chaptr 4 hw packetak - edl...copyright © cengage learning. all rights reserved. 1: = → = =) &...

63
Copyright © Cengage Learning. All rights reserved. Chaptr 4 HW Packet—Answer Key Multiple Choice—1 point; Calculations—three points unless otherwise specified—1 for formula, 1 for substitution, 1 for calculation. 1. An unknown substance dissolves readily in water but not in benzene (a nonpolar solvent). Molecules of what type are present in the substance? a) nonpolar b) none of these c) neither polar nor nonpolar d) polar e) either polar or nonpolar Remember that “it’s all about interparticle forces.” In order for a solute to be able to mix in a liquid, the particles of the liquid have to be able to exert forces of attraction on the particles of the solute, breaking the interparticle forces of the solute, and then, to keep the particles of solute from reconnecting, the particles of solvent have to form bonds with the solvent particles that are more stable than the bonds between the solvent particles themselves. If a solute can dissolve in water, which is polar, the solute must therefore either be polar or ionic, because these are the types of substances with which water can develop forces of attraction. Benzene, which is non polar, will not be able to develop forces of attraction with polar or ionic substances, and therefore, cannot dissolve these types of substances. In this list of answers, the substance must therefore be polar. Answer D (1 point/1) 2. The interaction between solute particles and water molecules, which tends to cause a salt to fall apart in water, is called a) dispersion b) coagulation c) hydration d) polarization e) conductivity The action of polar water molecules being able to develop forces of attraction with particles of ionic solids, and then being able to surround individual ions with a number of water particles that effectively separates the solute particles and keeps them mixed with the water particles is called hydration. Answer C (1 point/2) 3. Consider two organic molecules, ethanol and benzene. One dissolves in water and the other does not. Why? a) They have different molar masses. b) One is ionic, the other is not.

Upload: others

Post on 10-Mar-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Copyright © Cengage Learning. All rights reserved.

Chaptr  4  HW  Packet—Answer  Key  

Multiple  Choice—1  point;  Calculations—three  points  unless  otherwise  specified—1  for  formula,  1  for  substitution,  1  for  calculation.  

 

 

1.   An  unknown  substance  dissolves  readily  in  water  but  not  in  benzene  (a  nonpolar  solvent).  Molecules  of  what  type  are  present  in  the  substance?  

a)   nonpolar  b)   none  of  these  c)   neither  polar  nor  nonpolar  d)   polar  e)   either  polar  or  nonpolar  

Remember  that  “it’s  all  about  interparticle  forces.”    In  order  for  a  solute  to  be  able  to  mix  in  a  liquid,  the  particles  of  the  liquid  have  to  be  able  to  exert  forces  of  attraction  on  the  particles  of  the  solute,  breaking  the  interparticle  forces  of  the  solute,  and  then,  to  keep  the  particles  of  solute  from  reconnecting,  the  particles  of  solvent  have  to  form  bonds  with  the  solvent  particles  that  are  more  stable  than  the  bonds  between  the  solvent  particles  themselves.    If  a  solute  can  dissolve  in  water,  which  is  polar,  the  solute  must  therefore  either  be  polar  or  ionic,  because  these  are  the  types  of  substances  with  which  water  can  develop  forces  of  attraction.    Benzene,  which  is  non-­‐polar,  will  not  be  able  to  develop  forces  of  attraction  with  polar  or  ionic  substances,  and  therefore,  cannot  dissolve  these  types  of  substances.    In  this  list  of  answers,  the  substance  must  therefore  be  polar.    Answer  D  (1  point/1)  

2.   The  interaction  between  solute  particles  and  water  molecules,  which  tends  to  cause  a  salt  to  fall  apart  in  water,  is  called  

a)   dispersion  b)   coagulation  c)   hydration  d)   polarization  e)   conductivity  

The  action  of  polar  water  molecules  being  able  to  develop  forces  of  attraction  with  particles  of  ionic  solids,  and  then  being  able  to  surround  individual  ions  with  a  number  of  water  particles  that  effectively  separates  the  solute  particles  and  keeps  them  mixed  with  the  water  particles  is  called  hydration.    Answer  C  (1  point/2)  

3.    Consider  two  organic  molecules,  ethanol  and  benzene.  One  dissolves  in  water  and  the  other  does  not.  Why?  

a)   They  have  different  molar  masses.  b)   One  is  ionic,  the  other  is  not.  

Page 2: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 70

Copyright © Cengage Learning. All rights reserved.

c)   One  is  an  electrolyte,  the  other  is  not.  d)   Ethanol  contains  a  polar  O–H  bond,  and  benzene  does  not.  e)   Two  of  these  are  correct.  

Again,  in  order  for  a  solute  to  be  able  to  mix  in  a  liquid,  the  particles  of  the  liquid  have  to  be  able  to  exert  forces  of  attraction  on  the  particles  of  the  solute,  breaking  the  interparticle  forces  of  the  solute,  and  then,  to  keep  the  particles  of  solute  from  reconnecting,  the  particles  of  solvent  have  to  form  bonds  with  the  solvent  particles  that  are  more  stable  than  the  bonds  between  the  solvent  particles  themselves.    If  a  solute  can  dissolve  in  water,  which  is  polar,  the  solute  must  therefore  either  be  polar  or  ionic,  because  these  are  the  types  of  substances  with  which  water  can  develop  forces  of  attraction.    Because  of  its  –OH  group,  ethanol  is  polar  and  can  therefore  dissolve  in  water.    Benzene,  which  is  entirely  hydrocarbon,  is  non-­‐polar  and  will  not  be  able  to  dissolve  in  water.        (a)  Although  the  substances  have  different  molar  masses,  and  this  could  potentially  play  a  role  in  solubility,  in  this  case  it  does  not.    (b)  Both  substances  are  covalent  so  neither  substance  is  ionic.  (c)  Because  neither  substance  can  dissociate  into  ions  neither  substance  is  an  electrolyte.  (d)  Ethanol  does  contain  a  polar  –OH  bond  while  benzene  does  not  and  this  is  why,  as  explained  above,  ethanol  can  dissolve  while  benzene  cannot.    (e)  only  one  answer  suffices.    Answer  D  (1  point/3)  

 4.   T        F        Polar  molecules  have  an  unequal  distribution  of  charge  within  the  molecule.  The  reason  that  some  molecules  are  polar  is  because  there  is  an  unequal  distribution  of  charge  within  the  molecule.    Remember  that  this  is  due  to  differences  in  electronegativity  between  the  atoms  forming  covalent  bonds.    Answer  True  (1  point/4)  

 

 

5.   Which  of  the  following  is  a  strong  acid?  

a)   HF  b)   HClO  c)   HBrO  d)   KOH  e)   HClO4  You  should  have  memorized  the  six  “strong”  acids—those  that  can  completely  dissociate  in  water—memorizing  these  six  means  that  anything  else  that  is  not  one  of  these  is  a  weak  acid.    They  are  HCl,  HBr,  HI,  H2SO4,  HNO3,  HClO4.  Therefore,  (a)  HF  (hydrofluoric  acid)  ),  as  stated  above,  is  not  one  of  our  six  strong  acids  and  so  is  a  weak  acid.  (b)  HClO  (hypochlorous  acid)  is  not  HClO4—as  stated  above,  it  is  not  one  of  our  six  strong  acids  and  so  is  a  weak  acid..  (c)  HBrO  (hypobromous  acid)  is  not  HBr—  as  stated  above,  it  is  not  one  of  our  six  strong  acids  and  so  is  a  weak  acid..    (d)  KOH  

Page 3: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 71

Copyright © Cengage Learning. All rights reserved.

(potassium  hydroxide)  is  a  strong  base.  (e)  HClO4  is  one  of  our  strong  acids.    Answer  E    (1  point/5)    6.   All  of  the  following  are  weak  acids  except  

a)   HCNO  b)   HBr  c)   HF  d)   HNO2  e)   HCN  You  should  have  memorized  the  six  “strong”  acids—those  that  can  completely  dissociate  in  water—memorizing  these  six  means  that  anything  else  that  is  not  one  of  these  is  a  weak  acid.    They  are  HCl,  HBr,  HI,  H2SO4,  HNO3,  HClO4.    Therefore,  (a)  The  CNO-­‐  ion  is  called  the  fulminate  ion.    It  is  highly  unstable  and  explosive.    Its  corresponding  acid  is  called  fulminic  acid—this  follows  our  convention  of  “ate”  polyatomic  ions  adding  the  “ic”  ending  to  the  name  of  the  acid.    In  any  case,  it  is  a  weak  acid.  (b)  HBr  (hydrobromic  acid)  is  one  of  our  strong  acids,  so  for  this  problem,  it  is  the  exception  and  the  correct  answer.  (c)  HF  (hydrofluoric  acid),  as  stated  above,  is  not  one  of  our  six  strong  acids  and  so  is  a  weak  acid.  (d)  HNO2  (nitrous  acid),  as  stated  above,  is  not  one  of  our  strong  acids  and  so  is  a  weak  acid.  (e)  HCN  (hydrocyanic  acid),  as  stated  above,  is  not  one  of  our  strong  acids  and  so  is  a  weak  acid.    Answer  B  (1  point/6)  

7.   Which  of  the  following  is  not  a  strong  base?  

a)   Ca(OH)2  b)   KOH  c)   LiOH  d)   Sr(OH)2  e)   NH3  Strong  bases  will  either  (1)  directly  give  up  OH-­‐  to  a  solution  when  they  dissociate,  or  (2)  consist  of  a  soluble  metal  oxide,  which,  when  it  dissociates,  will  form  2  OH-­‐  ions  as  the  dissociated  oxygen  will  pull  a  hydrogen  ion  away  from  a  water  molecule  (thus  creating  two  hydroxide  ions).    Weak  bases  are  those  substances  that  can  remove  a  hydrogen  ion  from  a  water  molecule  leaving  a  single  OH-­‐  behind,  but  they  can  only  accomplish  this  weakly.    (a)    Ca(OH)2  (calcium  hydroxide)  will  give  up  OH-­‐  ions  directly  to  solution,  and  so  is  a  strong  base.  (b)  KOH  (potassium  hydroxide)  will  give  up  OH-­‐  ions  directly  to  solution,  and  so  is  a  strong  base.  (c)  LiOH  (lithium  hydroxide)  will  give  up  OH-­‐  ions  directly  to  solution,  and  so  is  a  strong  base.  (d)  Sr(OH)2  (strontium  hydroxide)  will  give  up  OH-­‐  ions  directly  to  solution,  and  so  is  a  strong  base.  (e)  NH3  can  only  weakly  remove  a  hydrogen  ion  from  a  water  molecule,  and  so  is  a  weak  acid.    This  is  the  exception  in  the  list.    Answer  E  (1  point/7)    8.   Which  of  the  following  is  paired  incorrectly?  

a)   H2SO4  –  strong  acid  b)   HNO3  –  weak  acid  

Page 4: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 72

Copyright © Cengage Learning. All rights reserved.

c)   Ba(OH)2  –  strong  base  d)   HCl  –  strong  acid  e)   NH3  –  weak  base  You  should  have  memorized  the  six  “strong”  acids—those  that  can  completely  dissociate  in  water—memorizing  these  six  means  that  anything  else  that  is  not  one  of  these  is  a  weak  acid.    They  are  HCl,  HBr,  HI,  H2SO4,  HNO3,  HClO4.    Strong  bases  will  either  (1)  directly  give  up  OH-­‐  to  a  solution  when  they  dissociate,  or  (2)  consist  of  a  soluble  metal  oxide,  which,  when  it  dissociates,  will  form  2  OH-­‐  ions  as  the  dissociated  oxygen  will  pull  a  hydrogen  ion  away  from  a  water  molecule  (thus  creating  two  hydroxide  ions).    Weak  bases  are  those  substances  that  can  remove  a  hydrogen  ion  from  a  water  molecule  leaving  a  single  OH-­‐  behind,  but  they  can  only  accomplish  this  weakly.    Therefore,  (a)  H2SO4  is  a  strong  acid  and  so  is  paired  correctly.  (b)  HNO3  is  a  strong  acid  and  so  is  not  paired  correctly.  (c)  Ba(OH)2  will  give  up  OH-­‐  ions  directly  to  solution,  and  so  is  a  strong  base,  and  so,  is  paired  correctly.    (d)  HCl  is  a  strong  acid  and  so  is  paired  correctly.  (e)  NH3  can  only  weakly  remove  a  hydrogen  ion  from  a  water  molecule,  and  so  is  a  weak  acid.    Answer  B  (1  point/8)  

9.    The  man  who  discovered  the  essential  nature  of  acids  through  solution  conductivity  studies  is  

a)   Priestly  b)   Boyle  c)   Einstein  d)   Mendeleev  e)   Arrhenius  Arrhenius  discovered  that  the  essential  nature  of  acids  was  in  the  dissociation  of  the  acid  molecule  into  a  hydrogen  ion  (which  we  now  know  is  “donated”  to  a  water  molecule  to  form  the  hydronium  ion)  and  the  anion  corresponding  to  whatever  the  specific  acid  is.    This  dissociation  was  discovered  in  the  larger  context  of  discovering  that  when  ionic  substances  in  general  dissociate  completely,  they  easily  conduct  electricity.    So,  acids  become  one  type  of  a  larger  class  of  compounds  called  electrolytes.    Acids  (or  ionic  substances)  that  completely  dissociate  in  water  are  strong  electrolytes.    Acids  (or  ionic  substances)  that  only  incompletely  dissociate  in  water  are  called  weak  electrolytes.    Answer  E  (1  point/9)  

10.   A  solid  acid  HX  is  mixed  with  water.  Two  possible  solutions  can  be  obtained.  Which  of  the  following  is  true?  

 

I.                        II.      

Page 5: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 73

Copyright © Cengage Learning. All rights reserved.

 

a)   In  case  I,  HX  is  acting  like  a  weak  acid,  and  in  case  II,  HX  is  acting  like  a  strong  acid.  b)   In  case  I,  HX  is  acting  like  a  strong  acid,  and  in  case  II,  HX  is  acting  like  a  weak  acid.  c)   In  both  cases,  HX  is  acting  like  a  strong  acid.  d)   In  both  cases,  HX  is  acting  like  a  weak  acid.  e)   HX  is  not  soluble  in  water.  These  diagrams  test  your  true  understanding  of  the  concept  of  “complete”  vs  “partial”  dissociation.    In  the  first  diagram,  all  of  the  HX  particles  have  completely  dissociated  to  form  only  individual  ions,  H+(which  we  know  in  fact  are  not  individual  protons  because  they  will  immediately  form  a  covalent  bond  with  a  water  molecule  to  form  a  hydronium  ion)  and  X-­‐.    This  is  what  a  strong  acid  does—completely  dissociates.    A  weak  acid  only  partially  dissociates,  and  so,  while  there  will  be  some  H+  ions  (which  again  will  immediately  bond  with  a  water  molecule  to  form  a  hydronium  ion)  and  an  equal  amount  of  X-­‐  ions,  some  of  the  HX  particles  will  remain  intact.    So,  diagram  I  depicts  a  strong  acid  while  diagram  II  depicts  a  weak  acid.    Answer  B  (1  point/10)    11.   T        F        An  acid  is  a  substance  that  produces  OH–  ions  in  water.  An  acid  is  a  substance  that  produces  H3O+  ions  in  water.    Answer  False  (1  point/11)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 74

Copyright © Cengage Learning. All rights reserved.

 

 

   

 

 

 

 

 

12.   A  17.0-­‐g  sample  of  HF  is  dissolved  in  water  to  give  2.0  ×  102  mL  of  solution.  The  concentration  of  the  solution  is:    (See  “Stoichiometry  Skills”  above)    You  are  asked  to  find  the  concentration  so  you  immediately  write  down.   M = mol

L    Upon  inspection  you  realize  that  you  do  not  have  moles—because  you  know   mol = g

mm  you  immediately  then  substitute   g

mm  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    Plug  in  the  given  values  and  solve.    2  SF.    Answer  4.2  M  (3  points/14)  

M = mol

L =g

mm

L=

17.0g(1.01+19.00)g /mol

.20 L= 4.2M  

 13.   1.00  mL  of  a  3.95  ×  10–4  M  solution  of  oleic  acid  is  diluted  with  9.00  mL  of  petroleum  ether,  forming  solution  A.  Then  2.00  mL  of  solution  A  is  diluted  with  8.00  mL  of  petroleum  ether,  forming  solution  B.  What  is  the  concentration  of  solution  B?    (See  “Dilution  Skills”  above)    In  this  problem,  there  is  a  sequence  of  dilutions  and  you  should  take  them  one  at  a  time,  the  answer  to  the  first  becoming  the  given  information  for  the  next.    In  the  first  dilution  you  are  given  V1  (1.00  mL=.001  L)  and  M1  (3.95  x  10-­‐4M)  and  told  that  it  is  diluted  with  9.00  mL  of  petroleum  ether  to  form  solution  A.    Be  careful—9.00  mL  IS  NOT  V2.    V2  is  the  total  final  volume  of  the  solution,  and  this  is  1.00  mL  +  9.00  mL  which  is  10.0  mL  (.0100L).    Therefore,  you  can  plug  these  three  values  into  the  dilution  relationship  and  find  the  molarity  of  solution  A.  

A : M1V1 = M2V2 → M2 =

M1V1

V2

=(3.95x10−4 mol

L )(0.001L).0100L

= 3.95x10−5 M  

Page 7: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 75

Copyright © Cengage Learning. All rights reserved.

This  molarity  then  becomes  M1  of  the  next  dilution.    You  are  given  V1  of  this  next  dilution—2.00  mL  (.002  L).    You  are  also  told  that  this  is  mixed  with  8.00  mL  (.008  L)  of  petroleum  ether  to  give  solution  B.    Be  careful—again,  8.00  L  IS  NOT  V2.  V2  is  the  total  final  volume  of  the  solution,  and  this  is  2.00  mL  +  8.00  mL  which  is  10.0  mL  (.0100L).    Therefore,  again,  you  can  plug  these  three  values  into  the  dilution  relationship  and  find  the  molarity  of  solution  B.  (6  points/20)

B : M1V1 = M2V2 → M2 =

M1V1

V2

=(3.95x10−5 mol

L )(0.002L).0100L

= 7.90x10−6 M  

14.   1.00  mL  of  a  3.60  ×  10–4  M  solution  of  oleic  acid  is  diluted  with  9.00  mL  of  petroleum  ether,  forming  solution  A.  Then  2.00  mL  of  solution  A  is  diluted  with  8.00  mL  of  petroleum  ether,  forming  solution  B.  How  many  grams  of  oleic  acid  are  5.00  mL  of  solution  B?  (Molar  mass  for  oleic  acid  =  282  g/mol)  (Note:  this  problem  is  different  from  the  previous  problem  in  two  ways.    First,  you  are  not  asked  to  find  the  concentration  of  the  solution  B,  you  are  asked  to  find  the  number  of  grams  of  oleic  acid  in  a  certain  amount  of  solution  B.    But,  to  do  this,  you  still  have  to  go  through  the  complete  process  of  finding  the  concentration  of  solution  B  before  you  can  calculate  the  number  of  grams.    Second,  recognize  that  the  molarity  of  the  given  solution  is  slightly  different  than  what  it  was  in  question  13.    You  cannot  just  use  the  value  of  the  concentration  of  solution  B  in  this  question—again,  you  have  to  go  through  the  whole  process  of  calculating  it  again  with  this  different  given  concentration.)    (See  “Dilution  Skills”  and  “Stoichiometry  Skills”  above)      In  this  problem,  there  is  a  sequence  of  dilutions  and  you  should  take  them  one  at  a  time,  the  answer  to  the  first  becoming  the  given  information  for  the  next.    In  the  first  dilution  you  are  given  V1  (1.00  mL=.001  L)  and  M1  (3.60  x  10-­‐4M)  and  told  that  it  is  diluted  with  9.00  mL  of  petroleum  ether  to  form  solution  A.    Be  careful—9.00  mL  IS  NOT  V2.    V2  is  the  total  final  volume  of  the  solution,  and  this  is  1.00  mL  +  9.00  mL  which  is  10.0  mL  (.0100L).    Therefore,  you  can  plug  these  three  values  into  the  dilution  relationship  and  find  the  molarity  of  solution  A.  

A : M1V1 = M2V2 → M2 =

M1V1

V2

=(3.60x10−4 mol

L )(0.001L).0100L

= 3.60x10−5 M  

This  molarity  then  becomes  M1  of  the  next  dilution.    You  are  given  V1  of  this  next  dilution—2.00  mL  (.002  L).    You  are  also  told  that  this  is  mixed  with  8.00  mL  (.008  L)  of  petroleum  ether  to  give  solution  B.    Be  careful—again,  8.00  L  IS  NOT  V2.  V2  is  the  total  final  volume  of  the  solution,  and  this  is  2.00  mL  +  8.00  mL  which  is  10.0  mL  (.0100L).    Therefore,  again,  you  can  plug  these  three  values  into  the  dilution  relationship  and  find  the  molarity  of  solution  B.

B : M1V1 = M2V2 → M2 =

M1V1

V2

=(3.60x10−5 mol

L )(0.002L).0100L

= 7.20x10−6 M  

 

Page 8: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 76

Copyright © Cengage Learning. All rights reserved.

Finally,  you  are  asked  for  grams  of  oleic  acid,  so  immediately  write  down   g = (mol)(mm) .    You  are  given  the  molar  mass  so  you  do  not  have  to  calculate  this  or  include  it  within  the  rest  of  your  calculation—you  simply  use  it.    However,  upon  inspecting  this  formula  you  do  not  have  mol,  but  because  you  know   mol = g

mm  you  immediately  then  substitute  

gmm  for  moles.    The  calculation  should  be  simple  enough  

that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  been  calculated  molarity  of  solution  B    and  you  have  been  given  a  volume  (5.00  mL  =  .00500  L)  so  plug  these  values  in  and  solve.  (9  points/29)  

g = (mol)(mm) = ( M )(L)(mm) = (7.20x10−6 mol

L )(.00500 L)(282 g / mol) = 1.02x10−5 g    

15.   How  many  grams  of  NaCl  are  contained  in  350.  mL  of  a  0.334  M  solution  of  sodium  chloride?  (See  “Stoichiometry  Skills”  above)    You  are  asked  for  grams  of  NaCl,  so  immediately  write  down   g = (mol)(mm) .    As  you  inspect  this  equation  you  know  you  can  find  the  mm  of  NaCl  easily—just  include  its  calculation  in  your  final  calculation.    You  are  not  given  the  number  of  moles,  but  because  you  know   mol = ( M )(L)  you  immediately  then  substitute   ( M )(L)  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  been  given  the  molarity  (.334  M)  and  volume  (350  mL=.350L).  Plug  in  the  values  and  solve.  (3  points/32)  

g = (mol)(mm) = ( M )(L)(mm) = (.334 mol

L )(.350 L)((22.99+ 35.45) g / mol) = 6.83g  

16.   Which  of  the  following  aqueous  solutions  contains  the  greatest  number  of  ions?  

a)   400.0  mL  of  0.10  M  NaCl  b)   300.0  mL  of  0.10  M  CaCl2  c)   200.0  mL  of  0.10  M  FeCl3  d)   200.0  mL  of  0.10  M  KBr  e)   800.0  mL  of  0.10  M  sucrose  Remember  that  for  every  one  particle  of  an  ionic  substance  that  dissociates  completely,  you  will  obtain  a  number  of  particles  that  is  equal  to  the  number  of  individual  particles  present  within  the  original  particle.           If  1  particle  of  NaCl  dissociates,  you  will  obtain  2  particles,  one  Na+  and  one  Cl-­‐.         If  1  particle  of  CaCl2  dissociates,  you  will  obtain  3  particles,  one  particle  of  Ca2+       and  two  particles  of  Cl-­‐.       If  1  particle  of  FeCl3  dissociates,  you  will  obtain  4  particles,  one  particle  of  Fe3+         and  three  particles  of  Cl-­‐.     If  1  particle  of  KBr  dissociates,  you  will  obtain  2  particles,  one  K+  and  one  Br-­‐.     Sucrose  is  not  an  ionic  compound  so  this  answer  can  be  eliminated.    Therefore,  

Page 9: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 77

Copyright © Cengage Learning. All rights reserved.

     If  you  have  a  certain  number  of  moles  of  NaCl  particles,  when  it  all  dissociates       you  will  have  twice  the  number  of  moles  of  ions  in  solution.          If  you  have  a  certain  number  of  moles  of  CaCl2  particles,  when  it  all  dissociates       you  will  have  three  times  the  number  of  moles  of  ions  in  solution.          If  you  have  a  certain  number  of  moles  of  FeCl3  particles,  when  it  all  dissociates       you  will  have  four  the  number  of  moles  of  ions  in  solution.          If  you  have  a  certain  number  of  moles  of  KBr  particles,  when  it  all  dissociates       you  will  have  twice  the  number  of  moles  of  ions  in  solution.      

  You  know  a  formula  to  find  the  number  of  moles  of  particles:   mol = ( M )(L) .         You  have  been  given  the  molarity  and  volume  of  each  substance—simply  find     the  number  of  moles  for  each  and  multiply  times  the  factor  you  have     determined  for  each  substance:  

 

ions for NaCl = (2)(mol NaCl) = (2)( M )(L) = (2)(.10 molL )(.400L) = .08 mol ions

ions for CaCl2 = (3)(mol CaCl2 ) = (3)( M )(L) = (3)(.10 molL )(.300L) = .09 mol ions

ions for FeCl3 = (4)(mol NaCl) = (4)( M )(L) = (4)(.10 molL )(.200L) = .08 mol ions

ions for NaCl = (2)(mol NaCl) = (2)( M )(L) = (2)(.10 molL )(.200L) = .04 mol ions

 

  Answer  B  (1  point/33)  

17.   What  mass  of  calcium  chloride,  CaCl2,  is  needed  to  prepare  3.650  L  of  a  1.75  M  solution?  (See  “Stoichiometry  Skills”  above)    You  are  asked  for  grams  of  NaCl,  so  immediately  write  down   g = (mol)(mm) .  As  you  inspect  this  equation  you  know  you  can  find  the  mm  of  CaCl2  easily—just  include  its  calculation  in  your  final  calculation.    .    You  are  not  given  the  number  of  moles,  but  because  you  know   mol = ( M )(L)  you  immediately  then  substitute   ( M )(L)  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  been  given  the  molarity  (1.75  M)  and  volume  (3.650  L).    Plug  in  the  values  and  solve.  (3  points/36)  

g = (mol)(mm) = ( M )(L)(mm) = (1.75 mol

L )(3.650 L)((40.08 + (2)(35.45))g / mol) = 709 g  

 18.   A  30.1-­‐g  sample  of  SrCl2  is  dissolved  in  112.5  mL  of  solution.  Calculate  the  molarity  of  this  solution.  (See  “Stoichiometry  Skills”  above)    You  are  asked  to  find  molarity.    Immediately  write  

down   M = mol

L.    You  are  given  volume  (112.5  mL=.1125  L),  but  not  moles.    but  

because  you  know   mol = gmm  you  immediately  then  substitute  

gmm  for  moles.    The  

calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  grams  and  molar  mass  can  be  calculated  in  the  problem.    Plug  in  the  values  and  solve:  

Page 10: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 78

Copyright © Cengage Learning. All rights reserved.

M = mol

L=

gmm

L=

30.1g((87.62+(2)(35.45))g /mol )

.1125 L= 1.69 M

(3  points/39)  

 19.   What  mass  of  solute  is  contained  in  256  mL  of  a  0.820  M  ammonium  chloride  solution?  (See  “Stoichiometry  Skills”  above)    You  are  asked  to  find  grams.    Immediately  write  down   g = (mol)(mm) .    You  realize  that  you  haven’t  been  given  moles,  but  because  you  know   mol = ( M )(L)  you  immediately  then  substitute   ( M )(L)  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  been  given  liters  (.256  L)  and  molarity  (.820  M)  so,  plug  in  values  and  solve.  (3  points/42)  

g = (mol)(mm) = ( M )(L)(mm) = (.820 mol

L )(.256L)((14.01+ 4.04+ 35.45)g / mol) = 11.2g  

 20.   A  57.17-­‐g  sample  of  Ba(OH)2  is  dissolved  in  enough  water  to  make  1.800  liters  of  solution.  How  many  mL  of  this  solution  must  be  diluted  with  water  in  order  to  make  1.000  L  of  0.100  M  Ba(OH)2?  

(See  “Dilution  Skills”  and  “Stoichiometry  Skills”  above)      As  this  is  a  dilution  problem,  immediately  write  down  the  dilution  relationship.    You  are  asked  to  find  V1  (“How  many  mL  of  solution  must  be  diluted”),  so  isolate  this  value.    Upon  inspecting  this  formula  you  realize  that  you  have  been  given  M2  (.100  M)  and  V2  (1.000  L),  but  have  not  been  given  M1—but  you  have  been  given  the  information  to  calculate  it.    You  

know  that   M1 =

molLso  write  this  down  separately.    Inspecting  this  formula  you  do  

not  have  mol  but  know  that   mol = g

mmso  substitute  this  in  for  moles.  

You  have  been  given  grams  and  can  easily  find  mm  as  part  of  the  calculation.    Once  you  find  the  value  for  M1  plug  this  value  into  the  original  dilution  relationship  and  solve  for  V1.    Remember  to  turn  L  into  mL.  (6  points/48)  

M1V1 = M2V2 → V1 =M2V2

M1

= (.100M )(1.000L).1854M

= .539L = 539 mL

M1 =mol

L=

gmm

L=

57.17 g(137.3+32.00+2.02)

1.800L= .1854M

 

 21.   What  volume  of  18  M  sulfuric  acid  must  be  used  to  prepare  1.80  L  of  0.215  M  H2SO4?    (See  “Dilution  Skills”  above)    As  this  is  a  dilution  problem,  immediately  write  down  the  dilution  relationship.    You  have  been  asked  to  find  “what  volume  .  .  .  must  be  used,”    which  indicates  that  you  need  to  find  V1,  so  isolate  this  variable.    Inspecting  the  

Page 11: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 79

Copyright © Cengage Learning. All rights reserved.

formula,  find  that  you  have  been  given  M1  (18  M),  V2  (1.80  L),  and  M2  (.215  M).    Simply  plug  the  values  in  and  solve.  (3  points/51)  

M1V1 = M2V2 → V1 =

M2V2

M1

= (.215M )(1.80L)18M

= .022 L = 22mL  

 22.   How  many  grams  of  NaOH  are  contained  in  5.0  ×  102  mL  of  a  0.77  M  sodium  hydroxide  solution?  (See  “Stoichiometry  Skills”  above)    You  are  asked  for  number  of  grams  so  you  should  immediately  write  out   g = (mol)(mm) and  let  this  lead  you  through  the  rest  of  the  problem.    On  inspecting  this  formula  you  know  that  you  can  easily  find  mm  and  show  this  within  the  final  calculation.    You  realize  that  you  haven’t  been  given  moles,  but  because  you  know   mol = ( M )(L)  you  immediately  then  substitute   ( M )(L)  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.    You  have  been  given  M  (.77M)  and  volume  (5.0  x  102  mL=.50  L).    Plug  these  values  in  and  solve.  (3  points/54)  

g = (mol)(mm) = ( M )(L)(mm) = (.77 M )(.50L)(22.99+16.00+1.01) = 15g  

 23.   An  analytical  procedure  requires  a  solution  of  chloride  ions.  How  many  grams  of  CaCl2  must  be  dissolved  to  make  2.15  L  of  0.0520  M  Cl–?  (See  “Stoichiometry  Skills”  above)    You  are  asked  for  number  of  grams  so  you  should  immediately  write  out   g = (mol)(mm) and  let  this  lead  you  through  the  rest  of  the  problem.    On  inspecting  this  formula  you  know  that  you  can  easily  find  mm  and  show  this  within  the  final  calculation.    .    You  realize  that  you  haven’t  been  given  moles,  but  because  you  know   mol = ( M )(L)  you  immediately  then  substitute   ( M )(L)  for  moles.    The  calculation  should  be  simple  enough  that  you  can  put  all  of  this  into  one  line  of  calculation  rather  than  separating  into  multiple  calculations.      

Note—you  have  one  additional  complicating  factor  at  this  point.    You  have  been  asked  to  find  the  number  of  g  of  CaCl2  that  must  be  dissolved  to  give  you  .0520  M  chloride  ion  (Cl-­‐),  NOT  .0520  CaCl2  M  solution.    Every  formula  unit  of  CaCl2,  when  it  dissociates,  will  give  2  particles  of  Cl-­‐.    Therefore,  you  would  need  only  ½  the  number  of  moles  of  CaCl2  to  give  .0520  M  Cl-­‐.    Add  this  into  your  factor  for  moles  in  the  equation.  

You  have  been  given  M  (.0520  M)  and  volume  (2.15  L).    Plug  these  values  in  and  solve.  (3  points/57)  

g = (mol)(mm) = (.5)( M )(L)(mm) = (.5)(.0520 M )(2.15 L)(40.08+ (2)(35.45)) = 6.20g    24.   T        F        The  concentration  of  a  salt  water  solution  that  sits  in  an  open  beaker  decreases  over  time.  False—as  water  evaporates  and  the  number  of  water  particles  relative  to  the  number  of  salt  particles  decreases,  the  concentration  will  increase.    Answer  False  (1  

Page 12: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 80

Copyright © Cengage Learning. All rights reserved.

point/52)    25.   You  have  two  solutions  of  chemical  A.  To  determine  which  has  the  highest  concentration  of  A  in  molarity,  what  is  the  minimum  number  of  the  following  you  must  know?  

I.   the  mass  in  grams  of  A  in  each  solution  

II.   the  molar  mass  of  A  

III.   the  volume  of  water  added  to  each  solution  

IV.   the  total  volume  of  the  solution  

 

a)   0  b)   1  c)   2  d)   3  e)   You  must  know  all  of  them.    Understand  that  while  we  are  seeking  which  solution  has  the  highest  concentration,  we  don’t  need  to  know  the  actual  concentration.      

Remember,  concentration  is  moles  per  liter:   M = mol

L.    From  this  you  can  see  that  to  

determine  which  solution  had  the  greatest  concentration  you  would  need  to  know  the  number  of  moles  and  number  of  L.    Note,  for  molarity  it  is  total  liters  of  solution,  not  liters  of  water  added—so,  IV  is  a  definite,  while  III  is  not  necessary.      

Moles  is  not  given  as  a  choice  or  we  would  choose  that.    Normally,  to  find  moles,  you  would  also  need  to  have  the  number  of  grams  and  the  molar  mass.    However,  as  the  molar  mass  would  be  the  same  for  each  solute  (chemical  A  for  both),  just  knowing  the  number  of  grams  for  each,  given  a  certain  volume,  would  be  enough.    So,  I  is  a  definite  while  II  is  not  necessary.    Therefore,  2  of  the  4  values  would  need  to  be  known.    Answer  C    (1  point/58)  

26.   Diabetics  often  need  injections  of  insulin  to  help  maintain  the  proper  blood  glucose  levels  in  their  bodies.  How  many  moles  of  insulin  are  needed  to  make  up  45  mL  of  0.0059  M  insulin  solution?  (See  “Stoichiometry  Skills”  above)    You  are  asked  to  find  moles.    You  have  two  

formulas  that  can  help  you  do  this: mol = g

mmor mol = ( M )(L)  

You  should  be  able  to  quickly  decide  that  in  this  case  you  need  the  latter  formula  because  you  are  given  M  and  L.    You  immediately  write  this  formula  down,  plug  in  the  values  and  solve.  (1  point/59)  

mol = ( M )(L) = (.0059 mol

L )(.045L) = 2.7x10−4 mol  

Page 13: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 81

Copyright © Cengage Learning. All rights reserved.

 27.   You  have  two  solutions  of  sodium  chloride.  One  is  a  2.00  M  solution,  the  other  is  a  4.00  M  solution.  You  have  much  more  of  the  4.00  M  solution  and  you  add  the  solutions  together.  Which  of  the  following  could  be  the  concentration  of  the  final  solution?  

a)   2.50  M  b)   3.00  M  c)   3.70  M  d)   6.00  M  e)   7.50  M  First,  reason  that  if  you  have  two  solutions  of  different  known  concentrations  and  you  mix  them  together,  you  would  be  combining  the  number  of  moles  present  in  both  solutions  and  combining  the  volumes  of  both  solutions  and  the  result  could  never  be  less  than  2.00  or  more  than  4.00  mole  per  liter.    This  eliminates  d  and  e.    Then,  if  you  were  to  mix  equal  amounts  of  solution  together  it  would  be  easy  to  see  that  you  should  get  a  solution  that  is  exactly  halfway  between—that  is,  3.0  M.    However,  since  you  have  much  more  of  the  4.00  M  solution  rather  than  equal  amounts,  the  only  valid  choice  here  would  be  3.70  M.    Answer  C  (1  point/60)  

28.   You  have  equal  masses  of  different  solutes  dissolved  in  equal  volumes  of  solution.  Which  of  the  solutes  would  make  the  solution  having  the  highest  molar  concentration?  

a)   NaOH  b)   KCl  c)   KOH  d)   LiOH  e)   all  the  same  

As   mol = g

mm,  saying  that  you  have  the  same  mass  of  different  substances  would  

mean  that  the  less  the  molar  mass,  the  greater  the  number  of  moles  and  the  greater  the  concentration.    Therefore,  the  substance  that  has  the  lowest  molar  mass  would  have  the  greatest  concentration.    The  chloride  ion  has  a  mm  of  35.45  g/mol  while  the  hydroxide  ion  has  a  molar  mass  of  16.00  +  1.01  =  17.01  g/mol.    Because  there  is  both  a  KOH  and  a  KCl,  the  KOH  would  have  the  lesser  molar  mass  between  these  two.    The  others  are  also  both  hydroxides,  so  the  cation  with  the  least  molar  mass  will  give  the  substance  with  the  least  molar  mass—this  would  be  Li.    So,  LiOH  would  give  the  least  molar  mass,  and  so,  the  greatest  concentration.    Answer  D.  (1  point/61)    29.   Which  of  the  following  do  you  need  to  know  to  be  able  to  calculate  the  molarity  of  a  salt  solution?  

     I.   the  mass  of  salt  added  

   II.     the  molar  mass  of  the  salt  

III  .   the  volume  of  water  added  

Page 14: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 82

Copyright © Cengage Learning. All rights reserved.

IV.              the  total  volume  of  the  solution  

a)   I,  III  b)   I,  II,  III  c)   II,  III  d)   I,  II,  IV  e)   You  need  all  of  the  information.  

Remember,  concentration  is  moles  per  liter:   M = mol

L.    From  this  you  can  see  that  to  

determine  molarity  you  would  need  to  know  the  number  of  moles  and  number  of  L.    Note,  for  molarity  it  is  total  liters  of  solution,  not  liters  of  water  added—so,  IV  is  a  definite,  while  III  is  not  necessary.      

Moles  is  not  given  as  a  choice  or  we  would  choose  that.    To  find  moles,  you  know  

mol = g

mm,  so  you  can  see  that  you  also  need  grams  (mass  of  the  salt)  and  the  molar  

mass  of  the  salt.    Therefore,  you  need  I,  II,  and  IV.    Answer  D    (1  point/62)  

30.   A  230.0-­‐mL  sample  of  a  0.275  M  solution  is  left  on  a  hot  plate  overnight;  the  following  morning  the  solution  is  1.50  M.  What  volume  of  solvent  has  evaporated  from  the  0.275  M  solution?  Although  it  may  not  initially  look  like  it,  this  problem  is  basically  a  dilution  problem—just  in  reverse.    But  is  still  works  the  same.    (See  “Dilution  Skills”  above)    

To  find  the  volume  lost  from  the  solution  you  will  need  to  find  the  final  volume  and  subtract  this  from  the  initial  volume.    (see  below)  

You  are  given  the  initial  molarity  (M1  =  .275  M),  the  initial  volume  (230.0  mL  =  .2300  L)  and  the  final  concentration  (M2  =  1.50  M).    Write  down  the  dilution  relationship,  isolate  final  volume  (V2),  plug  the  values  in  and  solve.    (4  points/66)  

Vevap =Vinitial −Vfinal =V1 −V2 = .2300L− .0422L = .1878 L = 187.8 mL

M1V1 = M2V2 → V2 =M1V1

M2

= (.275M )(.230L)1.50M

= .0422 L  

31.   For  the  reaction  4FeCl2(aq)  +  3O2(g)  →  2Fe2O3(s)  +  4Cl2(g),  what  volume  of  a  0.890  M  solution  of  FeCl2  is  required  to  react  completely  with  8.71  ×  1021  molecules  of  O2?  You  have  been  asked  to  find  volume  (liters)  of  a  solution  of  FeCl2    so  you  immediately  

write  down   LFeCl2

=molFeCl2

M FeCl2

.    (You  do  not  have  to  use  subscripts  but  it  will  make  like  

much  easier  later  in  the  calculation  because  you  will  need  to  say  that  a  certain  number  of  moles  of  FeCl2  will  be  equivalent  to  a  certain  number  of  moles  of  O2,  and  the  two  values  for  moles  can  easily  get  confused  if  they  are  not  labeled.)    This  formula  

Page 15: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 83

Copyright © Cengage Learning. All rights reserved.

tells  you  that  in  order  to  find  the  volume  (number  of  liters)  of  the  .890M  solution,  you  need  to  know  the  number  of  moles  of  FeCl2  that  must  be  reacted  with  8.71  ×  1021  molecules  of  O2.    According  to  the  mole  ratio  of  FeCl2  to  O2  stated  to  us  by  the  balanced  chemical  equation,  for  every  3  mol  of  O2,  4  mol  of  FeCl2  are  required.    Therefore,  we  can  substitute  

43( ) molO2( ) in  for  

molFeCl2

in  our  calculation  (see  below).    

You  have  not  been  given  the  number  of  moles  of  oxygen,  but  you  have  been  given  the  number  of  molecules,  and  you  always  know  that  you  can  turn  a  number  of  molecules  into  a  number  of  moles  by  dividing  by  the  number  of  particles  in  1  mole,  which  is  Avogadro’s  number.  Substitute  

molecules O2AN in  for   molO2 (see  below).    Then,  substitute  in  

the  given  values  and  AN  and  solve:  (3  points/69)  

LFeCl2=

molFeCl2

M FeCl2

=43( ) molO2( )

M FeCl2

=43( ) molecules O2

AN( )M FeCl2

=43( ) (8.71x1021 molecules)

(6.022x1023 molecules/mol )

.890molL

= .0216L = 21.6mL  

32.   Phosphoric  acid,  H3PO4,  is  a  triprotic  acid.  What  is  the  total  number  of  moles  of  H+  available  for  reaction  in  3.50  L  of  0.400  M  H3PO4?  You  are  asked  for  mol  H+  and  you  have  been  given  L  and  M,  and  you  know  that  for  a  triprotic  acid  like  H3PO4,  for  every  mol  of  acid,  3  mol  of  H+  will  dissociate.    So,  you  immediately  write  down   mol H + = (3)( M )(L) .    You  already  have  all  of  the  information  so  you  plug  in  the  values  and  solve.  (3  points/72)  

mol H + = (3)( M )(L) = (3)(.400 mol

L )(3.50L) = 4.20L  

33.   The  following  reactions:  

                     Pb2+  +  2I–  →  PbI2  

                             2Ce4+  +  2I–  →  I2  +  2Ce3+  

                             HOAc  +  NH3  → NH4+  +  OAc–  

are  examples  of  

a)   acid-­‐base  reactions  b)   unbalanced  reactions  c)   precipitation,  acid-­‐base,  and  redox  reactions,  respectively  d)   redox,  acid-­‐base,  and  precipitation  reactions,  respectively  e)   precipitation,  redox,  and  acid-­‐base  reactions,  respectively  In  the  first  reaction  you  can  see  that  all  is  happening  is  that  lead  2+  ions  and  iodine  1-­‐  ions  are  combining  to  form  the  solid  compound  lead  (II)  iodide.    The  atoms  are  not  changing  oxidation  states  in  the  reaction,  they  are  merely  combining  to  form  an  ionic  solid,  which  is  the  essential  feature  of  a  precipitation  reaction  (note—oxidation  and  reduction  do  not  take  place  during  precipitation  reactions).  

Page 16: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 84

Copyright © Cengage Learning. All rights reserved.

In  the  second  reaction  we  see  cerium  being  reduced  from  4+  to  3+  and  iodine  being  oxidized  from  1-­‐  to  0,  so  this  is  an  oxidation  reduction  reaction.    These  are  also  called  redox  reactions.    Beside  seeing  charges  change  from  the  reactant  side  of  the  equation  to  the  product  side,  the  quickest  way  to  recognize  a  redox  reaction  is  by  seeing  an  elemental  atom  be  changed  into  an  atom  in  a  compound  (or  vice  versa)  because  you  know  that  the  oxidation  state  of  an  elemental  substance  is  0,  while  that  of  an  atom  in  a  compound  is  not  0.    In  the  third  reaction  we  see  a  molecule  with  an  available  hydrogen  at  the  beginning  of  its  formula  (meaning  that  it  is  an  acid—not  one  of  the  six  strong  acids,  so  you  also  know  that  it  is  a  weak  acid)  and  the  weak  base,  NH3.    The  reaction  shows  the  donation  of  the  hydrogen  by  the  weak  acid  to  the  weak  base  to  form  the  conjugate  acid,  NH4+  and  the  conjugate  base,  OAc-­‐.    Therefore,  the  reactions  are:  precipitation,  redox,  acid-­‐base,  respectively.        Answer  E  (1  point/73)  

34.   The  following  reactions  

                             2K(s)  +  Br2(l)  →  2KBr(s)  

                             AgNO3(aq)  +  NaCl(aq)  →  AgCl(s)  +  NaNO3(aq)  

                             HCl(aq)  +  KOH(aq)  →  H2O(l)  +  KCl(aq)  

are  examples  of  

a)   precipitation  reactions  b)   redox,  precipitation,  and  acid-­‐base,  respectively  c)   precipitation  (two)  and  acid-­‐base  reactions,  respectively  d)   redox  reactions  e)   none  of  these  In  the  first  reaction  we  see  that  two  elemental  substances  (oxidation  state  0)  are  changed  to  atoms  that  are  part  of  a  compound  (oxidation  states  “not  zero”).    You  don’t  even  need  to  know  what  the  non-­‐zero  oxidation  states  are—you  know  that  they  have  changed  from  0  to  something  else  so  it  must  involve  oxidation  and  reduction.    As  two  elements  are  combining  to  form  a  compound  this  would  also  be  a  synthesis  reaction.    In  the  second  reaction  you  can  see  that  this  is  a  double  replacement  reaction,  and  that  the  solid  compound  silver  chloride  is  a  precipitate.    This  is  therefore,  a  precipitation  reaction.    Note  that  as  consistent  with  a  precipitation  reaction,  no  elements  change  oxidation  states—a  precipitation  reaction  does  not  involve  oxidation  and  reduction.        In  the  third  reaction  we  can  see  that  a  strong  acid  (HCl)  is  interacting  with  a  strong  base  (KOH)  resulting  in  neutralization.    This  is  an  acid  base  reaction.  

Page 17: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 85

Copyright © Cengage Learning. All rights reserved.

 Therefore,  the  reactions  are:  redox,  precipitation,  and  acid-­‐base  respectively.    Answer  B  (1/74)  

35.   The  following  reactions  

                             ZnBr2(aq)  +  2AgNO3(aq)  →  Zn(NO3)2(aq)  +  2AgBr(s)  

                             KBr(aq)  +  AgNO3(aq)  →  AgBr(s)  +  KNO3(aq)  

are  examples  of  

a)   oxidation-­‐reduction  reactions  b)   acid-­‐base  reactions  c)   precipitation  reactions  d)   A  and  C  e)   none  of  these  In  both  circumstances  you  can  see  that  both  reactants  are  ionic  compounds  and  that  the  cations  “switch  places”  with  each  other  with  respect  to  their  corresponding  anions.    They  are  therefore  both  double  replacement  reactions.    As  you  can  also  see,  both  reactions  result  in  the  formation  of  a  solid  compound  which  precipitates  out,  which  means  that  both  are  precipitation  reactions—all  double  replacement  reactions  are  precipitation  reactions.    Answer  C  (1/75)  

36.   All  of  the  following  reactions  

                             2Al(s)  +  3Br2(l)  →  2AlBr3(s)  

                             2Ag2O(s)  →  4Ag(s)  +  O2(g)  

                             CH4(l)  +  2O2(g)  →  CO2(g)  +  2H2O(g)  

can  be  classified  as  

a)   oxidation-­‐reduction  reactions  b)   combustion  reactions  c)   precipitation  reactions  d)   A  and  B  e)   A  and  C  In  the  first  reaction  we  see  that  two  elemental  substances  (oxidation  state  0)  are  changed  to  atoms  that  are  part  of  a  compound  (oxidation  states  “not  zero”).    You  don’t  even  need  to  know  what  the  non-­‐zero  oxidation  states  are—you  know  that  they  have  changed  from  0  to  something  else  so  it  must  involve  oxidation  and  reduction.    As  two  elements  are  combining  to  form  a  compound  this  would  also  be  a  synthesis  reaction.    In  the  second  reaction  we  see  the  opposite  occurring—we  see  atoms  that  are  part  of  an  ionic  compound  (oxidation  states  “not  zero”)  being  changed  into  elemental  atoms  (oxidation  state  0).      As  with  the  first  reaction,  this  involves  oxidation  and  reduction.    

Page 18: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 86

Copyright © Cengage Learning. All rights reserved.

However,  in  contrast  to  the  first  reaction,  as  a  compound  is  being  broken  into  its  component  elements  this  is  a  decomposition  reaction.    In  the  third  reaction,  we  have  a  carbon  compound  being  reacted  with  oxygen  to  form  carbon  dioxide  and  water.    This  is  the  hallmark  of  a  combustion  reaction.    However,  as  the  other  two  are  not  combustion  reactions,  we  cannot  say  that  all  the  reactions  are  combustion  reactions.    But,  we  also  know  that  all  combustion  reactions  are  oxidation  reduction  reactions—especially  as  they  all  involve  the  change  of  elemental  oxygen  (oxidation  state  0)  to  oxygen  in  a  compound  (oxidation  state  -­‐2).    Therefore,  all  of  the  reactions  could  be  considered  to  be  oxidation  reduction  reactions.    (Note,  you  also  could  not  say  A  and  B  because  not  all  of  the  reactions  are  combustion).    Answer  A  (1/76)  

37.   You  have  exposed  electrodes  of  a  light  bulb  in  a  solution  of  H2SO4  such  that  the  light  bulb  is  on.  You  add  a  dilute  solution  and  the  bulb  grows  dim.  Which  of  the  following  could  be  in  the  solution?  

a)   Ba(OH)2  b)   NaNO3  c)   K2SO4  d)   Cu(NO3)2  e)   none  of  these  Because  sulfuric  acid  is  a  strong  acid,  the  first  hydrogen  will  dissociate  completely.    This  means  that  sulfuric  acid  is  a  strong  electrolyte  and  will  allow  electric  current  to  flow  strongly—the  light  bulb  is  on.    If  we  add  a  solution  and  the  bulb  grows  progressively  dimmer,  this  must  mean  that  something  is  “cancelling  out”  the  ionic  (charged)  particles  in  the  solution.    The  only  solution  capable  of  accomplishing  this  in  an  acid  solution  is  a  basic  solution—one  that  provides  OH-­‐  ions.    Therefore,  Ba(OH)2  is  the  logical  choice.    Answer  A  (1/77)  

38.   Aqueous  solutions  of  sodium  sulfide  and  copper(II)  chloride  are  mixed  together.  Which  statement  is  correct?  

a)   Both  NaCl  and  CuS  precipitate  from  solution.  b)   No  reaction  will  occur.  c)   CuS  will  precipitate  from  solution.  d)   NaCl  will  precipitate  from  solution.  e)   A  gas  is  released.  The  answer  to  this  question  is  based  on  knowledge  of  solubility  rules.    We  are  told  that  the  initial  compounds  are  both  soluble,  but  when  mixed  together,  we  might  expect  something  to  precipitate  out.    Except  for  group  one  (IA)  metals,  when  combined  with  other  metals  sulfides  are  highly  insoluble.    Therefore,  we  would  expect  copper  sulfide  to  precipitate  out.    Answer  C  (1/78)    39.   Aqueous  solutions  of  potassium  sulfate  and  ammonium  nitrate  are  mixed  together.  Which  statement  is  correct?  

Page 19: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 87

Copyright © Cengage Learning. All rights reserved.

a)   NH4SO4  will  precipitate  from  solution.  b)   KNO3  will  precipitate  from  solution.  c)   No  reaction  will  occur.  d)   Both  KNO3  and  NH4SO4  precipitate  from  solution.  e)   A  gas  is  released.  The  answer  to  this  question  is  based  on  knowledge  of  solubility  rules.    We  are  told  that  the  initial  compounds  are  both  soluble,  but  when  mixed  together,  we  might  expect  something  to  precipitate  out.    However,  ammonium,  nitrate,  and  potassium  compounds  are  almost  always  soluble,  and  sulfates  are  often  soluble,  so,  according  to  the  solubility  rules,  there  is  no  combination  of  ions  in  the  mix  given  that  should  precipitate  out—no  reaction  should  occur.    Answer  C  (1  point/79)    40.   Which  of  the  following  salts  is  insoluble  in  water?  

a)   Na2S  b)   K2CO3  c)   Pb(NO3)2  d)   CaCl2  e)   All  of  these  are  soluble  in  water.  (a)  Most  sulfides  are  insoluble—however,  those  of  1A  metal  cations  are  soluble—Na2S  is  soluble.    (b)    Most  carbonates  are  insoluble—however,  those  of  1A  metal  cations  are  soluble—K2CO3  is  soluble.    (c)  Most  nitrates,  including  lead  nitrate,  are  soluble.    (d)  Most  chlorides,  including  those  of    2A  metal  cations,  are  soluble.    Answer  E  (1  point/80)  

41.   How  many  of  the  following  salts  are  expected  to  be  insoluble  in  water?  

sodium  sulfide     barium  nitrate  

ammonium  sulfate   potassium  phosphate  

 

a)   none  b)   1  c)   2  d)   3  e)   4  Most  sulfides  are  insoluble—however,  those  of  1A  metal  cations  are  soluble—Na2S  is  soluble.    Most  nitrates,  including  barium  nitrate,  are  soluble.    Most  ammonium  compound,  including  ammonium  sulfate  are  soluble.    Most  phosphates  are  insoluble.    However,  those  of  1A  metal  cations  are  soluble.    None  of  these  compounds  should  be  insoluble.    Answer  A  (1  point/81)  

42.   When  NH3(aq)  is  added  to  Cu2+(aq),  a  precipitate  initially  forms.  Its  formula  is:  

a)   Cu(NH)3  b)   Cu(NO3)2  

Page 20: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 88

Copyright © Cengage Learning. All rights reserved.

c)   Cu(OH)2  d)   Cu(NH3)22+  e)   CuO  

This  is  a  tricky  question.    Recognize  that  NH3  is  a  weak  base  and  its  mechanism  of  action  is  that  it  pulls  a  hydrogen  ion  from  H2O  to  form  OH-­‐  ions.    This  means  that  Cu2+  ions  that  are  in  solution  now  are  exposed  to  OH-­‐  ions.    Most  hydroxides  of  transition  metal  cations  are  insoluble,  including  Cu(OH)2.      Therefore,  this  will  precipitate  out  initially.    (However,  as  the  reaction  proceeds,  Cu2+ions  will  secondarily  form  complex  ions  with  ammonia  molecules—Cu(NH3)22+  ions—and  these  are  soluble—so  after  a  short  time,  the  precipitate  disappears  as  it  is  converted  to  this  complex  ion.)    Answer    C  (1  point/82)  

43.   Which  of  the  following  ions  is  most  likely  to  form  an  insoluble  sulfate?  

a)   K+  b)   Ca2+  c)   S2–  d)   Li+  e)   Cl–  According  to  solubility  rules—  most  sulfates  are  soluble,  except  for  those  of  Ba,  Pb,  Hg  and  Ca—so,  Ca2+  is  most  likely  to  form  an  insoluble  sulfate.    You  should  be  able  to  eliminate  the  anions  S2-­‐  and  Cl-­‐  immediately  because  these  are  not  going  to  form  a  sulfate.  Answer  B  (1  point/83)    44.   Which  of  the  following  compounds  is  soluble  in  water?  

a)   Ni(OH)2  b)   K3PO4  c)   BaSO4  d)   CoCO3  e)   PbCl2  According  to  solubility  rules—  most  hydroxides  are  insoluble  except  for  a  few  in  column  1A  and  2A,  so  (a)  will  precipitate;  most  phosphates  are  insoluble,  except  for  those  of  the  column  1A—so,  (b)  will  actually  dissolve;  most  sulfates  are  soluble,  except  for  those  of  Ba,  Pb,  Hg  and  Ca  so,  (c)  will  precipitate;  most  carbonates  are  insoluble,  except  for  those  of  the  column  1A,  so  (d)  will  precipitate;  most  chlorides  are  soluble,  except  for  Ag,  Pb,  and  Hg,  so  (e)  will  precipitate.    Answer  B  (1  point/84)  

45.   Which  pair  of  ions  would  not  be  expected  to  form  a  precipitate  when  dilute  solutions  of  each  are  mixed?  

a)   Al3+,  S2–  b)   Pb2+,  Cl–  c)   Ba2+,  PO43–  d)   Pb2+,  OH–  e)   Mg2+,  SO42–  

Page 21: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 89

Copyright © Cengage Learning. All rights reserved.

According  to  solubility  rules—sulfide  precipitates  out  almost  everything  so  (a)  will  precipitate;  most  chlorides  are  soluble,  except  for  Ag,  Pb,  and  Hg,  so  (b)  will  precipitate;  most  phosphates  are  insoluble,  except  for  those  of  the  column  1A,  so  (c)  will  precipitate;  most  hydroxides  are  insoluble  except  for  a  few  in  column  1A  and  2A,  so  (d)  will  precipitate;  most  sulfates  are  soluble,  especially  those  of  columns  1A  and  2A,  so,  (e)  will  not  precipitate.    Answer  E  (1  point/85)  

46.   A  solution  contains  the  ions  Ag+,  Pb2+,  and  Ni2+.  Dilute  solutions  of  NaCl,  Na2SO4,  and  Na2S  are  available  to  separate  the  positive  ions  from  each  other.  In  order  to  effect  separation,  the  solutions  should  be  added  in  which  order?  

a)   Na2SO4,  NaCl,  Na2S  b)   Na2SO4,  Na2S,  NaCl  c)   Na2S,  NaCl,  Na2SO4  d)   NaCl,  Na2S,  Na2SO4  e)   NaCl,  Na2SO4,  Na2S  

Most  sulfate  salts  are  soluble,  except  for  those  of  Ba,  Pb,  Hg,  and  Ca.    So,  add  NaSO4  first  and  only  PbSO4  will  precipitate  out.    Filter  this  out  of  the  solution,  leaving  Ag  and  Ni  ions  in  solution.    Next,  most  chloride  salts  are  soluble  except  for  those  of  Ag,  Pb  and  Hg.    There  is  no  more  Pb,  so  add  NaCl  and  AgCl  will  precipitate  out.    Filter  this  out  of  the  solution  leaving  only  Ni  ions  in  solution.    Then,  add  Na2S.    This  will  precipitate  almost  anything,  including  the  nickel.    Answer  A  (1  point/86)  

47.   Consider  an  aqueous  solution  of  calcium  nitrate  added  to  an  aqueous  solution  of  sodium  phosphate.  What  is  the  formula  of  the  solid  formed  in  the  reaction?  

a)   Ca(PO4)2  b)   CaPO4  c)   Ca3(PO4)2  d)   Ca3(PO3)2  e)   none  of  these    Make  sure  you  know  how  to  write  the  correct  formulas  for  all  compounds  involved.  If  necessary  to  help  visualize  write  out  the  formulas  for  the  compounds,  or  even  the  reactant  side  of  a  chemical  equation  so  you  can  “see”  the  correct  chemical  formulas:  

Ca(NO3)2 (aq)  and   Na3PO4 (aq)      In  this  case,  both  substances  are  individually  soluble.    However,  added  together  your  options  for  possible  precipitates  are:  

Ca3(PO4 )2 and     NaNO3  From  your  solubility  rules  you  know  that  all  nitrates  are  solube—especially  one  combined  with  column  1A  metals.    You  also  know  that  phosphates  (except  for  those  combined  with  metals  in  column  1A)  are  insoluble.    So,   Ca3(PO4 )2  would  be  the  correct  answer.    Answer  C  (1  point/87)  

48.   T        F        The  filtrate  is  the  solid  formed  when  two  solutions  are  mixed.  

Page 22: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 90

Copyright © Cengage Learning. All rights reserved.

False—a  solid  formed  when  two  solutions  are  mixed  is  called  the  precipitate.    The  filtrate  is  liquid  that  passes  through  a  filter  when  a  liquid  mixture  containing  solid  particles  is  passed  over  a  filter.    (1  point/88)    

Given  the  following  information  for  questions  49-­‐51:  

Aqueous  solutions  of  barium  chloride  and  silver  nitrate  are  mixed  to  form  solid  silver  chloride  and  aqueous  barium  nitrate.    Note—these  test  questions  use  the  term  “molecular  equation”  to  indicate  the  “formula  equation”  we  talked  about  in  lecture.  

49.   The  balanced  molecular  equation  contains  which  one  of  the  following  terms?  

a)   AgCl  (s)  b)   2AgCl  (s)  c)   2Ba(NO3)2  (aq)  d)   BaNO3  (aq)  e)   3AgCl  (aq)  Write  out  the  complete  balanced  formula  equation  (molecular  equation).    Remember  that  this  is  all  of  the  substances  involved,  all  written  in  compound  form,  with  states  of  matter  included.    You  are  given  the  names  of  all  of  the  compounds  so  it  should  be  easy  to  write  this  equation  out  and  balance  it  (include  states  of  matter).  

BaCl2 (aq) + 2AgNO3(aq) → 2AgCl(s) + Ba(NO3)2  From  the  balanced  equation  you  should  quickly  be  able  to  see  that  2AgCl  is  the  correct  choice).    Answer  B  (1  point/89)  

50.   The  balanced  complete  ionic  equation  contains  which  of  the  following  terms?  

a)   2Ba2+(aq)  b)   Cl–(aq)  c)   2Ag+(aq)  d)   NO3–  (aq)  e)   AgCl(aq)  Remember,  this  is  all  substances  involved.    For  dissolved  ions,  the  specific  ions  are  written  out,  including  the  “aq”  state  of  matter.    For  precipitated  substances,  the  compound  formula  is  written  out  including  the  “s”  state  of  matter.      From  the  formula  (molecular)  equation  you  should  quickly  be  able  to  write  out  the  complete  ionic  equation,  inspect  it,  and  select  the  correct  answer.    Answer  C  (1  point/90)    

Ba2+ (aq) + 2Cl− (aq)+ 2Ag+ (aq)+ 2 NO3− (aq) → 2AgCl(s)+ Ba2+ (aq)+ 2NO3

− (aq)    

51.   The  net  ionic  equation  contains  which  of  the  following  terms?  

a)   Ag+(aq)  b)   Ba2+(aq)  

Page 23: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 91

Copyright © Cengage Learning. All rights reserved.

c)   NO3–  (aq)  d)   H+  (aq)  e)   AgCl(aq)  Remember  that  the  net  ionic  equation  includes  only  those  ions/substances  involved  in  the  “action.”  In  this  case,  silver  and  chloride  ions  combined  to  form  solid  silver  chloride.    Therefore,  these  are  the  only  substances  listed  in  the  equation.    This  should  appear  in  reduced  form.    You  should  be  able  to  quickly  write  out  these  formulas  and  select  the  correct  answer  from  the  list.    Answer    A  (1  point/91)  

Ag+ (aq)+ Cl− (aq)→ AgCl(s)    

52.   In  writing  the  complete  ionic  equation  for  the  reaction  (if  any)  that  occurs  when  aqueous  solutions  of  KOH  and  Mg(NO3)2  are  mixed,  which  of  the  following  would  not  be  written  as  ionic  species?  

a)   KOH  b)   Mg(NO3)2  c)   Mg(OH)2  d)   KNO3  e)   All  of  the  above  would  be  written  as  ionic  species.  You  should  be  able  to  create  a  complete  ionic  equation  from  the  description  of  a  reaction  without  having  to  write  down  the  complete  formula  (molecular)  equation.  You  know  that  on  the  reactant  side,  both  substances  will  be  in  solution.    Therefore,  all  four  ions  making  up  these  substances  will  be  written  as  an  ionic  species  on  the  reactant  side.  

K+ (aq) + OH − (aq) + Mg 2+ (aq) + 2 NO3

− (aq)→  (At  this  point,  you  wouldn’t  know  it,  but  after  balancing,  the  K+  and  OH-­‐  ions  would  have  coefficients  of  2)    Then,  because  you  know  your  solubility  rules,  you  would  know  that  Mg(OH)2  will  precipitate  out,  but  the  other  ions  would  remain  in  solution.    Add  these  substances  on  the  product  side,  and  balance  the  equation.  

2K + (aq) + 2OH − (aq) + Mg 2+ (aq) + 2 NO3− (aq)→ Mg(OH )2 (s) + 2K + (aq)+ 2 NO3

− (aq)  Then,  select  the  correct  answer—Mg(OH)2  would  not  be  written  as  an  ionic  species.  Answer  C  (1  point/92)  

53.   The  net  ionic  equation  for  the  reaction  of  calcium  bromide  and  sodium  phosphate  contains  which  of  the  following  species?  

a)   2Br–(aq)  b)   PO43–(aq)  c)   2Ca3(PO4)2(s)  d)   6NaBr(aq)  e)   3Ca2+(aq)  

You  should  be  able  to  create  a  net  ionic  equation  from  the  description  of  an  equation.    You  understand  that  from  the  description,  before  a  reaction  occurs,  Ca2+,  Br-­‐,  Na+,  and  

Page 24: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 92

Copyright © Cengage Learning. All rights reserved.

PO43-­‐  ions  will  be  in  the  solution.    From  solubility  rules,  you  know  that  compounds  with  Na+  ions  are  almost  always  soluble;  compounds  with  Br-­‐  ions  are  usually  soluble;  compounds  with  Ca2+  are  soluble  with  some  things  but  not  others;  phosphates  are  usually  insoluble  (although  sodium  phosphate  is  soluble).    Mixing  calcium  bromide  and  sodium  phosphate,  the  two  possible  compounds  you  could  have  precipitate  out  would  be  calcium  phosphate  and  sodium  bromide.    Again,  because  of  knowledge  of  solubility  rules,  sodium  bromide  would  not  precipitate  but  calcium  phosphate  would.    Therefore,  Ca2+  and  PO43-­‐  ions  would  be  the  reactants  and  calcium  phosphate  would  be  the  solid  that  precipitates.    So,  writing  the  net  ionic  equation  down  we  get:    

3Ca2+ (aq)+ 2PO43− (aq)→ Ca3(PO4 )2(s)  

From  this  you  can  then  pick  the  correct  answer  from  the  list.    The  only  answer  that  matches  what  is  in  the  equation  is   3Ca2+ .    Answer  E  (1  point/93)  

 54.   When  sodium  chloride  and  lead(II)  nitrate  react  in  an  aqueous  solution,  which  of  the  following  terms  will  be  present  in  the  balanced  molecular  equation?  

a)   PbCl(s)  b)   Pb2Cl(s)  c)   NaNO3(aq)  d)   2NaNO3(aq)  e)   2PbCl2(s)  Write  out  the  complete  balanced  formula  equation  (molecular  equation).    Remember  that  this  is  all  of  the  substances  involved,  all  written  in  compound  form,  with  states  of  matter  included.    You  are  given  the  names  of  the  reactants  so  it  should  be  easy  to  write  this  equation  out  and  balance  it  (include  states  of  matter).  

2NaCl (aq) + Pb(NO3)2(aq) → PbCl2(s) + 2Na(NO3)  From  the  balanced  equation  you  should  quickly  be  able  to  see  that  2NaNO3  is  the  correct  choice.    Answer  D  (1  point/94)  

55.   Consider  an  aqueous  solution  of  calcium  nitrate  added  to  an  aqueous  solution  of  sodium  phosphate.  Write  and  balance  the  equation  for  this  reaction  to  answer  the  following  question.    What  is  the  sum  of  the  coefficients  when  the  molecular  equation  is  balanced  in  standard  form?  

a)   4  b)   5  c)   7  d)   11  e)   12  Write  out  the  complete  balanced  formula  equation  (molecular  equation).    Remember  that  this  is  all  of  the  substances  involved,  all  written  in  compound  form,  with  states  of  matter  included.    You  are  given  the  names  of  the  reactants  so  it  should  be  easy  to  write  this  equation  out  and  balance  it  (include  states  of  matter).    From  the  balanced  equation  you  can  quickly  determine  the  sum  of  the  coefficients:  3+2+1+6=12    Answer  

Page 25: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 93

Copyright © Cengage Learning. All rights reserved.

E  (1  point/95)  

3Ca(NO3)2 (aq) + 2Na3PO4(aq) → Ca3(PO4 )2(s) + 6NaNO3(aq)  

56.   When  solutions  of  phosphoric  acid  and  iron(III)  nitrate  react,  which  of  the  following  terms  will  be  present  in  the  balanced  molecular  equation?  

a)   HNO3(aq)  b)   3HNO3(aq)  c)   2FePO4(s)  d)   3FePO4(s)  e)   2HNO3(aq)  Write  out  the  complete  balanced  formula  equation  (molecular  equation).    Remember  that  this  is  all  of  the  substances  involved,  all  written  in  compound  form,  with  states  of  matter  included.    You  are  given  the  names  of  the  reactants  so  it  should  be  easy  to  write  this  equation  out  and  balance  it  (include  states  of  matter).  

H3PO4 (aq) + Fe(NO3)3(aq) → FePO4(s) + 3HNO3 (aq)  From  the  balanced  equation  you  should  quickly  be  able  to  see  that  3HNO3  is  the  correct  choice.    Answer  B  (1  point/96)  

57.   When  solutions  of  cobalt(II)  chloride  and  carbonic  acid  react,  which  of  the  following  terms  will  be  present  in  the  net  ionic  equation?  

a)   CoCO3(s)  b)   H+(aq)  c)   2CoCO3(s)  d)   2Cl–(aq)  e)   two  of  these  

You  should  be  able  to  create  a  net  ionic  equation  from  the  description  of  an  equation.    You  understand  that  from  the  description,  before  a  reaction  occurs,  Co2+,  Cl-­‐,  H+,  and  CO32-­‐  ions  will  be  in  the  solution.    From  solubility  rules,  you  know  that  compounds  with  transition  metal  cations  may  or  may  not  be  soluble,  but  are  often  insoluble;  compounds  with  Cl-­‐  ions  are  usually  soluble;  compounds  with  H+  are  acids  and  would  be  considered  soluble;  carbonates  are  usually  insoluble  (although  carbonic  acid  is  soluble).    Mixing  cobalt  chloride  and  carbonic  acid,  the  two  possible  compounds  you  could  have  precipitate  out  would  be  cobalt  carbonate  and  hydrochloric  acid.    Again,  because  of  knowledge  of  solubility  rules,  hydrochloric  acid  would  not  precipitate  but  cobalt  carbonate  would.    Therefore,  Co2+  and  CO32-­‐  ions  would  be  the  reactants  and  cobalt  carbonate  would  be  the  solid  that  precipitates.    So,  writing  the  net  ionic  equation  down  we  get:    

Co2+ (aq)+ CO32− (aq)→ CoCO3(s)  

From  this  you  can  then  pick  the  correct  answer  from  the  list.    The  only  answer  that  matches  what  is  in  the  equation  is  CoCO3.    Answer  A  (1  point/97)  

58.   When  solutions  of  strontium  chloride  and  sodium  carbonate  react,  which  of  the  following  is  a  spectator  ion?  

Page 26: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 94

Copyright © Cengage Learning. All rights reserved.

a)   strontium  ion  b)   chloride  ion  c)   sodium  ion  d)   carbonate  ion  e)   two  of  these  Writing  out  the  complete  ionic  equation  will  reveal  which  ions  participate  in  some  type  of  a  reaction  versus  any  that  don’t  participate—those  ions  that  do  not  participate  will  remain  in  solution  and  are  a  called  spectator  ions.        You  should  be  able  to  create  a  complete  ionic  equation  from  the  description  of  a  reaction  without  having  to  write  down  the  complete  formula  (molecular)  equation.  You  know  that  on  the  reactant  side,  both  substances  will  be  in  solution.    Therefore,  all  four  ions  making  up  these  substances  will  be  written  as  an  ionic  species  on  the  reactant  side.  

Sr 2+ (aq) + 2Cl− (aq) + 2Na+ (aq) + CO32− (aq)→  

Then,  because  you  know  your  solubility  rules,  you  would  know  that  SrCO3  will  precipitate  out,  but  the  other  ions  would  remain  in  solution.    Add  these  substances  on  the  product  side,  and  balance  the  equation.  

Sr 2+ (aq) + 2Cl− (aq) + 2Na+ (aq) + CO32− (aq)→ SrCO3 (s)+ 2Na+ (aq)+ 2Cl− (aq)  

From  the  complete  ionic  equation  you  can  see  that  both  the  sodium  and  chloride  ions  will  remain  in  solution  and  so  are  spectator  ions.    Answer  E  (1  point/98)  

59.   The  net  ionic  equation  for  the  reaction  of  aluminum  sulfate  and  sodium  hydroxide  contains  which  of  the  following  species?  

a)   3Al3+(aq)  b)   OH–(aq)  c)   3OH–(aq)  d)   2Al3+(aq)  e)   2Al(OH)3(s)  

You  should  be  able  to  create  a  net  ionic  equation  from  the  description  of  an  equation.    You  understand  that  from  the  description,  before  a  reaction  occurs,  Al3+,  SO42-­‐,  Na+,  and  OH-­‐  ions  will  be  in  the  solution.    From  solubility  rules,  you  know  that  compounds  with  aluminum  (with  a  3+  charge)  will  only  likely  be  soluble  with  column  7A  anions;  compounds  with  SO42-­‐  ions  are  often  soluble;  compounds  with  Na+  are  always  soluble;  hydroxides  are  often  insoluble.    Mixing  aluminum  sulfate  and  sodium  hydroxide,  the  two  possible  compounds  you  could  have  precipitate  out  would  be  aluminum  hydroxide  and  sodium  sulfate.    Again,  because  of  knowledge  of  solubility  rules,  sodium  sulfate  would  not  precipitate  but  aluminum  hydroxide  would.    Therefore,  Al3+  and  OH-­‐  ions  would  be  the  reactants  and  aluminum  would  be  the  solid  that  precipitates.    So,  writing  the  net  ionic  equation  down  we  get:    

Al3+ (aq)+ 3OH − (aq)→ Al(OH )3(s)  From  this  you  can  then  pick  the  correct  answer  from  the  list.    The  only  answer  that  matches  what  is  in  the  equation  is  3OH-­‐.    Answer  C  (1  point/99)  

Page 27: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 95

Copyright © Cengage Learning. All rights reserved.

Precipitation  Reaction  Skills    As  tedious  as  it  is,  for  any  precipitation  reaction  for  which  you  are  going  to  have  to  provide  information  about  reactants  or  products  (including  precipitates),  or  do  stoichiometry  calculations,  it  is  probably  best  to  write  out  the  complete  ionic  equation  to  make  sure  you  understand  all  of  its  pieces  and  have  them  in  front  of  your  eyes.       You  should  be  able  to  tell  what  the  specific  ionic  species  are  on  the  reactant     side  by  inspecting  the  names/formulas  of  the  stated  reactants.           You  should  then  be  able,  using  solubility  rules,  to  predict  what  will  precipitate     (note,  we  don’t  always  have  to  have  a  precipitate—sometimes,  in  mixing  ionic     compounds  together  nothing  will  precipitate  out—that  is,  there  is  no  reaction)     and  what  will  remain  in  solution.    There  are  a  variety  of  possible  problems  requiring  a  variety  of  skills.    Limiting  Reagent  Type  Problems  (see  problems  60,  61,  71)    You  may  be  given  information  to  be  able  to  find  the  amounts  (moles)  of  reactants  (usually  given  M  and  L).    After  writing  out  the  complete  ionic  equation,  inspecting  the  equation  you  can  more  easily  visualize  what  ions  will  precipitate  out  and  what  the  concentrations  and  volumes  of  the  reactant  ions  that  give  rise  to  this  precipitate  are.       Determine  moles  or  grams  of  a  precipitate  (see  problem  61,  71)       One  reason  for  determining  a  limiting  reactant  is  to  determine  how  many       moles  or  grams  of  a  precipitate  are  formed.    As  with  any  limiting  reactant     problem,  you  would  simply  multiply  the  moles  of  each  reactant  times  the       mole  ratio  of  the  precipitate  to  the  reactant  to  calculate  the  number  of  moles     of  precipitate  each  reactant  would  produce.          

moles precipitate = (moles reactant)( mol from equation of precipitate

mol from equation of reactant )     Whichever  reactant  produces  less  precipitate  is  the  limiting  reactant.    This     number  of  moles  can  then  be  multiplied  by  the  molar  mass  of  the  precipitate  to     get  the  number  of  grams.       Amount  of  excess  of  non-­‐limiting  precipitating  ion  (especially  see  problem  61)       As  an  extension  of  the  above  process,  if  there  is  a  limiting  reactant  in  a     precipitation  reaction,  not  only  will  the  soluble  ions  remain  in  the  solution     after  the  precipitation,  any  excess  precipitating  ion  that  was  not  consumed     will  also  remain  in  solution.    You  may  have  to  determine  how  much  excess  ion     remains,  or,  at  the  very  least  determine  which  ion  still  remains  (question  60  is     an  example  of  this).    NEVER  ASSUME  THAT  THE  ONLY  IONS  REMAINING  AFTER  

Page 28: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 96

Copyright © Cengage Learning. All rights reserved.

  A  PRECIPITATION  ARE  JUST  THOSE  IONS  THAT  WON’T  CREATE  A     PRECIPITATE!!!!!!           If  you  have  to  determine  how  much  excess  remains,  you  already  had  to     calculate  the  number  of  moles  of  that  ion  you  started  with.    Next,  calculate     the  number  of  moles  of  that  ion  that  were  consumed  by  the  limiting  reagent.     It  will  usually  be  the  same  as  the  number  of  moles  of  the  precipitate,  but  it     might  not  be  depending  on  the  mole  ratios  in  the  chemical  equation.    (For     example,  maybe  2  moles  of  the  excess  ion  are  precipitated  for  every  mole  of     limiting  ion).    Finally,  subtract  the  number  of  moles  of  excess  ion  that  were     consumed  from  the  beginning  number  of  moles,  and  this  will  give  you  the     number  of  moles  remaining.           If  you  need  grams  of  excess  precipitating  ion,  multiply  the  above  number  of     moles  time  the  molar  mass.    Grams  or  moles  precipitated  by  a  precipitating  reagent.  

Precipitation  reactions  designed  to  determine  an  amount  of  substance  (moles/grams/mass  percent)  in  a  mixture  

60.   Consider  the  reaction  between  15.0  mL  of  a  1.00  M  aqueous  solution  of  AgNO3  and  10.0  mL  of  a  1.00  M  aqueous  solution  of  K2CrO4.  When  these  react,  a  precipitate  is  observed.  What  is  present  in  solution  after  the  reaction  is  complete?  Note:  the  solid  is  not  considered  to  be  in  solution.  

a)   Ag+,  NO3–,  K+,  CrO42–,  water  b)   Ag+,  NO3–,  K+,  water  c)   K+,  CrO42–,  water  d)   NO3–,  K+,  CrO42–,  water  e)   water    (See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:

2Ag+ (aq) + 2NO3− (aq) + 2K + (aq) + CrO4

2− (aq)→ Ag2CrO4 (s)+ 2K + (aq)+ 2NO3− (aq)  

Even  though  it  provides  stoichiometry  information,  this  question  SEEMS  to  only  ask  for  you  to  identify  the  substances  remaining  in  solution  after  the  precipitate  is  formed.    But,  the  stoichiometry  information  is  given  for  a  reason—either  Ag+  or  CrO42-­‐  will  also  be  left  in  solution  because  there  will  not  be  enough  of  one  or  the  other  to  precipitate  out  all  of  the  corresponding  ion—as  with  almost  all  precipitation  reactions,  this  problem  involves  aspects  of  limiting  reagent  problems.    Therefore,  in  addition  to  K+  and  NO3-­‐,  one  of  the  precipitating  ions  will  also  be  left  in  solution.    Unfortunately,  both  are  options  in  the  answer  list  so  we  will  have  to  figure  out  which  one.    Fortunately,  the  problem  does  not  ask  for  how  much  excess  of  this  ion  there  will  be.    We  could  perform  calculations  to  help  us  out  but  the  information  given  is  actually  reasonable  enough  that  we  won’t  need  to  (and  this  is  a  multiple  choice  question  so  we  should  be  able  to  do  it  without  a  calculator)  

Page 29: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 97

Copyright © Cengage Learning. All rights reserved.

 To  find  out  which  precipitating  ion  will  be  in  excess  we  first  have  to  find  out  which  will  be  the  limiting  reactant—which  will  give  the  least  amount  of  Ag2CrO4  precipitate.    We  would  proceed  like  any  other  limiting  reactant  problem,  and  test  how  many  moles  of  precipitate  we  get  with  the  specific  amount  of  each  reactant.    We  can  see  from  the  given  information  that  although  we  haven’t  been  given  the  number  of  grams  or  moles  of  each  reactant,  we  have  been  given  the  information  to  find  out  the  number  of  moles—M  and  L.  

mol AgNO3 = ( M )(L) = (1.00M )(.0150L) = .0150molmol K2CrO4 = ( M )(L) = (1.00M )(.0100L) = .0100mol

 

These  values  are  easy  to  determine  without  a  calculator.      Then,  we  could  write  out  calculations  to  determine  the  actual  number  of  moles  of  Ag2CrO4  each  reactant  would  provide.    But,  we  can  actually  reason  it  out  without  much  of  a  problem.           We  can  see  that  for  every  mole  of  AgNO3,  we  would  get  half  a  mole  of  Ag2CrO4.       Therefore,  as  we  would  be  starting  with  .0150  mol  of  AgNO3,  we  would     get  .0075  mol  of  Ag2CrO4.       We  can  see  that  for  every  mole  of  K2CrO4,  we  would  get  one  mole  of  Ag2CrO4.       Therefore,  as  we  would  be  starting  with  .0100  mol  of  AgNO3,  we  would     get  .0100  mol  of  Ag2CrO4.       Therefore,  AgNO3  would  be  limiting  and  we  would  have  excess  K2CrO4.    So,     some  CrO42-­‐  ion  would  also  be  left  in  the  solution  at  the  end  of  the  process     because  there  would  not  have  been  enough  Ag+  to  precipitate  it  all  out.  Answer  D  (1  point/100)  

61.   You  mix  265.0  mL  of  1.20  M  lead(II)  nitrate  with  300.0  mL  of  1.55  M  potassium  iodide.  The  lead(II)  iodide  is  insoluble.  Which  of  the  following  is  false?  

a)   The  final  concentration  of  Pb2+  ions  is  0.151  M.  b)   You  form  107  g  of  lead(II)  iodide.  c)   The  final  concentration  of  K+  is  0.823  M.  d)   The  final  concentration  of  NO3–  is  0.823  M.  e)   All  are  true.  (See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:  

Pb2+ (aq) + 2NO3− (aq) + 2K + (aq) + 2I − (aq)→ PbI2 (s)+ 2K + (aq)+ 2NO3

− (aq)  

You  are  given  a  problem  that  contains  stoichiometry  information—in  particular,  you  are  given  (M)  and  (L)  for  each  reactant  and  it  would  be  wise  to  assume  that  you  are  going  to  need  to  determine  the  number  of  moles  for  each  and  then  determine  a  liiting  reagent  in  order  to  be  able  to  select  the  correct  answer  from  the  list.    In  particular,  you  can  see  by  looking  at  the  equation  that  after  the  precipitate  is  formed,  in  addition  to  potassium  and  nitrate  remaining  in  solution,  one  of  the  precipitating  ions,  Pb2+  or  

Page 30: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 98

Copyright © Cengage Learning. All rights reserved.

I-­‐  will  be  in  excess  and  will  remain  in  solution  as  well.    In  scanning  the  list  of  answers,  the  type  of  information  required  to  answer  this  question  will  be  somewhat  varied  so  you  will  likely  have  to  simply  take  each  answer  one  at  a  time.  

(a)  Right  away,  you  are  going  to  have  to  calculate  the  number  of  moles  of  each  reactant  solution,  determine  which  will  be  a  limiting  reactant,  and  then  determine  if  lead  is  in  excess  compared  to  iodide,  and  if  so,  what  is  its  remaining  concentration.           To  determine  whether  lead  or  iodide  will  be  limiting,  you  will  need  to     determine  moles  of  each  and  test  how  much  PbI2  would  be  formed:  

   

mol Pb(NO3)2 = ( M )(L) = (1.20 molL )(.2650L) = .318mol

mol KI = ( M )(L) = (1.55 molL )(.3000L) = .465mol

mol PbI2( for PbNO3)2 ) = (.318 mol PbNO3)( 1 mol PbI21 mol Pb( NO3 )2

) = .318 mol

mol PbI2( for KI ) = (.465 mol KI )(1 mol PbI22 mol KI ) = .233 mol

 

  The  amount  of  KI  given  will  provide  less  PbI2  so  it  is  limiting.    Then  you  can       see  that  if  .233  mol  of  PbI2  is  formed,  as  1  mol  of  Pb(NO3)  will  be  consumed       for  every  mole  of  PbI2  formed,  we  can  find  the  amount  of  excess  Pb(NO3)2.  

excess Pb(NO3)2 = beginning mol Pb(NO3)2 − consumed mol Pb(NO3)2 = .318mol − .233= .085 mol     Then,  you  can  also  find  the  total  volume  of  final  solution,  so  you  can  determine     the  concentration  of  lead  ion  remaining  in  the  solution.      

 

total volume = .3000L+ .2650L = .5650L

[Pb2+ ]= molL = .085mol

.5650 L = .151 M  

  So,  (a)  is  true.    (b)  You  already  have  determined  the  number  of  moles  of  lead  iodide  formed  in  determining  how  much  excess  lead  ion  you  have.    You  determined  that  .233  mol  of  lead  iodide  would  be  formed  for  the  amount  of  KI  given.    To  find  grams  just  write  down   g = (mol)(mm) ,  plug  in  the  values  and  solve:  

g = (mol)(mm) = (.233mol)(461.01 g / mol) = 107 g     So,  (b)  is  true.    (c)  You  have  already  determined  the  number  of  moles  of  KI  in  part  (a).    As  KI    dissociates  into  1  particle  each  of  K+  and  I-­‐,  the  number  of  moles  of  KI  on  the  reactant  side  will  also  be  the  number  of  moles  of  K+  on  the  product  side.    Therefore,  the  number  of  moles  of  K+  in  solution  after  the  precipitation  will  be  .465  mol.    You  also  have  already  calculated  the  total  final  volume,  .5650  L,  so  write  down  the  molarity  formula,  plug  the  values  in  and  solve.      

M = molL = .465 mol

.5650 L = .823 M    So,  (c)  is  true.    (d)  You  have  also  already  determined  the  number  of  moles  of  Pb(NO3)2  in  part  (a).  

Page 31: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 99

Copyright © Cengage Learning. All rights reserved.

As  Pb(NO3)2  dissociates  into  1  particle  of  Pb2+  and  2  particles  of  NO3-­‐,  the  number  of  moles  of  Pb(NO3)2    on  the  reactant  side  will  equal  twice  the  number  of  moles  of  NO3-­‐  on  the  product  side.    Therefore,  the  number  of  moles  of  NO3-­‐  in  solution  after  the  precipitation  will  be  (2)(.318  mol)=.636  mol.    Again,  you  already  have  the  total  final  volume,  so  write  down  the  molarity  formula,  plug  the  values  in  and  solve.  

M = molL = .636 mol

.5650 L = 1.13 M  So,  (d)  is  false.  Answer  D  (4  points/104)  

62.   If  all  of  the  chloride  in  a  4.776-­‐g  sample  of  an  unknown  metal  chloride  is  precipitated  as  AgCl  with  70.90  mL  of  0.2010  M  AgNO3,  what  is  the  percentage  of  chloride  in  the  sample?  

(See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation  (just  use  an  X+  for  the  unknown  metal)  

X+ (aq) + Cl− (aq) + Ag+ (aq) + NO3

− (aq)→ AgCl (s)+ X + (aq)+NO3− (aq)  

You  are  asked  to  determine  the  percentage  of  chloride  in  the  sample  and  you  know  this  will  be  mass  of  chloride  divided  by  the  mass  of  the  sample  times  100  (see  below).    Inspecting  this  formula,  you  have  the  sample  mass  but  need  to  find  the  mass  of  chloride  in  the  sample.    You  know  that  g=(mol  Cl-­‐)(mm  Cl-­‐),  so  write  this  down  (you  don’t  have  to  label  the  “mol”  and  “mm”  with  “Cl-­‐“  but  it  will  help  keep  things  straight  later  in  the  calculation).        You  know  the  mm  of  Cl-­‐,  but  how  are  you  going  to  find  the  number  of  moles  of  Cl-­‐?    You  have  been  told  that  all  of  the  Cl-­‐  has  been  precipitated  by  .07090  L  of  .2010  M  AgNO3.    As  Ag+  has  a  1+  charge,  every  Ag+  ion  used  will  precipitate  one  Cl-­‐,  so  the  number  of  moles  of  AgNO3  used  to  precipitate,  will  also  equal  the  number  of  moles  of  Cl-­‐,  so  you  can  substitute  this  in  for  mol  Cl-­‐  in  your  calculation.    Finally,  as  we  have  already  stated,  we  know  that  mol  =(M)(L),  and  we  have  M  and  volume  of  AgNO3  used  to  precipitate  the  Cl-­‐—just  substitute  this  in  for  mol  AgNO3,  plug  in  the  values  and  solve.    Once  you  have  the  grams  of  Cl-­‐  you  can  plug  this  back  into  the  percent  Cl-­‐  equation  and  solve  for  this.    (6  points/110)              63.   A  mixture  of  BaCl2  and  NaCl  is  analyzed  by  precipitating  all  the  barium  as  BaSO4.  After  addition  of  an  excess  of  Na2SO4  to  a  3.743-­‐g  sample  of  the  mixture,  the  mass  of  precipitate  collected  is  2.014  g.  What  is  the  mass  percentage  of  barium  chloride  in  the  mixture?  (See  Precipitation  Reaction  Skills)    You  are  asked  to  determine  the  percentage  of  

Page 32: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 100

Copyright © Cengage Learning. All rights reserved.

barium  chloride  in  the  sample  and  you  know  this  will  be  mass  of  barium  chloride  divided  by  the  mass  of  the  sample  times  100  (see  below).    Inspecting  this  formula,  you  have  the  sample  mass  but  need  to  find  the  mass  of  barium  chloride  in  the  sample.    You  know  that  g=(mol  BaCl2)(mm  BaCl2),  so  write  this  down  (you  don’t  have  to  label  the  “mol”  and  “mm”  with  “BaCl2“  but  it  will  help  keep  things  straight  later  in  the  calculation).        Inspecting  this  formula,  you  can  find  the  mm  of  BaCl2,  but  how  are  you  going  to  find  the  number  of  moles  of  BaCl2?    You  have  been  told  that  all  of  the  barium  has  been  precipitated  by  sodium  sulfate,  forming  barium  sulfate.    Therefore,  however,  many  moles  of  barium  sulfate  there  are,  will  equal  the  number  of  moles  of  barium  chloride  you  had  to  start  with.    Substitute  mol  BaSO4  in  for  mol  BaCl2.    Then,  to  find  the  number  of  mol  of  BaSO4,  you  know  mol  equal  g/mm  so  substitute  this  in  for  mol  BaSO4,  because  you  have  been  given  the  number  of  grams  of  the  precipitate.    Plug  in  values  and  solve  to  get  grams  of  BaCl2.    Then  plug  this  value  into  the  original  formula  to  get  the  percentage  of  BaCl2  in  the  mixture.      

 

   

64.   A  3.00-­‐g  sample  of  an  alloy  (containing  only  Pb  and  Sn)  was  dissolved  in  nitric  acid  (HNO3).  Sulfuric  acid  was  added  to  this  solution,  which  precipitated  2.35  g  of  PbSO4.  Assuming  that  all  of  the  lead  was  precipitated,  what  is  the  percentage  of  Sn  in  the  sample?  (molar  mass  of  PbSO4  =  303.3  g/mol)  

(See  Precipitation  Reaction  Skills)    You  are  asked  to  determine  the  percentage  of  tin  in  the  sample  and  you  know  this  will  be  mass  of  Sn  divided  by  the  mass  of  the  sample  times  100  (see  below).    Inspecting  this  formula,  you  have  the  sample  mass  but  need  to  find  the  mass  of  tin  in  the  sample.    Because  you  are  wise  and  have  read  through  the  whole  problem,  you  realize  that  the  precipitation  you  are  performing  actually  precipitates  out  the  lead  in  the  sample,  so  you  reason  that  the  grams  of  Sn  in  the  sample  will  be  the  sample  mass  minus  the  grams  of  lead—modify  this  initial  formula  appropriately  (see  below).  

You  know  that  g  Pb=(mol  Pb)(mm  Pb),  so  write  this  down  (you  don’t  have  to  label  the  “mol”  and  “mm”  with  “Pb“  but  it  will  help  keep  things  straight  later  in  the  calculation).        Inspecting  this  formula,  you  can  find  the  mm  of  Pb,  but  how  are  you  going  to  find  the  number  of  moles  of  Pb?    First,  you  have  been  told  that  the  alloy  is  “dissolved”  by  nitric  acid.    This  is  not  dissolved  in  the  traditional  sense  in  that  Pb  and  Sn  atoms  are  now  

Page 33: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 101

Copyright © Cengage Learning. All rights reserved.

simply  mixed  with  H+  and  NO3  ions.    There  is  actually  a  chemical  change  that  occurs  in  which  Pb  is  oxidized  to  2+  and  Sn  is  oxidized  to  4+,  leaving  the  following  ions  in  solution:    Pb2+,  Sn4+,  NO3-­‐.    This  information  is  not  necessary  to  solve  this  problem  as  long  as  you  make  the  connection  that  in  some  way,  the  first  reaction  allowed  the  lead  to  be  present  in  the  following  reaction  as  Pb2+  so  it  could  be  precipitated  out.  

Then,  the  addition  of  the  sulfuric  acid  provided  the  sulfate  ion  which  caused  PbSO4  to  precipitate  out,  whereas  SnSO4  is  soluble  and  will  not  precipitate  out.    Therefore,  however,  many  moles  of  PbSO4  there  are,  will  equal  the  number  of  moles  of    you  had  to  start  with.    Substitute  mol  PbSO4  in  for  mol  Pb.    Then,  to  find  the  number  of  mol  of  PbSO4,  you  know  mol  equal  g/mm  so  substitute  this  in  for  mol  PbSO4,  because  you  have  been  given  the  number  of  grams  of  the  precipitate.    Plug  in  values  and  solve  to  get  grams  of  Pb.    Finally,  plug  this  value  back  into  the  original  formula  to  solve  for  percentage  of  Pb  in  the  alloy.  

 

     

   

65.   A  mixture  contained  no  fluorine  compound  except  methyl  fluoroacetate,  FCH2COOCH3  (molar  mass  =  92.07  g/mol).  When  chemically  treated,  all  the  fluorine  was  converted  to  CaF2  (molar  mass  =  78.08  g/mol).  The  mass  of  CaF2  obtained  was  35.3  g.  Find  the  mass  of  methyl  fluoroacetate  in  the  original  mixture.  This  problem  is  more  straightforward  than  it  looks.    There  is  not  really  a  chemical  equation  here  that  you  can  write  down  so  don’t  waste  time  trying  to  think  of  one,  just  start  with  what  you  are  asked  to  find.    You  are  asked  to  find  the  mass  of  methyl  fluoroacetate  and  you  know  a  formula  to  find  grams:  g=(mol  MFA)(mm  MFA).    Write  this  down.    You  have  been  given  the  mm,  but  how  are  you  going  to  find  the  number  of  moles?    Because  the  final  product,  CaF2  has  twice  the  number  of  F  atoms  than  the  original  substance,  you  should  be  able  to  reason  that  the  number  of  moles  of  methyl  fluoroacetate  should  be  twice  the  number  of  moles  of  CaF2.    Substitute  (2)(mol  CaF2)  in  for  (mol  MFA).  

g = (mol MFA)(mm MFA) = (2)(mol CaF2 )(mm MFA) =

(2) g CaF2mm CaF2( )(mm MFA) = (2) 35.3mol

78.08g /mol( )(92.07g / mol) = 83.2g  

66.   A  1.57-­‐g  sample  of  a  metal  chloride,  MCl2,  is  dissolved  in  water  and  treated  with  excess  aqueous  silver  nitrate.  The  silver  chloride  that  formed  weighed  3.47  g.  Calculate  the  molar  mass  of  M.  

Page 34: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 102

Copyright © Cengage Learning. All rights reserved.

Write  out  the  complete  ionic  equation:  

M2+ (aq) + 2 Cl− (aq) + 2Ag+ (aq) + 2NO3

− (aq)→ 2AgCl (s) + M 2+ (aq) + 2NO3− (aq)  

You  know  that  mm  M  =g  M/mol  M,  so  write  this  down  (see  below).    You  do  not  have  grams  of  M,  but  you  can  write  a  formula  that  will  help  you.    Because  you  are  going  to  be  precipitating  AgCl  it  looks  like  you  will  be  able  to  find  grams  and  moles  of  Cl-­‐.  You  know  that  the  number  of  grams  of  M  will  equal  the  number  of  grams  of  sample  minus  the  number  of  grams  of  Cl-­‐,  so  substitute  this  into  the  original  formula.         How  do  you  find  grams  of  Cl-­‐.    You  have  been  told  that  the  mass  of  precipitate     is  3.47g.    You  know  that  all  of  the  Cl-­‐  in  the  precipitate  must  have  originally     come  from  the  MCl2.    This  means  you  can  find  the  grams  of  Cl-­‐  in  the  original     sample  by  multiplying  the  mass  fraction  of  Cl-­‐  in  AgCl  by  the  precipitate  mass.       Because  you  know  the  molar  masses  of  Cl  and  Ag,  the  mass  fraction  would  be     (mm  Cl)/(mm  Cl+mm  Ag)  (see  below).    Plug  the  values  in  and  calculate  the     grams  of  Cl-­‐.    You  can  then  plug  this  into  the  original  equation.    Likewise,  you  don’t  know  mol  of  M.    However,  you  can  reason  because  of  the  formula  MCl2,  that  the  number  of  moles  of  M  will  be  ½  the  number  of  moles  of  Cl-­‐.    Substitute  this  in  the  original  formula  as  well.    Then,  because  you  have  just  calculated  the  number  of  grams  of  Cl-­‐,  and  you  know  that  mol=g/mm,  you  can  calculate  number  of  moles  of  Cl-­‐.    Then  also  plug  this  value  back  into  the  original  formula,  and  calculate  the  molar  mass  of  M.    

mm M = g Mmol M

= g sample− g Cl−

(.5)(mol Cl− )= 1.57g − .8581g

(.5)(.02421mol)= 58.5

g Cl− = (mass fraction of Cl− in AgCl)( precipitate mass) = (35.45g)(107.9+ 35.45)

⎛⎝⎜

⎞⎠⎟

(3.47g) = .8581g Cl−

mol Cl− = gmm = .8581g

35.45 = .02421 mol

 

67.   You  have  135.8  mL  of  a  2.50  M  solution  of  Na2CrO4(aq).  You  also  have  125  mL  of  a  2.50  M  solution  of  AgNO3(aq).  Calculate  the  concentration  of  Na+  after  the  two  solutions  are  mixed  together.  (See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:  

2Na+ (aq)+CrO42− (aq)+ 2Ag+ (aq)+ 2NO3

− (aq)→ Ag2CrO4(s)+ 2Na+ (aq)+ 2NO3− (aq)  

Don’t  make  this  question  any  harder  than  it  needs  to  be.    Normally,  when  we  are  given  the  M  and  L  of  both  reactants  this  is  a  clue  that  we  can  find  the  moles  of  both  reactants  and  determine  which  reactant  is  a  limiting  reagent.    However,  this  is  only  necessary  when  we  want  to  determine  information  about  the  precipitate.    However,  here  we  are  asked  how  much  Na+  will  remain  in  the  solution.    For  an  ion  that  will  not  precipitate  under  any  circumstances,  it  does  not  matter  which  reactant  is  limiting—however  many  moles  of  Na+  we  start  with,  that  will  be  the  same  number  of  moles  of  Na+  that  will  remain  after  the  precipitation  has  taken  place—none  of  the  Na+  will  be  

Page 35: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 103

Copyright © Cengage Learning. All rights reserved.

consumed  by  the  precipitation.      So,  all  we  have  to  do  is  determine  the  number  of  moles  of  Na+  that  are  present  at  the  start  of  the  reaction,  and  divide  it  by  the  total  number  of  L  present  at  the  end  of  the  reaction  to  get  the  final  concentration  of  Na+.    In  this  case,  the  number  of  moles  of  Na+  will  be  twice  the  number  of  moles  of  Na2CrO4  because  for  every  mole  of  this  compound,  2  moles  of  Na+  will  dissociate.  

mol Na+ = (2)(mol Na2CrO4 ) = (2)( M )(L) = (2)(2.50 molL )(.1358L) = .679 mol Na+

M = molL = .679 mol

.1358L+.125L = 2.60 M  

68.   You  have  75.0  mL  of  a  2.50  M  solution  of  Na2CrO4(aq).  You  also  have  125  mL  of  a  1.52  M  solution  of  AgNO3(aq).  Calculate  the  concentration  of  CrO42–  after  the  two  solutions  are  mixed  together.  (See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:  

2Na+ (aq)+CrO42− (aq)+ 2Ag+ (aq)+ 2NO3

− (aq)→ Ag2CrO4(s)+ 2Na+ (aq)+ 2NO3− (aq)  

Normally,  when  we  are  given  the  M  and  L  of  both  reactants  this  is  a  clue  that  we  can  find  the  moles  of  both  reactants  and  determine  which  reactant  is  a  limiting  reagent.    As  we  can  see  from  the  complete  ionic  equation,  if  there  is  any  CrO42-­‐  left  in  the  solution,  it  will  be  because  CrO42-­‐  was  present  in  excess  and  was  not  all  consumed  by  the  precipitation.    So,  we  will  need  to  test  both  reactants  to  see  how  much  Ag2CrO4  (s)  each  would  provide  in  the  precipitation.    We  find  that  AgNO3  is  limiting,  meaning  that  only  .095  mol  of  Ag2CrO4  is  formed.    This  means  that  of  the  .1875  mol  of  CrO42-­‐  originally  present  (from  the  Na2CrO4),  .1875  mol  minus  .095  mol  remains—show  this  calculation  as  well  (see  below).    As  we  want  the  concentration  of  this  ion  we  need  to  divide  by  the  total  volume,  which  is  .0750L  +  .125  L  =  .200L  

mol Na2CrO4 = ( M )(L) = (2.50 molL )(.0750L) = .1875 mol

mol AgNO3 = ( M )(L) = (1.52 molL )(.125L) = .190 mol

mol Ag2CrO4( for Na2CrO4 ) = (.1875 mol Na2CrO4 )( 1 mol AgCrO41 mol Na2CrO4

) = .1875 mol

mol Ag2CrO4( for AgNO3) = (.190 mol)(1 mol Ag2CrO42 mol AgNO3

) = .095 mol (limiting)

excess mol CrO42− = beginning mol CrO4

2− − consumed mol CrO42− = .1875mol − .095 mol = .0925 mol

[CrO42− ]= mol

L= .0925 mol

(.0750L + .125 L)= .463 M

 

69.   You  have  75.0  mL  of  a  2.50  M  solution  of  Na2CrO4(aq).  You  also  have  125  mL  of  a  2.23  M  solution  of  AgNO3(aq).  Calculate  the  concentration  of  Ag+  after  the  two  solutions  are  mixed  together.  

(See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:  

2Na+ (aq)+CrO42− (aq)+ 2Ag+ (aq)+ 2NO3

− (aq)→ Ag2CrO4(s)+ 2Na+ (aq)+ 2NO3− (aq)  

Normally,  when  we  are  given  the  M  and  L  of  both  reactants  this  is  a  clue  that  we  can  find  the  moles  of  both  reactants  and  determine  which  reactant  is  a  limiting  reagent.    As  we  can  see  from  the  complete  ionic  equation,  if  there  is  any  Ag+  left  in  the  solution,  it  will  be  because  was  Ag+  present  in  excess  and  was  not  all  consumed  by  the  

Page 36: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 104

Copyright © Cengage Learning. All rights reserved.

precipitation.    So,  we  will  need  to  test  both  reactants  to  see  how  much  Ag2CrO4  (s)  each  would  provide  in  the  precipitation.    We  find  that  AgNO3  is  limiting,  meaning  that  only  .1394  mol  of  Ag2CrO4  is  formed.    This  means  that  ALL  of  the  Ag+  is  consumed  in  the  reaction  so  no  Ag+  will  be  left  in  solution.  

mol Na2CrO4 = ( M )(L) = (2.50 molL )(.0750L) = .1875 mol

mol AgNO3 = ( M )(L) = (2.23 molL )(.125L) = .2788 mol

mol Ag2CrO4( for Na2CrO4 ) = (.1875 mol Na2CrO4 )( 1 mol AgCrO41 mol Na2CrO4

) = .1875 mol

mol Ag2CrO4( for AgNO3) = (.2278mol)(1 mol Ag2CrO42 mol AgNO3

) = .1394mol (limiting)

AgNO3 is limiting so no Ag+ remains [Ag+ ]= 0.00 M

 

70.   You  have  75.0  mL  of  a  2.50  M  solution  of  Na2CrO4(aq).  You  also  have  125  mL  of  a  1.74  M  solution  of  AgNO3(aq).  Calculate  the  concentration  of  NO3–  after  the  two  solutions  are  mixed  together.  (See  Precipitation  Reaction  Skills)  Write  out  the  complete  ionic  equation:  

2Na+ (aq)+CrO42− (aq)+ 2Ag+ (aq)+ 2NO3

− (aq)→ Ag2CrO4(s)+ 2Na+ (aq)+ 2NO3− (aq)  

Don’t  make  this  question  any  harder  than  it  needs  to  be.    Normally,  when  we  are  given  the  M  and  L  of  both  reactants  this  is  a  clue  that  we  can  find  the  moles  of  both  reactants  and  determine  which  reactant  is  a  limiting  reagent.    However,  this  is  only  necessary  when  we  want  to  determine  information  about  the  precipitate.    However,  here  we  are  asked  how  much  nitrate  (NO3-­‐)  will  be  in  the  solution.    For  an  ion  that  will  not  precipitate  under  any  circumstances,  it  does  not  matter  which  reactant  is  limiting—however  many  moles  of  NO3-­‐  we  start  with,  that  will  be  the  same  number  of  moles  of  NO3-­‐  that  will  remain  after  the  precipitation  has  taken  place—none  of  the  NO3  will  be  consumed  by  the  precipitation.      So,  all  we  have  to  do  is  determine  the  number  of  moles  of  NO3-­‐  are  present  at  the  start  of  the  reaction,  and  divide  it  by  the  total  number  of  L  present  at  the  end  of  the  reaction  to  get  the  final  concentration  of  NO3.  

mol NO3 = mol AgNO3 = ( M )(L) = (1.74 molL )(.125L) = .2175 mol NO3

M = molL = .2175 mol

.0750 L+.125L = 1.09 M  

71.   You  mix  55  mL  of  1.00  M  silver  nitrate  with  25  mL  of  0.81  M  sodium  chloride.  What  mass  of  silver  chloride  should  you  form?  (See  Precipitation  Reaction  Skills-­‐Limiting  Reagent  Type  Problem)  Write  out  the  complete  ionic  equation:

Ag+ (aq)+ NO3− (aq)+ Na+ (aq)+Cl− (aq)→ AgCl(s)+ Na+ (aq)+ NO3

− (aq)  This  is  a  straightforward  limiting  reagent  type  of  precipitation  reaction  problem.    You  are  given  the  molarities  and  volumes  of  the  reactants,  which  means  you  can  find  the  moles  of  the  reactants,  which  is  the  major  clue  that  you  will  have  to  test  the  number  of  moles  of  AgCl  formed  by  each  to  determine  the  limiting  reactant.    Once  you  determine  the  number  of  moles  of  AgCl  provided  using  the  limiting  reactant,  multiply  

Page 37: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 105

Copyright © Cengage Learning. All rights reserved.

by  the  molar  mass  of  silver  chloride  to  get  the  number  of  grams.  

mol AgNO3 = ( M )(L) = (1.00 molL )(.055L) = .0550 mol

mol NaCl = ( M )(L) = (.81 molL )(.025L) = .02025 mol

mol AgCl( for AgNO3) = (.0550 mol AgNO3)( 1 mol AgCl1 mol AgNO3

) = .0550 mol

mol AgCl( for NaCl) = (.02025 mol)( 1 mol AgCl1 mol AgNO3

) = .02025 mol (limiting)

g AgCl = (mol)(mm) = (.02025 mol)(107.87 + 35.45) = 2.9g

 

72.   When  solutions  of  formic  acid  and  sodium  hydroxide  react,  which  of  the  following  are  NOT  present  in  the  complete  ionic  equation?  

a)   hydrogen  ion  b)   formate  ion  c)   sodium  ion  d)   hydroxide  ion  e)   water    Even  though  this  is  a  multiple  choice  question  it  is  probably  best  to  write  out  some  form  of  equation  so  that  you  can  visualize  it.    Formic  acid  is  an  organic  acid.    We  will  often  abbreviate  these  rather  than  writing  out  the  specific  formula.    You  might  abbreviate  this  one  as  HFor.    As  this  is  not  one  of  our  strong  acids,  it  is  a  weak  acid—as  such,  it  does  not  ionize  to  a  significant  degree.    Therefore,  as  with  all  substances  that  do  not  ionize  completely  in  water,  for  purposes  of  writing  ionic  equations  we  treat  it  as  a  molecular  substance—we  write  its  complete  formula—not  dissociated  into  ions.    On  the  other  hand,  as  NaOH  ionizes  completely  we  write  these  as  ions  in  the  equation.    On  the  product  side,  the  hydroxide  will  have  neutralized  all  of  the  acidic  hydrogen  forming  water.    Therefore,  only  the  formate  ion  (For-­‐)  will  be  left  of  the  formic  acid  molecule.    Only  Na+  will  remain  from  the  NaOH.    Because  it  is  a  complete  ionic  equation,  we  keep  all  of  these  pieces  in  the  equation.    Inspecting  the  equation  we  see  that  what  is  not  present  is  the  hydrogen  ion.    Answer  A  

HFor (aq) + Na+ (aq) + OH − (aq)→ H2O (l) + For − (aq)+ Na+ (aq)  Note:  the  net  ionic  equation  would  be:   HFor (aq) + OH − (aq)→ H2O (l) + For − (aq)  

73.   When  solutions  of  carbonic  acid  and  sodium  hydroxide  react,  which  of  the  following  are  NOT  present  in  the  net  ionic  equation?  

I.   hydrogen  ion  

II.   carbonate  ion  

III.   sodium  ion  

IV.   hydroxide  ion  

a)   I  and  II  b)   I,  II,  and  III  

Page 38: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 106

Copyright © Cengage Learning. All rights reserved.

c)   I  and  IV  d)   I  and  III  e)   II  and  III  Even  though  this  is  a  multiple  choice  question  it  is  probably  best  to  write  out  some  form  of  equation  so  that  you  can  visualize  it.    If  a  net  ionic  equation  is  not  immediately  obvious,  it  may  be  useful  to  write  out  the  complete  ionic  equation  and  then  cancel  substances  that  appear  on  both  sides  of  the  equation  to  get  the  net  ionic  equation.    As  carbonic  acid  is  not  one  of  our  strong  acids,  it  is  a  weak  acid—as  such,  it  does  not  ionize  to  a  significant  degree.    Therefore,  as  with  all  substances  that  do  not  ionize  completely  in  water,  for  purposes  of  writing  ionic  equations  we  treat  it  as  a  molecular  substance—we  write  its  complete  formula—not  dissociated  into  ions.    On  the  other  hand,  as  NaOH  ionizes  completely  we  write  these  as  ions  in  the  equation.    On  the  product  side,  the  hydroxide  will  have  neutralized  all  of  the  acidic  hydrogen  forming  water.    As  carbonic  acid  contains  2  hydrogens,  however,  two  water  molecules  will  form  for  each  carbonic  acid.    (This  will  require  2  Na+  and  2  OH-­‐  on  the  reactant  side).      As  all  of  the  acidic  hydrogen  is  neutralized,  only  the  carbonate  ion  will  be  left  on  the  product  side.    As  all  of  the  OH-­‐  is  neutralized,  only  Na+  will  be  left  on  the  product  side.      The  complete  ionic  equation  is:

H2CO3 (aq) + Na+ (aq) + OH − (aq)→ 2H2O (l) + Na+ (aq) + CO3− (aq)  

To  create  the  net  ionic  equation  we  would  cancel  out  everything  that  appears  on  both  sides  of  the  equation,  in  this  case,  Na+.  

H2CO3 (aq) + OH − (aq)→ 2H2O (l) + CO3− (aq)  

Inspecting  the  equation,  hydrogen  and  sodium  ions  are  not  present  in  the  net  ionic  equation.    Answer  D  

74.   When  solutions  of  carbonic  acid  and  magnesium  hydroxide  react,  which  of  the  following  are  NOT  present  in  the  net  ionic  equation?  

I.   hydrogen  ion  

II.   carbonate  ion  

III.   magnesium  ion  

IV.   hydroxide  ion  

a)   I  and  II  b)   I,  II,  and  III  c)   I  and  IV  d)   I  and  III  e)   II  and  III  

Even  though  this  is  a  multiple  choice  question  it  is  probably  best  to  write  out  some  form  of  equation  so  that  you  can  visualize  it.    If  a  net  ionic  equation  is  not  immediately  obvious,  it  may  be  useful  to  write  out  the  complete  ionic  equation  and  then  cancel  substances  that  appear  on  both  sides  of  the  equation  to  get  the  net  ionic  equation.    As  carbonic  acid  is  not  one  of  our  strong  acids,  it  is  a  weak  acid—as  such,  it  

Page 39: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 107

Copyright © Cengage Learning. All rights reserved.

does  not  ionize  to  a  significant  degree.    Therefore,  as  with  all  substances  that  do  not  ionize  completely  in  water,  for  purposes  of  writing  ionic  equations  we  treat  it  as  a  molecular  substance—we  write  its  complete  formula—not  dissociated  into  ions.      

However,  Mg(OH)2  is  also  considered  to  be  insoluble,  and  as  such,  we  need  to  write  the  entire  formula  on  the  reactant  side  as  well.      

Then,  something  interesting  happens.    As  a  few  H+  ions  and  a  few  OH-­‐  ions  interact  to  form  water,  more  H+  and  OH-­‐  ions  dissociate,  and  then  form  water,  and  then  a  few  more  H+  and  OH-­‐  ions  dissociate,  and  this  slow  dissociation  process  continues  until  all  of  the  H+  and  OH-­‐  ions  are  consumed,  leaving  water  and  just  Mg2+  and  CO32-­‐  ions.      

But  wait!    MgCO3  is  also  insoluble.    Therefore,  there  are  actually  no  ions  left  in  solution.    All  three  equations,  the  formula  (molecular)  equation,  the  complete  ionic  equation,  and  the  net  ionic  equation  all  reduce  to  the  same  equation.    In  essence,  because  of  the  way  we  write  these  equations,  all  of  the  ions  are  “part  of  the  action.”  

H2CO3 (aq) + Mg(OH )2 (aq)→ H2O (l) + MgCO3 (s)  Therefore,  NONE  of  the  listed  ions  are  actually  present  in  the  official  net  ionic  equation.    However,  I,  II,  III,  IV  is  not  a  listed  answer—the  list  is  wrong.    None  of  these  ions  are  present  in  the  net  ionic  equation.      (Note,  the  official  answer  key  says  only  I  and  IV  are  not  present  suggesting  the  Mg2+  and  CO32-­‐  are  present  in  the  final  solution—however,  in  reality  these  would  precipitate  out  as  MgCO3.)  

75.   When  solutions  of  acetic  acid  and  copper(II)  hydroxide  react,  which  of  the  following  are  spectator  ions?  

a)   hydrogen  ion  b)   acetate  ion  c)   copper(II)  ion  d)   hydroxide  ion  e)   none  of  these  When  asked  about  spectator  ions  the  best  equation  to  visualize  these  will  be  the  complete  ionic  equation.    As  acetic  acid  is  not  one  of  our  strong  acids,  it  is  a  weak  acid—as  such,  it  does  not  ionize  to  a  significant  degree.    Therefore,  as  with  all  substances  that  do  not  ionize  completely  in  water,  for  purposes  of  writing  ionic  equations  we  treat  it  as  a  molecular  substance—we  write  its  complete  formula—not  dissociated  into  ions.    We  will  abbreviate  it  as  HAc.    However,  Cu(OH)2  is  also  considered  to  be  insoluble,  and  as  such,  we  need  to  write  the  entire  formula  on  the  reactant  side  as  well.      

Then,  something  interesting  happens.    As  a  few  H+  ions  and  a  few  OH-­‐  ions  interact  to  form  water,  more  H+  and  OH-­‐  ions  dissociate,  and  then  form  water,  and  then  a  few  more  H+  and  OH-­‐  ions  dissociate,  and  this  slow  dissociation  process  continues  until  all  of  the  H+  and  OH-­‐  ions  are  consumed,  leaving  water  and  just  Cu2+  and  acetate    (C2H3O2-­‐)  ions.    Copper  acetate  is  soluble  so  on  the  product  side  these  two  ions  would  be  in  solution—the  complete  ionic  equation  would  look  like  this:  

Page 40: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 108

Copyright © Cengage Learning. All rights reserved.

2HAc (aq) + Cu(OH )2 (s)→ 2H2O (l) + Cu2− (aq) + 2Ac−  Because  of  the  way  we  write  this  equation,  all  of  the  ions  present  are  changing  form,    and  no  isolated  ions  are  present  on  both  sides  of  the  equation.    This  is  also  the  form  of  the  net  ionic  equation.    There  are  no  spectator  ions.    Answer  E  

76.   In  the  balanced  molecular  equation  for  the  neutralization  of  sodium  hydroxide  with  sulfuric  acid,  the  products  are:  

a)   NaSO4  +  H2O  b)   NaSO3  +  2H2O  c)   2NaSO4  +  H2O  d)   Na2S  +  2H2O  e)   Na2SO4  +  2H2O  In  writing  down  the  reactants  we  have:  

H2SO4 + NaOH →  We  know  that  both  the  acid  and  base  are  strong,  and  so,  dissociate  completely.    Because  there  are  two  hydrogens  in  the  acid  (it  is  diprotic),  each  will  be  neutralized  by  an  OH-­‐  so  we  will  require  two  OH-­‐  ions  and  get  two  water  molecules  as  a  product.    Also,  the  sulfate  ion  has  a  2-­‐  charge,  so  two  Na+  ions  will  be  required—combining  the  sulfate  and  two  sodium  ions  we  get  Na2SO4.    So,  the  complete  molecular  equation  is  

H2SO4 (aq) + 2NaOH (s)→ 2H2O (l) + Na2SO4 (aq)  

77.   A  0.307-­‐g  sample  of  an  unknown  triprotic  acid  is  titrated  to  the  third  equivalence  point  using  35.2  mL  of  0.106  M  NaOH.  Calculate  the  molar  mass  of  the  acid.  A  triprotic  acid  is  an  acid  that  has  the  ability  to  lose  up  to  three  H+  ions.    You  are  aware  that  one  such  acid  is  H3PO4  or  phosphoric  acid.    In  contrast  to  hydroxide  bases,  which  dissociate  all  of  their  hydroxides  at  once  (for  example,  Ca(OH)2,  for  which  one  particle  will  dissociate  into  one  particles  of  Ca2+  and  two  particles  of  OH-­‐  all  at  once),  acids  with  more  than  one  H+  to  dissociate  only  dissociate  one  hydrogen  until  most  particles  have  dissociated  the  first  hydrogen,  and  then  will  begin  dissociate  the  second  hydrogen,  and  so  on.    In  a  titration,  where  you  are  neutralizing  an  amount  of  acid  with  a  base,  if  the  acid  is  monoprotic,  the  point  at  which  enough  base  has  been  added  to  neutralize  all  of  the  acid  is  called  the  equivalence  point.    If  the  acid  is  diprotic,  the  point  at  which  base  has  neutralized  the  first  hydrogen  of  all  of  the  particles  is  called  the  first  equivalence  point.    At  this  point,  all  of  the  particles  still  have  the  second  hydrogen  left,  and  addition  of  further  hydroxide  will  now  begin  to  neutralize  this  second  hydrogen.    The  point  at  which  the  second  hydrogen  is  completely  neutralized  would  be  the  second  neutralization  point.    And  so  on,  for  a  triprotic  acid.    After  the  (final)  equivalence  point  is  reached,  addition  of  further  base  just  adds  base  to  the  solution.        So,  if  a  triprotic  acid  is  titrated  to  the  third  equivalence  point,  this  means  enough  base  has  been  added  to  neutralize  all  three  hydrogens.    A  formula  (molecular)  equation  that  would  represent  this  is  (letting  “A”  be  the  anion  of  the  acid):  

H3 A(aq) + 3NaOH (s)→ 3H2O (l) + Na3 A (aq)  

Page 41: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 109

Copyright © Cengage Learning. All rights reserved.

 You  can  see  that  it  would  require  three  OH-­‐  ions  to  neutralize  the  3  H+  ions,  and  because  the  anion  of  the  acid  molecule  would  have  a  3-­‐  charge,  there  would  need  to  be  three  sodium  ions  to  balance  this  on  the  product  side.        Having  said  all  this,  you  have  been  asked  to  find  the  molar  mass  of  the  acid  and  you  

know:   mm H3 A =

g H3 Amol H3 A

,  so  write  this  down.    You  have  already  been  given  g  (.307  g),  

all  you  need  to  do  is  find  moles  of  H3A    In  a  titration  of  an  acid,  the  way  we  are  going  to  find  the  unknown  number  of  moles  acid,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  base  used  to  titrate  the  acid.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  H3A,  we  need  3  moles  of  NaOH.    Therefore,  you  can  reason  that  the  number  of  moles  of  NaOH  required  to  titrate  the  acid  would  be  3  times  the  number  of  moles  of  H3A,  or,  1  mole  of  H3A  is  equivalent  to  (1/3)(mol  NaOH),  and  you  could  substitute  this  into  your  calculation  (see  below).        Now,  how  do  you  find  the  number  of  moles  of  NaOH  used  to  titrate?    You  have  been  given  M  (.106  M)  and  L  (.0352  L)  and  you  know  mol  =  (M)(L),  so  substitute  this  in  for  mol  NaOH,  plug  in  the  values  and  solve:  

mm H3 A =

g H3 Amol H3 A

=g H3 A

( 13)(mol NaOH )

=g H3 A

( 13)( M NaOH )(L NaOH )

= .307 g( 1

3)(.106 molL )(.0352L)

= 247 g / mol  

78.   An  unknown  diprotic  acid  requires  26.66  mL  of  0.117  M  NaOH  to  completely  neutralize  a  0.845-­‐g  sample.  Calculate  the  approximate  molar  mass  of  the  acid.  

A  diprotic  acid  is  an  acid  that  has  the  ability  to  lose  up  to  two  H+  ions.    You  are  aware  that  one  such  acid  is  H2SO4  or  sulfuric  acid.    In  contrast  to  hydroxide  bases,  which  dissociate  all  of  their  hydroxides  at  once  (for  example,  Ca(OH)2,  for  which  one  particle  will  dissociate  into  one  particles  of  Ca2+  and  two  particles  of  OH-­‐  all  at  once),  acids  with  more  than  one  H+  to  dissociate  only  dissociate  one  hydrogen  until  most  particles  have  dissociated  the  first  hydrogen,  and  then  will  begin  dissociate  the  second  hydrogen,  and  so  on.    In  a  titration,  where  you  are  neutralizing  an  amount  of  acid  with  a  base,  if  the  acid  is  monoprotic,  the  point  at  which  enough  base  has  been  added  to  neutralize  all  of  the  acid  is  called  the  equivalence  point.    If  the  acid  is  diprotic,  the  point  at  which  base  has  neutralized  the  first  hydrogen  of  all  of  the  particles  is  called  the  first  equivalence  point.    At  this  point,  all  of  the  particles  still  have  the  second  hydrogen  left,  and  addition  of  further  hydroxide  will  now  begin  to  neutralize  this  second  hydrogen.    The  point  at  which  the  second  hydrogen  is  completely  neutralized  would  be  the  second  neutralization  point.    And  so  on,  for  a  triprotic  acid.    After  the  (final)  equivalence  point  is  reached,  addition  of  further  base  just  adds  base  to  the  solution.        

Page 42: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 110

Copyright © Cengage Learning. All rights reserved.

So,  if  a  diprotic  acid  is  titrated  to  the  second  equivalence  point  (that  is,  until  it  is  completely  neutralized),  this  means  enough  base  has  been  added  to  neutralize  both  hydrogens.    A  formula  (molecular)  equation  that  would  represent  this  is  (letting  “A”  be  the  anion  of  the  acid):  

H2 A(aq) + 2NaOH (s)→ 2H2O (l) + Na2 A (aq)    You  can  see  that  it  would  require  two  OH-­‐  ions  to  neutralize  the  2  H+  ions,  and  because  the  anion  of  the  acid  molecule  would  have  a  2-­‐  charge,  there  would  need  to  be  two  sodium  ions  to  balance  this  on  the  product  side.        Having  said  all  this,  you  have  been  asked  to  find  the  molar  mass  of  the  acid  and  you  

know:   mm H2 A =

g H2 Amol H2 A

,  so  write  this  down.    You  have  already  been  given  g  (.845  g),  

all  you  need  to  do  is  find  moles  of  H2A    In  the  titration  of  an  acid,  the  way  we  are  going  to  find  the  unknown  number  of  moles  of  the  acid,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  base  used  to  titrate  the  acid.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  H2A,  we  need  2  moles  of  NaOH.    Therefore,  you  can  reason  that  the  number  of  moles  of  NaOH  required  to  titrate  the  acid  would  be  2  times  the  number  of  moles  of  H2A,  or,  1  mole  of  H2A  is  equivalent  to  (1/2)(mol  NaOH),  and  you  could  substitute  this  into  your  calculation  (see  below).        Now,  how  do  you  find  the  number  of  moles  of  NaOH  used  to  titrate?    You  have  been  given  M  (.117  M)  and  L  (.02666  L)  and  you  know  mol  =  (M)(L),  so  substitute  this  in  for  mol  NaOH,  plug  in  the  values  and  solve:  

mm H2 A =

g H2 Amol H2 A

=g H2 A

( 12 )(mol NaOH )

=g H2 A

( 12 )( M NaOH )(L NaOH )

= .845 g( 1

2 )(.117 molL )(.02666L)

= 542 g / mol

 

79.   You  have  separate  solutions  of  HCl  and  H2SO4  with  the  same  concentrations  in  terms  of  molarity.  You  wish  to  neutralize  a  solution  of  NaOH.  Which  acid  solution  would  require  more  volume  (in  mL)  to  neutralize  the  base?  

a)   The  HCl  solution.  b)   The  H2SO4  solution.  c)   You  need  to  know  the  acid  concentrations  to  answer  this  question.  d)   You  need  to  know  the  volume  and  concentration  of  the  NaOH  solution  to  answer  this  question.  e)   C  and  D  The  key  to  this  question  is  recognizing  that  one  of  the  acids  is  monoprotic  and  will  only  supply  one  mole  of  H+  ions  per  mole  while  the  other  is  diprotic  and  will  provide  two  moles  of  H+  atoms  per  mole.    Because  both  acids  are  stated  to  be  the  same  concentration,  they  will  have  the  same  number  of  acid  particles  for  whatever  that  

Page 43: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 111

Copyright © Cengage Learning. All rights reserved.

concentration  is,  but  no  matter  what  that  concentration  is,  H2SO4  will  always  supply  twice  the  number  of  H+  particles  and  so  will  always  neutralize  the  NaOH  with  half  the  volume,  regardless  of  what  the  NaOH  concentration  is.    Therefore,  the  neutralization  will  always  require  a  greater  volume  of  HCl.    Answer  A  

80.   What  mass  of  NaOH  is  required  to  react  exactly  with  25.0  mL  of  3.0  M  H2SO4?  Write  down  a  balance  chemical  equation  for  the  neutralization,  remembering  that  2  OH-­‐  will  be  required  to  completely  neutralize  the  2  H+  ions  of  the  acid:  

H2SO4(aq) + 2NaOH (s)→ 2H2O (l) + Na2SO4 (aq)  You  are  asked  for  mass  and  you  know  that  g=(mol)(mm),  and  you  can  find  molar  mass  of  NaOH  easily.    Write  this  down.    How  are  you  going  to  find  mol  NaOH?  

You  know  that  in  the  neutralization  of  a  base  (for  which  a  titration  is  an  application),  the  way  we  are  going  to  find  the  unknown  number  of  moles  of  base,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  acid  neutralized.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  H2SO4,  we  need  2  moles  of  NaOH.    Therefore,  you  can  reason  that  the  number  of  moles  of  NaOH  required  to  neutralize  the  acid  would  be  2  times  the  number  of  moles  of  H2SO4,  and  you  could  substitute  this  into  your  calculation  (see  below).        Now,  how  do  you  find  the  number  of  moles  of  H2SO4  used  to  neutralize?    You  have  been  given  M  (3.00  M)  and  L  (.0250  L)  and  you  know  mol  =  (M)(L),  so  substitute  this  in  for  mol  H2SO4,  plug  in  the  values  and  solve:  

g NaOH = (mol NaOH )(mm NaOH ) = (2)(mol H2SO4 )(mm NaOH ) = (2)( M H2SO4 )(L H2SO4 )(mmNaOH ) =(2)(3.00 mol

L )(.0250 L)((22.99 + 16.00 + 1.01)g / mol) = 6.00 g NaOH  

 81.   With  what  volume  of  5.00  M  HF  will  3.95  g  of  calcium  hydroxide  react  completely,  according  to  the  following  reaction?  

    2 2 22HF + Ca(OH) CaF + 2H O→  

Inspecting  the  balanced  chemical  equation  you  can  see  that  in  this  case,  the  base  supplies  2  OH-­‐  ions  while  the  acid  only  supplies  1  H+.    Therefore,  two  moles  of  acid  molecules  will  be  required  to  completely  neutralize  one  mole  of  base  molecules.    You  are  asked  for  volume  of  acid  and  you  know  that  L  HF  will  equal  (mol  HF)/(M  HF).  (If  you  forget  this  you  can  get  it  from  M=(mol)/(L),  right?).    Write  this  down.    You  have  been  given  M  HF,  but  how  will  you  find  the  number  of  moles  of  HF?        You  know  that  in  the  neutralization  of  an  acid  (for  which  a  titration  is  an  application),  the  way  we  are  going  to  find  the  unknown  number  of  moles  of  acid,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  base  neutralized.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  Ca(OH)2,  we  need  2  moles  of  HF.    Therefore,  you  can  reason  that  the  number  of  moles  of  HF  required  to  neutralize  the  

Page 44: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 112

Copyright © Cengage Learning. All rights reserved.

Ca(OH)2  would  be  2  times  the  number  of  moles  of  Ca(OH)2,  and  you  could  substitute  this  into  your  calculation  (see  below).        The  minor  twist  in  this  problem  is  that  you  have  not  been  given  moles  of  Ca(OH)2,  but  grams,  but  by  now  it  should  be  intuitive  that  to  find  moles,  mol  =  g/mm.    Substitute  this  into  the  equation,  plug  in  the  values  and  solve.  

L HF = mol HF

M HF=

(2)(mol Ca(OH )2 )M HF

=(2)( g Ca(OH )2

mm Ca(OH )2)

M HF=

(2) 3.95 g Ca OH( )2(40.08+32.00+2.02)g /mol

5.00 molL

= .0213 L = 21.3 mL  

 82.   Sulfamic  acid,  HSO3NH2  (molar  mass  =  97.1  g/mol),  is  a  strong  monoprotic  acid  that  can  be  used  to  standardize  a  strong  base:  

    3 2 2 2 2HSO NH ( ) + KOH( ) KSO NH ( ) + H O( )aq aq aq l→  

A  0.177-­‐g  sample  of  HSO3NH2  required  19.4  mL  of  an  aqueous  solution  of  KOH  for  a  complete  reaction.  What  is  the  molarity  of  the  KOH  solution?  Inspecting  the  balanced  chemical  equation  you  can  see  that  in  this  case,  the  base  supplies  1  OH-­‐  ions  while  the  acid  supplies  1  H+.    Therefore,  one  moles  of  acid  molecules  will  be  required  to  completely  neutralize  one  mole  of  base  molecules.    As  you  are  aware,  before  an  analytical  titration  can  take  place,  it  is  desirable  to  actually  determine  the  precise  concentration  of  the  titrating  substance—this  process  is  called  standardization—and  takes  place  in  sort  of  a  reverse  titration  where  the  concentration  of  the  substance  being  titrated  is  actually  known,  and  you  are  trying  to  determine  the  precise  concentration  of  the  titrant.    Regardless,  the  principles  of  the  neutralization  reaction  taking  place  are  exactly  the  same  as  they  are  in  any  other  neutralization.      In  this  situation,  you  are  asked  to  find  the  molarity  of  the  KOH  solution.    You  know  M  KOH=(mol  KOH)/(L  KOH)  so  write  this  down.    You  have  been  given  that  .0194  L  of  the  base  is  required  to  complete  the  standardization—how  are  you  going  to  find  the  number  of  moles  of  base?      You  know  that  in  the  neutralization  of  a  base  (for  which  standardization  is  an  application),  the  way  we  are  going  to  find  the  unknown  number  of  moles  of  base,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  acid  neutralized.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  KOH,  we  need  1  mole  of  HSulf  (lets  abbreviate  sulfamic  acid  this  way).      You  could  then  substitute  this  into  your  calculation  (see  below).        You  have  not  been  given  moles  of  sulfamic  acid,  but  you  have  been  given  number  of  grams  and  the  mm,  and  know  that  mol=(g)/(mm).    Substitute  this  into  your  calculation  for  (mol  HSulf).    Then,  plug  in  the  values  and  determine  the  M  of  KOH.  

Page 45: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 113

Copyright © Cengage Learning. All rights reserved.

M KOH = mol KOH

L KOH= mol HSulf

L KOH=

( g HSulfmm HSulf )

L KOH=

.177 g HSulf97.1g /mol

.0194 L= .0940 M  

 83.   A  student  weighs  out  0.681  g  of  KHP  (molar  mass  =  204.22  g/mol)  and  titrates  to  the  equivalence  point  with  36.78  mL  of  a  stock  NaOH  solution.  What  is  the  concentration  of  the  stock  NaOH  solution?    KHP  is  an  acid  with  one  acidic  proton.  Write  a  balanced  chemical  equation  for  the  this  neutralization/titration,  recognizing  that  there  is  only  1  H+  that  needs  to  be  neutralized,  so  only  1  OH-­‐  is  required  and  1  H2O  is  formed:  

KHP (s) + NaOH (aq)→ KP− (aq) + H2O (l)    You  are  asked  for  the  molarity  of  the  base  and  you  know  molarity  equals  mol/L.  Write  this  down.    You  have  been  given  L  NaOH  (.03678  L),  but  how  will  you  find  the  number  of  moles  of  NaOH?        You  know  that  in  the  neutralization  of  an  base  (for  which  a  titration  is  an  application),  the  way  we  are  going  to  find  the  unknown  number  of  moles  of  base,  is  equate  it  through  the  stoichiometry  of  the  balanced  chemical  equation  to  the  number  of  moles  of  acid  neutralized.    You  have  already  written  down  the  balanced  equation,  and  can  see  that  to  completely  neutralize  1  mole  of  KHP,  we  need  1  moles  of  NaOH.    Therefore,  you  could  substitute  this  into  your  calculation  for  mol  NaOH(see  below).      You  have  not  been  given  moles  of  KHP,  but  grams  and  mm,  and  you  know  that  to  find  moles,  mol  =  g/mm.    Substitute  this  into  the  equation,  plug  in  the  values  and  solve.  

M NaOH = mol NaOH

L NaOH= mol KHP

L NaOH=

( g KHPmm KHP )

L NaOH=

( .681 g204.22 g /mol ).03678 L

= .0907 M  

84.   T        F        A  chemical  that  changes  color  at  the  endpoint  of  a  reaction  is  called  a  colorimeter.    False—a  colorimeter  is  an  electronic  device  that  measures  the  amount  of  light  that  passes  through  a  solution  at  a  particular  wavelength,  and  is  used  to  determine  concentration  of    a  solution  based  on  how  much  light  passes  through—the  less  light  of  a  certain  wavelength  that  passes  through  the  solution  being  evaluated,  the  greater  the  concentration.    A  chemical  that  changes  color  at  the  endpoint  of  a  reaction  is  called  an  indicator.    Answer  False  

85.   In  which  of  the  following  does  nitrogen  have  an  oxidation  state  of  +4?  

a)   HNO3  b)   NO2  c)   N2O  d)   NH4Cl  e)   NaNO2  

Page 46: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 114

Copyright © Cengage Learning. All rights reserved.

We  have  stated  that  it  will  be  important  for  you  to  be  able  to  determine  oxidation  states  of  elements  in  order  to  determine  the  numbers  of  electrons  shifted  in  either  ionic  or  covalent  oxidation  reduction  reactions.    In  particular,  the  oxidation  state  of  nitrogen  will  be  one  of  the  most  common,  because  nitrogen  is  a  powerful  oxidizing  agent.    In  a  positive  oxidation  state,  nitrogen  loves  to  take  electrons.    As  an  oxidizing  agent  it  will  usually  be  seen  in  the  nitrate  (NO3-­‐)  or  nitrite  (NO2-­‐)  form.  

 

NO3− nitrate NO2

− nitrite+5 −2 +3 −2

 

  Because  O  usually  has  a  -­‐2  state,  with  nitrate  this  results  in  6  negative  charges     but  as  the  overall  charge  is  -­‐1,  the  nitrogen  has  a  +5  charge;  with  nitrite,  the     2  O  atoms  result  in  4  negative  charges  but  as  the  overall  charge  is  -­‐1,  the     nitrogen  has  a  +3  state.       Choice  (a)  includes  the  nitrate  ion  and  choice  (e)  includes  the  nitrite  ion,  so     neither  of  these  has  nitrogen  in  the  +4  state.    NO2,  the  nitrogen  dioxide  molecule,  (not  the  nitrite  polyatomic  ion)  is  also  a  powerful  oxidizer—it  is  a  product  combustion  when  fuels  are  burned  incompletely  in  air  and  is  very  toxic  to  respiratory  tissues.    As  a  gas  it  has  a  brownish  color  and  is  a  prominent  air  pollutant.      

 

NO2 nitrogen dioxide+4 −2

 

  The  2  O  atoms  result  in  4  negative  charges.    As  the  overall  charge  of  the     molecule  is  0,  the  nitrogen  has  a  +4  state.       Choice  (b)  is  this  molecule,  and  so  is  the  correct  answer.    N2O,  the  dinitrogen  monoxide  molecule  (also  called  nitrous  oxide,  laughing  gas)  is  also  a  powerful  oxidizer  and  is  used  as  a  rocket  propellant.    In  contrast  to  nitrogen  dioxide,  it  is  not  toxic  and  is  used  as  an  anesthetic  in  dental  surgery.  

 

N2O dinitrogen monoxide+1 −2

 

  The  single  O  atom  results  in  2  negative  charge.    As  the  overall  charge  of  the     molecule  is  0,  the  nitrogen  must  have  a  +1  state.       Choice  (c)  is  this  molecule,  and  so  is  incorrect.    Nitrogen  is  also  a  component  of  the  positive  polyatomic  ammonium  ion  (NH4+).    In  contrast  to  the  other  forms  of  nitrogen  listed  above,  the  ammonium  ion  is  a  reducing  agent.    Remember  that  hydrogens  are  stated  to  have  a  +1  state.    As  the  overall  charge  of  the  ammonium  ion  is  +1,  this  means  that  nitrogen  must  have  a  -­‐3  state  in  the  ammonium  ion.    Because  of  this,  this  ion  likes  to  provide  electrons.      

Page 47: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 115

Copyright © Cengage Learning. All rights reserved.

NH4+ dinitrogen monoxide

−3 +1  

  Choice  (d)  is  this  form  and  so,  is  incorrect.  Answer  B  

86.   The  oxidation  state  of  iodine  in  IO3–  is:  

a)   0  b)   +3  c)   –3  d)   +5  e)   –5  We  have  stated  that  it  will  be  important  for  you  to  be  able  to  determine  oxidation  states  of  elements  in  order  to  determine  the  numbers  of  electrons  shifted  in  either  ionic  or  covalent  oxidation  reduction  reactions.    The  oxidation  state  of  iodine  will  be  a  common  state  to  be  determined.    In  a  positive  oxidation  state,  iodine  loves  to  take  electrons  and  so  is  an  oxidizing  agent.    As  an  oxidizing  agent  it  will  usually  be  seen  in  the  iodate  (IO3-­‐)  form.        

 

IO3− iodate

+5 −2  

  Because  O  usually  has  a  -­‐2  state,  with  iodate  this  results  in  6  negative  charges     but  as  the  overall  charge  is  -­‐1,  the  iodine  atom  has  a  +5  charge.       Recognize  that  this  will  be  the  same  for  the  –ate  forms  of  the  other  halogen     polyatomic  ions—BrO3-­‐  and  ClO3-­‐  (see  question  87).       Recognize  that  for  the  per-­‐…-­‐ate  forms  of  the  halogen  polyatomic  ions,  ClO4-­‐,     BrO4-­‐  and  IO4-­‐,  the  oxidation  state  of  the  halogen  atom  will  be  +7  Answer  D  

87.   The  oxidation  state  of  chlorine  in  ClO3–  is:  

a)   0  b)   +5  c)   -­‐5  d)   +7  e)   -­‐7  We  have  stated  that  it  will  be  important  for  you  to  be  able  to  determine  oxidation  states  of  elements  in  order  to  determine  the  numbers  of  electrons  shifted  in  either  ionic  or  covalent  oxidation  reduction  reactions.    The  oxidation  state  of  chlorine  will  be  a  common  state  to  be  determined.    In  a  positive  oxidation  state,  chlorine  loves  to  take  electrons  and  so  is  an  oxidizing  agent.    As  an  oxidizing  agent  it  will  usually  be  seen  in  the  chlorate  (ClO3-­‐)  form.        

 

ClO3− chlorate

+5 −2  

Page 48: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 116

Copyright © Cengage Learning. All rights reserved.

  Because  O  usually  has  a  -­‐2  state,  with  chlorate  this  results  in  6  negative     charges  but  as  the  overall  charge  is  -­‐1,  the  chlorine  atom  has  a  +5  charge.       Recognize  that  this  will  be  the  same  for  the  –ate  forms  of  the  other  halogen     polyatomic  ions—BrO3-­‐  and  IO3-­‐  (see  question  86).       Recognize  that  for  the  per-­‐…-­‐ate  forms  of  the  halogen  polyatomic  ions,  ClO4-­‐,     BrO4-­‐  and  IO4-­‐,  the  oxidation  state  of  the  halogen  atom  will  be  +7  Answer  B  

88.   Which  of  the  following  statements  is  not  true?  

a)   When  a  metal  reacts  with  a  nonmetal,  an  ionic  compound  is  formed.  b)   A  metal-­‐nonmetal  reaction  can  always  be  assumed  to  be  an  oxidation-­‐reduction  reaction.  c)   Two  nonmetals  can  undergo  an  oxidation-­‐reduction  reaction.  d)   When  two  nonmetals  react,  the  compound  formed  is  ionic.  e)   A  metal-­‐nonmetal  reaction  involves  electron  transfer.  (a)  True—one  of  your  earliest  understandings  is  that  ionic  compounds  are  formed  between  a  metal  cation  and  a  non-­‐metal  anion.    (b)  True—whenever  a  metal  and  non-­‐metal  interact  chemically,  there  will  always  be  a  shift  of  electrons.    If  the  metal  and  non-­‐metal  are  in  an  elemental  state,  the  metal  will  give  up  electrons  to  the  non-­‐metal—that  is,  the  metal  is  oxidized  and  the  non-­‐metal  is  reduced.    If  the  metal  and  non-­‐metal  are  in  a  compound  state,  the  non-­‐metal  will  “give  electrons  back”  to  the  metal,  and  the  metal  will  “take  electrons  back”  from  the  non-­‐metal—that  is,  the  metal  cation  will  be  reduced  while  the  non-­‐metal  anion  will  be  oxidized.      (c)  True—we  have  often  stated  that  although  the  shift  in  electrons  is  less  obvious  in  covalent  interactions,  nevertheless,  a  shift  of  electrons  does  occur,  and  so,  reactions  between  two  non-­‐metals  will  in  some  way,  involve  oxidation  and  reduction.    (d)    False—agains,  one  of  your  earliest  understandings  regarding  reactions  of  two  non-­‐metals  is  that  when  two  non-­‐metals  react,  the  compound  formed  is  covalent—not  ionic.  (e)  True—this  is  the  same  thing  as  saying  that  a  metal-­‐nonmetal  reaction  is  an  oxidation-­‐reduction  reaction  (see  answer  b).    Answer  D  

89.   In  the  reaction  2Ca(s)  +  O2(g)  →  2CaO(s),  which  species  is  oxidized?  

a)   O2  b)   O2–  c)   Ca  d)   Ca2+  e)   none  of  these  You  have  been  given  a  balanced  chemical  equation.    You  immediately  realize  that  it  is  between  an  elemental  metal  (Ca)  and  an  elemental  non-­‐metal  (O2),  and  your  brain  immediately  registers  that  the  oxidation  states  of  these  are  0—you  write  these  states  down.      

Page 49: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 117

Copyright © Cengage Learning. All rights reserved.

2Ca s( ) + O2 g( )→ 2CaO s( )0 0 +2 −2

 

You  also  immediately  know  that  this  is  a  synthesis  reaction,  and  that  Ca  will  lose  electrons  (become  oxidized)  to  form  a  cation  and  oxygen  will  gain  these  electrons  (become  reduced)  to  form  an  anion,  and  that  these  will  form  the  ionic  solid,  CaO.    You  then  immediately  write  down  the  oxidation  states  of  Ca  and  O  in  this  compound  (+2  and  -­‐2  respectively).    This  further  helps  you  to  visualize  that  Ca  is  going  from  a  0  to  a  +2  state  and  so  is  the  substance  being  oxidized.    Answer  C  

90.   In  the  reaction  2Cs(s)  +  Cl2(g)  →  2CsCl(s),  Cl2  is  

a)   the  reducing  agent  b)   the  oxidizing  agent  c)   oxidized  d)   the  electron  donor  e)   two  of  these  You  have  been  given  a  balanced  chemical  equation.    You  immediately  realize  that  it  is  between  an  elemental  metal  (Cs)  and  an  elemental  non-­‐metal  (Cl2),  and  your  brain  immediately  registers  that  the  oxidation  states  of  these  are  0—you  write  these  states  down.    

 

2Cs s( ) + Cl2 g( )→ 2CsCl s( )0 0 +1 −1

 

You  also  immediately  know  that  this  is  a  synthesis  reaction,  and  that  Cs  will  lose  an  electron  (becomes  oxidized)  to  form  a  cation  and  chlorine  will  gain  this  electrons(becomes  reduced)  to  form  an  anion,  and  that  these  will  form  the  ionic  solid,  CsCl.    You  then  immediately  write  down  the  oxidation  states  of  Cs  and  Cl  in  this  compound  (+1  and  -­‐1  respectively).    This  further  helps  you  to  visualize  that  Cl  is  going  from  a  0  to  a  -­‐1  state  and  so  is  the  substance  being  reduced.    If  Cl  is  being  reduced,  this  means  it  is  the  oxidizing  agent—the  agent  that  is  cause  the  oxidation  or  loss  of  electrons  from  Cs  (choice  b).    Therefore  it  is  also  NOT  the  reducing  agent,  it  is  NOT  being  oxidized,  it  is  NOT  donating  electrons  (it  is  taking  them),  and  so  there  is  only  one  true  answer.    Answer  B  

91.   In  the  reaction  N2(g)  +  3H2(g)  →  2NH3(g),  N2  is  

a)   oxidized  b)   reduced  c)   the  electron  donor  d)   the  reducing  agent  e)   two  of  these  You  have  been  given  a  balanced  chemical  equation.    You  immediately  realize  that  it  is  between  two  non-­‐metal  elemental  substances,  and  so,  each  has  an  oxidation  state  of  0—this  is  a  synthesis  reaction.    On  the  product  side,  in  a  covalent  compound,  hydrogen  almost  always  has  an  oxidation  state  of  +1—therefore,  nitrogen  must  have  a  state  of  -­‐3.    You  immediately  write  all  of  these  oxidation  states  down  so  you  can  

Page 50: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 118

Copyright © Cengage Learning. All rights reserved.

visualize  what  is  happening  with  reference  to  oxidation  (loss  of  electrons)  and  reduction  (gaining  of  electrons).      

 

N2 g( ) + 3H2 g( )→ 2NH3 g( )0 0 −3 +1

 

You  are  asked  to  determine  what  is  happening  to  N2—as  it  is  going  from  0  to  -­‐3  it  is  being  reduced  (reduction  is  gain  in  electrons).    Therefore,  it  is  NOT  being  oxidized  (choice  a),  it  IS  being  reduced  (choice  b),  if  it  is  gaining  electrons  it  CANNOT  be  an  electron  donor  (choice  c),  it  CANNOT  be  the  reducing  agent,  and  CANNOT  be  two  of  these.    Answer  B  

92.   In  the  reaction  P4(s)  +  10Cl2(g)  →  4PCl5(s),  the  reducing  agent  is  

a)   chlorine  b)   PCl5  c)   phosphorus  d)   Cl–  e)   none  of  these  You  have  been  given  a  balanced  chemical  equation.    You  immediately  realize  that  it  is  between  two  non-­‐metal  elemental  substances,  and  so,  each  has  an  oxidation  state  of  0—this  is  a  synthesis  reaction.    On  the  product  side,  in  a  covalent  compound,  neither  of  the  elements  in  the  compound  fall  under  one  of  our  rules.    Therefore,  the  electrons  involved  the  chemical  bonds  are  stated  to  belong  to  the  most  electronegative  atom—in  this  case,  the  chlorine  atoms.    Phosphorus  has  five  valence  electrons  to  share,  and  so,  it  shares  a  single  electron  with  each  of  5  Cl  atoms.    Therefore,  each  Cl  atom  will  be  said  to  have  one  more  electron  than  normal,  and  so,  an  oxidation  state  of  -­‐1—that  is,  it  becomes  reduced.    The  phosphorus  will  be  stated  to  have  lost  5  electrons,  and  so,  will  have  a  charge  of  +5—that  is,  it  will  become  oxidized.      

You  immediately  write  all  of  these  oxidation  states  down  so  you  can  visualize  what  is  happening  with  reference  to  oxidation  (loss  of  electrons)  and  reduction  (gaining  of  electrons).      

 

P4 s( ) + 10Cl2 g( )→ 4PCl5 s( )0 0 +5 −1

 

You  are  asked  identify  the  reducing  agent—this  will  be  the  substance  that  “forces”  its  electrons  on  the  substance  being  reduced.    You  have  already  determined  that  Cl  is  becoming  reduced  from  0  to  -­‐1,  so,  P  must  be  the  substance  that  is  “forcing”  its  electrons  on  Cl—that  is,  P  is  the  reducing  agent.    Answer  C  

93.   In  the  reaction  C(s)  +  O2(g)  →  CO2(g)  carbon  is  __________.  

a)   the  reducing  agent  b)   the  electron  acceptor  c)   reduced  d)   the  oxidizing  agent  e)   more  than  one  of  these  You  have  been  given  a  balanced  chemical  equation.    You  immediately  realize  that  it  is  

Page 51: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 119

Copyright © Cengage Learning. All rights reserved.

between  two  non-­‐metal  elemental  substances,  and  so,  each  has  an  oxidation  state  of  0—this  is  a  synthesis  reaction.    On  the  product  side,  in  a  covalent  compound,  oxygen  almost  always  has  an  oxidation  state  of  -­‐2—therefore,  carbon  must  have  a  state  of  +4.    You  immediately  write  all  of  these  oxidation  states  down  so  you  can  visualize  what  is  happening  with  reference  to  oxidation  (loss  of  electrons)  and  reduction  (gaining  of  electrons).      

 

C s( ) + O2 g( )→ CO2 g( )0 0 +4 −2

 

You  are  asked  to  determine  what  is  happening  to  C—as  it  is  going  from  0  to  +4  it  is  being  oxidized  (oxidation  is  loss  of  electrons).    Therefore,  as  it  is  being  oxidized,  it  IS  a  reducing  agent  because  it  is  “forcing”  its  electrons  on  O  (choice  a),  it  is  NOT  an  electron  acceptor  because  it  is  giving  up  electrons  (choice  b),  it  is  NOT  reduced  because  it  is  oxidized  (choice  c),  it  is  NOT  the  oxidizing  agent  because  it  is  oxidized  (choice  d),  and  so,  it  is  NOT  more  than  one  of  these  (choice  e).    Answer  A  

94.   Which  of  the  following  reactions  does  not  involve  oxidation-­‐reduction?  

a)   CH4  +  3O2  →  2H2O  +  CO2  b)   Zn  +  2HCl  →  ZnCl2  +  H2  c)   2Na  +  2H2O  →  2NaOH  +  H2  d)   MnO2  +  4HCl  →  Cl2  +  2H2O  +  MnCl2  e)   All  are  oxidation-­‐reduction  reactions.  (a)  You  immediately  see  that  this  is  a  combustion  reaction—you  have  a  carbon  compound  reacting  with  oxygen  to  form  water  and  carbon  dioxide.    All  combustion  reactions  are  oxidation  reduction  reactions.    A  further  clue  that  this  is  a  redox  reaction  is  that  an  elemental  substance    on  the  reactant  side  (oxygen)  will  be  a  component  of  both  compounds  on  the  product  side.    This  would  involve  oxygen  going  from  a  0  state  to  a  non-­‐zero  state.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

CH4 + 3O2 → 2H2O + CO2−4 +1 0 +1 −2 +4 −2

 

(b)    You  immediately  see  that  this  is  a  single  replacement  reaction—elemental  Zn  will  “switch”  places  with  H  in  HCl  to  form  ZnCl2  and  elemental  H2  will  be  formed.    You  should  intuitively  know  that  a  single  replacement  reaction  is  an  oxidation  reduction  reaction.    Further  clues  are  that  you  have  elemental  substances  on  one  side  of  the  equation  (Zn  on  the  reactant  side,  H2  on  the  product  side)  being  changed  into  components  of  compounds  on  the  other  side.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

Zn + 2HCl → ZnCl2 + H20 +1 −1 +2 −1 0

 

(c)  You  immediately  see  that  this  is  a  single  replacement  reaction—elemental  Na  will  “switch”  places  with  H  in  H2O  to  form  NaOH  and  elemental  H2  will  be  formed.    You  should  intuitively  know  that  a  single  replacement  reaction  is  an  oxidation  reduction  reaction.    Further  clues  are  that  you  have  elemental  substances  on  one  side  of  the  

Page 52: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 120

Copyright © Cengage Learning. All rights reserved.

equation  (Na  on  the  reactant  side,  H2  on  the  product  side)  being  changed  into  components  of  compounds  on  the  other  side.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

2Na + 2H2O → 2NaOH + H20 +1 −2 +1 −2 +1 0

 

(d)    This  reaction  does  not  readily  fit  into  a  pattern  that  you  can  definitively  intuitively  know  is  a  redox  reaction  (for  example,  a  synthesis  or  decomposition  reaction)—however,  you  should  be  able  to  quickly  see  that  you  have  both  elemental  Cl  and  Cl  as  components  of  compounds,  and  this  can  only  occur  if  oxidation  and  reduction  is  occurring.    A  further  clue  is  that  we  commonly  use  manganese  ions  as  oxidizing  agents—in  this  case  you  should  be  able  to  see  fairly  quickly  that  manganese  is  being  reduced  from  +4  in  MnO2  to  +2  in  MnCl2.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

MnO2 + 4HCl → Cl2 + 2H2O + MnCl2+4 −2 +1 −1 0 +1 −2 +2 −1

 

(e)  Therefore,  all  of  these  reactions  are  oxidation  reduction  reactions.  Answer  E  

95.   Which  of  the  following  are  oxidation-­‐reduction  reactions?  

I.   PCl3  +  Cl2  →  PCl5  

II.   Cu  +  2AgNO3  →  Cu(NO3)2  +  2Ag  

III.   CO2  +  2LiOH  →  Li2CO3  +  H2O  

IV.   FeCl2  +  2NaOH  →  Fe(OH)2  +  2NaCl  

 

a)   III  b)   IV  c)   I  and  II  d)   I,  II,  and  III  e)   I,  II,  III,  and  IV  (I)    This  reaction  does  not  readily  fit  into  a  pattern  that  you  can  definitively  intuitively  know  is  a  redox  reaction  (for  example,  a  synthesis  or  decomposition  reaction)—however,  you  should  be  able  to  quickly  see  that  you  have  both  elemental  Cl  and  Cl  as  components  of  compounds,  and  this  can  only  occur  if  oxidation  and  reduction  is  occurring.  You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

PCl3 + Cl2 → PCl5+3 −1 0 +5 −5

 

(II)  You  immediately  see  that  this  is  a  single  replacement  reaction—elemental  Cu  will  “switch”  places  with  Ag  in  AgNO3  to  form  Cu(NO3)2  and  elemental  Ag  will  be  formed.    You  should  intuitively  know  that  a  single  replacement  reaction  is  an  oxidation  

Page 53: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 121

Copyright © Cengage Learning. All rights reserved.

reduction  reaction.    Further  clues  are  that  you  have  elemental  substances  on  one  side  of  the  equation  (Cu  on  the  reactant  side,  Ag  on  the  product  side)  being  changed  into  components  of  compounds  on  the  other  side.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

Cu + 2AgNO3 → Cu NO3( )2 + 2Ag

0 +1 +5 −2 +2 +5 −2 0  

(III)  This  reaction  does  not  readily  fit  into  a  pattern  that  you  can  definitively  intuitively  know  is  a  redox  reaction  (for  example,  a  synthesis  or  decomposition  reaction).    (Actually  this  is  a  well  disguised  acid  base  reaction.    In  aqueous  solutions  CO2  forms  carbonic  acid  ( H2O + CO2 → H2CO3 )  and  this  then  will  react  with  the  LiOH  to  neutralize  it.)    In  any  case,  you  will  have  to  write  out  the  oxidation  states  to  determine  whether  or  not  it  is  an  oxidation  reduction  reaction.    The  fact  that  there  are  no  elemental  substances  involved  would  be  a  clue  that  this  might  not  be  a  redox  reaction.    In  writing  out  the  oxidation  states  we  see  that  no  oxidation  reduction  is  taking  place.  

CO2 + 2LiOH → Li2CO3 + H2O4+ −2 +1 −2 +1 +1 +4 −2 +1 −2

 

(IV)    This  reaction  is  obviously  a  double  replacement  reaction—which  also  means  that  it  is  a  precipitation  reaction.    You  should  intuitively  know  that  double  replacement  reactions  do  NOT  involve  oxidation  reduction.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

FeCl2 + 2NaOH → Fe OH( )2 + 2NaCl

+2 −1 +1 −2 +1 +2 −2 +1 +1 −1  

Therefore,  only  reactions  I  and  II  represent  redox  reactions.    Answer  C  

96.   Which  of  the  following  statements  is(are)  true?  Oxidation  and  reduction  

a)   cannot  occur  independently  of  each  other  b)   accompany  all  chemical  changes  c)   describe  the  loss  and  gain  of  electron(s),  respectively  d)   result  in  a  change  in  the  oxidation  states  of  the  species  involved  e)   A,  C,  and  D  (a)  True—If  something  is  taking  electrons,  it  is  an  absolute  that  something  must  be  supplying  electrons—oxidation  and  reduction  cannot  occur  independently  of  each  other.    (b)  False—we  have  demonstrated  many  reactions  in  which  oxidation-­‐reduction  does  not  occur.    (c)  True—remember,  oxidation  is  loss  (OIL)  and  reduction  is  gain  (RIG).    (d)  True,  if  electrons  are  gained  or  lost,  the  oxidation  state  of  the  species  does  change.    (e)    A,  C  and  D  are  true,  so  this  is  the  answer.    Answer  E  

97.   In  the  reaction  Zn  +  H2SO4  →  ZnSO4  +  H2,  which,  if  any,  element  is  oxidized?  

a)   zinc  b)   hydrogen  c)   sulfur  

Page 54: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 122

Copyright © Cengage Learning. All rights reserved.

d)   oxygen  e)   none  of  these  You  immediately  see  that  this  is  a  single  replacement  reaction—elemental  Zn  will  “switch”  places  with  H  in  H2SO4  to  form  ZnSO4  and  elemental  H2  will  be  formed.    You  should  intuitively  know  that  a  single  replacement  reaction  is  an  oxidation  reduction  reaction.    Further  clues  are  that  you  have  elemental  substances  on  one  side  of  the  equation  (Zn  on  the  reactant  side,  H  on  the  product  side)  being  changed  into  components  of  compounds  on  the  other  side.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this.    More  importantly,  it  helps  you  visualize  that  the  substance  being  oxidized  (losing  electrons)  is  Zn,  as  it  goes  from  0  to  +2.  

Zn + H2SO4 → ZnSO4 + H20 +1+6 −2 +2 +6 −2 0

 

Answer  A  

98.   In  the  following  reaction,  which  species  is  oxidized?  

                             8NaI  +  5H2SO4  →  4I2  +  H2S  +  4Na2SO4  +  4H2O  

a)   sodium  b)   iodine  c)   sulfur  d)   hydrogen  e)   oxygen  In  this  reaction  you  should  immediately  see  that  it  will  be  best  to  write  out  the  oxidation  states  to  determine  which  substance  will  lose  electrons.  

8NaI + 5H2SO4 → 4I2 + H2S + 4Na2SO4 + 4H2O+1 −1 +1 +6 −2 0 +1 −2 +1 +6 −2 +2 −2

 

Clues  that  could  help  in  this  case—H  will  have  an  unchanging  state  of  +1,  O  will  have  an  unchanging  state  of  -­‐2,  and  Na  will  have  an  unchanging  state  of  +1.    This  means  that  I  and  S  will  be  changing  states—focus  on  these.    You  can  see  that  I  will  go  from  -­‐1  to  0  and  so  is  oxidized.    S  goes  from  a  +6  state  to  a  -­‐2  state  and  so  is  reduced.    Answer  B        

99.   How  many  of  the  following  are  oxidation-­‐reduction  reactions?  

                   NaOH  +  HCl  →  NaCl  +  H2O  

                   Cu  +  2AgNO3  → 2Ag  +  Cu(NO3)2  

                   Mg(OH)2  →  MgO  +  H2O  

                   N2  +  3H2  →  2NH3  

a)   0  b)   1  c)   2  d)   3  

Page 55: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 123

Copyright © Cengage Learning. All rights reserved.

e)   4    The  first  reaction  is  a  neutralization  between  a  strong  acid  and  a  strong  base.    This  may  or  may  not  be  a  redox  reaction,  depending  on  the  acid.    You  will  have  to  write  out  oxidation  states  to  be  sure.    Doing  so,  you  see  that  nothing  changes  oxidation  states.      

NaOH + HCl → NaCl + H2O+1−2 +1 +1 −1 +1 −1 +1 −2

 

For  the  second  reaction,  you  immediately  see  that  this  is  a  single  replacement  reaction—elemental  Cu  will  “switch”  places  with  Ag  in  AgNO3  to  form  Cu(NO3)2  and  elemental  Ag  will  be  formed.    You  should  intuitively  know  that  a  single  replacement  reaction  is  an  oxidation  reduction  reaction.    Further  clues  are  that  you  have  elemental  substances  on  each  side  of  the  equation  (Cu  on  the  reactant  side,  Ag  on  the  product  side)  being  changed  into  components  of  compounds  on  the  other  side.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  this:  

Cu + 2AgNO3 → Cu NO3( )2 + 2Ag

0 +1 +5 −2 +2 +5 −2 0  

For  the  third  reaction,  this  reaction  does  not  readily  fit  into  a  pattern  that  you  can  definitively  intuitively  know  is  a  redox  reaction.    You  will  probably  have  to  write  out  the  oxidation  states  to  determine  this.    Doing  so,  you  see  that  no  substances  change  oxidation  states  so  no  oxidation  reduction.  

Mg OH( )2→ MgO + H2O

+2 −2 +1 +2 −2 +1 −2  

For  the  fourth  reaction  you  immediately  realize  that  it  is  between  two  non-­‐metal  elemental  substances,  and  so,  each  has  an  oxidation  state  of  0—this  is  a  synthesis  reaction.    On  the  product  side,  in  a  covalent  compound,  hydrogen  almost  always  has  an  oxidation  state  of  +1—therefore,  nitrogen  must  have  a  state  of  -­‐3.    You  don’t  have  to,  but  you  could  write  out  the  oxidation  states  to  confirm  that  oxidation  reduction  is  occurring:  

 

N2 g( ) + 3H2 g( )→ 2NH3 g( )0 0 −3 +1

 

Therefore,  the  second  and  fourth  reactions  are  oxidation  reduction  reactions,  so  two  of  the  four  reactions  are  redox.    Answer  C    

100.   In  the  reaction  shown  below,  what  species  is  oxidized?  

                             2NaI  +  Br2  →  2NaBr  +  I2  

a)   Na+  b)   I–  c)   Br2  d)   Br–  e)   I2  

Page 56: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 124

Copyright © Cengage Learning. All rights reserved.

In  this  reaction,  depending  on  your  level  of  comfort,  you  can  fairly  easily  determine  which  substance  will  give  up  electrons  without  writing  down  oxidations  states.    However,  if  it  will  take  more  than  just  a  few  seconds  to  reason  it  out,  you  should  write  out  the  oxidation  states  to  determine  which  substance  will  lose  electrons.    Quick  inspection  shows  that  Na  will  have  a  +1  state  on  both  sides  of  the  equation  and  so  is  a  spectator.    I  is  initially  at  a  -­‐1  state  and  goes  to  a  0  state  and  so  is  oxidized,  and  you  can  stop  at  this  point.    However,  you  can  also  see  that  Br  is  going  from  a  0  state  to  a  -­‐1  state.    In  any  case,  I-­‐  is  oxidized.    If  you  need  to  write  down  states  it  would  look  like  this:  

2NaI + Br2 → 2NaBr + I2+1−1 0 +1 −1 0

Answer  B  

101.   T        F        Oxidation  is  the  gain  of  electrons.  False—oxidation  is  loss—OIL  RIG    Answer    False  

102.   T        F        A  reducing  agent  is  an  electron  donor.  True—a  reducing  agent  becomes  oxidized,  and  so,  loses  electrons—we  think  of  this  as  if  the  reducing  agent  “forces”  its  electrons  on  the  substance  being  reduced.    Therefore,  a  reducing  agent  is  an  electron  donor.    Answer  True    103.   Balance  the  following  oxidation-­‐reduction  reaction  using  the  oxidation  number  method:  

                             Fe3+  +  I–  →  Fe2+  +  I2  

 In  the  balanced  equation,  the  coefficient  of  Fe2+  is  

a)   1  b)   2  c)   3  d)   4  e)   none  of  these  

Write  out  the  equation  and  add  oxidation  states.    Once  you  do  this  you  should  notice  iron  is  becoming  reduced  (changing  from  +3  to  +2),  and  I  is  becoming  oxidized  (changing  from  -­‐1  to  0)  

   

Fe3+ + I – → Fe2+ + I2+3 −1 +2 0

 

Before  you  add  in  your  tie  lines,  however,  notice  that  on  the  product  side  there  are  two  iodine  atoms  as  opposed  to  1  on  the  reactant  side.    In  order  to  make  the  electrons  balance  correctly  it  would  be  better  right  from  the  start  to  say  that  two  iodine  atoms  will  be  transferring  electrons  as  you  know  you  will  need  at  least  two  anyway.    So,  add  tie  lines  by  adding  a  two  as  a  coefficient  to  I-­‐,  and  saying  that  the  2  iodine  atoms  will  “lose  two  electrons”  (one  each).    Then  add  the  tie  line  to  the  iron  atoms  that  are  

Page 57: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 125

Copyright © Cengage Learning. All rights reserved.

transferring  and  say  “gain  1  electron.”          

This  means  you  will  have  to  multiply  the  iron  ions  times  2  to  balance  the  electrons—as  two  I-­‐  ions  each  lose  an  electron  for  a  total  loss  of  2  electrons,  two  Fe3+  ions  will  each  have  to  take  1  electron—a  total  gain  of  two  electrons—two  give  two  Fe2+  ions.  

     

2Fe3+ + 2I – → 2Fe2+ + I2+3 −1 +2 0

 

No  further  balancing  is  required,  and  you  can  now  see  that  the  coefficient  of  Fe2+  must  be  2.    Answer  B  

104.   Balance  the  following  oxidation-­‐reduction  reaction  using  the  oxidation  number  method:  

                             Al  +  Br2  →  Al3+  +  Br–  

 In  the  balanced  equation,  the  coefficient  of  Br–  is  

a)   2  b)   3  c)   4  d)   6  e)   none  of  these  Write  out  the  equation  and  add  oxidation  states.    Once  you  do  this  you  should  notice  aluminum  is  becoming  oxidized  (changing  from  0  to  +3),  and  Br  is  becoming  reduced  (changing  from  0  to  -­‐1).  

   

Al + Br2 → Al3+ + Br −

0 0 +3 −1  

Before  you  add  in  your  tie  lines,  however,  notice  that  on  the  reactant  side  there  are  two  bromine  atoms  as  opposed  to  one  on  the  product  side.    In  order  to  make  the  electrons  balance  correctly  it  would  be  better  right  from  the  start  to  say  that  two  bromine  atoms  will  be  transferring  electrons  as  you  know  you  will  need  at  least  two  anyway.    So,  add  tie  lines  by  adding  a  two  as  a  coefficient  to  Br-­‐,  and  saying  that  the  2  bromine  atoms  will  “gain  two  e-­‐”  (one  each).    Then  add  the  tie  line  to  the  Al  atoms  that  are  transferring  and  say  “lose  3  e-­‐.”              

Page 58: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 126

Copyright © Cengage Learning. All rights reserved.

This  means  you  will  have  to  multiply  the  aluminum  atoms  times  2  to  balance  the  electrons  and  the  bromine  atoms  times  3.    As  two  Al  atoms  each  lose  three  electron  for  a  total  loss  of  6  electrons,  6  bromine  atoms  (3  Br2)  will  each  have  to  take  one  electron—a    total  gain  of  six  electrons—to  give  6    Br-­‐  ions.  

     

2Al + 3Br2 → 2Al3+ + 6Br −

0 0 +3 −1  

No  further  balancing  is  required,  and  you  can  now  see  that  the  coefficient  of  Br-­‐  must  be  6.    Answer  D  

105.   Consider  the  following  unbalanced  oxidation-­‐reduction  reaction:  

                             Fe  +  Br2  →  Fe3+  +  Br–  

 In  the  balanced  equation,  the  number  of  electrons  transferred  is  

a)   3  b)   2  c)   6  d)   4  e)   none  of  these  

Write  out  the  equation  and  add  oxidation  states.    Once  you  do  this  you  should  notice  iron  is  becoming  oxidized  (changing  from  0  to  +3),  and  Br  is  becoming  reduced  (changing  from  0  to  -­‐1).  

   

Fe + Br2 → Fe3+ + Br −

0 0 3+ −1  

Before  you  add  in  your  tie  lines,  however,  notice  that  on  the  reactant  side  there  are  two  bromine  atoms  as  opposed  to  one  on  the  product  side.    In  order  to  make  the  electrons  balance  correctly  it  would  be  better  right  from  the  start  to  say  that  two  bromine  atoms  will  be  transferring  electrons  as  you  know  you  will  need  at  least  two  anyway.    So,  add  tie  lines  by  adding  a  two  as  a  coefficient  to  Br-­‐,  and  saying  that  the  2  bromine  atoms  will  “gain  two  e-­‐”  (one  each).    Then  add  the  tie  line  to  the  Fe  atoms  that  are  transferring  and  say  “lose  3  e-­‐.”              

This  means  you  will  have  to  multiply  the  iron  atoms  times  2  to  balance  the  electrons  and  the  bromine  atoms  times  3.    As  two  Fe  atoms  each  lose  three  electron  for  a  total  loss  of  6  electrons,  6  bromine  atoms  (3  Br2)  will  each  have  to  take  one  electron—a    total  gain  of  six  electrons—to  give  6    Br-­‐  ions.  

Page 59: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 127

Copyright © Cengage Learning. All rights reserved.

     

2Fe + 3Br2 → 2Fe3+ + 6Br −

0 0 3+ −1  

No  further  balancing  is  required,  and  you  can  now  see  that  the  coefficient  of  Br-­‐  must  be  6.    Answer  C  

106.   The  MnO4–  is  often  used  to  analyze  for  the  Fe2+  content  of  an  aqueous  solution  via  the  reaction  

MnO4–(aq)  +  Fe2+(aq)  +  H+(aq)    → Fe3+(aq)  +  Mn2+(aq)  +  H2O(l)  

What  is  the  ratio  of  Fe2+  :  MnO4–    in  the  balanced  equation?  

a)   1  :  1  b)   2  :  1  c)   3  :  1  d)   4  :  1  e)   5  :  1  

Write  out  the  equation  and  add  oxidation  states.    Once  you  do  this  you  should  notice  that  Mn  is  becoming  reduced  (changing  from  +7  to  +2)  and  Fe  is  becoming  oxidized  (changing  from  +2  to  +3).        

 

MnO4– aq( ) + Fe2+ aq( ) + H + aq( ) → Fe3+ aq( ) + Mn2+ aq( ) + H2O l( )

+7 −2 +2 +1 +3 +2 +1 −2  

There  are  no  adjustments  that  need  to  be  made  related  to  the  number  of  Mn  and  Fe  atoms  on  either  side—there  is  1  Mn  on  both  sides  and  1  Fe  on  both  sides.    So  you  can  add  tie  lines  showing  Mn  gaining  5  electrons,  and  showing  Fe  losing  1  electron.  

       

From  this,  you  can  see  that  you  will  have  to  multiply  Fe  ions  times  5  in  order  to  balance  the  electrons.    Therefore,  the  ratio  of  Fe2+:MnO4-­‐  will  be  5:1  in  the  balanced  equation.    Answer  E  

107.   Given  the  reaction:  

                             2MnO4–  +  5H2O2  +  6H+  →  2Mn2+  +  8H2O  +  5O2  

determine  the  number  of  electrons  involved  in  this  reaction.  

a)   10  b)   8  c)   6  d)   4  

Page 60: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 128

Copyright © Cengage Learning. All rights reserved.

e)   2  This  is  the  titration  reaction  we  performed  in  our  lab.    To  find  the  number  of  electrons  involved,  first,  write  out  the  oxidation  states.    Remember,  that  for  hydrogen  peroxide  (H2O2),  for  the  peroxide  ion,  O  is  at  a  -­‐1  state  rather  then  -­‐2.  

2MnO4– + 5H2O2 + 6H + → 2Mn2+ + 8H2O + 5O2

+7 −2 +1 −1 +1 +2 +1 −2 0  

From  this,  we  could  reason  that  as  each  Mn  is  going  from  +7  to  +2,  it  will  gain  5  electrons.    However,  there  are  2  Mn  atoms  so  overall  the  Mn  atoms  will  gain  10  electrons.    Likewise,  each  oxygen  atom  is  losing  1  electron.    As  there  are  10  O  atoms  doing  this,  overall,  O  atoms  will  lose  10  electrons.    This  means  that  the  number  of  electrons  involved  is  10.    Answer  A  

108.   A  molecule  with  an  unequal  charge  distribution  is  said  to  be  a  __________  molecule.  You  are  highly  aware  that  a  molecule  with  an  unequal  charge  distribution  is  called  a  polar  molecule.      

109.   Soluble  ionic  compounds  containing  the  hydroxide  ion  are  called  strong  __________.  Soluble  ionic  compounds  containing  the  OH-­‐  increase  the  amount  of  OH-­‐  ions  in  solution  are  called  strong  bases.  

110.   A  __________  is  a  substance  dissolved  in  a  liquid  to  make  a  solution.  A  substance  that  is  dissolved  in  a  liquid  to  make  a  solution  is  called  a  solute.  

111.   A  __________  electrolyte  dissociates  to  a  great  extent  in  an  aqueous  solution.  If  an  ionic  substance  dissociates  to  a  great  extent  in  an  aqueous  solution  it  will  conduct  electricity  strongly  and  is  called  strong  electrolyte.  

112.   Molarity  is  defined  as  __________  of  solute  per  volume  of  solution  in  ___________.  Molarity  is  defined  as  moles  of  solute  per  volume  of  solution  in  liters.  

Use  the  following  to  answer  questions  113-­‐114:  

Selecting  from  the  following  reagents,  indicate  which  reagents  would  be  mixed  to  give  the  compounds  described.  

  CuSO4(aq)     Fe2(CO3)3(s)   NH3(aq)  

  CuCO3(s)     FeCl3(aq)   Na2SO4(aq)  

  Cr(OH)3(s)       H2SO4(aq)  

 

113.   Cu(OH)2(s)  This  is  a  fairly  difficult  question.    In  order  for  a  solid  precipitate  of  Cu(OH)2  to  be  formed,  you  would  need  an  aqueous  solution  with  Cu  in  it.    The  only  item  in  the  list  that  could  accomplish  this  would  be  CuSO4.    This  would  also  require  that  a  solution  containing  OH-­‐  ions  be  added  to  the  mix.    However,  no  items  containing  OH-­‐  are  present  in  the  list  that  are  soluble—Cr(OH)3  is  insoluble  and  would  not  provide  OH-­‐  ions  to  a  solution.    Remember  that  there  are  also  substances  that  do  not  have  OH-­‐  

Page 61: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 129

Copyright © Cengage Learning. All rights reserved.

ions  in  them  that  can  provide  OH-­‐  ions  by  pulling  a  H+  ion  from  water.    NH3  is  in  the  list,  and,  it  is  soluble.    So,  if  we  add  NH3  to  the  mix,  it  will  cause  OH-­‐  ions  to  be  released  and  this  will  cause  Cu(OH)2  to  precipitate  out.    Answer    CuSO4  and  NH3    114.   FeCl3(aq)  +  Na2SO4(aq)  I  am  not  sure  what  the  point  of  this  question  is.    Both  of  the  requested  compounds  are  already  in  the  list,  so  to  get  these  two  compounds,  just  add  these  compounds  from  the  list.    Answer  FeCl3  and  Na2SO4  

Use  the  following  to  answer  questions  115-­‐119:  

Write  balanced  equations  for  each  of  the  processes,  choosing  from  the  following  substances  as  reactants:  

  BaCl2     O2   H2SO4   HNO3  

  C2H5OH     H2O   Ca(OH)2   K  

  Na2CrO4     KOH   Pb(NO3)2  

115.   Precipitation  of  BaSO4  from  solution  To  get  precipitation  of  BaSO4,  this  would  require  a  soluble  substance  containing  Ba—this  would  be  BaCl2.    This  would  also  require  a  soluble  substance  containing  SO4.    From  the  list,  this  would  be  H2SO4.    The  resulting  balanced  chemical  equation  would  be:     BaCl2 (aq) + H2SO4 (aq)→ BaSO4(s) + 2HCl    116.   Neutralization  of  sulfuric  acid  To  get  neutralization  of  sulfuric  acid,  one  of  the  substances  must  be  the  sulfuric  acid.    To  neutralize  this  we  need  a  base.    We  have  two  choices,  KOH  and  Ca(OH)2.    (Note,  C2H5OH  is  not  a  base—this  is  the  organic  alcohol,  ethanol.)    We  should  probably  not  use  Ca(OH)2  because  it  will  cause  precipitation  of  CaSO4.    So,  using  the  KOH,  the  neutralization  will  be:       H2SO4 (aq) + 2KOH (aq)→ 2H2O + K2SO4    117.   Combustion  reaction  For  a  combustion  reaction  we  will  traditionally  use  an  organic  compound  and  oxygen.    This  means  we  need  to  select  C2H5OH  and  O2.    We  know  that  the  products  are  CO2  and  H2O.    We  use  our  standard  approach  of  doubling  the  number  of  moles  of  the  organic  molecule  to  begin  the  balancing  process.    We  then  determine  the  number  of  CO2  and  H2O  molecules  that  must  result.      

   118.   Dissolution  of  calcium  hydroxide  with  another  reagent  

Page 62: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 130

Copyright © Cengage Learning. All rights reserved.

   119.   Formation  of  hydrogen  gas  

   120.   Balance  the  following  equation:    C3H5(NO3)3  →  N2  +  CO2  +  H2O  +  O2  Write  out  the  equation  and  add  oxidation  states.    You’ll  immediately  notice  that  not  everything  is  a  whole  number  so  it  would  be  best  to  start  out  by  multiplying  everything  by  3  in  order  to  get  whole  numbers.  

C3H5 NO3( )3→ N2 + CO2 + H2O + O2

− 23 +1 +5 −2 0 +4 −2 +1 −2 0

 

   121.   Balance  the  following  equation:    KI  +  HNO3  →  KNO3  +  NO  +  I2  +  H2O  

Write  out  the  equation  and  add  oxidation  states.    Once  you  do  this  you  should  notice  that  I  is  becoming  oxidized  (changing  from  -­‐1  to  0)  and  nitrogen  is  becoming  reduced  (changing  from  +5  to  +2).      

   

KI + HNO3 → KNO3 + NO + I2 + H2O+1 −1 +1 +5 −2 +1+5 −2 +2 −2 0 +1 −2

 

Before  you  add  in  your  tie  lines,  however,  notice  that  on  the  product  side  there  are  two  iodine  atoms  as  opposed  to  1  on  the  reactant  side.    In  order  to  make  the  electrons  balance  correctly  it  would  be  better  right  from  the  start  to  say  that  two  iodine  atoms  will  be  transferring  electrons  as  you  know  you  will  need  at  least  two  anyway.    So,  add  tie  lines  by  adding  a  two  as  a  coefficient  to  KI,  and  saying  that  the  2  iodine  atoms  will  “lose  two  electrons”  (one  each).    Then  add  the  tie  line  to  the  nitrogen  atoms  that  are  transferring  and  say  “gain  3  electrons.”          

This  means  you  will  have  to  multiply  the  I  containing  compounds  by  3  and  the  involved  N  containing  compounds  by  2.  

 

 

 

Then  notice  that  you  will  have  to  balance  K  atoms  by  adding  a  coefficient  of  6  to  the  potassium  nitrate,  which  in  turn  will  mean  you  have  to  balance  nitrogen  atoms  on  the  reactant  side  by  changing  the  coefficient  of  nitric  acid  to  8.  

Page 63: Chaptr 4 HW PacketAK - Edl...Copyright © Cengage Learning. All rights reserved. 1: = → = =) & –4’ ’ & ’: = → = = −4) −5’: = → = =) & ’

Chapter Error! Unknown document property name.: Error! Unknown document property name. 131

Copyright © Cengage Learning. All rights reserved.

 

 

Finally,  you  have  24  O  atoms  on  the  reactant  side  and  21  on  the  product  side—you  can  balance  O  atoms  by  adding  a  coefficient  of  4  to  water,  which  will  also  balance  the  number  of  H  atoms.