCTTTCGTAAGTCATAACCCAGTTCCTTTGTTACTTGATCCAATACAGGATGGA

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------......

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------......

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GAATTGCCAGTCCTTCCGATGTCTGTATATGGTGCCGTTGCTATGGCCCATAGTGTGGATTCTGATGAATACTCGTCACCAAGCCAATTCTTCTTCTATCTGTATGACAAGAGAAATGTGAGTAAATGGATATATCTTTAGAACTAGACA

OsCYP50 .....................................................................................................................---------------------------------

OsCYP46 .....................................................................................................................---------------------------------

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TATTCGCTAGCACAGTATTTTAAATTCAGATTGCATAAGTGCATGTACCTCAACAGTGCACCCGTCTACCTCTTGTGTTGTGAACCATATTTCTGAATGCTTCTGCTTTTCTAGACCCATAGCGTGCCCTATGTATAAGAACTAATTGCG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TAAATATTTTAATTTGTGATTATTTTCCTTTATCTTGTGCAGTCTGGTTTAGGAGGAATATCTTTTGATGAAGGGCAATTCTCAGTATTCGGGTAAGTAGTGATTGCCATTACAGAACTGTGACCACTAGACAGCAAACTTGGTTTATTT

OsCYP50 ------------------------------------------....................................................--------------------------------------------------------

OsCYP46 ------------------------------------------....................................................--------------------------------------------------------

Intron VI

Intron VII

Exon VII

Exon VIII

Intron VII

Intron VIII

Exon VIII

Exon IX

Intron VIII

Intron IX

Exon IX

Exon X

Intron IX

Intron X

Exon X

Exon XI

Intron X

Intron XI

Page 295: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

273

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TGTGGATTAACAACAGAGAACTGTGTCGATCAAACATCTGCAGGTATACCACAGATGGAAGAGAAGTTCTGTCGCAGATTAAAACTGGAGATATAATTCGTTCTGCCAAGCTTGTACAAGGTAGAGAGCGCCTTGTACTGCCTCCAGAAG

OsCYP50 ---------------------------------------------.........................................................................................................

OsCYP46 ---------------------------------------------.........................................................................................................

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 CGCCGGCAGAGAGCTGATACAACGGCAAGCTTCGCAAACTGGAAACATTCTTTCATTGGTCAGGAGACTTAGCATATTTTATACCATAAATCATGTAAACCTGACTGAGCAGTTCATCAAATTTATATATAGAATCACTGCAAATGTTCA

OsCYP50 .................-------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 .................-------------------------------------------------------------------------------------------------------------------------------------

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TCAAATTTATATATAGAATCACTGCAAATTTGCACATTTAATCATTCTTTTTGTGCATTTGCTACTTCACAATAATCTGAATAGAGTGGAGTGAATCCTGGATACTAATCTTGTATTGTCAGGAAGCTGCCCTCCTCCCTCGGCGTGCAT

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 CTCTCGTTGAGCCACGCGAGAATGTCAGCGCGGACGCGCTCGATGTTCTCGTCAGGCTCCCCGAAGAGCATGGAGTGCATCATCCCGTCGTATATCTTGATGGTCTTGTCCTTGCTGGCGGCGGCGTCGTACAGCGCGCGGCTGATGTCC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGGTCGGTCACCTCGTCGGCGCTGCCGTGCACGACGAGGAACGGGACGGTGACTTCGCCGAGGCGGGCGCCGAGCTCGTCGGTGGCGCGCAGCAGCTCGACGACGGTGCCGAGCCTCGGCCGGCCGCTATAGCGCATGGGGTTGCGCGCG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GCGATGAGGCGCTTGGCCGGCACCTTGACGGACTTCTCGATGAGGTCGGCGGTGGGGACGATGGCGAGCGTGGGCGCGAAGCGGGCGACGAAGGTGAGGATCTGCGGCAGCGGCCATGGCGGGCGGATCCGGTCGGAGATCTTGCACATG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

4960 4970 4980 4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGCGCCACCAGCACGGCGCCGGCCCACTCCTCCGGCGGCGTGCGGAGGTGGATGAGGAGGCAGATGGCCCCGCCCATGGACTCCCCGAACAGGAAGCACGGCAGCCCGGCGTGCTCCTCCCGCCGCCGGACGGAGCGGAAGAAGGCGAGC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

5110 5120 5130 5140 5150 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 AGGTCGGCGATGGCGGAATCGAGGTCGGGGACGAACGCGCGGAGGCCGTGGGAGCGGCCATGGCCGGGGAGGTCGGCGGCGAAGCAGGCGAAGCCGGAGCGGGCGAGGAAGACGGCCGTGGACTGGAACGTCCAGCTGATGTCGTTGCCG

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

5260 5270 5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 TAGCCGTGCACCATGAACACGAGCGCCCGCGGCGCGCCGTCGCCACGGGGCCGCCACGCCCGCGTGAAGAGGCGGCGCCCGCCCGGCGGGGTGAAGTAGGACGACTCGCCATCCGCGCCGTGCGCCGCGTAGTACTCAGCCTCCGTCGCC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon XI

Exon XII

Page 296: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

274

5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

07g37830 GGCTGCTCGCCCCAGAAGTTCACATCCGGGGCCTCCTCATGCCGCTCGCCGTCCGGCATGGTGGGGAATCGGTTGGGCCGGTGCGTGGCGTGCGGATGGGGAACAGGTGGTGGTGGTGGTGGCCGGAGAGTTGGGGAGTCGTTGCGTAGC

OsCYP50 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP46 ------------------------------------------------------------------------------------------------------------------------------------------------------

5560 5570 5580 5590

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . .

07g37830 AGCAGGGGAGTTTACGATTCGTTTCGTTCGGCGTTTCGGTTTT

OsCYP50 -------------------------------------------

OsCYP46 -------------------------------------------

Page 297: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

275

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AGCCGGCACAATTCCCATGTAAAAGGGATATTGAGATAAGGGCGGAGTAATCGAGTATCGCGTAAAAGAAGAAATCTCCCGTCTCGTTCTCGTTCTCCTCCGCTCCTTGCGCCGCCGCCAAGACGAGCGGAGGGCCGGGCGGCGATCTCC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 ATCTGGCAAGCAGAGCAGCGGAGGGGAGGAGGGGATCCTGGTGCGTCCTCTTTCTGATCCATCTCTCTCTCTCTCTCTCTCTCTCTCTCCCACCCCACCGGGACCTGGAATTTGCTTGCGTTCGTGAATTTGATAGCCTTAAACCTCTCT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TATTTCAAGTAATAACAGTTTGTTTGTTTACCTAAAAGTTCGGGGGTTCAACCGAACCCCCATGCCCCAAGTTGGATCCGCCCCTGGTTTGAATTGCTGAAACATAATTTCGAGCTAGTTAAACGAAGAGACAACATGCCTGGAAATGTA

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AAAAAAAAGTATGCTGATTTGAATTTGATTGTTGGAACTGCCCTATAGGAAACTGGTAAATTTTAGAACAAAAAACCTTGCTTATAGTAAAATCGTGAATGGATGATATGCAAAGACATGGTGAGAAATATTCACTCGCTCATACTACAA

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CTACTTAAGAGGACCATATTTGCTCACTCTGGAATAGCTGCTGACCTGCTGTGACCATCATACACCCCCTCACCGCAATGCAGGTTCCATTTGAAGTAATCGGAGAATGGTATGTTGAGAATTAGATTAAAGCTTCCATTTTAAAATTGT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AATTGTTTGGGCTGTCAGCTATTTGCCATTATTCACAAGTGATAATTGTGACCCTACAACGAAGAGGCTAACAGTAGGTTTTAGAATTTCAGTAATGTTATATCTCAAAAGCCAACTATTACATTTGCAGGGAAGGATATTAGTGATTTT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CTACTGCTGTTTCGTCAGAAGGACAAGAACTGAAGAATTCAGTTAGCAACAGTATGGTGTTGCCTTCATCAAATACCAGGGCCACTTCTTCCATGGCTTACCCTGTTTCCCTGAGCAGCCTCCACCACCACCCCAACAACCACCATGCTT

OsCYP40 -----------------------------------------------------.................................................................................................

OsCYP28 -----------------------------------------------------.................................................................................................

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TTTTTCTTCCCTCGAAAACAAACCATGATAATACTCATAAACCTATTGAATCCTCTAGAATTTCTAGACGGTCTCTCATCTTCCTCCCTGTCCTCCCTTCTCTTCTATACGCTTCATCATCCCCTGCCTTAGATGACGCAAACATTCCAT

OsCYP40 ......................................................................................................................................................

OsCYP28 ......................................................................................................................................................

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CCACCTCTGCCATTGATACCACCATCACAGATCGGATCTTCATGGACTTCAGTGTCTGCCCTAGCTACTTTCGCTCTGACCGCACTTTAGGAGCTGAGCTTGCTACATGTCCTGATTCTGAACCTCTTGGTCGTGTAATTTTTGGTTTGT

OsCYP40 ......................................................................................................................................................

OsCYP28 ......................................................................................................................................................

C

Exon I

Exon I

Page 298: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

276

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 ATGGTCGACTCCTCCCCCTCACTACTGCCAACTTCAAAGCTGCTTGCACTTCTGCTGCATACCGGGGAACACTTGTCCACAAGCTCCTTCAGGGCCAGTTCTTCGTTGCTGGCCGCCAAGGTCCTCGGCGTGACAGGGGCGAGGTCCAAC

OsCYP40 ......................................................................................................................................................

OsCYP28 ......................................................................................................................................................

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CTCCCACCGGACTTGTGAGGAATGCTGAGACTATTGACCCTAAAGCATTTGAACTAAAGCATGCAAGGCCTGGCACCCTCTCATTGTGCCTTGGACAGAACGATGACGATGATGACATCAAGCTCAATCCTAATTATCACAATGTTGAAT

OsCYP40 ......................................................................................................................................................

OsCYP28 ......................................................................................................................................................

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TCTTGGTTACCACTGGACCAGGGCCCTGCCCAGAGCTTGATGGACAGAACATTGTCTTTGGAACTGTATTGGAAGGTTAGTTGCTTTCATTTTCTGAACTTTTACTAAATGGTTCTTGCACACTTTGTGTTAAATTCTGTCTTGCAAGAA

OsCYP40 ...........................................................................---------------------------------------------------------------------------

OsCYP28 ................................................................................----------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TTTCAATGTCTTTCCCTCGAACAAGTTGGGATTTGACCTGTGCGTAATCTACTAATGCAAGGTTGGCATGATTAAATTCATGCATAAATCTATTTTCTTTGGTTCAAACAGAGAAAAATAAAATGTATTTCAAACCGTTTCATTTTTTGT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CAAGTATAATTATATGACATCTTCCATTCTCCTTTTGGTATAGTTATATACACTTGCTAAGGTAAACATGTTTTCATTGAAGTAATCAACATTAGTACATAACAGAGAAGAAAAAAAATGCAAATTTTGCAGCTTTGCATGAGTATTAAC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AAAATAACAAACAGTTGTGTCCGTATTCTGGCTAGGACTTCATCCATGCAGAACATAAAGTTAGATGTTTTATTATTACCAATTTCTGCAAGTAATATAAGCTTGTAAAGAAATTGTCATTTTATTTCTTCCTTTTTGTTGTCTCAACAC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CAAGGATGGTTATCACACTAAGATTAATTCTTTTTTTTTTCTTCTCTGCACTTCACCACAGTATAACTCATCATCAATTCCTGCCATGGTTTGTTCTAACAATGTGCCACATTGTCAATAAACAACACCAGAGAGTGTATCATCCTCATA

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TAGTCAAATTTGGTGCATACTTCATTGTTTTTCCCTGTTCTGATTTATTAGATCTCTGGTGGTTATCAGAAGTAGATTGAACTAAACCAAGCAACTCATCAATGAGATTTATACTGCCACTGAACATGTCACCCCAAAAGAGAATCTACT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TCTAGCTAATTTAAGACTGACATGTCTGCTTTGACAGTTTGATTTGTAATTTAATAAACTTTACAACAACAACCAGGGCAGTAGTTAACTACAAAGCAGTTCATATTTAAGTTTTATGCATCAAGAACTTAAAAGCACGGCCCTTCTATC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

Intron I

Page 299: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

277

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CCCAAAAAAGCACATGCCCACGTTCTGCATCTGCATGCCCATGCGGCATGCTCTCATGCACATGCATGGGCAGACGCAACAAATGCATGCGCACATACAACTATATAACTTATATTCACATGACACTTGAGGCACACTAATGCTTGTCAT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TAGGACCCATTGCCACTTGAAGTGTAATAGTGTTACTCATTTGAACTGAACTAGCTACTTAGTCTCAGTTTCAGTATTTGATTATTACCAACAGTTTTTTCTTAAGCATCCATTTTTCTTCTTCTATAAGCAACTTTGATTGTCAAGTTC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TGCATTCACATGCACACATAGGCGACTAAAACAGACTTTCAAGCACTGAGTTAAACAAGTGTATTAATTGGATATATTCCAGTGGAATTGACATGAAGCTTCAATTTTGTACGAGTTGCTTTCTGTTGTCTTAATGGAAACTAGTATTGC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CACTGTATGATTAATGATGATATTGTTGATTCAGATTAACAGAAAGCGGCTAATTCGAAAGATTTTACATGATAATTTGTACATATGTAATTTGTAACTATTATATAGTTTTAATATATCGCAGTAGCAGTCTCTCCTGCTGTTTTCATC

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 GTCAAAAAAAAAAAAAACTGTTTTCTCCGCAATTCCTTTTTTTAACTATTTGGTCTTGCAACTTGTGTTTTTATCAGATTATTTCTGCACGATTGGCAGTCCATTCAATTCAAGGTTGAAATTTTTTACAGAAGAGCTAATGTGTTAATA

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 GTATAAATCAAGTGGATACTTCTAGCATAATAGAGAACTGTCTTGATTTCCTTGCCCAAAAAAAAAGAGGACCGAGTGGTTTTTAATCTATTTCTGATTAAGTCAGTGTATGAAAAAAAAAATCAGCTACCACTTATCTTTCTTTCATGA

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AGAACCCCCTTTTTCTTAACAAAGCATACTCTCCGTATAGCCATGGAAGTATATATTAATTACATAAAACAGAAAGACTGTATGACATTTTTTTTGTGAATATGTAAAGGTAGCCATTACTATCTTTTTATTAGCCTCATTTTTCTTGAG

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CAAATGAGAAAAAAGTATAAAATACAAAAAGTCAAATCATGTGGTGAACGATTATGTTCTCAATAGTGCTTTCATTAAAGTGTTTGGGACCATGTATTGTTGGGTAGCATTGCCATACTCCACTGATATGTGGTTGAGAATGGTGATGTG

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 GATGCACATTTAAGGCCGATAGTTTGATGCTGCTTCTTTTTTTCTCCAAGTGGCAGATTTATCACATGTGGATAATAGATATTAGGTTCATCTGTTTGGAATGCATATGTACAGTGAAAGATGTACTATGGCACCGACATCTTATGAAAT

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

Page 300: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

278

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 AATTTAGAGATCACATTGTCTTATGAACATATTGAATATGGTTAAAACTTGTGAATATCAGATTATCAGTTCAGTATAAATTAATTTACTTCTGGAGTTTATCTGTATTGAAATTTATTCCGTAAATTGTATCTGTTAACTGTAGTAGTG

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CTGCAGAAACTCTGCCTGAGGCAGTCCATATCTTTTCTCCTTTTACTACATTGTAGACTACCGTAGACCATATGATCCTGCCATTCTTAACATGCATGCAATTGAAGCAATTTGGCTATGATACTTACTAGATTGCCCAGTAAATATATG

OsCYP40 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CTAATTTTAGGAAAATAGTTGTTATGCATTAACAGTCCCCCGACTAAATTAGTCTAATCTTTTCGTAATGTTTATTTAATTTATTGTGCAGGAATGAATGTTATAACCAGCATTGCAACTATTCCTACCTATAAACCAGCTGAAAGGATC

OsCYP40 -------------------------------------------------------------------------------------------...........................................................

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 CGCTTCTTCAATGATTTTGCCCAGTTGATTGGTGATGAAAGAGCTCAAACTGCTCGAGCGTTGTGGGATCGCCCGCTAAAAACTGTTTATATCAGTGATTGCGGAGAGCTAAAAGTGACCAAACCATCACTTTCCCCTCCAAGTCTGCCA

OsCYP40 ......................................................................................................................................................

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g19610 TAAAAAACCACAGAGGCAATTTTGTGTACCTACACTTATTCTTCTCCCTCCAATGTCAACTGTATATATGCCATCTAGTATTAACTGACATCTGCTGTGTTTCTGGCCCAAAATGTGTACGACGGGTCTCTGATTCATCGAAGTAAATAT

OsCYP40 ...---------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP28 ------------------------------------------------------------------------------------------------------------------------------------------------------

4810 4820 4830 4840 4850 4860 4870 4880 4890

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . .

08g19610 ATTACAGTGCTGTGCAAAATTCTTGACCTGTCAGCTTTCATCTTGGATAACCGTTGAGACTATGATGCTAATGATTAGCTTCTCACAGAATTGACCTA

OsCYP40 --------------------------------------------------------------------------------------------------

OsCYP28 --------------------------------------------------------------------------------------------------

Exon II

Page 301: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

279

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TTTGAATCCCCCGTGTCACTGTGTCCGTCAGATCGGCCATTGGCGGCTAGAATCGAGGCGGAGAGTAGGGACTTGTTTTTCTGGAAACCCCCTATTATTAGTTTCGTAACACAAATAATTGCTCCTCGTCGCCGGAGCAGAAGGTCTCGA

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GGAGTCGAGACTTCTCTCCCCCAAATCCCCAGAACCCTAGCGGAGCTCCACCTCGAGATGGCGACGGCGAGCGATGCGCCGGCGAGCTCCACGATAACGACCGCCACGGACGACGCCGAGGTGGAGCGCGACCAGGGCAACGGCAATGGC

OsCYP73 ---------------------------------------------------------.............................................................................................

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GCCGTGTCAGCCGCACCCGCCGCCGTGGGGAAGGAGGCGGCGGCTGAGGAGGAGGAGATGATCGGCCCGGCTCCCGTGCCGCCGCGGCCGAGGAAGAAGCGCCCGCTCCAGTTCGAGCAGGCCTTCCTCGACGCCCTGCCCTCCGCGGCC

OsCYP73 ......................................................................................................................................................

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ATGTGAGTGTTCTCCTCGCCGTTTCAGGTTCGGATTTGGTAGGGGGTGCGTCGGCTGGGAGGCTGACGGCCGTGGCTTGGTTTTGCAGGTACGAGAAGAGCTATATGCATCGGGATGTCGTCACCCACGTCGCCGTCTCTCCTGCTGACT

OsCYP73 ...--------------------------------------------------------------------------------------.............................................................

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ACTTCATCACCGGGAGCGCAGATGGTAATCTCTCGCGCTCACGTCTCTGCATCGTACCGTATTCAGTGTGCGATACTAGTGGTTTGTGCCTTTGTGGTAGTTTGTTAGCTTGTGGCAGCATGTGTTAGATTTCGGATGGTATCTTGTGGA

OsCYP73 ........................------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 AATGTCAAGCCCTTCTACATAAGGGATAGTCCTTCACTGAACCATAATCACGGGCTTGATAGACTTGCGTAATAGTATTGGTTGAAAAACTTTTAGATCTATGGATTGATCAAATCCTGTGGTATGATTCAATAATAAGCTGATTCATTT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TCATGTAATGGGAGCTTAATTACCATCCTTTTCTCCTCTCTACCCAGGACATTTGAAATTTTGGAAGAAGAAACCAGCTGGGATCGAATTTGCTAAACATTTTCGATCTCATCTCAGTCCCATTGAAGGCCTAGCTGTGAGTGTTCAGAT

OsCYP73 -----------------------------------------------.................................................................................................------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TCTTATATTGACTTCCCTAATCCAGGGAAAACATTTGCATTCGCAATATATATTAGTCTATTTATCTTGCTAGTTGCTACTCTTAGTCACAGCTCCTGCCTATGGAACTATGAACAACCTCAAATTATAGCGTGATTCAGTAATGCAGGT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ----------------------------------------------------------------------------------------------------------------------------------------------........

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GAGTGTTGATGGCCTACTTTGCTGCACGATCTCCAGCGATTGGTCTGTCAAGATATATGACGTTGTGAATTATGACATGATGTTCATGATGCGTCTCCCATTCGTTCCGGGTGCAATTGAGTGGGTTTATCGACAAGGAGATGTTAAACC

OsCYP73 ------................................................................................................................................................

OsCYP58 ......................................................................................................................................................

D

Exon I

Exon IIIntron I

Intron II

Exon III Intron III

Exon I

Exon IV

Page 302: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

280

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 AAAACTCGCTGTTAGTGATCGTAATACACCTTTTGTTCACATATATGATACTCATTCTGGTTCAAACGATCCCATCATCTCCAAAGAGGTAATCTGTTGTTGCTTTCTGTGTGTCGATGTGTATTTCTTGTGAATTAAAGTAACTAAATG

OsCYP73 ........................................................................................--------------------------------------------------------------

OsCYP58 ........................................................................................--------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ATTCTTACTGCATGAGCTGCCTCTTTATGCAGATTCATGCTGGCCCAGTAAAGGTTATGAAATATAACCATGTTCACGATGTTGTGATATCTGCTGATGCCAAAGGACTCTTGGAATACTGGTCTCCGTCTACCCTCAAATTTCCAGAAG

OsCYP73 --------------------------------......................................................................................................................

OsCYP58 --------------------------------......................................................................................................................

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ACGCGTATGTTGTTTCTCTCTTGGAGTTATTTTCAACGTTTGTGTAGCTTGTGGTTTTGTCTTCCCAAAACATTGCACTGAACCACCAAGTACTTGAGCCATGATTACACCTACCATTTCCTTTTCTGTTAAGTCTGCAGCTGGAACAAT

OsCYP73 ....--------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ....--------------------------------------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 CCTAGGTGCTAATTAATCAACGAACCAGCTTTTTTTAAAAAAAGTTAGGTACTATTATGTTTGGTGAAGATGCACTTAACTTAAAATCTTTTCTGATTCACTTTTGTTTCTTATAATAACATATTATCCTACTTTAGTATTTATGGATTG

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TTTTTTCATTTCACCTGTCACTCTGGCAGTGTATAAGCTCTGGGTTGGTTCCTTTTGTAATGGCTATATTTATATGTGCTAACAGCTGTTCTGTCCCTCTTGGTGAATGCATCAATCCATCATCTTATCAATGCATATTGCTTTTGTTTT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TTGTGCAGGGTGAACTTTCGTTTAAAAACAGACACAAATCTATTTGAAATCGCAAAATGCAAGACTAGCGTGTCTGCTATTGAGGTACTTCTTCTATTTGATTCTCAAGTTATTTGCATTTGTTGCTTCATTATTGATAGAGCTACAGGA

OsCYP73 --------............................................................................------------------------------------------------------------------

OsCYP58 --------............................................................................------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TTACTCTGATAAACGAGCTTGTGTTGTCCAGATGAGCAATGACGGCACTCAATTTGTTGTTACATCCCCTGATCGTAGGATACGGGTATTTTGGTTCAAAACTGGGAAACTAAGACGTGTATATGATGAGTCCCTTGAGGTAAGAAATTC

OsCYP73 -------------------------------............................................................................................................-----------

OsCYP58 -------------------------------............................................................................................................-----------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 CATCTGTACAATGCATGGTACAGATAAATATGTTCTGTTATAATCCCCAACTGAATGCTGTCAATTATAGGTGGCACAAGATCTGCAGAAAAGTGATATCCCGATGTATCGTCTTGATGCTATTGATTTTGGGCGAAGAATGGCTGTTGA

OsCYP73 ----------------------------------------------------------------------................................................................................

OsCYP58 ----------------------------------------------------------------------................................................................................

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GAAGGAAATAGAAAAGACCGAAAATGTTCCACAGCCTAATGCTGTATTTGATGAGAGCAGCAATTTTCTTATTTATGCTACCCTTTTGGGCATAAAGGTATGCTATTTTTTTACTGCACATCTTTTCTTTTATGTAGTATGTGTTTGATA

OsCYP73 .................................................................................................-----------------------------------------------------

OsCYP58 .................................................................................................-----------------------------------------------------

Intron IV

Intron I

Exon V

Exon II

Intron VIntron II

Exon VI

Exon III

Intron VI

Intron III

Exon VII

Exon IV

Intron VII

Intron IV

Exon VIII

Exon V

Intron VIII

Intron V

Page 303: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

281

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TCATTATATGTACTTCAGTTATTTATATAATTATTTTTTATGTTCGGAATGATAAATGTTGCTCAAGAAAATATTTGTCCTTGTGGAATTCCATCTTATGGATCAGCTGCTAGTTAAACAGCATGTTTTGTATTAGCTTTCTAGCAGCTT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GTTTTGTATTCATTATGCTCCTATCTAGCTGTTGAGTTCATGTAAATATCTGGCATGTTGCTATTGTTGAACATATTTCTGTATGATTAATTCTGATTTCCCATAAATATGCAGATTATAAATTTGCACACAAATAAGGTTTCAAGAATC

OsCYP73 ------------------------------------------------------------------------------------------------------------------....................................

OsCYP58 ------------------------------------------------------------------------------------------------------------------....................................

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 CTGGGGAAGGTAGAAAACAATGAACGTTTTCTGAGGATTGCTCTATACCAAGGTGATAAAGGGAATAAGAAGGTTAGAAAAATTCCTTCAGTAGCTGCCAATGTCAATGACAGCAAGGAGCCTTTATCTGACCCAACGCTGCTATGCTGT

OsCYP73 ......................................................................................................................................................

OsCYP58 ......................................................................................................................................................

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GCCTTCAAGAAGCATCGAATATATCTCTTTAGGTACATCAATTCAATGATCTTTGGATAGGTCGTATTGGCTGATTCCGCATGCTGCTTCTGTAGACTCCTTTCTCTCCAGATGGTTTTTCTTAAATTTTAATATCCCGCTTCTCAATCC

OsCYP73 ................................----------------------------------------------------------------------------------------------------------------------

OsCYP58 ................................----------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TCTTTTTTCATTATACAGTCGTAGAGAACCTGAGGAGCCTGAAGACGCAACCAAGGGTAGGGATGTTTTCAATGAAAAACCCCCACCGGAAGAGCTTTTGGCTGTATCAGATTTAGGGAAGACTGCTACAACATCACTCCCTGATAATTT

OsCYP73 ------------------....................................................................................................................................

OsCYP58 ------------------....................................................................................................................................

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GGTATGTTTTCTCAATCATTTCTAAAAATGGTAATTTGCTACTATTGATTTTATGGAAATTTGATATCTTGGTGGGATAGTCTTTGAACATTTTTCCTTTTTAGGTCGCATTTATTTACATGAGTATTTCCTATTTCAGGTGATGCATAC

OsCYP73 ...------------------------------------------------------------------------------------------------------------------------------------------.........

OsCYP58 ...------------------------------------------------------------------------------------------------------------------------------------------.........

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TTCTATGGGTGATATTCACTTGAGATTATATCCAGAAGAGTGTCCAAAAACTGTGGAGAATTTCACTACCCATTGCCGGAATGGTTATTATGATAATCTCATATTTCATCGTGTGATTAAAGGCTTTATGATTCAGACTGGAGACCCTTT

OsCYP73 ......................................................................................................................................................

OsCYP58 ......................................................................................................................................................

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GGGGGATGGCACTGGTGGGCAATCAATCTGGGGAAGGGAGTTCGAAGATGAATTTCACAAAAGGTATATAAGTTGTATGCCTTTTCCTGTTTTTCTTTTCTCATTTGCAGAAAACAATGCAGTTTTTCATCTTATGTACCGTTTAGATGA

OsCYP73 ...............................................................---------------------------------------------------------------------------------------

OsCYP58 ...............................................................---------------------------------------------------------------------------------------

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 CAGATGTCTATGCAAGGTCCAGGAAAGATATCTGTATAGTCATGTAAATTTTGCATGCACTGTGCTTATTGTTGTTGAAGAGAACACAATCCATATGAATAATCCTATTTGAATATGCTTATAGTGACAACTGACAGCTATGGCGGCTAT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon IX

Exon VI

Intron IX

Intron VI

Exon X

Exon VII

Intron X

Intron VII

Exon XI

Exon VIII

Intron XI

Intron VIII

Page 304: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

282

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 CTTGCAGCTTGAGACATGATAGGCCTTTTACTCTTTCAATGGCCAATGCTGGACCAAATACCAATGGGTCCCAATTCTTTATCACAACTGTGGCAACTCCATGGCTAGACAACAAACACACAGTGTTTGGTAGAGTTGTGAAAGGGATGG

OsCYP73 -------...............................................................................................................................................

OsCYP58 -------...............................................................................................................................................

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ATGTTGTTCAGGTACCAGCCTTTTTGACCAACTTAGTGACTGTGTGTGAATTTTCATATCCTTTATTGTGCTTCCTAATATGTTTTGTTTTAAACTTAAAAGCAAATCGAGAAGGTCAAGACCGACAAGAATGACAAACCATATCAGGAT

OsCYP73 ...........-------------------------------------------------------------------------------------------................................................

OsCYP58 ...........-------------------------------------------------------------------------------------------................................................

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GTGAAGATCTTGAACGTTACAGTTCCAAAGACATAAGCTCAAACAATTGGTCAGTTTTTCTGCTCTTGATACCATAATCTAACCTCATAATTCATTTTGTTTTGGGGATTGTCTTGAACAAGTGACTTTGCTTGGTGTTTTCCTACAAAA

OsCYP73 ....................................------------------------------------------------------------------------------------------------------------------

OsCYP58 ....................................------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TACATACAATGCAAACTAATCCTTAACTGGCACAGATGTCTTGTGAACATTAATTTTTTTAAATTGTTCCCTTTTCTAAAGTTACCTACTACCTCCATCCACAAATATAAGCATTTCTAGCATTTGAAATTTGTACATTTCTGGAGTACT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ACTTTCCCAATCCAACCACCGCTGCATTTATTGCTCACTTAGTTGTATTTCTAGGCATGGTATTTTCCCTATCAAGTAGAGTCCCAGGGGCATCAAATTAATTTCACCTAAACCTTATTTTCTGTTAAAATCCTAGAAGTGATTATATTT

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GTGGATGGAAAGAATATAGTACATACATTAAGATAATACTGCCAGTTGCAACAACATTAAGAATATAGCCTGCTTTACTTATGTGGTTATCAAAGCTAATTTCATAATGGTTTGTTGGGTTAGACCTAAATACTTCTAAATTTACTTTAG

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

4960 4970 4980 4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GAGGTCATCTTTGCTAGACAACCTGTAGGAAAACCAAGCATCCAGTGACCAGTGGTGCTCTTTATTATTACCTTGTGTTATCCCCTGTTTGCCATGGGATTGTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTTTTTCATG

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

5110 5120 5130 5140 5150 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 TGGACTGTATGAAGAACGGTTCCATTTCTTTATCACCAGTTTCATGTTGACTGTATGGAGAACGGTTCCATTTCTTGTATCACCAGTGCTCTCATGTGGTCATTTCGTGTGCCTTCTGCAGGTTTGACATTGTACGCATGAGGTTCTTCC

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

5260 5270 5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 ACCCTTTGCAAGCCTGTGAAAGACAAATGTTCTGAACTTTATGTGCTGCTGTGGTGCATCGAGTTGGTCCTTCAAACCTCAACCCAGAGGCAGCACCATATTATTAGAAAGCACTGCCTTTGATGAGGTATGTGTTCCGAGTTTTAACTA

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon XII

Exon IX

Intron XII

Intron IX

Exon XIII

Exon X

Page 305: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

283

5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 GCTTTCCCATCCATAACCCAAGGGCAATGGGACTGTAACATTTTTGCTGTACACGGGATTGGTATTGCAATTTAACAATGGAAAAAATGTAACGAGCCAGTTAGATGAGGATACATGGACGATTTTTCCATGCATGGGTGTAAGGGCGTA

OsCYP73 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP58 ------------------------------------------------------------------------------------------------------------------------------------------------------

5560 5570 5580 5590

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44330 AGTTTTATTTTGACTAGCCACTGAATGCTGATACCAATTAGACTG

OsCYP73 ---------------------------------------------

OsCYP58 ---------------------------------------------

Page 306: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

284

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 AAGTGAAGAAGCTTGGGAAGGAAAGATTGATGGATCCAAGGTCAAAAGCCGACAGAATAGTCCGGCGTACGGCGATGATCGGCGCCGCCACCGCCGCCTACTTCCTCCTCACCGCCGATTACGGCCCCGACTACCCCAACCCGGTAGGTA

OsCYP20 -----------------------------..................................................................................................................-------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ACTAGACTAACTTCATTTTTTTCCCTGTAAAAAAATGTGAAATTGCTGCTCCACTGTAGCACAAGTCCAATACTACCAGTATGTTGGTGCACAGAATTTGTGAATTTTATGAAGCTATGAGCTTTTCTTTCTTGTAGCCGTTCATGTGGC

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GCTGATGTCTGACTGGTCAGGTTCAATACGAGTATCTACTGCATAATACTTCATACTATTGATTATTGAAGTACTCCCTCTAAGTCATTTTAGCATTTTTCATATTCATATTGATGTTAATGAATCTAGACATATAAATCTATCTAGATT

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 CATTAACATCAATATGAATGTGGAAAATGCTAGAATGACTTACATTGTGAAACAGAGGAAGTACTACATACTGAATAAGGAGAGATCTTAATTAGGCCTAGTGTTTTAGAAGTGTTTAAGATGCTGAACTGCTGACAGCTACATCAAAGA

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GCTTGTGTGTGTGTGTGTGTGGGGGGGGGGGGGGGGGCAGATTAGGAAGGCCATGGAAGCATCACCGCAGTATATCAAGCACCTCTCCATCTTCAAATATGGCCCAAGGAAGAACAACAAGAACCAAGAAAATGCAGAGCCGGAAGCCAC

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 CAAAGAGTAGTAGTTGGAATCTGCACTAGTCACTGTATGCATCCTATTGCTGTGTATGTTGTACAGTGGGCACTAAATCTGAATGTCGTCACTGTCTGCATCCCTATTGCTTTGTTAAGTACTGTAGTAGGAGACTCGATCTGTATTAGC

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ACTATCTAGAAATCTTCGCTTTTGTTTCTTCATTAACCTGCTATGCATGATCCAAGTGGTATCTATGTACTATATCTATCATGAATGAATAAACAGGTAGCCTTTTCACTTTACATTCTTTGAACCAAAAGACAAGGAGAGCAACAAGTT

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GAGTTCACTTGTTTTGTTTCACTTTCACAAGGAAAAGAAAAGAAAACAAAACTTCTCCTCTTCGGTTTCACTTTCACAAGAAAATAAGGAGCAATTCTTATATTTGGTGAGGGGCTTTCTGTAATTTATAGTGTATAAGAATTATGTAGA

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon I Intron I

E

Page 307: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

285

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GAAGCCCTCGTATTTGTGGCCTCCCCTCCTCCTCCGAAGAGAGAGAAGGGAATCTCTCCTCTTCTCTTCTCTTCTCGCGCCGCCGCCGTGTCCAGTGCCCAAGATGTGGGGCAGCGCCGACGGCGGCACGCCGGAGGTCACCCTGGAGAC

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 -------------------------------------------------------------------------------------------------------...............................................

OsCYP18-2 -------------------------------------------------------------------------------------------------------...............................................

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ATCCATGGGCGCCTTCACCATCGAGGTACCATTGGCTCGGCTCGGCTCGGCCGTCTCTCTCTTGAGCTATTCTTTTCGTCGGCATACACCGAGTTAAGTTCTTGCTCCTTGATTTGATTTGGTCGCTTCTCTCGTCGATCGACAGATGTA

OsCYP20 -------------------------------------------------------------------------------------------------------------------------------------------------.....

OsCYP19-3 .........................------------------------------------------------------------------------------------------------------------------------.....

OsCYP18-2 .........................------------------------------------------------------------------------------------------------------------------------.....

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 CTACAAGCACGCGCCCAAGACCTGCAGGAACTTCCTCGAGCTCTCGCGCCGCGGCTACTACGACAACGTCATCTTCCATCGCATCATCAAGGTTTCTGCCCACTCCTTGCTTGCTGCTTTGCTTAATAGGAGTATTAATCAATCCGGTCA

OsCYP20 ...........................................................................................-----------------------------------------------------------

OsCYP19-3 ...........................................................................................-----------------------------------------------------------

OsCYP18-2 ...........................................................................................-----------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GGTTTTCTTTACTGCTTTTATCTTCTTGCGGTTTAGGATTTCATCGTGCAAGGTGGGGATCCTACTGGCACCGGAAGAGGCGGCGAATCCATCTACGGGTCAGCATATTTCTTGCTTTCCTCCTCTTTCAATTTGTAAGATTGCATTGCA

OsCYP20 ------------------------------------..............................................................----------------------------------------------------

OsCYP19-3 ------------------------------------..................................................................................................----------------

OsCYP18-2 ------------------------------------..............................................................----------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ACTGTAACACTCGATTTTGAACTGTATTTTGAGCTCACATCATCAACCCATGATGGATAGCACTGTATTTCTACCTGTTAAAAACATAATAGGGAATTAGTACCTATTGTGTAGCAGCATTTGGTAGCGATTGTACCATTGTTGCTGGGC

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 TCCTGTAGCATCTTGTTTGTAAAAGTAGCTAAATTTATTATTCCTTGTTATTTTCCACGCCACGCCGTTATTGCATTCTATTTGGGGCTCTGTTTGAATCCTTACAAATGTTTGTGTTCTTGCTGTGTTTTTACAGAGCAAAGTTCGAGG

OsCYP20 ----------------------------------------------------------------------------------------------------------------------------------------..............

OsCYP19-3 ----------------------------------------------------------------------------------------------------------------------------------------..............

OsCYP18-2 ----------------------------------------------------------------------------------------------------------------------------------------..............

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ATGAGATTAGGCCAGAACTGAAGCACACCGGCGCTGGAATTCTGTCGATGGCCAACGCTGGTCCAAATACAAATGGAAGCCAGTTCTTTATTACTCTTGCGCCTTGTCAGTCACTTGATGGTGAGTCTACCGTACTGTCTCATTGTTGCT

OsCYP20 ........................................................................................................................------------------------------

OsCYP19-3 ........................................................................................................................------------------------------

OsCYP18-2 ........................................................................................................................------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 CCAGTTTTACATTATGCTTTCGCTTGTTTGCTGTCTATGAATGTTCTTTGCATTGCCCTGGAAAGCTGAAGTTCACTCTGTAGGAGTTAATCAACAATTTCTCAGATTGCAACCTAAAAACTTTACTATCAAATCACTGCAAGTTTTTTT

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon I

Exon I

Intron I

Intron I

Exon II

Exon II

Exon II

Intron II

Intron II

Intron II

Exon IIIExon III

Exon III

Intron III

Intron III

Intron III

Exon IV

Exon IV

Exon IV

Intron IVIntron IV

Intron IV

Page 308: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

286

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 TTAATATTAGATTTGGAATAATTACAAGAAAAACTTGGGACTAGCTTTTGAAGAGCCTGTTGTAGAGTGACTTTGAGTCTAGTGCAATCACTAGGAGCGTGATTCTTGGAGACTTCTGGTGGATTTCTGGGACTCCTGTTCTTCTGTATT

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GTGATGTTGGTACATTGGACTGCATTGTTGTTAATGTGTAATGCAATTGTGAAGGACTTCTGCTAGCACCATCACTGTTTTTTCTTCCTAATTGCCAACCCTGGAAGATTTTGCCCCTCAGGATGTCACTGCTTACATCTGTTTTTGACA

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 TTGTATTTCGCACTCTGGATTGCTTTTACAAATATGTTCTTTTCGAAATTTCCACATTGAAAGTCAGGTACATTTTCATGCTATTAAGGTTATATGGTTTTCCTATTCCAGGAAAGCATACAATTTTTGGGAGAGTATCAAAAGGAATGG

OsCYP20 ---------------------------------------------------------------------------------------------------------------.......................................

OsCYP19-3 ---------------------------------------------------------------------------------------------------------------.......................................

OsCYP18-2 ---------------------------------------------------------------------------------------------------------------.......................................

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 AAATTGTCAAGCGCCTTGGAAGTGTCCAGACAGACAAAAGTGATAGGTAACACCAAAACTATATGCCATGGTTGTACATATCACATAATAGATATAGCATCCGATTTGTCCTGAGGGAGAGTTGAGTGAGTGCAACGCCTCGCTATTACC

OsCYP20 ..............................................--------------------------------------------------------------------------------------------------------

OsCYP19-3 ..............................................--------------------------------------------------------------------------------------------------------

OsCYP18-2 ..............................................--------------------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 ATGCATATGCAATGGCAAAGTAGGTAGCAGGGTAGCAGCAGGAGGGAAATATTTGGGATGATGAGTTGCAGCGTTAGTAGATTTGGCTAGGATCTACTCCCTTCGTTCCACATTATAAGATGTTTTGGCCTCTCCATTCGTTGGCTAGAT

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 TCACTAACATCCATAAGCAGTTTAGCACATACATGGATCCATGCATTAATCTATCCAAAACTCAAATCGTCTTATAATTTTAACTTATAATGTGAAACGGAGAAAGTATTCATCATGGTAGAGAACAATGAGAGCTGCGGGTGAGTGAGG

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GCGAATGGTGGGAGGGAGATAACCAAATCATGTGTACAATCCATGTATGGTGCCTGTAAAACTGAAAGGGAAAATGATCGATATGCATTTTTCCTGTCGAATTTATTCAGACTTGTTATCTTTGTTGATTCAGGCCCATCCATGAAGTGA

OsCYP20 -------------------------------------------------------------------------------------------------------------------------------------.................

OsCYP19-3 -------------------------------------------------------------------------------------------------------------------------------------.................

OsCYP18-2 -------------------------------------------------------------------------------------------------------------------------------------.................

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 AAATCCTGCGGACTGTGGTCAAAGATTGAGGCACAGCGGGTCTACTCGGTGTCACTCATGACTTCTGGTATTTGGAGTTGTAGCTGCTGTCAGTTTCAGGAATTGTTTCCTGCTTGTTCCGTGCTTATGCAGTGGTGTATCGTTTCGGAT

OsCYP20 .............................-------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 .............................-------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 .............................-------------------------------------------------------------------------------------------------------------------------

Exon V

Exon V

Exon V

Intron VIntron V

Intron V

Exon VIExon VI

Exon VI

Page 309: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

287

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

08g44520 GGGCTAGTTTAGTTATTAACAACTCATGAATCGTGATCCGTCTTAATTATTCTCACCTGAACGAGTAGTGTTCAGTGATTATCAGTGGAAATAACTTTCGAAATATATGAAGTCATTTTGAGCGCATGATGTAATTCAGCTGATATTCAG

OsCYP20 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP19-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsCYP18-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

3760 3770 3780 3790 3800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . .

08g44520 CATGTTACATGCTGTACCAACTCAGGGATTTTTTTTTTATGTTCAAAACATAAA

OsCYP20 ------------------------------------------------------

OsCYP19-3 ------------------------------------------------------

OsCYP18-2 ------------------------------------------------------

Page 310: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

288

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ATTCCTAAAACGGAGCCGAGGACGCGAGGCGAGAGCCGTATATCCGCTTACGTCACCTCGCTGCTTGGCCTTGTTTCGCCAAGCCGCCCCCAGACCCAGACAAGTCGCAGCCATGGCGATCCCCCGCATCTCGCCGCGCAAAACCCTGCC

OsPDIL2-2 ----------------------------------------------------------------------------------------------------------------......................................

OsPDIL2-2a ----------------------------------------------------------------------------------------------------------------......................................

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 CCTCTTCGCCGCCCTGGCCCTGGCCTTGGCCTGGGCCTTCGCCGCCCCGGCGTTCGCCGACGGCGACGACGTCGTCGCCCTCACGGAGTCCACCTTCGAGAAGGAGGTCGGCCAGGACCGCGGCGCCCTCGTCGAGTTCTACGCGCCCTG

OsPDIL2-2 ......................................................................................................................................................

OsPDIL2-2a ......................................................................................................................................................

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 GTTCGTTCTCGTCCCCTTTGTCTCGCCAGATCCCTGCGTAATTCGGCTGGATCGGGTCGGGTCGGATCGGATCCGTGTGTGGGTCGTGAATAGTGATGCGGGATGCGAGGTCTGGGGATCTCTACGTTTTTGCGGGGTTTAGCGGACTTT

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 GACTCTTAGATTTTTTCTTCTCTCTCTCTATATATATTTCTCATAATTTGCACTTATCTTATGAAATTGATTGGATAGTTATAAACTTGCTGCCTTACTGGAAAGAATCATCCATACGAATTCGATCCTTTTTGTCTATCTGGATTTAGA

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TTGTCAGCTGTAAATTTGTTTCGACTTGTAGTATTTTAAATCAGGTATTGATGGGTGGAAATTTAATACTGTTGTTGGTTACAAAAATTAGAGTATTTCTATAAAAGCAGGGCGCATTCTAAGCCTTTTATCTAAAAAAACAAAAATTAG

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 AGTACACATGGCAAATTTTTTGTTAGGGTTTAAGCAGGAGGTTTAAATGTGCCTTGTAGCTTAGTTACTTGTTGTGCAGTCTACTTGTGCTCTACTTCTACTAGTGACGTAAATCCAATTTGGCATTTCATTTTTTAATTAATACCTGAC

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TCTGTTTATGATATCGCAGTTTAGGTTTTGTAAAATTCCGGCTAATTTTGCACTTGCCTCTTGATGGAAATAATAGAATACCATAACTTTGTAATTATGCTACTATCTATTAAATGGATTCACAAAAGAAGCAGGCCAAAATTATATTTT

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TCCTATTTCATGACTGCTAAGGGGTGCGATTCGGGATATTTATACTGTGTTAGAAACAAAACACTGCTGTAAATACCTAGTAACTTGTATCGATTGATTTTTGCTGAATCCTGTAAATGCAGCAAGTTTTAGTTCATTATATCTTGAGGG

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 AGTCTTGTGAGATGTTGAATGCGATTATATGAATATAACTGATCTGGAGATATTCATAGAGAAGCTTCTATAGTTTGCTTATCACAGTGCTCGCGTGGCCATATTTGCTCCTGTTGTTGTGCCTTCTCAGATGTATTACTAGAAAAACCA

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon I

Exon I

Intron I

Intron I

F

Page 311: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

289

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TGCTTAAATATTTGTGCATCAGTTCAGCATTTCAAAGATATCTAGTGTTACTCATCGGTCTATCTATCTGGTTAGGTGTGGTCACTGCAAGAAGCTTGCCCCTGAGTATGAAAAGCTTGGTGCAAGTTTCAAGAAAGCCAAATCTGTCTT

OsPDIL2-2 ---------------------------------------------------------------------------...........................................................................

OsPDIL2-2a ---------------------------------------------------------------------------...........................................................................

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TATTGCAAAGGTATGTTCTCAAGTTCAATACCTGCTAATTATTTGGGCATTGCTTGAAAATATTTTCTCATCTCCATCCTGCTACTCAGAGGTGGTCAGAAAATGGTTAGAACATGCATATTCATGAAATGTGTTGCCATCCTCATTTTG

OsPDIL2-2 ..........--------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ..........--------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ATTTGGTTTGATAAAATTAAGGATTCTCACTTCAACTCTATTTCTCGCTTTAGGTTGATTGCGATGAGCACAAGAGTGTGTGCAGCAAGTATGGAGTTTCTGGGTACCCAACAATTCAATGGTTCCCCAAAGGATCCCTGGAGCCCAAAA

OsPDIL2-2 -----------------------------------------------------.................................................................................................

OsPDIL2-2a -----------------------------------------------------.................................................................................................

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 AGTGAGGCTGCATAACTTTTGTTCAAATACTTTTGAACATCTACACCAGACAAAATTTTCATGATTTATATCACTACAACCATGTAGGTATGAAGGACAACGCAGTGCAGAGGCCCTTGCTGAATTTGTTAACACTGAAGGAGGTAACAC

OsPDIL2-2 ...--------------------------------------------------------------------------------------......................................................-------

OsPDIL2-2a ...--------------------------------------------------------------------------------------......................................................-------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TTCAAACTTATAATAATAGAGTTAGACGGTTAGTAGCTGGTATGGTGCCATGGGCTGGGAGTTCTGGATATCTCATATTTCCTTGAAAATTCTGTTTGGTGTGCAAGTCTTAGTTTCCACAAACAGCTTCTTGAGTTAATTCATTTTTGT

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ATTTATCTCTTCACTCGGTTACAACAGCATATAATCATGAATTTTCCTGATTTCAGGCACTAATGTAAAGCTGGCAACCATTCCTTCAAGTGTTGTAGTGCTTGGCCCAGACAACTTTGACTCAATTGTTCTTGATGAAAACAAAGACAT

OsPDIL2-2 --------------------------------------------------------..............................................................................................

OsPDIL2-2a --------------------------------------------------------..............................................................................................

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TCTTGTGGAGTTCTATGCGCCATGGTATGCTTTTGTAAAGTTGTCTTACTTTTTTCCTCCATAATCTTGACACAATTTTTGCATGATTTTTCATGAATGAATTTTGACTGGATGCTAATTTTGATCCATAGGTGTGGCCACTGCAAGCAT

OsPDIL2-2 ........................-----------------------------------------------------------------------------------------------------------...................

OsPDIL2-2a ........................-----------------------------------------------------------------------------------------------------------...................

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 CTTGCTCCGGTTAGTGGATAACTCTACCCAAAGTTTGTTCTACATGTTATGTTTACTTTTGAAAGTTTCAGTTGTTCTCGACGTGCCAACTAATATTCTTGTTATTATTTTAGATATATGAGAAGCTGGCTTCTGTTTATAAGTTGGACG

OsPDIL2-2 .........--------------------------------------------------------------------------------------------------------.....................................

OsPDIL2-2a .........--------------------------------------------------------------------------------------------------------.....................................

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ATGGAGTTGTAATTGCTAACCTTGATGCTGACAAACACAAAGACTTGGCCGAAAAGTATGTTCTGACTTATCCGTAATGTTATCATCTGCGTTCTGTTTTTCCTATTGCTGTTAATCTTGTGCCCTGAGATGCTACAGTTTTCCCATGGA

OsPDIL2-2 .......................................................-----------------------------------------------------------------------------------------------

OsPDIL2-2a .......................................................-----------------------------------------------------------------------------------------------

Exon II

Exon II

Intron II

Intron II

Exon III

Exon III

Intron III

Intron III

Exon IV

Exon IV

Intron IV

Intron IV

Exon V

Exon V

Intron V

Intron V

Exon VI

Exon VI

Intron VI

Intron VI

Page 312: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

290

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 CACAAAACAACTCATGTTATGGGCATGCTTCCAGCACTTTAAACTCATGTCTTGTTCTATATTTTGATTTCATGATGCACTACATAAGTTTTGACTTGCTTTATGACTTTTAGATATGGAGTTTCTGGCTATCCTACATTGAAGTTCTTC

OsPDIL2-2 -----------------------------------------------------------------------------------------------------------------.....................................

OsPDIL2-2a -----------------------------------------------------------------------------------------------------------------.....................................

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 CCAAAGGGAAACAAAGCTGGTGAAGATTACGATGGCGGCAGGGAGTTGGATGACTTTGTCAAGTTCATTAATGAGAAGTGTGGTACCAGCCGTGATACTAAGGGCCAACTTACTTCAGAGGTTGGTTGAATGCATATAAAACTTCTTTGC

OsPDIL2-2 ........................................................................................................................------------------------------

OsPDIL2-2a ........................................................................................................................------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ATGGGTGAGCTCATGCAAAAGACTACCTGTTCTGACTATACATTGTTTATTGTTGTGGTAGGCGGGGCGCATAGCAAGTTTGGATGCCCTCGCAAAGGAGTTCCTTGGTGCTGCCAATGACAAGCGGAAGGAAATCCTCTCCAATATGGA

OsPDIL2-2 -------------------------------------------------------------.........................................................................................

OsPDIL2-2a -------------------------------------------------------------.........................................................................................

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 AGAGGAGGTTGTGAAGCTCAGTGGTTCTGCTGCAAAGTAAACTCTAGTCTAAGTTGCATTTATTATTTTTGCAATGACGTTATCTGTACATGCAAGTTGAACCTTGGCATTTACATATTTAAATCAGGCATGGAAAGGTCTACATTGCCA

OsPDIL2-2 ....................................-------------------------------------------------------------------------------------------.......................

OsPDIL2-2a ........................................--------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 TTGCAAAGAAAATCCTGGACAAAGGTCACGACTATACCAAGAAGGAAACAGAGAGGCTTGAACGCATGTTGGAGAAGGTGGGAAACCGTGATCGCCAATCCAAACTTTACTATCACTTGTCATCTTACATAATGAACGACTTGTACTTAT

OsPDIL2-2 .............................................................................-------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 ACAATACTTTTTTATTTTTTTTGCTTCCTGCAGTCCATCAGCCCATCAAAGGCCGATGAATTCATCATCAAGAAGAACGTCCTTTCAACCTTCTCTTCCTAAGGCGATGTCAAACTCCATTCTTATCTTTGGGATATAGGTATAAGGGAA

OsPDIL2-2 ---------------------------------.....................................................................------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os01g23740 AATGACAGAAAGATTAGGAATGTATTCATGAGAGGCCGTTGGCGGTAGAACTAATTTTGTGGGTTTTCCCTTAAGCATACATGTATCCTATTGCCTGGTGCGGATGTTTTAATTCTTTGCTCATGGTTACATGGATTCAGTTTGTAGTAA

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------------------------

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . .

Os01g23740 AAAAATAGGGGTTTACTGTCAGGTGGAGAGAAAGATGTTAACCTTGATACATGTTACGACATTGAATTTCAGTCTGATAATAAAGTACCCTCATGGGTCTGAATCGCTCAAAGCTGAATGCACCAAATGGTG

OsPDIL2-2 ------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-2a ------------------------------------------------------------------------------------------------------------------------------------

Exon VII

Exon VII

Intron VII

Intron VII

Exon VIII

Exon VIII

Intron VIII Exon IV

Intron IV

Exon X

Page 313: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

291

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 AGTTTTAAAATGGAAAGCTTGCATCAGGCCACGTGGCGTTGACAAAGAACCAATCCCAATGTGGCCACGAGCCCCGGCCACGCCGCCGCCGCCGCCATGGCCATCAAAACCTAGTGCCGCCTCGCGCAGCGCGCTGCGTCGTTTGGATCT

OsPDIL1-3 ----------------------------------------------------------............................................................................................

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CGACGACGGCCGGCGCCAAGGCACGGAGGGAGAAGAAAACCACGCGCCTCTTCTGTGTTCTCCGGCGATGGCGAGCTCCACGGCATTTGCAGCGGCATTTGCGCTGCTGCTGCTAGCGTCGTCGGCGGCGGCGGAGGGGGAGGCGGTGCT

OsPDIL1-3 ......................................................................................................................................................

OsPDIL1-3a -------------------------------------------------------------------...................................................................................

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GACGCTGGACGCCGGCAACTTCACGGAGGTGGTGGGGGCGCACGACTTCATCGTCGTCGAGTTCTACGCCCCATGGTACGTACATTGTACAGGCAAACCCCATTCCTCGCCGCCGGCTCGGCGCCATGGCGCCTTGCTGATTTTGACCTT

OsPDIL1-3 .............................................................................-------------------------------------------------------------------------

OsPDIL1-3a .............................................................................-------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GAGCTCAGCTGACCAAATCCTCTTCGCCGCCGCCGCAGGTGTGGCCACTGCAACCAGCTTGCTCCGGAGTACGAGGCGGCCGCCGCCGCCCTGCGCTCGCACGACCCGCCGGTCGTCCTCGCCAAGGTCGACGCCAGCGCCGACCTGAAC

OsPDIL1-3 ----------------------------------------..............................................................................................................

OsPDIL1-3a ----------------------------------------..............................................................................................................

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CGGGGCCTCGCCGGCGAGCACGGCGTGCAGGGCTACCCCACCATCAGGATCCTCCGGGACCGCGGCGCCAGGTCGCACAACTACGCCGGGCCCCGGGACGCCGCCGGCATCGTCGCCTACCTCAAGAGGCAGGCCGGCCCGGCCTCCGTC

OsPDIL1-3 ......................................................................................................................................................

OsPDIL1-3a ......................................................................................................................................................

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GAGATCGCTGCCTCCGCCTCGCCGCCAGCGGCCGACTCCATCGCCAACGACGGCGTGGTCGTCGTGAGTTTGACCTCCTCTTCTCTCTGCATCAGCTGTTTATGCTTATACTTACAAGCTAAAGGCTCTCATTGGATGGCCTAAATAGTC

OsPDIL1-3 .................................................................-------------------------------------------------------------------------------------

OsPDIL1-3a .................................................................-------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 AAAGAATAAGTCAAATTTTAAATTTTCAAACTTAAATTTAAGATTGATTTTAAGATATTTTTAACGTAATTTCTTTTTTAATATTGGCTTTTAAGTCATCAAGAACATATATATATATATGAAAGTTTTATCTATAAATTTATTTTTATC

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CCCTAATAAGCTGTTTTGGCTTATTAGGGAAAGAGCCAAACGATGGGAGACTAAAATTTAATTTTACATTTGAATTTTTGGTTTTTTATTATAAATAGCATTTACTTTTTTAAGTACATTTGATTTTTTGTTTTTTAATTATAAATAGCA

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TTTACTTTTTTATATGTATATATAAAAGTTTTACTCACAAATAATATTTTTATTTACAAATAAAGTGATTCGGATAAACATACAAATAAGCGAAACAATGACCCGATGCATCAGTCAAATACTCTTGCTGATGCAGGTCGGAGTTTTCCC

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------............

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------............

GExon I

Exon I

Intron I

Intron I

Exon II

Exon II

Intron II

Intron II

Exon III

Exon III

Page 314: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

292

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CGAACTTAGCGGCAGCGAGTTCGAGAGTTTCATGGCGGTGGCGGAGAAGATGAGGGCCGACTACGATTTCCGGCACACGACGGACGCCGGCGTCCTCCCACGGGGTGATCGGACGGTGAGGGGGCCTCTCGTCCGCCTCTTCAAGCCCTT

OsPDIL1-3 ......................................................................................................................................................

OsPDIL1-3a ......................................................................................................................................................

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CGACGAGCTCTTCGTTGACTCGCAGGTACACTAGCTGAAAATTAATGCTACAGAGATACTCTGCTCTGTTTTGATCCCTCCAGGGGAGGGGTATCTCTGTATTCTTGTTTGCTTAAAATCATCCAAGTAGTTATGATTCATGAAAATTTC

OsPDIL1-3 .........................-----------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a .........................-----------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TGTAAAAAGTTGACAGCGTTCGTACAAATACATATACCACCTCTAAAAAAATGTAAGATCCAAACTCAACTTACACATTGATATATAAAAAACATAAATTCGGTATATGAATAATAGGGTAGTGGTAGTGTCCATACCCGAATTTATCTT

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TTTTTTTCAAGGTGCATGTCAAATTTAAACTTAATTTCTGGTGAATCGATAAATATCATTATACTTTATATTGCCAATTTTTTCAAAAAAATTTACAGCTATTTACAATAAATTTGGAACAAAAATATACACGAGGGGATATGAATATCC

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TCCAAGGGATTAGCTAGTAGTAGCTCACATTTTGGATAAGAAATGGACAGAAATTTGGATTGCTTCTTGTTTTTATTTTTCAGGATTTTGATAGAGATGCGTTGGAGAAGTTTATCGAGTCTTCTGGTTTCCCTACAGTGGTTACCTTTG

OsPDIL1-3 -----------------------------------------------------------------------------------...................................................................

OsPDIL1-3a -----------------------------------------------------------------------------------...................................................................

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 ACACTAGTCCGGCAAACCAGAAATACCTTCTGAAATACTTCGACAATGCCGGCACCAAAGTAAGGACAGACAATTGGTTGACTTCTCACTCTGTTTGCCTACACTGGACTGTTTAGCTTGTTGTTTAGGCCATGATTGCCTCTTATCATG

OsPDIL1-3 ............................................................------------------------------------------------------------------------------------------

OsPDIL1-3a ............................................................------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TGCACACGATTTTCACTGTCTCTCATGTTTTATTTCAATGTGCTGCTGGAATCCATAATTGAGAATGCAACTCTTGTCTCACTTGGTCTGATCATCTGTTCTTTCTGAACCTGATTTTGAGCGTGCAGGCGATGCTTTTCCTGAGCTTCA

OsPDIL1-3 ---------------------------------------------------------------------------------------------------------------------------------.....................

OsPDIL1-3a ---------------------------------------------------------------------------------------------------------------------------------.....................

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GTGATGACAGAGCAGAGGAATTCAGAACTCAGTTCCATGAAGCTGCAAATCAATACAGCGCAAACAACATAAGCTTTCTGATTGGTGATGTCACTGCCTCTCAGGGTGCTTTCCAGGTAATCTTTTGCCTTCTTTTTTCCATAACAATCT

OsPDIL1-3 ....................................................................................................................----------------------------------

OsPDIL1-3a ....................................................................................................................----------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TTATTAGTACATTGCTTTGCCCCAACATTTCGTATAAAAACAATGTCCAAGAGTTGAAAATGCCTGCTGTCTGACCATTTTTGAATGCACAATGTTCCAGTATTTTGGGCTTAAAGAGAGTGAAGTGCCCCTCGTTTTCATACTAGCATC

OsPDIL1-3 ----------------------------------------------------------------------------------------------------..................................................

OsPDIL1-3a ----------------------------------------------------------------------------------------------------..................................................

Intron III

Intron III

Exon IV

Exon IV

Intron IV

Intron IV

Exon V

Exon V

Intron V

Intron V

Exon VI

Exon VI

Page 315: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

293

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GAAGTCGAAGTATATCAAACCAACTGTGGAGCCTGATCAGATCTTGCCCTACCTGAAGGAATTTACAGTAAGCCAATTTCTGAACTGACGCTATTATCCTCTTCCTCGTTTACTAATTCCCTGATATATATTCTGTGGGTTCTTTAAGTC

OsPDIL1-3 ...................................................................-----------------------------------------------------------------------------------

OsPDIL1-3a ...................................................................-----------------------------------------------------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GCTTGCGTGATATTTAGTCTCACTATTTTATACTAGGGACTATGAAGGTTACTTATTATTAGTACTACCTCTTTTTTTAATTTCTGATGCTGTTAAATTTTTGGGATAAGTTTGACCATCGTCTTATTCAAAAAATTTATGTAATTATTA

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TTTATTTTTATTATGACTTGATTTATCATCAAATGTTCTTTATGCATGATTTAAATGTTTTCATATTTGCATAAAAAAATTTAAATAAAACGAATGGTCAAACATTGATAAAAGGTTAATTACGTCATACATTAAAAACCGGAGAAAGTT

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TCGCTACGTGCTTAGTCAGTTTGCCTTGATTTTCTTTATGCAGGAAGGAACATTGGCACCCCATGTTAAATCAGAACCCATTCCGGAGGTTAACGATCAGCCTGTTAAGACCGTTGTTGCTGACAATCTTCGAGAGGTGGTTTTCAACTC

OsPDIL1-3 -------------------------------------------...........................................................................................................

OsPDIL1-3a -------------------------------------------...........................................................................................................

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 CGGCAAAAACGGTATGTTCTTGGCTACTTGCTTGAAGAACTTGTATTAATTACCACTCGACCTGTTACAGAATGCAAGATGTTTTGGTTTTTGTTACAAGCAATTTTTTTTCAAGTTTAACCGAGTACATAGAAAATGTAGCAACATTTA

OsPDIL1-3 ...........-------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ...........-------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TAACACCACATTAATTTCATTAAATCTAGCGTTGAATATATTTTTGTAATATATTTTTTTAGTGCTGAAAATGATGTTACGTTTTTCTTAAACCTGGTCAAACTTTGACTTGGATAAAATCAAAACACCTTATATTAAAGTGGAGGAGGT

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 AGATATTTGTTTAAGTTATGCCCTGCATGCCTGATGCCTGCTTCGTCGTCAACATCTTAACCATTTTGTTAATTTGTTTGCTCAAGCTGTCAAAACATAAGTTCGGTCTCTGTTTTTTTTTTTTCAAATTCCTTTTGCAGTTCTGCTCGA

OsPDIL1-3 --------------------------------------------------------------------------------------------------------------------------------------------..........

OsPDIL1-3a --------------------------------------------------------------------------------------------------------------------------------------------..........

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GTTCTATGCTCCATGGTGTGGACATTGTCAGAAGCTGGCCCCGATCTTGGAAGAGGTTGCAGTTTCATTGAAAGATGATGAAGACGTCGTCATAGCAAAGATGGTAATCTACCCTACCTATGAGCTCTCTCCATTGCTTGGTCCATGCTG

OsPDIL1-3 .......................................................................................................-----------------------------------------------

OsPDIL1-3a .......................................................................................................-----------------------------------------------

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 GCCTTGTCAAAGATATGATTGAAAAATGCCTTCATAGCATGCATCCATAAACCATCTGATCTATTTATTTCTTAAAAAAACAAAACAAAACAATCAGACTGATTCATTTTATTTTTTTTAGAAAAAAAGCAACCATCAAATTCACATGTC

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

Intron VI

Intron VI

Exon VII

Exon VII

Intron VII

Intron VII

Exon VIII

Exon VIII

Intron VIII

Intron VIII

Page 316: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

294

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 ATGCCTGGGGAAAAAAAAGACTCAAGTTTGACATTTTTTTTGCCTCAAATTCAACAAACCAGATTATTATCAGAACACGCGCGTTTCTCACCGTTCACCTCTTGACCAATTCGTTTGCCCTGAATTGCAGGATGGTACTGCCAACGATGT

OsPDIL1-3 ----------------------------------------------------------------------------------------------------------------------------------....................

OsPDIL1-3a ----------------------------------------------------------------------------------------------------------------------------------....................

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 ACCGTCAGATTTCGCGGTGGAGGGGTACCCAAGCATGTACTTCTACTCGTCTGGGGGGAACCTCCTGCCCTACGACGGGAGGACAGCCGAGGAGATCATCGATTTCATCACCAAGAACAAGGGCTCCAGGCCTGGGGAAGCAACCACGAC

OsPDIL1-3 ......................................................................................................................................................

OsPDIL1-3a ......................................................................................................................................................

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TGAATCTGTCAAGGATGAACTGTGATGGCCACTTGGTCAGTGATTCAGCGACTCCAAGTTTTTTTTTTTTGTTTCTTTACCAAAAGAGAGCTGCATTTTGCAAAACACTGATTTATTCAGGATGAATTGCAATCTAAAATCATCTTTGTA

OsPDIL1-3 .........................-----------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a .........................-----------------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g34940 TTATTTTTTGTAGGGGGAGTGGGGAGCTTCAGGTTAGGAGGTGCAGTGCAGCTGACAGCTTGAGGACATAGCTCAGTACTGAATTTAATCTTGTATTCGAGTTCCAGGTTTCCAAGTACATGTAGCATTACCAATGGTTTCATACATACA

OsPDIL1-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL1-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

Os02g34940 TGTCCCCCCCCTTTTTTTTTTTTGCACCGCTGAAATCTGTTATTGTAACATCATTACACTACATCGAATAATCCCCATTTTAGCTTGCCAAACGAGTAACT

OsPDIL1-3 -----------------------------------------------------------------------------------------------------

OsPDIL1-3a -----------------------------------------------------------------------------------------------------

Exon IX

Exon IX

Page 317: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

295

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 CCCAACGCCGGCCCGCCCATCGCAGCCCAAATCCCATGGCCGCCGCCGCCGCCGCCGCCGCCGCCGTGACCTCCCGGCGCTGAAGGCATCCAGCGGCCGCGCTCCAGGCCCCCCCCCCCAGATCTAGGATTGAGCGATCCCCTCCTTTTC

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 CCCGCGGTCCCCCATGGCGACGCGGCTGCTGTGTTGGACGGCGCTCCTCCTCCCCATCATCGCCGCCACCGCCGCCGCCTCGCCGCTTCCCGAGGCGTGCCCGGTGCCTACTGCGGCGGAGGAAATCCTTGGGCCTGGCGGCACATGCAC

OsAPRL3 -------------.........................................................................................................................................

OsAPRL3a -------------.........................................................................................................................................

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 GACGCTGGATCGCCGCGGCGACCCTGTCGGCGTCATCGAGGTGAGCTGTTGCGATGGCGTGATATAAGTAACAACAGAATTTATTTGTTATATGCATACTGGTTTCCACCATGTTTAGCGATGCTATATGATCGTATTGTGCGAATCAAG

OsAPRL3 ........................................--------------------------------------------------------------------------------------------------------------

OsAPRL3a ........................................--------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 GTAGACTGCCTATTTGCCTAAATGATTGATTGGTTAGTGTTTAAAGTGCGAATATTTGGGGTCCTGAGATTAGGAAGCTTTCTAGGGTTCATACCTATTCCAGTGGTGGTTCTGAGCCCCTGAGATTACGGGCGTAACTGAATCGATAGA

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TTGTTACAGTGTTTAGCACCTTGCTACGGGCGTAACTGAATCGATAGATTGTTACAGTGTTTAGCACCTTGCTCTGACGTCTATTCATTAATATATTGCTTATGCCAAAACAAGCGAAGGCCAATTTTATACCAGATTTTGTTTGCTTGC

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TTTGGAGATATAATCATGATTCGTTCCATGTTTGTACCACACACATCCCTTCTGAAGCAGCCAAACTACCAAAGGTCTACTATATGTTGGGGTTCCAATCTGCTTTCATAAGCCTTTTTTCCGGCTATGAACCTTGGAAGCCATTTGCTT

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 GTTTGATTAGTAGAAAATACAATACGAGTTCCTCTGCGGGTGGTATTTTGTTTGTCTTGTCATGTTTGGAGCTATGGTTCCCACATAAAATATCTGTAGCTTGACCCGCTTCTTGTTCTTTTGCATCAAAGCAAGCTCAAATTAGTTTTA

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 ACTGTTAGATAGTGATTATGGTATCTATTTCTCTCCGTCTTATATCTATTGTAGCTCTAAATGCCAAGCTGACTTTTAATCCTTGTCATCGCAGGGGGATGAGGTAACATTGGCGAAGGCCATTACTCTTCTTCACATGAACAAAGATGA

OsAPRL3 ----------------------------------------------------------------------------------------------........................................................

OsAPRL3a ----------------------------------------------------------------------------------------------........................................................

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TTACATTGCTGTACTCTTCTATGCTTCCTGGTGCCCATTCTCACAAGAATGCAAGCCAAATTTTGAGATATTAGCATCTTTGTTCCCATCTATTCGGCATTTTGCGTTTGAAGAATCCTCAATCAGGCCAAGGTATGTTATGTGTGCCTC

OsAPRL3 ....................................................................................................................................------------------

OsAPRL3a ....................................................................................................................................------------------

H

Exon I

Exon I

Intron I

Intron I

Exon II

Exon II

Intron II

Intron II

Page 318: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

296

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TGTGTAAATAAAAATGTGCCTCTTAGTGTAAGATGTTCTTTTGGTGAAATGTTAACTTGATTTTTGGAACTGCAGTATAATATCAAGATATGGGATTCATGGTTTTCCAACACTATTTCTCTTGAATTCAACTATGCGAGTGCGGTATCA

OsAPRL3 ---------------------------------------------------------------------------...........................................................................

OsAPRL3a ---------------------------------------------------------------------------...........................................................................

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TGGACCACGGACTGTTAAGTCCCTGGCTGCTTTCTACCGTGATGTTTCAGGTGCACCAATTATTACATGTGGAGTGTGGACTCTGTCTCTCTCTATCTCTCTCGTTTTGGTAGTTTTCTTGCACTTTCAAGATTCAACTGAGCAGTTGTG

OsAPRL3 ..................................................----------------------------------------------------------------------------------------------------

OsAPRL3a ......................................................................................................................................................

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TTATGTATCATTAAATGAGCTTGTATTTTCTTAGCTCGGGTGTGACATGAACATATAAGGTATTTTTGTTCCAAAATTCATGTCCTGGTCTTTGGACTTCAGAATTTCCTTTCCTTAAAAAATGTTTGGTAGTTATCTCTGTTTCTCTAT

OsAPRL3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a ..................................--------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 AAGTCATTTTCTAATGTTGAATTTATGTGATGAAGGTTTCGATGTTTCAATGACGTCAGAGGCCGTGCTACATTCAGTAGATGGTATTGAGCTTAAGAAGGATGCTGAACAGGAAAATTGTCCATTCTGGTGGGCACGCTCACCGGAGAA

OsAPRL3 -----------------------------------...................................................................................................................

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 AATACTTCAGCAGGATACTTATCTAGCACTGGCAACTGCATTTGTAATCTTGAGGTTACTGTATCTTCTCTTTCCAAAGATAGGTTCCTTCGCCAAACGGGCGTGGAGGAGGCATACTCTTTTTCCAAACTTGGTGGGTGTGCATGAATA

OsAPRL3 ......................................................................................................................................................

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 TTTCTTCACCTACCTTGAACAAGCAAGACACAAATTCTTTAGGTTATACCCTTCGAAGCGAGGGAATTTACAGGAAGGGGCCAGGAATGCCACTGCTTGGGCTTCCAAGTCATTAGCATCCGTCTCAATCGGAGAACCAAGCACTATTGG

OsAPRL3 ......................................................................................................................................................

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 AAGGACAAACTCTACAAATGAGCTAAGATAAAGTGCAACTTTTTTGTCCGCAGGGATATTTGTACAGTAGAGTATCAGGATATGAACACTAAGAATCTGTTGTAACCGGCTTTGTTAGATATTGTAACATCCTTAGAATAATCACTTTTA

OsAPRL3 ...............................-----------------------------------------------------------------------------------------------------------------------

OsAPRL3a ------------------------------------------------------------------------------------------------------------------------------------------------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os02g51850 CCATTTCCCATTGTTACTTTCACTTCGGTTTATAGCTTTGCCTCTTGCCTAAATTCATACTCTTGGGAGTATGTGTTGCAAAATATCTTTGTTGTGTGAAATGTGTACATGGTCTCTGCAATCCCAAGTTGATGACATTTGAATC

OsAPRL3 -------------------------------------------------------------------------------------------------------------------------------------------------

OsAPRL3a -------------------------------------------------------------------------------------------------------------------------------------------------

Exon III

Exon III

Intron III

Exon VI

Page 319: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

297

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 ATCCCCCCTCTCTCGTCGTCGTCGTCGCCGCCGCCTCGCCGTCCCCCGCCATTGGAGCCATGGATCTGGCTCCCGGCCGCCGCGCGCGACTGCTGGTGGCGCTGGCCCTCGTCGTCCTCGTGGCCCTAGCCGCGCGATCCGGCGCCGAGG

OsPDIL5-1 -----------------------------------------------------------...........................................................................................

OsPDIL5-1a -----------------------------------------------------------...........................................................................................

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TCATCACCCTCACCGAGGAGACCTTCTCCGACAAGGTGTGCTCCTCTCTCCTCTCTCTCTCTCTCGTCTCCCGCCTTCCCCACCGGCGACGATGCTGTTTTGTTCTGTAGATCACTGAGGTTGATCGAGCTAGGAGAGTCCAGGTCAGTA

OsPDIL5-1 ...................................-------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ...................................-------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 CGGGCTTGCTTTGTTGTAGAATTATGTAATAGATTCCGGAGCACTTCGTACTATAGCGGCGATGCTTGGTTTCAGACCTGTAGCTGTTGTATTGCAGATCTATTGACAATTCAAGTTTGATGGGCGCCTGCGCGTCAGTGTTACTTCGCC

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TCTGGGATGGAATCATTGGAATGATGGATTATATGAGCGTCGGGGTTTTAATTATCCGGTTTCAATCACGGATTGGGAATTTAGAATCGGGTCACAGTGTAAACTTTTGTCTTGTTAGTTTGTGGAGAATAGATACCATTGCTTTCCAGG

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TTGCATGTTTGATACTAGTAAAAAAAAAGGGTCATAGAGAGCCACTGCTCGTGTTCCTATGTTTTTGCAAGTCGTTCACCGTTGTGGCGTGATGCTTGTATTTGTTCCAACTAAGCCAGTTTGATCATGAGCAATCCTCTCATTTTTAGA

OsPDIL5-1 -----------------------------------------------------------------------------------------------------------------------------------------------------.

OsPDIL5-1a -----------------------------------------------------------------------------------------------------------------------------------------------------.

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TAAAGGAGAAAGACACGGTATGGTTTGTGAAGTTCTGCGTTCCATGGTGCAAACACTGGTAAATCTCACTCTTAGCTCCATGATGAATATTGAATTACCGTATAAATCTTGTCATTAATGGCTTAAGCTAATTTGTTAGATGCTTGTCAT

OsPDIL5-1 ..........................................................--------------------------------------------------------------------------------------------

OsPDIL5-1a ..........................................................--------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TTGCAGTAAGAACCTTGGAACACTTTGGGAGGACTTGGGAAAGGTTATGGAAGGTGCGGATGAAATAGAGATAGGGCAAGTGGACTGTGGTGTTAGCAAACCAGTATGCTCAAAGGTGGATATCCATTCGTACCCCACATTCAAGGTGTT

OsPDIL5-1 ------................................................................................................................................................

OsPDIL5-1a ------................................................................................................................................................

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TTATGAAGGTGAAGAGGTTGCAAAATATAAAGGTAATCTTCGTTTATGATGCAAATTATTCTATCTTGCTATTGTGTGGAAAGGTCAGCTTAATCTAGTTTCAACTTTCTAGTCTACAATGAAAATTGAAAAAGAGAAAGGTATGTTTGG

OsPDIL5-1 ................................----------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a .................................................-----------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 ATCTGTTAGATTTTCTCCAATTCTCTTGAGGTTTAGGCCATGTGTTGGAAGCCATATCCCCCTGCAGTCTGAATTAAAGACTACAAACCATTTCAACTAATAGAATTGTGATAATGCCAAGCCCCACAAAAAAAAAAATCGAAGACCCTA

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

IExon I

Exon I

Intron I

Intron I

Exon II

Exon II

Intron II

Page 320: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

298

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 GTGTTTGTTTCTCAAGTGCCATTTTTGGAGTAGCAAGTAGCATCTTCTGTGAAGATTCTGCCAAATCTGCTGATGAAAACATTTGATTATTTCTAGTATCTGCCAGCACTTGATTCTCCTCTTTATATTTTTCCGTTGCTTGAACTCGTT

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 ATATTGTTTTGTTTATGATTTTCTGCTCATGACATGACTTGTTATAGTTGAAGCATGCCAGGATACTGATTGTATCCTACAATTGTACGGCATGAAGAGCATACATTACCTCTAGCTCTAGGAAACTATGCATGTGCTCTAGTATCTCTG

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TCTTTTCCTGCCATTCCCTATCTTGTGAACATTGGAATGTTACTCATTCTGATACCTATCACTGCAATTCACAACTTAGAGCTTGATCTTCTGCTAACTGTTTGTACTTCAGAAAATATGCAAGTTTTTTTCTGACAGTTATGTGCGTAC

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 TAAAATGCAGATTGAATATATTGTCATCTTTTTCATCGCTGTTTCACCCTATCTTTTGTAGCTTTATGCTTTGTTACTGCAGCTTTGAGGGGCAACTTCTGTCTGTCCTTCATCTGACCACCCACCTGCTCGCTGATTTCTGTTGTTAAC

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 GTTAGATGCCTCCTAAAGGAAATCCTTGTGATCTTTTGTGCTACTGCAGGCCCAAGAAATGTGGAGTCACTGAAGAATTTTGTTTCGGATGAAGCCGAGAAAGCTGGGGAAGCCAAGCTTCAGGACAGTTGAACTGGAGCTCAAGTGTTC

OsPDIL5-1 -------------------------------------------------...................................................................................------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os03g17860 CATCCTACCACAGTTAAGCAACAATGTAGTACTGTTTGACATGCTTAAACTTTTTGATATAGTGAGCTTGTACTTCCTCCTGGCGTTTAGTAGAATGTTAACCACTGCATGAGTCGCATGAAACTATGTAATTTTCTGCTTCATACTGCA

OsPDIL5-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | .

Os03g17860 TTCAATTACAGCATGCTATACTATAAAGAAGAGTTCATGGAAAAAGCGCCTTTTTTTTTAAAAAAAAAGAAGAAGGCATCATAGAAGTTGCATTCCATGCC

OsPDIL5-1 -----------------------------------------------------------------------------------------------------

OsPDIL5-1a -----------------------------------------------------------------------------------------------------

Exon III

Page 321: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

299

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TCGTTAACCTCCATCTTCTCTTCTCCTCTCACGAGCTCGCAGCTCAAGCGCACCCAGCCATGGCGACTCCTCAGATCTCGCGCAAAGCCCTCGCCTCCCTCCTCCTCCTCGTCGCCGCCGCCGCCGCGGTCTCCACCGCGTCCGCCGACG

OsPDIL2-1a -----------------------------------------------------------...........................................................................................

OsPDIL2-1 -----------------------------------------------------------...........................................................................................

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 ACGTGCTCGCCCTCACCGAGTCCACCTTCGAGAAGGAGGTCGGCCAGGACCGCGCCGCCCTCGTCGAGTTCTACGCGCCATGGTAATAAGCGATGATGGTGTGCGTGCATCTTTGGGTTTTTCTTCTTCCTTTTCTTTTTCGGATCCGCG

OsPDIL2-1a ..................................................................................--------------------------------------------------------------------

OsPDIL2-1 ..................................................................................--------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 CGGGGCGTGTGTGTGTTCTGGATCTCTGTGATGATGAAATGGGCTCGGGATCGCGGCTGGATCGGTGGCGGCGTAGCTCTCATTCTCGGAATTTCGTAGCGGATTCTTGAGATCGGTGAGGTTTTGGGTGGCTTGTGTGGAGTGGATCGA

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GTTGATGTTAGGCTGGAAAAATATTCGGATCTTTGGCTGAAGTATCGATCTTGGCCGCGGAGTGTTGCGTGGATCTTTCTTGACATCACAGATTCGTTTACTTTTCCGGTCCCTTATTTTGTAGTATCGATCAGATGTGTGAGATTTTGC

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 AAGGTTTTTAGGGCTTTTATGTTATATCTTGCGGTGGTTGGTGTTGGGGGAGGGTTTATGTATAGAGAAATTCGATATTTTTTAAATGTTTGTGATTGATTTTGTTTTCAGGTGTGGTCACTGCAAGAAGCTTGCCCCTGAATACGAAAA

OsPDIL2-1a ---------------------------------------------------------------------------------------------------------------.......................................

OsPDIL2-1 ---------------------------------------------------------------------------------------------------------------.......................................

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 ACTCGGTGCAAGTTTCAAGAAAGCCAAATCAGTCCTAATTGCGAAGGTAAATCTCATGTTTTTTAGGTGTTTGGAAATTTAATGTCAAGGCCGTTTTGTGTCATATCTTCGCTGTTTGCATGCCAGTAGTTCTCTATCGTTTGCATTCCA

OsPDIL2-1a ..............................................--------------------------------------------------------------------------------------------------------

OsPDIL2-1 ..............................................--------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TATGGAAAGAAAATAAAAATGGCATTCCTGTTTAGTGGATATATGTTATTAGGATCTAATAATTTTATGTGTTTGTTGATGAATTGACTCCATTTTGTCTATCCAGGTTGACTGTGATGAGCACAAGAGTGTGTGCAGCAAGTATGGAGT

OsPDIL2-1a ----------------------------------------------------------------------------------------------------------............................................

OsPDIL2-1 ----------------------------------------------------------------------------------------------------------............................................

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TTCTGGGTACCCCACAATCCAATGGTTCCCCAAAGGTTCCTTGGAGCCCAAGAAGTGAGAATACATGCTTCTTTGTTGATTACTCAATCACTACATTTTCTGTCGTAAAGAACAATGACCCTAATGTTAAACTTACTGTTTAGGTATGAA

OsPDIL2-1a ........................................................-----------------------------------------------------------------------------------------.....

OsPDIL2-1 ........................................................-----------------------------------------------------------------------------------------.....

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GGTCAACGTACCGCGGAAGCCCTTGCAGAATATGTTAACTCTGAAGCAGGTAGACGAACGCACTTTCCAACCAAGCTATCGGTCTCCTTGTTTGGAAAATTAACTGCATTTTTTATTACCATGAAACATATTATGTATGATATTTCAGTT

OsPDIL2-1a .................................................-----------------------------------------------------------------------------------------------------

OsPDIL2-1 .................................................-----------------------------------------------------------------------------------------------------

JExon I

Exon I

Intron I

Intron I

Exon II

Exon II

Intron II

Intron II

Exon III

Exon III

Intron III

Intron III

Exon IV

Exon IV

Intron IV

Intron IV

Page 322: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

300

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TTCACCAGTCAGAGGATTATTTCATAAGCAATAAGTACTGAAATATCAATGCTACTTGGCTACTTCCTGCTATTATGGAGCCCAAAAGCTGTTGCAGCTAATTACATATCACTGCTTTCTCATTACATGTTGTCATGTCTCATTTTCATT

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 ATTTGTTGAACAGTTGGCTATTGGCAAACCAACATGCTATATTAGCTTTCAAAGTCCCAACACTGTTGTAAATCTTTCTGCCTTGTCTTTCAGCCACCAATGTAAAGATAGCTGCAGTTCCTTCTAGTGTCGTGGTTCTTACCCCAGAGA

OsPDIL2-1a ---------------------------------------------------------------------------------------------.........................................................

OsPDIL2-1 ---------------------------------------------------------------------------------------------.........................................................

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 CCTTCGACTCTGTTGTCCTTGATGAAACCAAAGATGTCCTTGTAGAGTTCTATGCCCCATGGTATGCTATTATGATCAGCCTGTTGTTCATCAAACCTTTTTATCATGCTGTATCAATGAATTTAATTTTGTTGGATGCTGCTTTGTTTT

OsPDIL2-1a ...............................................................---------------------------------------------------------------------------------------

OsPDIL2-1 ...............................................................---------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GCAGGTGTGGTCACTGCAAGCATCTTGCTCCGGTTAGTAGTACACCTCAGTATTTTGCAAAGTTGCAAAATAATGCATTGTCATTTTTCTATTTTGTCTAAACTCAAACTTGCACTTGTTTTAGATTTATGAGAAGCTAGCTTCTGTTTA

OsPDIL2-1a ------..........................--------------------------------------------------------------------------------------------..........................

OsPDIL2-1 ------..........................--------------------------------------------------------------------------------------------..........................

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TAAGCAAGATGAGGGTGTTGTTATTGCCAATCTTGATGCTGACAAACACACTGCCTTGGCAGAGAAGTATGCTTTCTGAACTTTGTTCTAATAGTTCTTGTCTACATTGATTACCCTCGACATTTCGATGTAACGGCATAGCTTATGTTG

OsPDIL2-1a .......................................................................-------------------------------------------------------------------------------

OsPDIL2-1 .......................................................................-------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GAATGGTATTTGCTTTCCTGAAGAAAATTTTCTACTGTTATTGTACTTCTCCTAACTGTTAGATCTAACATACACATACCTGTTTTTATAGGATGTGTGGTTGGTCATGTATGTTTTTCTTCCCCATAAGAGAATTTTTAATCATGCATG

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 CCACTTCAGGTATGGAGTTTCTGGTTTCCCCACATTGAAATTCTTCCCAAAGGGAAACAAAGCTGGTGAAGATTATGATGGCGGTCGCGAGTTGGATGACTTCGTCAAGTTTATTAATGAGAAATGTGGAACCAGCCGTGATTCAAAGGG

OsPDIL2-1a --------------........................................................................................................................................

OsPDIL2-1 --------------........................................................................................................................................

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TCAGCTTACTTCAGAGGTAGTGCTTTTATATAGAAGGTACTTAAATACTTAAATTTACATAATCCAATTCCAATATAATCTATTGGTTGCTTCTGTAGGCTGGCATTGTCGAAAGCTTGGCTCCTCTTGTGAAGGAGTTCCTTGGTGCAG

OsPDIL2-1a ................----------------------------------------------------------------------------------....................................................

OsPDIL2-1 ................----------------------------------------------------------------------------------....................................................

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 CAAATGATAAGCGGAAAGAAGCCCTCTCCAAAATGGAAGAGGATGTTGCGAAGCTCACTGGCCCTGCTGCCAAGTACTAAATTTTCATCTCTGTTTTTAAATTTTGTTATGTAGGTTTGGCATCGTCACTGTGTGAATTTAACCATTTTG

OsPDIL2-1a .........................................................................-----------------------------------------------------------------------------

OsPDIL2-1 .............................................................................-------------------------------------------------------------------------

Exon V

Exon V

Intron V

Intron V

Exon VI

Exon VI

Intron VI

Intron VI

Exon VII

Exon VII

Intron VII

Intron VII

Exon VIII

Exon VIII

Intron VIII

Intron VIII

Exon IX

Exon IX

Intron IX

Intron IX

Page 323: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

301

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 CTAAAGCAGGTACGGAAAGATCTATGTGAACTCTGCAAAGAAGATCATGGAGAAGGGCTCTGAATACACTAAGAAGGAATCTGAGAGGCTTCAACGCATGTTGGAGAAGGTGAGCAACAAAAGTTTCTATTCCTCAATTCACTTTGGACA

OsPDIL2-1a ------.......................................................................................................-----------------------------------------

OsPDIL2-1 -------------................................................................................................-----------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 TCATATTACTTAATCTAGAATCTGATTTCCATGCTTCATCATATGACAGTCGATCAGTCCTTCCAAAGCCGATGAATTCGTCATCAAGAAGAACATCCTTTCGACTTTCTCCTCTTAAAGGGTGTCCCACGTACCCCGACGAGCAATTGG

OsPDIL2-1a -------------------------------------------------.....................................................................--------------------------------

OsPDIL2-1 -------------------------------------------------.....................................................................--------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GGTATAGTCAGTAGCGCAATGCCTGTCTCCAAGAATGGAAAACAGAAAGAAATGAAAAGAAAAGGCAATATCGATATCAGCAAGAGATGGCAATGGAAGTTCGTTAGTTGGGTATTCTGTTGAACAAACATGTATCCCACTGCCCGGCAT

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 GATCTTTTTTTTTTCTTTCTGCTATTTGCTTTTGTGGTTACAGGGATTGACATAGCAATCAGCTAGTTTACTCAAGAACACAAGAGGTTTTGTAACCATCCCGTGATGAGTGATGACACCGTTCTACGTTTGTCAATCCAATAATTTGAT

OsPDIL2-1a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g06430 AATTCAGTTTACATTATTTCTGTTTACCCTGGTGAAAGAGAGCATATGTTGCTTTTGCTT

OsPDIL2-1a ------------------------------------------------------------

OsPDIL2-1 ------------------------------------------------------------

Exon X

Exon X

Intron X

Intron X

Exon XI

Exon XI

Page 324: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

302

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 CTAGCCTAGTCCCACCACTAGGACTCAACGAGAAGGGGGGCAGGTGTCCGAAGCGGATCACGGCGGCGGGAGAGAGATCCGGTGGCCCGATCCATGGCTGCGGCGGCGGTGGCGCGCCGCGTCGTCCTGGTGCTCGTCCTCGCCGCCGCC

OsQSOXL1 ---------------------------------------------------------------------------------------------.........................................................

OsQSOXL1a ---------------------------------------------------------------------------------------------.........................................................

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TCCCTCGCCGCGGCGCCGCGCGGGGCGGCCGCTCGCTCGCTCGGCGGCAGGGAGGGCCCCGGGGAGGTCGACGCCGACGCCGCCGTCGACCTCAACGCCACCAACTTCGACGCCTTCCTCAAGGCCTCGCTGGAGCCCTGGGCCGTCGTC

OsQSOXL1 ......................................................................................................................................................

OsQSOXL1a ......................................................................................................................................................

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GAGTTCTTCGCCCACTGGTTCGACTCTCGCCTTTGACTCGTTTTTTTCTCCCCGATTCGTGACTGAGGCGTTAGTTGTAGTACTTGGTAGAATCGATAAGTGGATGAGAATCGTGGTAGTCCGATGGCGTGAGATGCGACTGCGGGGTTT

OsQSOXL1 .................-------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a .................-------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 CGTCGTCTTCCCCGATGTATGGTTTATAGAATCGAAATGATTTACTCGTTTCGTCGTCTGTGAGCAAGTGAATGCCAATATAATCCACAATTTTTGGGGTTTCAAGCATGTAGGGTTGTGTAGGTGTTGCAAGGTCTGATTGGTGGGATG

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GATGCGTGTTGTTTTTTTTTTTTTTGAACGAATCGGCAAGCTGCCAATTTCATTGAATAGAGAAGGAGTAAGGATGCGTGTTGTTCAAAACTCGATGAGAGTAACCAATAAATGCTTCGCTCGTACTACCTTGAAATGTCATGTGAGGAT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GCGACCCTGGGAGTGTTGTCCGTGTTGTAGTACTGTGACCTGTGAAGTTGTGAGCTAGAAGAAAGGTGCAGACATGAATGAGCCCCGAAGCTTGGAAATTTGTTATATGTAGGACTAAATCGGATGTAGGCCAGCAGTTAATTATGGAAA

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 ATCAGTGGAGCATTTACTGTAATGATGAAAGAGGAATTGACTGGGTTGTAAGTTTATCACTATATAGTTTCTCAGTGTTGCCACTTACTCAGAGTATTGCTTCGATGCGATATTTCTTGTGTGATTTGGGGTGTGCGGAACTTTCTCAAA

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 AGCATAAGTACGGTCATTTTTGCTCTATGTAAGTTCCACTGTTCCCCACATTGGGCTATAAATGCCATGCCGTTTAATTCTAATTTGCAGAGATCATCTCTTTTTGAAATTTTAGCTTCATGAGATTGAGTTATATTTAAATGCTTCTTT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TGGATGTTAACAGGAAAAATAATACACTTATATGAGCATTGATACTGTACCTCACATGATTTAATGGAACTTGACGATTTGATTAATACACATGGACCTGTTTATGGGGAATCAAGGACTTGAATGATTAGCATCCTTTTGTTATCCTTT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

KExon I

Exon I

Intron I

Intron I

Page 325: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

303

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TCACTCTAATGTCCATGTTCTGGTCTTCCAAATATTCCATGTCAAGTTATTTTGATATTATATTCCATTGGTTAATCATTATAAGTCGTCACTATTCAGAATAGGTTAGTCCATATGCATTAGATATGAACTATGAAGTGGCGTATAGTT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TCTCCAGAGCCTCAAGTTTTCACTTACTCGAGATAATTTTAATTGGAATGAACTTCTATTGGTCATATCGGTATTCTTTTTTTTTTCTTTTGAGGCTGCCTAGATGGCATTTGTTTTATTGTTGAATTGATGCTAATTGAAATACGTACC

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GTGTTTGCTCAGGTGTCCAGCTTGCAGAAACTACAAGGTATGAAGCTTATTGTGGTAGCTGTGTACTTAATTTAAAAAACAGTGGTGCACAGTGTATTTATGAACAGCAAATTGACTCTTGCTAAATTCCTTCCTTACATCCAGCCTCAT

OsQSOXL1 ------------.........................-----------------------------------------------------------------------------------------------------------......

OsQSOXL1a ------------.........................-----------------------------------------------------------------------------------------------------------......

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TATGAGAAGGTTGCAAAACTATTCAATGGTCGGGACGCTGCACATCCAGGGTTAATACTGATGGCTAGGGTTGATTGTGCATCAAAGGTATAGTAGCTCTGGTGAAGAGTGATAACTTTCGTCAGTCTCCTAAATGTAGACAACTAAAGC

OsQSOXL1 .......................................................................................---------------------------------------------------------------

OsQSOXL1a .......................................................................................---------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 ACTTACAAAAGGGATTAGGTTTGATGGAATGGTCCAGTTAAATCCTTAACTGGATGATGAGATTATCCACAGGAGTATATCTTCAATCCTTTGATATCTATTTTTCGTTACCAAACTGAAAGCTATATTGCAATGAAGCTTTGGCACCTC

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TTATTTTGACTGATTTTAGCTTCCATGTTTTGTCAAAATGTCCAATAATTTGGTAATTTCAATGGAGTAATACTTTATTTCTTTTGATTGTTTGACAGCACAGGTGAACATCGATCTTTGCAATAGATTCTCAGTTGACCATTACCCTTT

OsQSOXL1 -------------------------------------------------------------------------------------------------------...............................................

OsQSOXL1a -------------------------------------------------------------------------------------------------------...............................................

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 CCTACTTTGGGGTCCACCAACAAAATTTGCTTCTGCTAAGTGGGATCCCAAGCAAGAGAATAATGAAATAAAGTTAATTGATGATGGAAGAACAGCAGAACGTTTACTGAAGTGGATAAATAATCAGATGAAAAGGCAAGTTATTATCCT

OsQSOXL1 .......................................................................................................................................---------------

OsQSOXL1a .......................................................................................................................................---------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 AGTCTTTCCTGCTCTACCTAAAAGTTCAGTAGATATGGAAACAGGAGCTACCTGTACTATGCTCATGCCTCTCTCTATTGACTGTTACCTTTTTGGTTTGTTTGACCATTATAGGCATGTTGGTATTTTATTGATGCATTGTTTATTTAT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GGTATCTGCAGCTCTTTCAGTTTAGAAGACAAAAAGTACGAGAATGAAAATATGCTTCCAAAGAATGCTTCGGATCCTGAGCAGGTTCAATTATCAGATATTTCTTTGAAACAATTTGCTTGAGATACTGCTATGTGCACTATGTTTCAA

OsQSOXL1 -----------.........................................................................------------------------------------------------------------------

OsQSOXL1a -----------.........................................................................------------------------------------------------------------------

Exon II

Exon II

Intron II

Intron II

Exon III

Exon III

Intron III

Intron III

Exon IV

Exon IV

Intron IV

Intron IV

Exon V

Exon V

Intron V

Intron V

Page 326: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

304

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TTTTCTTTAACGTTTGTTGACTTAATTCGATCTTTTGTTTTAGATTGTTCAAGCAATTTACGATGTTGAGGAAGCAACAGCTCAAGCGTTACAGATAATTTTGGAGCGCAAGGTGAGTTAACGATGAAATTTCACAGCAGATGTGATGTT

OsQSOXL1 -------------------------------------------.....................................................................--------------------------------------

OsQSOXL1a -------------------------------------------.....................................................................--------------------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TGCTCTTCTTTTTCTGACTATGGCCTAATAATGTTACTTGCAAACTGTAGACGATCAAACCAAAGAATCGTGATTCGCTCATCAGATTTTTACAAATTTTGGTGGCTCGTCACCCATCCAAGAGGTACGAGTGAACCTTTAAATTCCTAG

OsQSOXL1 --------------------------------------------------..........................................................................--------------------------

OsQSOXL1a --------------------------------------------------..........................................................................--------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TAGAGAAAATGCATATAACTTTCTTTGTGCATTTGGTTGATTCTTTAGGTGCCGAAGGGGATCTGCTGAGCTACTTATTAACTTCGATGATCACTGGTCATCGAATCTGTCGTTAAGTTCACAAGAGGGTTCTAAATTGTTGGAAAGTGT

OsQSOXL1 ------------------------------------------------......................................................................................................

OsQSOXL1a ------------------------------------------------......................................................................................................

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TGCGGAAGAGAACCACTGGATCTGTGGAAAAGAGGTGCCACGTGGATATTGGGTATGTTGTCTAATGCTAGGCCTAGCGGTTGGCAATGAATTCTTCATTAGGCATTCTTTTATACTAAACTAGAAAATGCAACTTCATATGAATCATTC

OsQSOXL1 ...................................................---------------------------------------------------------------------------------------------------

OsQSOXL1a ...................................................---------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TTAATTTTGATTTTGAGATATTCTCATTAAATGTTGCAGTAAATCCGTTATATGAATGATAGCATTAGGAGCAAGCAACATCTTGTATCTTTTGACATAGTTTACTTCAACAGCAGCATTATTTGCATGTAGCTTCTTTAGTACTGAGTT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 AATCTAGTTTCATTGCAGACAGAGGATCCTTAACCACTGTAGAATGTTTAGTCGACACACGTGATCCACATATTTTAGATCCCACAGCCCATATTTATTTACATATCTTGATCTTATCACAAGTAATATCTGTACCTAGCAATAGTTATT

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 CCCTTGAATTTTCTCTTCTTATTTCTGTGTGCCAATGTTGCAGCTGTTCTGCCGCGGCAGTAAAAGTGAAACAAGAGGATTTAGGTGACGCCTCTCTCTCTCTGCAAATGCTTCGAACATATATCTTTACAGCACCTTTACTGAAAGGCC

OsQSOXL1 ------------------------------------------..........................................------------------------------------------------------------------

OsQSOXL1a ------------------------------------------..........................................------------------------------------------------------------------

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 ATAGGAGTTGATAAACTATAACACACATACATCTTTTTTTATTGTATCAGCTGTGGTCTATGGGTTTTGATGCATTCACTAACCGTCCGAATTGGGGATGGAGAGAGCCAGTCAACCTTTACATCAATATGTGATTTTATTCACAACTTC

OsQSOXL1 --------------------------------------------------....................................................................................................

OsQSOXL1a --------------------------------------------------....................................................................................................

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TTCATCTGTGAGGAATGCCGCAAGCACTTTTATGAAATGTGTTCAAGGTTTGGAAAACTAACTTTGTGTTGTACCATCATTCAAAAAATATATCTACGACATGCCTGACTGTAGCCATTTACCTGTAGCGTGTCAGCCCCCTTCAGAACT

OsQSOXL1 ...............................................---------------------------------------------------------------------------------......................

OsQSOXL1a ...............................................---------------------------------------------------------------------------------......................

Exon VI

Exon VI

Intron VI

Intron VI

Exon VII

Exon VII

Intron VII

Intron VII

Exon VIII

Exon VIII

Intron VIII

Intron VIII

Exon IX

Exon IX

Intron IX

Intron IX

Exon X

Exon X

Intron X

Intron X

Exon XI

Exon XI

Page 327: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

305

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GCTCGTGAGCTCAGTCTCTGGTTATGGAGCACACATAACAAAGTCAATATGAGATTGATGAAAGAAGAAAAGGATATGGGAACTGGTGATCCCTTGTTTCCGAAGGTTACCTGGCCTCCAAATCAGCTCTGCCCATCTTGCTACCGCTCA

OsQSOXL1 ......................................................................................................................................................

OsQSOXL1a ......................................................................................................................................................

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 AGCAAGGTCACCGATGGAGCTGTGGACTGGAACGAGGATGCAGTGTATCAATTCTTGGTTAACTACTATGGAAAGAAGCTTGTATCATCCTACAAGGAGACCTACATGGAGTCTCTTCAGCAACAAGAGAAGAAGATAGTTTCAGAGGAT

OsQSOXL1 ......................................................................................................................................................

OsQSOXL1a ......................................................................................................................................................

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TCATCGATTTCTAATGCTGCAAGCGTCCCAATTGGAGCTGCCCTGGGTGTTGCGATTGCCAGCTGTACATTTGGGGCGCTGGCTTGCTTCTGGAGGGCCCAGCAGAAGAACAGAAAGTACTCACACCATTTACGCTCTTTAAAGAAAATA

OsQSOXL1 ....................................................................................................................----------------------------------

OsQSOXL1a ......................................................................................................................................................

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 TGATTAGGAAAAAACATTTTAGGTTGGTAGGGTACCATTGTTACCGCGTGACTACGTGGAATTTCATATCACAGAGAAGTGATTAGGTTCTATTTGTCAATTTTTTTACAGGCAAAGAAAGAACTGGAACTGAAAAATAGCCTACCAGTT

OsQSOXL1 ---------------------------------------------------------------------------------------------------------------......................-----------------

OsQSOXL1a ...---------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GCTCACCCTGCACTTCATCAGAGGGGCTCATCAATGAATGTGTATTTTTCTGGACGGATTAAAATCTTGGTAAGTGCTCCAAACAGTGTGGGAAAGGAAATGGTCGGGCAGTCAGTTACAGATGAAAAACTCACAGAAGTACGATGATTA

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 ACTCAAGTGTATTTTTTGTGCAACGATGTGAGCTTTGTTGCATCATGTCATAGATCAACGTGTAATAGTTTGACATATAGATTTCGGATGATTGGTGTATACGTTCGGATGTTACTATCCATTTAACGAGTGAAATTTTGAATTCAGTTC

OsQSOXL1 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsQSOXL1a ------------------------------------------------------------------------------------------------------------------------------------------------------

4960 4970 4980 4990 5000 5010 5020

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os05g47930 GTAGCTTTCTACTAACCTTTATCGTTCTCAGATATTTACCTGCAATTAAATGCTTTGTGATCGATTTATG

OsQSOXL1 ----------------------------------------------------------------------

OsQSOXL1a ----------------------------------------------------------------------

Intron XI

Exon XII

Page 328: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

306

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 ATTGCAGTTGCAGTTACAACCGGCAAATCTCTCGCGACCCTGCACCGTAGCAGCGTCGACGCGAGGCGGACAGCCTCTTCTTCCTCCTCCCTTTCCACCCCCCACAGAGATCTCGCCTCTCTCCTCCTCCCTTTCCCTCTCCTTCCTTCC

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AGATCTCTCCACGCGCCGCCCCGATCTCTTCCCCCCACCCCCACCTCGTCACCGGCGGGGAGGAGGGCCCGGCCGCCGGCAGCCATGATCTCCTCCAGTAAGCTCAAGTCCGTCGACTTCTACAGGTCCCCTCCACTCCCGATCTCTCTC

OsPDIL5-4 ------------------------------------------------------------------------------------.........................................-------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TCTCTCTCCCTCCATTGCTTGCTATGGTACTCCCTGTGCGCGCGCGCGCGGGGGGGATTTCGACGCGGTCCTCGGCTGGGGGTGCTGGTCCGGGTTCGGATTGGGTGAATTCTCTTGCCTGGCTGTTCTGGCGATTGCAGTAGATGGTTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GTGATGGTTCGTTGATGCACCGAGAAAATCGGGGTTGCGTGGGCGTATGTGGTGGTATTGACCATTCGTGCGGTCGTTGCGAGTAGTGTAATGTCTGGTGTATTTTCTACTGAGATGGGTAATTTGGTTGATGCGCTTTTTCTTTTCGTG

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CTTGCAGGAAAATTCCTAGGGATTTGACCGAGGCATCACTATCTGGGGCTGGATTGTCCATTGTAGCAGCACTAGCTATGGTGTTTTTGTTTGGAATGGTCAGTTTTCGTTGGATTAGCGATTGCACTGTTATTTTTAGATTTCATTTTT

OsPDIL5-4 -------...........................................................................................----------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TCACTCTGGTTCCAGTCTTTAGGGAAACAAACAAAAAATGGTTGGACTGTTCTTCTGTTCCATTTGGTGATTGTAGACTGAAATTTGGTACAGAGCCATACTAAAATGATAGAGCATTTATTTATTTATATGCAGATTAGTTGTCTTCTA

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CCATTCCAACTGCTGTAGTGTAGCTAATCGCTATCGCCGGATCAATGTAGAGTCTCGATTTGCTTGTTTCATTTGATGATTGAGAATAGCTCGTTTTTCCTGATATCTGTTTCAATTGACTATTAGAGCTTCATGATAGGCTAGATTCTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AACTGAACCTATTTTGGTTGAATATTTTTGACCGAATTATCAATTGGTCCATCCAACCTTGAAAGTGGCAGTTAAGTAATGTATATGCCCAAGTATATTGTAATTACTCCGGAACATATGCATAATTTTGGCTGTTGCTTGTTAAGGCTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GCAATGTGCTATACTTTTCACTATGCTGAGCTGATTCCTTAATCAAGCTTTAGACTAGTTTAAAGGTTCATTTCAACTGAAAAGCTAAATCTGTTCAATTGTTATTGCAGGAACTGAGTAATTACTTAGCAGTCAATACTAGCACATCTG

OsPDIL5-4 --------------------------------------------------------------------------------------------------------------........................................

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon I Intron I

Exon II

L

Page 329: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

307

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TGATTGTTGATAGGAGTTCAGATGGGGAGTTCTTACGGATAGATTTTAACTTAAGGTAAATTCTATGGCACATGCTGCACATCTCAACAAGTAATAAGGTTAGAATACAAAATGAGAACCTTCATGATCACATAGATAATACTGCTATCA

OsPDIL5-4 .......................................................-----------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TTATGGTTCATAGAACTAATGTCTTCCTAATTCTCTAATCTGCTGATAGTAATTTTATCCCTATTGTGATTAATTTTAATGGAATACTATATATGCAACAGCAAAGCACAGCGTTAATTAATGTCAGGCACTCAGTACATTCTTTTCAAT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GTATTTGTACTCATTTGGTGCATTGTGGAAAAAAACATATGATTCTCAGTTAATTCATTTATCTTCAAAGGTCACCTAATTACCAGATCCAACCATTTGTAGTAATATGTTTGTAGAATAATTCTGATGTTGTTCTTTTACTCAACACTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TCAACCCTTGGTCTATATGAACCTGAGAGCCATTGTTTATACTTGAAATTGATGCTTTCCAGCAAACAAGGACTAGTCAGGCACTGCTCATTTATTTGTATGTGATAATGCATAGGAGGGTATCTACATTAGTCTAGCTGGTTGCCCATT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GTTTTCTATGGAATGACATCAGCAAAGCTGGACTCAACTTTTCCTTGTTTTTCCAGTAGATGCTCACGATCTGGTTCTGTGATTTACAGCTTTCCTGCACTTTCATGCGAATTTGCATCAGTTGATGTCAGTGATGTTCTGGGAACAGTA

OsPDIL5-4 -----------------------------------------------------------------------------------------..........................................................---

OsPDIL5-4a ----------------------------------------------------------------------------------------------------------------------------.......................---

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AGATTCTAACTTGACCTCATGTACTCTGTTTTTGTTCATCTGCCGTCTAGAATGAGGATATCATTGAAGGACATGAAGCTCATCTTGCGCGTTCCATAAAAACTATTGTTGACTTTATTTTCTTGTTAACTTGCCATTACAAATAACTTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CCACTAGCTTTTAAAAGTACTCCCTCCGTTTCACAATGTAAGTCATTCTATCATTTCCCATATTCATATTGATGTTAATGAATCTAGACATATATATCTATCTAGATTCATTAACAACAATATGAATGTGGAAAATGCTAGAATGACTTA

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CATTGTGAAACGGAGGAAGTAAGCTCTACATGTATATTTTACACCAATGTTAAAAATACGAAATATGACAATTTATCAGTTTTTGTAAAGTTCTGTGCATGTCAAAAGAATGAAACCTATCCTAAATTCCTAACTAACTTTCTATCTATA

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AGCATTTCTTGATCATATCTTGCCTTTTGTAGCTCGAGTTTTTCTCCATGCTGGTTTAACCTTAAAGTTTCTGTTCAAAACACATGCAGAACAGATTGAACATAACGAAAACTGTTCGCAAATATTCAATTGATCGGAATTTAGTGCCTA

OsPDIL5-4 -----------------------------------------------------------------------------------------.............................................................

OsPDIL5-4a ----------------------------------------------------------------------------------------------........................................................

Intron II

Exon III

Exon I

Intron IIIIntron I

Exon IV

Exon II

Page 330: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

308

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CTGGATCCGAGTTCCACCCAGGACCTATTCCTACGGTCAGCAAACATGGAGATGATGTTGAAGAAAACCATGATGATGGTTCAGTTCCCTTGTCCTCTCGCAATTTTGATAGCTATTCACACCAGTAAGTATTCAAATATGTATTTCAAT

OsPDIL5-4 .............................................................................................................................-------------------------

OsPDIL5-4a .............................................................................................................................-------------------------

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 ATCCACCTATCCGTAACACATAACATATAGCATTTTAGCAATTGTGCGTTTCAATACCATATCAACGGTCAACCTATTATTCATGTATGCTGTCTTCTTTCTCCTTCACATTCATGGAGAAATGTACTTTATATTCATAGCTCCAATCAC

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TTCAACCAGATTGTCTATGGCAAATTGGTGATAATCTTCACTTTTACCTGCCTCAAGTATTTTTCCTTGAAGTGCCGTTCGGTATATCTAGTTAATCCCTCTTGTATTGTTTCGGAGCCCAAATATTGTTTCCACTGATTATTATCATGC

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 ACTTCCTTTTCAGGTATCCTGTTTTGGTTGTTAATTTTTATGCCCCCTGGTGTTACTGGAGCAATCGATTGGTTAGAATTCATCTTGTTCCTTTGCATTTAGTGATTTTCTAGTATATGCTACTCTATCTGTAAGGAAATGATTAGTAAA

OsPDIL5-4 --------------.........................................................-------------------------------------------------------------------------------

OsPDIL5-4a --------------.........................................................-------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TTATTGCTGGTAAAGTAATGTAAGTATGGCACGGCTTATTGAACTAACAAATGGAGACATTTCTAATTACTTGATCTTCCTCCAGAAACCTTCGTGGGAGAAGACTGCAAAAATAATGAGGGAGAGGTACATACTGTTTCTCTTTGTTTG

OsPDIL5-4 -------------------------------------------------------------------------------------.........................................------------------------

OsPDIL5-4a -------------------------------------------------------------------------------------.........................................------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TGTTTTGTGGTTTTAATGTGCTGTTTAATCTATACCATGTTGTTTTTTTTTTCTGCAGATATGATCCTGAAATGGATGGCAGAATCATTCTTGCCAAGGTTGACTGCACTGAAGAAATTGACTTGTGTAGGAGGTTCGTCTGTACTTAAT

OsPDIL5-4 ----------------------------------------------------------...........................................................................-----------------

OsPDIL5-4a ----------------------------------------------------------...........................................................................-----------------

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TATTATTCATATCCAAAACAAGGACAAAGCATATTTAGGCTGCAACATGAACTTTACAAATCCCTTTTTGATCCATGTACCAAGAGAAATTTAGTTAATTAGTTTTTAGAGTAAAGTCCATCACCGGTCCCTAAACTTGTACCGCTGTGT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CATCCCGGTCCCTAAACTCGCAAATCGATCATTCAGGTCCTTAAACTTGTTCGACTGTATCATCCCGGTCCCTAAACTTGCAGATCACTCGTTTAGGTCCTCCAACTTGTTCAGTTGTGTCACCCCGGTCCCTAAACAGGACGGTCTAAA

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AACTTTATACCAAAAAATAATTCATAACTTTTTCATGTGAACTCTAATAAAGACAAACTTTATATCAAAATTGTAGCCCTCGACGCGACCTACAACTTTGTAGTTGAAAATTTTTTGAATTAAAACTGTTTAGGGTCCCAAAATATTGTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

Intron IV

Intron II

Exon V

Exon III

Intron V

Intron III

Exon VI

Exon IV

Intron VI

Intron IV

Exon VIIExon V

Intron VIIIntron V

Page 331: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

309

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GCATGTTTATAGATTTTGTAATTTTAATTTTAAAATTACATTTTGGGACAAAAAATGACTTAAAATAAAAAAATTATCAACTACAAAGTTGTAGATCGCGTCGAGGGCTACAAGTTTGATATAAAGTTTGTTTTCATTAGAGTTCACATG

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AAAAAGTTATGAATTATTTTTAAATATAAAGTCTTTAGACCGTCCTATTTGACCCAGATGATATTCAAATCCAAGTTTAGGGACTGGGGTGACACAACTGAACAAATTGGAGGACCTATACGAGTGATCTACAAGTTTAGGGACCGGGAT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GACACAGTCGAACAAGTTTGAGGACCTGAACGGTCGATTTGCGAGTTTAGGGACCGGGATGACACAACGATACAAGTTTAGGGACCGGTGATGGACTTTACTCTAGTTTTTAATATCCCCAACAAAGTGTCATTATTATGCCACATCTTT

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CATGAGCTATTCGTGTTTGTGTCCTCTTATCCTGGTTCAGTGGATGCTTATGCCTTCTGGACTTGTTTGCATTTGGAATGATTCAAAAGCCTTTATTCCATAGATCACAACCCTAATTGTTACTGACCATGTTTTTATAAGAAAATGAGC

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CATTCTGCTTCTGATGACACTGGTTTCTGTGTAATAGTGCCATTGCCATTGATGCACATAGTAACATTTCAAGCTATGCGCATTGGATGTGAACCACAACTCCTCAATAGAAGCCTTAAATTGTTCTCCCACTAGTTTTACCTAATTATA

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TGTGCTCTTGTTATGCTTGTTCGTCATTAAATTAAGGACTACAGTTCATTGTTTTAATTTATTAAATGCAGGCACCATATACAAGGTTATCCATCCATTCGCATTTTCCGTAAAGGGAGTGATCTTAAGTAAGTTCAAGTAAATCTTACA

OsPDIL5-4 -----------------------------------------------------------------------.........................................................----------------------

OsPDIL5-4a -----------------------------------------------------------------------.........................................................----------------------

4960 4970 4980 4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 GTCTTCCGGATACTCTACTGAGAGTTAACCTGTGGCGCAAGACTTGTATTATTATTATTTTTTTGCTCATGTTCCAGAAACAAACAAATTGACATTTGTGCAGGGAAAACCAGGGTCACCATGATCATGAATCATACTACGGCGATCGTG

OsPDIL5-4 -------------------------------------------------------------------------------------------------------...............................................

OsPDIL5-4a -------------------------------------------------------------------------------------------------------...............................................

5110 5120 5130 5140 5150 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 ATACTGAGAGTTTAGTAGCGGTATGTATATTCTGTTACCCACTTATTTTTCTTGATGTACTGCATGATATATTCTTCACCCTAAGCTTTAGCTTACCTGTAAAAGGTATTGTCCCCATTTTCCTAGGGAGAACAAAAGGCTAACTATCCT

OsPDIL5-4 ....................----------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ....................----------------------------------------------------------------------------------------------------------------------------------

5260 5270 5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TTGCTTGTAAATCACTGACTTTGTTCATGGTCTTGTCAAATTGTGGATAAAATTCCTGACATTTTTTTGGGCCTCAGGCAATGGAAACTTATGTTGCAAACATCCCAAAAGATGCCCATGTTCTAGCTTTGGAGGACAAATCCAATAAGA

OsPDIL5-4 -----------------------------------------------------------------------------.........................................................................

OsPDIL5-4a -----------------------------------------------------------------------------.........................................................................

Exon VIIIExon VI

Intron VIIIIntron VI

Exon IX

Exon VII

Intron IX

Intron VII

Exon X

Exon VIII

Page 332: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

310

5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CTGTTGATCCTGCAAAACGCCCTGCTCCATTGACCAGTGGATGCAGAATAGAAGGTTTTGTGCGGGTAAAAAAGGTAAATGAACTTCTGAGGTGTAATAGTTGTAGTGTTGATGATGATCTCTATCTGTGGTATTTGATTTCTGGTTCCT

OsPDIL5-4 ..........................................................................----------------------------------------------------------------------------

OsPDIL5-4a ..........................................................................----------------------------------------------------------------------------

5560 5570 5580 5590 5600 5610 5620 5630 5640 5650 5660 5670 5680 5690 5700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CTTTATCAGGTCCCTGGGAGTGTTGTAATCTCAGCTCGATCTGGTTCCCACTCCTTTGATCCATCCCAGATAAATGTTTCCCACTATGTAACACAGTTCTCTTTTGGCAAAAGGCTATCGGCAAAGATGTTTAATGAACTGAAAAGACTA

OsPDIL5-4 ---------.............................................................................................................................................

OsPDIL5-4a ---------.............................................................................................................................................

5710 5720 5730 5740 5750 5760 5770 5780 5790 5800 5810 5820 5830 5840 5850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 ACTCCCTATGTTGGTGGCCACCATGATAGATTAGCTGGTCAATCCTACATTGTTAAGCATGGTGATGTCAATGCCAACGTTACTGTAAGTCCCTAAATTTTGCTTTGTTTTTGTTATCAAGATGATTACAGCAGGCATGCCTTCCAGCAC

OsPDIL5-4 ....................................................................................------------------------------------------------------------------

OsPDIL5-4a ....................................................................................------------------------------------------------------------------

5860 5870 5880 5890 5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 6000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TAAATTTTCTGGTTTCTTATGGAGTAACATAGTTTTTGTTTTTTGTCATTCTTAGATTGAGCATTACCTGCAAATTGTGAAAACTGAGCTTGTTACACTGAGATCATCAAAGGAATTGAAACTGGTTGAGGAGTATGAATACACAGCGCA

OsPDIL5-4 -------------------------------------------------------...............................................................................................

OsPDIL5-4a -------------------------------------------------------...............................................................................................

6010 6020 6030 6040 6050 6060 6070 6080 6090 6100 6110 6120 6130 6140 6150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 CAGCAGCTTGGTGCACAGCTTCTATGTTCCTGTTGTGAAATTCCATTTTGAACCTTCTCCCATGCAGGTTGGCATCTCACCTTTTCTTCGTTTGGTTCATAACTGAAAGAAAAACTAATTCTTATTTTATCATCACTTCCAAGGTCTTGG

OsPDIL5-4 ...................................................................----------------------------------------------------------------------------.......

OsPDIL5-4a ...................................................................----------------------------------------------------------------------------.......

6160 6170 6180 6190 6200 6210 6220 6230 6240 6250 6260 6270 6280 6290 6300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TAACTGAACTTCCAAAATCCTTCTCCCATTTCATCACAAATGTTTGTGCTATCATTGGAGGAGTTTTCACGGTGAGAGCACACACCCTTTTTTTATCTTTTCCTTTTCTCTGAATCCATCAAGTGTACATGGCTAATGAAATGACATGCG

OsPDIL5-4 .........................................................................-----------------------------------------------------------------------------

OsPDIL5-4a .........................................................................-----------------------------------------------------------------------------

6310 6320 6330 6340 6350 6360 6370 6380 6390 6400 6410 6420 6430 6440 6450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AATTCTAGGTTGCTGGAATACTGGATTCCATCTTCCACAACACCTTGCGGCTGGTTAAGAAGGTCGAGCTTGGGAAGAACATTTGAACAACAAGATTATTCTTCAGAAGCAGCCTCAAGCTTAGTGGTTGCACTAGTTTTAGTCATTATT

OsPDIL5-4 ----------............................................................................----------------------------------------------------------------

OsPDIL5-4a ----------............................................................................----------------------------------------------------------------

6460 6470 6480 6490 6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 TTGTTATACCAGGGTAGGAATTCTTAATATATCAAGATGTGAAAGAGGGTAGTGGGTTGGCAGAGGAGGAGAAGTTGGGGTCATGATATATAGTAATAGTAGGTAGGGACCTCACTGTTTTGCTAAACGACTTCGTAAGAACAATAAGAC

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

6610 6620 6630 6640 6650 6660 6670 6680 6690 6700 6710 6720 6730 6740 6750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os07g34030 AGTGGATCCTTGTTAACTATACCCTACGTTAATTCGTCCAGACTTGTGTTGTGTTACTCTGTTTACTGTTGTGATGGCACCTGTCATTACTCGTTACTCTGGATTTGTCTTCCGTCTCAAAATTCATCTACGGTAACCAGTATTTTTAAG

OsPDIL5-4 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL5-4a ------------------------------------------------------------------------------------------------------------------------------------------------------

Intron X

Intron VIII

Exon XI

Exon IX

Intron XI

Intron IX

Exon XIIExon X

Intron XII

Intron X

Exon XIII

Exon XI

Intron XIII

Intron XI

Exon XIV

Exon XII

Page 333: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

311

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GGTGAATCCGACGTGGAGGCTCTCCATTGGTCCGCACACGCGTCCGTCCGTCTTCCTCGCGAGCGAACTTAAAATCGCAGTCGCACCCCGGCGCCGATCGCAAGGTCCACCTCCTCCCCTCTCCACTCCTTCTAGAACCTTCTCGACCCC

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GCCATGCGCCCCGCGGTCGCCGCCGCCCTCCTCCTCGTCGCCGCCGCCGTCGCGGCCTCGCCGGTTTCCGCCCTCTACTCCGCCGGCTCTCCCGTCCTCCAGTTCAACCCCAACAACTTCAAATCCAAGGTCTCTCGATCGACTCCCCCC

OsPDIL2-3 ---..............................................................................................................................---------------------

OsPDIL2-3a ---..............................................................................................................................---------------------

OsPDIL2-3b ---..............................................................................................................................---------------------

310 320 330 340 350 360 370 380 390 400 410 420 430 440 450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TCACACTCTTCCCTTCCGTCTCCGGATCGGCTTCCCTTACTTGGGGGCTCTCGCTGAGTTCGAATTTCGGTTGGGGGTGCAGGTGCTGAACTCGAATGGGGTGGTGCTGGTGGAGTTCTTCGCGCCGTGGTGCGGGCACTGCCAGCAGCT

OsPDIL2-3 ----------------------------------------------------------------------------------....................................................................

OsPDIL2-3a ----------------------------------------------------------------------------------....................................................................

OsPDIL2-3b ----------------------------------------------------------------------------------....................................................................

460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GACGCCGATTTGGGAGAAGGCCGCGGGCGTCCTCAAGGGCGTCGCCACGGTCGCCGCGCTCGACGCCGACGCGCACAAGGAGCTCGCGCAGGTGAGCAAACGTCCTGTTTGGCATCTCGGTTCATTGGGATTGGCTGATCTACCTTTTCC

OsPDIL2-3 ...........................................................................................-----------------------------------------------------------

OsPDIL2-3a ...........................................................................................-----------------------------------------------------------

OsPDIL2-3b ...........................................................................................-----------------------------------------------------------

610 620 630 640 650 660 670 680 690 700 710 720 730 740 750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TGGTGTGATCTGATCTCTGCATCAGTTGTTGCGTCAACGTAATTTGATCGAGCTAGGACATAACTGCGTATATGCAATGTGCAAACTCGACTCCATAAAAAAAAAAGTTACACCTGTTATGGGTTTTTTGTGTAGCTCTCAGTATCAGAG

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

760 770 780 790 800 810 820 830 840 850 860 870 880 890 900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 AGTACAATGCCACATTTGTTTGGTGGAGGAAATATGGGAAGATCAATGTTTGGTGTCTACACGTACTGATCAAAAAGGGGCGTCGTTTTTATTTTTTAAAGGAGGGCATTAACATCGGATATGAGTTATACAATACCGAATTAATGCATA

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTAAAATGCTGTAGCTGGGATTAATATTGATGGAATGTGGTGCATTGTTGATTTCATACAGTAAATTTATTTATTTTTTCACTTTTTCAGCATGGTGATTGGATGCTGTTCTCTTTTTTTTAAAAAAAATAACCTGGATTTTGAATTATA

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTGAACGAATTAAGCATTTTAATTGGTGTTAATTAGGGTTTTATCTGTTTTTCTTTTGATCCGAAGGTGAGAGCGGCCTTGGTTAGTTTATTGCCAATAAAAGTGTATATGTGACTTTAGATGTGGGAAATGCATACTTTTATGAAGGAC

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

Exon I

Exon I

Exon I

Intron IIntron IIntron I

Exon II

Exon II

Exon II

Intron IIIntron IIIntron II

M

Page 334: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

312

1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GAAACCGTGGAAGCCAATGGGTTGTGCAACTTTACAATATCTGATGCAACATTGTTTATTGGTGAATCAGAAAATTAGGTTATGTATCCCAGATTCTCTAACTGAAAATTTAGTCACTCATCAAATGAAATAAAGGCATCTATCCTGAGA

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GAAGGCAAGCAAGAGTGAAAGATAGTTATGTACCTTTGCCATTGTACCTGCAGTGCGGTGATTTTGAGTCTCTGTCATATTTAGACATATATTTTTTTTTACAGTAATTTTACAGTATCATGCTTATTGACCAAGAGGCATTTTTTAGCT

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 ACGTTATATCTTTGTTTTGGTGAGTATTAGTCTTCTGTCTAGGCTAAATCAATAAAAACTGCACATTAGAACGTCTTCCACCATTGCCATTTGTAAATATTTTGACTGGATGCTATCAAGTTTTTCCTGATGCATGATGCCTTTGTTCTG

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CAGGAATATGGAATAAGAGGATTTCCAACTATTAAGGTGTTTGTTCCTGGAAAGCCTCCAGTAGATTATCAAGGAGCAAGAGATGTAAAGCCAATTGTTGAATTTGCTCTTTCACAGGTTTGTTGCAGCTTGCCCTATTTGATATATATA

OsPDIL2-3 ---..................................................................................................................---------------------------------

OsPDIL2-3a ---..................................................................................................................---------------------------------

OsPDIL2-3b ---..................................................................................................................---------------------------------

1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 AAAATGATATGTTGTTTTTACTTTTATTGCTCCTGTTCTATCTGCCACTCCACTAGTGTATACAACTACAAATCCTTTTCTGAAGATGTTAAGTGCTTCCTGGATTTTCACAGACCAAACTTATTCAGATTGCAATTGTCAGCTGAATGT

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TGACATAAATAACTTTTATCTTAACATGAAGTATTACTAGGGGGGAAAAACAACAGATATCATATATCAACTGATACTAATGTCCTAGGTAGCTAATTGATTTTGCTATATATCTCCCTCAAATGCTAAACCTTTCAAACTTATCAACTT

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTTATATGGGATACTGGATATGAGGTGATGCAGTGATGCTTCTCAGTTCTTACCATGGTGGAGCTTTATGTACCTGCTCTTGCACAGCTGGTGCTTCTGGTAGCACCCATGATTTTCGTTAAAAAATACACTGTCTGTCGCTGCTGTGTT

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 ACAGTGGGTTGCCATTTTACCTTTTTTTTTTGGGTATTTCTCTGTAAAAAATTTCAGCCTTGTGACACACGATATGAGTTTCCACTTTTAAATACAATGAATCTGTATCCTACAGGTCAAGGCTCTTCTTAGAGATCGGTTGAATGGAAA

OsPDIL2-3 -------------------------------------------------------------------------------------------------------------------...................................

OsPDIL2-3a -------------------------------------------------------------------------------------------------------------------...................................

OsPDIL2-3b -------------------------------------------------------------------------------------------------------------------...................................

Exon IIIExon IIIExon III

Intron III

Intron III

Intron III

Exon VIExon VI

Exon VI

Page 335: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

313

2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GACATCAGCAGGTTCAGGTGGCAAGAAATCAGGTGGTTCAAGTGAGAAAACTGAACCAAGTGCGTCAATAGAATTAAATTCTCAAAACTTCGATAAACTTGTCACCAAAAGCAAGGATCTTTGGATTGTTGAGTTCTTTGCACCATGGTA

OsPDIL2-3 ...................................................................................................................................................---

OsPDIL2-3a ...................................................................................................................................................---

OsPDIL2-3b ...................................................................................................................................................---

2560 2570 2580 2590 2600 2610 2620 2630 2640 2650 2660 2670 2680 2690 2700

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TGTGGCTTAATGCATTTATGGTTTTCATGTTGACTGATTTATTCTTTACTGTTGTTTCTGAACTTAACTCTGAATCCAAAAGTAGAGAAGGAAAGTGAAGAAAAACACAAAATTTCATACAATTTAGTCACATGTTAGTATTGTAGTGTG

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830 2840 2850

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TACATTTTAGATCATTGCCCTTAAGATTATGTTGTTCAAGATAATAAGTAAATCCTGTTAACTGAAGACATTATTTGACTCATTAACTGTACTGGTCTTTTGTAAGGTGTGGGCACTGCAAGAAATTGGCACCTGAATGGAAAAAGGCTG

OsPDIL2-3 ----------------------------------------------------------------------------------------------------------............................................

OsPDIL2-3a ----------------------------------------------------------------------------------------------------------............................................

OsPDIL2-3b ----------------------------------------------------------------------------------------------------------............................................

2860 2870 2880 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CAAAGAACTTGAAGGGCCAAGTGAAGCTAGGTCATGTGGATTGTGATGCTGAAAAGGTTCTTGCCCTTTTTCTATTTGGTCATAAGTTTTTGTTGTATGTGCATTTCTTGTTTGCAAATAATTTATACAAAATTATAAACTGAAATTTGA

OsPDIL2-3 ........................................................----------------------------------------------------------------------------------------------

OsPDIL2-3a ........................................................----------------------------------------------------------------------------------------------

OsPDIL2-3b ........................................................----------------------------------------------------------------------------------------------

3010 3020 3030 3040 3050 3060 3070 3080 3090 3100 3110 3120 3130 3140 3150

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CAATGCATTGGATATTTCATCAATTCAAAGGACTTTGATAAAGGTATTGTAAAATAAAATTAAACTGAGGGTTAGCACTCTAGTTTATAGGGACACAATCAGGATATGCATAGGAAAGTACAAAATGCTGTATCAAGGAAAGCAATGGCC

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

3160 3170 3180 3190 3200 3210 3220 3230 3240 3250 3260 3270 3280 3290 3300

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TAACTTTATCCTAAGGCATTTGTTGGGATCTTATTTTGTGCTGTTTTAGGTTGTCTCTTTAACAGTTTAACATGATGTACTATGATTGAAGTTTTATGTTTTTTTTTCTAGAATACTAATTCAAGTGTTTGGTCAGTTGATAAAAGTTAC

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

3310 3320 3330 3340 3350 3360 3370 3380 3390 3400 3410 3420 3430 3440 3450

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CGAGTGAGTTTAAATGAACTTAGGCAGAAAATTCAGGCAGTGTATCAGTATATTTATAAAACACAGTTAATGTTTGACCTTTTTAAAGCATTCATGTGCGTTCTGTACAACATTTGTCAAACTATACAACCTAGTTTTCAAGTACCACTT

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 3570 3580 3590 3600

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 ATGTAACATAACGTGTGACTTGAATTTTGCAGTCTTTGATGAGCAAGTACAAGGTAGAAGGCTTTCCTACTATTTTGGTATTTGGTGCCGATAAGGAGAGCCCATTCCCTTACCAGGGGGCTAGAGTTGCCTCTGCTATCGAGTCCTTTG

OsPDIL2-3 --------------------------------......................................................................................................................

OsPDIL2-3a --------------------------------......................................................................................................................

OsPDIL2-3b --------------------------------......................................................................................................................

Intron IVIntron IV

Intron IV

Exon V

Exon V

Exon V

Intron V

Intron V

Intron V

Exon VIExon VI

Exon VI

Page 336: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

314

3610 3620 3630 3640 3650 3660 3670 3680 3690 3700 3710 3720 3730 3740 3750

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CATTGGAGCAGTTGGAAGCCAATGCTGCTCCACCTGAAGTTTCTGAGTTGACTGGCCCAGTAAGTTTTCGTGATATTAACAAAGTTATCCTTTTGTGGAGACAATGGTCTGGGATTGATGTTTTGACGAGGTGGTTTGGCTTCTGTAGGA

OsPDIL2-3 ............................................................-----------------------------------------------------------------------------------------.

OsPDIL2-3a ......................................................................................................................................................

OsPDIL2-3b ............................................................-----------------------------------------------------------------------------------------.

3760 3770 3780 3790 3800 3810 3820 3830 3840 3850 3860 3870 3880 3890 3900

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 CGCCATGGAAGAGAAATGTGCTTCTGCTGCCATTTGCTTTGTATCTTTCCTTCCAGATATCTTGGATTCAAAGGCCGAAGGAAGAAACAAGTACCTTGAGCTGCTATTATCTGTTGCTGAGAAATTTAAAAAGAGTCCATACAGGCAAGA

OsPDIL2-3 ................................................................................................................................................------

OsPDIL2-3a ................................................................................................................................................------

OsPDIL2-3b ......................................................................................................................................................

3910 3920 3930 3940 3950 3960 3970 3980 3990 4000 4010 4020 4030 4040 4050

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTCAACTAAACTTGTTGTGGACTTTATACCATTCTACCTATCATTCCTTGTCTTGTTATGTCTTTTGAGATAAAAAAATCCACAGTTAAATTGATACATTAATTTCCTTTTGCTATTGAATATTGATTGACAAAAAGATTGATAGTAACC

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b .........................................................................-----------------------------------------------------------------------------

4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTCATATATTTGAAACACCTTAAAAGAATTAAATGACTTAGTTCGATAATGTTATATGCCAAGGCGTGTATACTATAAGCTCTAAACATAATGGAGATTTTATATATTATATATGCAAATCTGCCATGTGACTGAGTTCTATGTTGAGAA

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 GTTTCCTCAGACAAATCCATTCACTTAGTTAATGCCTTGAAATCTCTTCCGTTTCTTGAGAAAGCCATTCTGAGCTAGAAAAAGCATTGTCTTGCAGTTTTGTCTGGACAGCTGCTGGGAAGCAAGCTGATCTTGAGAAGCAAGTTGGAG

OsPDIL2-3 -------------------------------------------------------------------------------------------------.....................................................

OsPDIL2-3a -------------------------------------------------------------------------------------------------.....................................................

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTGGTGGTTATGGCTATCCAGCGATGGTTGCTCTCAACGTGAAAAAAGGCGCATATGCTCCACTCCGTAGTGCTTTCCAGCTTGATGAAATAACGTAAGTTCCTTGTGCATAGAAAATTAATTGCTGCTTAAGGTTCATTTGCCAGATGT

OsPDIL2-3 ..............................................................................................--------------------------------------------------------

OsPDIL2-3a ..........................................------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TTGATAACAAAACCGGTCTCCTGCAGTGAGTTTGTGAAGGAAGCAGGGCGCGGTGGGAAGGGTAATCTTCCTTTGGACGGTACCCCAACGATAGTCCAATCTGAACCATGGGACGGCAAAGATGGTGAGGTTATTGAAGAGGACGAATTC

OsPDIL2-3 --------------------------............................................................................................................................

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TCCCTTGAGGAGCTGATGGCCGACAACTCTCCAGTAAATGACGAGTTGTGATTCTGATAATTCCGGAAATGATGTTAGAGTTGATTAGCCAGACTGTAAATCTGAGTAACACTAATGCTTCACTCGTGTCAACTGTACAATTTGGGCGGG

OsPDIL2-3 ...................................................---------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

Intron VI

Intron VI

Exon VII

Exon VII

Intron VIIIntron VI

Eonx VIIIEonx VII

Intron VIII

Exon IX

Page 337: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

315

4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 ACAATTTTCAGAATGCTCCTTTGGTGTTATTACAGTACATTTTAGTTGAAGAAAAACATCGTTTGTGGTCTTTTAGGAGGGATGCTTTTCTCTGGGAAATAAAACTACTTCGTAATCTAGATATTTTGCCTCAACGTGTTTTCCTTCAAA

OsPDIL2-3 ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3a ------------------------------------------------------------------------------------------------------------------------------------------------------

OsPDIL2-3b ------------------------------------------------------------------------------------------------------------------------------------------------------

4960 4970 4980

. . . . | . . . . | . . . . | . . . . | . . . . | . . . . |

Os09g27830 TAGAAATCTATGCTTTATGCTGTTGTCTGT

OsPDIL2-3 ------------------------------

OsPDIL2-3a ------------------------------

OsPDIL2-3b ------------------------------

Dots indicate the sequences of exons are identical to the corresponding part of genomic loci. Broken lines indicate the 5’ and 3’ extra regions compared with the CDSs, and introns. A: OsCYP24-1 and OsCYP24-2 generated from LOC_Os06g49480; B: OsCYP46 and OsCYP50 generated from LOC_Os07g37830; C: OsCYP40 and OsCYP28 generated from LOC_Os08g19610; D: OsCYP73 and OsCYP58 generated from LOC_Os08g44330; E: OsCYP18-2, OsCYP19-3, and OsCYP20 generated from LOC_Os08g44520; F: OsPDIL2-2 and OsPDIL2-2a generated from LOC_Os01g23740; G: OsPDIL1-3 and OsPDIL1-3a generated from LOC_Os02g34940; H: OsAPRL3 and OsAPRL3a generated from LOC_Os02g51850; I: OsPDIL5-1 and OsPDIL5-1a generated from LOC_Os03g17860; J:

OsPDIL2-1 and OsPDIL2-1a generated from LOC_Os05g06430; K: OsQSOXL1 and OsQSOXL1a generated from LOC_Os05g47930; L: OsPDIL5-4 and

OsPDIL5-4a generated from LOC_Os07g34030; M: OsPDIL2-3, OsPDIL2-3a, OsPDIL2-3b generated from LOC_Os09g27830.

Page 338: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

316

Appendix VI Summary of intron sizes (bp) of Cyp genes in rice*

Intron

I Intron

II Intron

III Intron

IV Intron

V Intron

VI Intron

VII Intron

VIII Intron

IX Intron

X Intron

XI Intron

XII Intron

XIII Intron

XIV

OsCYP18-2 120 158 338 591 537

OsCYP19-3 120 158 302 591 537

OsCYP20 1352 95 338 591 537

OsCYP22-1 120 416 247 683 199 308

OsCYP22-2 202 195 93 501 114 131

OsCYP23 645 140 236 93 177 74

OsCYP24-1 249 396 93 466 108 99

OsCYP24-2 234 396 93 466 108 99

OsCYP25 106 101 589 543 627

OsCYP26-1 801 85 363 80 354 787

OsCYP26-2 116 490 816 1756 104 381

OsCYP27 99 752 104 578 87 86

OsCYP31 133

OsCYP40 2716

OsCYP43 1951 382 90 650 600 81 75

OsCYP44 1698 172 115 195 282 76 86

OsCYP46 99 88 145 118 102 1211 185 244 217 225 101

OsCYP47 1076 161 562 260 107 100

OsCYP49 291 973 317 453 632 423 131 70 483

OsCYP50 88 145 118 102 1211 185 244 172 225 101

OsCYP51 95 90 91 99 266 98

OsCYP57 263 109 141 82 1178 186 555 169 104

OsCYP58 94 454 97 81 317 136 138 244 91

OsCYP63 72 1235 864 122 103 131 305 92 253 82 1276 354 1467 76

OsCYP65 526 79 147 97 138 360 89 163 82 640 236 1215 72

OsCYP70 115 526 267 88 114 555 80 89 663 412 80 568

OsCYP73 86 323 162 94 454 97 81 317 136 138 244 91

The sizes of introns were calculated based on the gene structures (Fig 5.1) generated with gene structure display server program (http://gsds.cbi.pku.edu.cn).

Page 339: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

317

Appendix VII Summary of intron sizes (bp) from PDILs genes in rice*

Intron

I Intron

II Intron

III Intron

IV Intron

V Intron

VI Intron

VII Intron

VIII Intron

IX Intron

X Inron

XI Intron

XII Intron

XIII Intron

XIV

OsPDIL1-1 639 104 103 141 290 82 110 190 112

OsPDIL1-2 94 107 130 84 260 89 115 119 101

OsPDIL1-3 113 523 508 219 134 426 429 327

OsPDIL1-3a 113 523 508 219 134 426 429 327

OsPDIL1-4 85 107 98 87 167 125 466 75 79 596 811

OsPDIL1-5 99 140 267 172 100 321 74 489 113 652 78

OsPDIL2-1 479 210 89 344 93 92 243 82 86 90

OsPDIL2-1a 479 210 89 344 93 92 243 82 83 90

OsPDIL2-2 1125 193 86 213 107 104 208 91 91 106

OsPDIL2-2a 1125 193 86 213 107 104 208 91

OsPDIL2-3 103 1112 598 259 576 89 400 82

OsPDIL2-3a 103 1112 598 259 576 400

OsPDIL2-3b 103 1112 598 259 576 89

OsPDIL5-1 564 98 917

OsPDIl5-1a 564 98

OsPDIL5-2 655 92 229 279

OsPDIL5-3 468 87 235 243

OsPDIL5-4 332 612 634 542 339 164 82 1288 125 207 85 121 76 87

OsPDIL5-4a 339 164 82 1288 125 207 85 121 76 87

OsQSOXL1 1345 107 316 175 109 88 74 441 116 81 145

OsQSOXL1a 1345 107 316 175 109 88 74 441 116 81

OsAPRL1 295 735

OsAPRL2 587 82 207

OsAPRL3 804 93 285

OsAPRL3a 804 93

OsAPRL4 933 83 363

OsAPRL5 1096 108 388

OsAPRL6 1285 85 333

The sizes of introns were calculated based on the gene structures (Fig 6.1) generated with gene structure display server program (http://gsds.cbi.pku.edu.cn).

Page 340: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

318

Appendix VIII Screen captures showing putative wheat orthologues at PDILs and Cyps loci in rice

A

B

C

D

E

F

G

H

Page 341: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

319

I

A: putative wheat orthologue (CSU046BE444859) at the OsPDIL2-2 locus in rice; B: putative wheat orthologue (UCD078BF201426) at OsPDIL5-2; C: putative wheat orthologue (UCD078BF201426) at OsPDIL5-3; D: putative wheat orthologue (NDS021BE500255) at the OsQSOXL1; E: putative wheat orthologue (KSU035BE403404) at OsAPRL1; F: putative wheat orthologue (NDS252BE445181) at OsAPRL6; G: Putative wheat orthologues (KSU027BE590822, NDS021BE406148) at locus (LOC_Os0649480) encoding OsCYP24-1 and OsCYP24-2 in rice; H: Putative wheat orthologue (UMW213BE497013) at locus (LOC_Os01g18210) encoding OsCYP25 in rice; I: Putative wheat orthologue (KSU004BE585547) at locus (LOC_Os02g10970) encoding OsCYP49 in rice. The captures were obtained from Rice Genome Browser in MSU Rice Genome Annotation (Osa1) Release 6 (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice ).

Page 342: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

320

Appendix IX PDI gene family markers associated with quality QTLs in rice

PDI name Gene position in Gramene Map (bp) Colocalized QTLs Map set

Position (cM)

QTLs in Gramene Map (bp)

Flanking marker

Markers in QTL Maps

Markers in Gramene sequence

OsPDIL1-2 Chr4: 21515572-21512924 AROMA (CQAP2)

Cornell IR64/Azu DH QTL 2001 69.6 -135.4

21227137-29027171 RG788 69.6 N/A

OsPDIL5-2 Chr4:21277599-21275073 RM317 135.4 29027022-29027171

HULCL (AQGD023) NDSU EM93/ SS18 BC QTL 2004 16.8-160.7

18809314-35117807 RM167B 16.8 N/A

RM559 160.7 35117639-35117807

OsPDIL1-3 Chr2:20956031 - 20951715

CRKGRPCENT (AQEE018)

Cornell IR64/IRG105 QTL 2003 126.9-168.3

19865083-27610063 RG157 126.9 19865083-19865569

OsPDIL5-3 Ch2:20694520-20696830 RM221 168.3 27609877-27610063

HEADR (AQEE014) Cornell IR64/IRG105 QTL 2003 126.9-168.3

19865083-27610063 RG157 126.9 19865083-19865569

RM221 168.3 27609877-27610063

GRLGWDRO (AQGB055) JKU Aso/IR24 QTL 1996 55.9-77.9

18495134-22596902 XNpb67 55.9 N/A

XNpb132 77.9 N/A

SDLGWDRO (AQDH010)

IRRI IR64/Azu DH QTL 2003 40.6-63.5

19865083-24566168 RG157 40.6 19865083-19865569

RZ318 63.5 24565710-24566168

OsPDIL1-5 Chr6: 3198484 - 3202590**

GRLGWDRO (CQAL18)

CNHZAU Zh97/Ming63 RI QTL 2002 18.5-49

2260721-3536853 R1952 18.5 2260721-2260991

C226 49 3536009-3536558

ALKDIG (AQBP005) IGCN ZYQ18/JX17 DH QTL 1998 34.2-38.3

3168374-4160798 RM204 38.3 3168374-3168547

RM225 34.4 3416533-3416728

G165 36.3 4160454-4160798

AMYCN (AQFU016) LSU Caiapo/IRGC103544 QTL 2004 0-116

1764586-5425631 RM190 0 1764586-1764729

RM253 116 5425408-5425602

GELCON (AQGA022) CNHAU Zhen97/ H94 QTL 2005 0-39.6

441616-5425631 RM508 0 441616-441850

MRG5119 39.6 N/A

ALKDIG (AQFU018) LSU Caiapo/IRGC103544 QTL 2004 0-116

1764586-5425631 RM190 0 1764586-1764729

RM253 116 5425408-5425602

Page 343: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

321

HEADR LSU Caiapo/IRGC103544 QTL 2004 0-116

1764586-5425631 RM190 0 1764586-1764729

RM253 116 5425408-5425602

ENDFLR (AQCV038) JRGP Nip/Kas F2 QTL 2000 10.7-13.5

2456191-3864403 V30B 10.7 N/A

G8021 13.5 N/A

ENDFLR (CQAL10) Zh97/Ming63 CNHZAU F2 QTL 1999 33-39.3

2260721-3536853 R1952 33 2260721-2260991

C226B (C226) 39.3 3536009-3536558

SDLG (AQT015) JHPRC Rei/Yamd QTL 2002 0-20.9

3168374-6230185 RM204 0 3168374-3168547

RM276 29 6230045-6230185

PROTCN (AQFU022) LSU Caiapo/IRGC103544 QTL 2004 0-116

1764586-5425631 RM190 0 1764586-1764729

RM253 116 5425408-5425602

OsPDIL2-1 Chr5: 3276014-3273106 GRWD (AQGB029) JKU Aso/IR24 QTL 1996 8.4-31.4

1839408-6679640 R3166 8.4 1839408-1839741

R569 31.4 6679190-6679332

GRLGWDRO (AQGB043) JKU Aso/IR24 QTL 1996 8.4-31.4

1839408-6679640 R3166 8.4 1839408-1839741

R569 31.4 6679190-6679332

OsPDIL2-2 Chr1:13336222-13339661 HEADR (AQFU004)

LSU Caiapo/IRGC103544 QTL 2004 16.2-24.3

12284223-24299406 RM140 16.2 12284223-12284522

RM5 24.3 24299213-24299406

SDLGWDRO (AQFU026)

LSU Caiapo/IRGC103544 QTL 2004 24.3-31

24299213-27663181 RM5 24.3 24299213-24299406

RM246 31 27663068-27663166

ENDFLR (AQCV031) JRGP Nip/Kas F2 QTL 2000 38.8-52.1

6734684-26863059 Y3853L 38.8 N/A

C1211 52.1 N/A

OsPDIL5-1 Chr3:9934130-9932108 ENDFLR (AQCV036)

JRGP Nip/Kas F2 QTL 2000 40.3-46.6

8389519-10303012 C63 40.3 8390337-8390403

C2045 46.6 10301490-10301584

GRLGWDRO (AQFA014)

Cornell V20A/glab QTL 2004 31.2-76.9

9825151-23044841 RZ16A 31.2 9825151-9825191

RZ598 76.9 22786808-22786864l

GRLG Cornell V20A/glab QTL 2004 31.2-76.9

9825151-23044841 RZ16A 31.2 9825151-9825191

RZ598 76.9 22786808-22786864l

OsPDIL5-4 Chr7:20339546- PERICARPCL NDSU EM93/SS18 BC 0-120.5 412967- RM295A 0 412967-413153

Page 344: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

322

20345697 (AQGD030) QTL 2004 25651967

OsAPRL1 Ch7:19411494-19408595 RM18 120.5 25651810-25651967

PERICARPCL (AQGD028)

NDSU EM93/SS18 BC QTL 2004 0-146.4

412967-29560750 RM295A 0 412967-413153

RM172 146.4 29560592-29560750

CLGRPCENT (AQEE005)

Cornell IR64/IRG105 QTL 2003 57.4-94.5

6778415-21870655 RG477 57.4 6778514-6779120

RM336 94.5 21870504-21870655

OsQSOXL1 Chr5:27395700-27391291 MR (CQR3)

CNHZAU Zh97/Ming63 RI QTL 2002 114.4-127.6

27321395-28686006 C246 114.4 N/A

C1447 127.6 28684502-28684690

CULMSTR (AQFP018)

CAU IRAT109/YUEFU QTL 2004 73.2-77.8

7741675-27955848 R521 73.2 27955480-27055848

R566 77.8 7741675-7741816

OsAPRL2 Chr6: 6221709-6223415

SDLGWDRO (AQFU027)

LSU Caiapo/IRGC103544 QTL 2004 116-204

5425408-24035615 RM253 116 5425408-5425602

RM162 204 24035491-24035615

ALKDIG (AQFU019) LSU Caiapo/IRGC103544 QTL 2004 116-204

5425408-24035615 RM253 116 5425408-5425602

RM162 204 24035491-24035615

GELCON (AQEE023) Cornell IR64/IRG105 QTL 2003 62.2-85.1

5425408-6399814 RM253 62.2 5425408-5425602

RM402 85.1 6399680-6399813

CONVIS (CQAG19)** IGCAS ZYQ8/JX17 DH QTL 2000 32.8-50.1

5425408-9284025 CT506 32.8

C235 5425408-5425602

C235 50.1 9282505-9282553

CPVIS (CQAG9) IGCAS ZYQ8/JX17 DH QTL 2000 32.8-50.1

5425408-9284025 CT506 32.8

C235 5425408-5425602

C235 50.1 9282505-9282553

HPVIS (CQAG5) IGCAS ZYQ8/JX17 DH QTL 2000 32.8-50.1

5425408-9284025 CT506 32.8

C235 50.1 9282505-9282553

SDLG (AQT015) JHPRC Rei/Yamd QTL 2002 0-20.9

3168374-6230185 RM204 0 3168374-3168547

RM276 29 6230045-6230185

OsAPRL3 Chr2:31755530-31753413 GRWD (AQCV011)

JRGP Nip/Kas F2 QTL 2000 128.3-139.3

30068383-32036692 C601 128.3 N/A

Page 345: Characterisation of genes encoding cyclophilins and …...2.14.2 Total RNA isolation 56 2.14.3 First-strand cDNA synthesis 56 2.15 Preliminary analysis of some Cyps and PDILs genes

323

C560 139.3 N/A

CRUSHGRPCENT (AQEE020)

Cornell IR64/IRG105 QTL 2003 154.4-182.9

25865334-32774553 RM362 154.4 25865334-25865568

RM250 182.9 32774365-32774538

GRLG (AQCV001) JRGP Nip/Kas F2 QTL 2000 128.3-139.3

30068383-32036692 B252 128.3 N/A

C560 139.2 N/A

OsAPRL4 Chr8:19597590-19599760 ENDFLR (AQGB080) JKU Aso/IR24 QTL 1996 6.5-30.4

18864478-26225545 G1149 6.5 26224841-26225086

R1394 30.4 18864478-18864562

AROMA (CQAP1) Cornell IR64/Azu DH QTL 2001 24.8-114.9

2109496-24661864 RG20 24.8

RM38 2109496-2109612

RZ66 114.9

RM308 24661732-24661864

BRWRPROT (AQFA019)

Cornell V20A/glab QTL 2004 41.5-51.2

16241105-19964566 RG1034 41.5 16241105-16241545

RG28A 51.2 N/A

OsAPRL6 Chr12:21635926 - 21633321 ENDFLR(AQCV035)

JRGP Nip/Kas F2 QTL 2000 64.7-89.5

18867450-23318207 C50732S 64.4 19000811-19001119

R10289S 86.5 23300722-23301169

AROMA (CQAP3) Cornell IR64/Azu DH QTL 2001 49.5-102.8

8826555-26108004 RM101 49.5 8826555-8826854

RM235 102.8 26107904-26108004

GELTZTMP (AQGA042)

CNHAU Zhen97/ H94 QTL 2005 89.4-92.9

21454591-21742415 RM309 89.4 21454591-21454758

RMG2326 92.9

RM3326 21742024-21742415