chapter3 op amp(1)80911

Upload: azman-mat-hussin

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Chapter3 Op Amp(1)80911

    1/62

    OPERATIONAL AMPLIFIER(OP AMP )

    1

  • 8/4/2019 Chapter3 Op Amp(1)80911

    2/62

    2

  • 8/4/2019 Chapter3 Op Amp(1)80911

    3/62

    3

    1. Introduction2. Understand the general Op-amp circuit

    design Components inside an op.amp.

    Characteristics of an op.amp. Circuit symbol and pin configuration

    Top view Pin-out configuration Block diagram an op-amp differential amplifier more stages of gain amplifier push-pull amplifier

  • 8/4/2019 Chapter3 Op Amp(1)80911

    4/62

    4

    3. Understand the differential amplifier4. Understand more stages of gain amplifier5. Understand the push pull amplifier6. Understand the ideal operational amplifier

    7. Understand the op-amp configurations Inverting amplifier Non inverting amplifier Summing amplifier Subtractor Differentiator amplifier Integrator amplifier Comparator

  • 8/4/2019 Chapter3 Op Amp(1)80911

    5/62

    OP - AMP is a solid state device capable of

    sensing and amplifying dc and ac input signals.

    OP AMP is an amplifier with two inputs

    (Differential inputs) and a single output.

    5

  • 8/4/2019 Chapter3 Op Amp(1)80911

    6/62

    OP AMP consists of 20 transistors 11 resistors

    and 1 capacitor.

    OP - AMP requires a positive and negative powersupply( Dual power supply ).

    This allows the output voltage to swing positiveand negative with respect to ground.

    6

  • 8/4/2019 Chapter3 Op Amp(1)80911

    7/627

  • 8/4/2019 Chapter3 Op Amp(1)80911

    8/62

    Op Amp Internal Circuit Diagram

  • 8/4/2019 Chapter3 Op Amp(1)80911

    9/62

    1.VERY HIGH INPUT RESISTANCE OR EVENINFINITY WHICH PRODUCES NEGLIGIBLE

    CURRENT AT THE INPUT.

    2.VERY HIGH CURRENT GAIN.

    3.VERY LOW OUTPUT IMPEDANCE OR EVENZERO,SO AS NOT TO AFFECT THE OUTPUTOF THE AMPLIFIER BY LOADING.

    9

  • 8/4/2019 Chapter3 Op Amp(1)80911

    10/62

    Block Diagram (Op Amp)

    Internally, the typical Op-Amp has adifferential input, a voltage amplifier and apush pull output.

  • 8/4/2019 Chapter3 Op Amp(1)80911

    11/62

    An OP

    AMP is so named, because it wasoriginally designed to perform mathematical

    operations such as addition, subtraction,

    multiplication, division, integration,

    differentiation etc in analog computer.

    Nowadays OP - AMPs are used in analog

    computer operations and in timing circuits.

    11

  • 8/4/2019 Chapter3 Op Amp(1)80911

    12/62

    The Op

    Amp is represented by a triangularsymbol .

    It has two input and one output terminals.

    CIRCUIT SYMBOL AND PIN-OUT CONFIGURATION

    12

  • 8/4/2019 Chapter3 Op Amp(1)80911

    13/62

    -

    +

    Inverting Input

    Noninverting Input

    Output

    Positive dc

    power supply

    Negative dc

    power supply

  • 8/4/2019 Chapter3 Op Amp(1)80911

    14/62

    The terminal with negative sign (-) is called

    inverting input.

    The terminal with positive sign (+) is callednon inverting input.

    The input terminals are at the base and theoutput is at the apex of the triangular

    symbol.

    14

  • 8/4/2019 Chapter3 Op Amp(1)80911

    15/62

    The widely used and most popular type is

    Op Amp IC 741.

    The top pin on the left side of the notch ispin 1.

    The pin number 2 is inverting input and pinnumber 3 is non-inverting input terminal.

    15

  • 8/4/2019 Chapter3 Op Amp(1)80911

    16/62

    The pin number 6 is the output terminal.

    A dc voltage or ac signal connected to pin2 will be 180o out of phase at the output.

    A dc voltage or ac signal connected to pin

    3 will be in phase at the output.

    Pin 4(-) and 7(+) are the power supply

    terminals.

    16

  • 8/4/2019 Chapter3 Op Amp(1)80911

    17/62

    The pin 1 and 5 are Null adjustment pins.

    Null adjustment pins are used to null the

    output voltage , when equal voltages areinput terminals for perfect balance.

    Pin number 8 indicates No connection.

    17

  • 8/4/2019 Chapter3 Op Amp(1)80911

    18/62

    TOP VIEW OF 8 PIN DIP

    Notch

    18

  • 8/4/2019 Chapter3 Op Amp(1)80911

    19/62

    OP AMP Pin- out configuration

    19

  • 8/4/2019 Chapter3 Op Amp(1)80911

    20/62

    A single package will often contain severalop-amps

  • 8/4/2019 Chapter3 Op Amp(1)80911

    21/62

    There are 2 types of application in op-amp

    Linear application

    Non-linear application

    Linear application is where the op-amp operate inlinear region:

    Assumptions in linear application:

    Input current, Ii = 0

    Input voltage: V+=V-

    Feedback at the inverting input

    Application in op-amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    22/62

    Non-linear application is where the op-amp operate innon-linear region

    By comparing these two input voltages: positive input

    voltages, V

    +

    and negative input voltage, V

    -

    where:VO = VCC if V

    + > V-

    VO = -VEE if V+ < V-

    Input current, Ii = 0

    Application in op-amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    23/62

    Comparator (Pembanding)

    Inverter (Penukar)

    Audio amplifier (Penguat Audio) Difference Amplifier (Penguat Beza)

    Filter (Penapis)

    Summing Amplifier (Penguat Jumlahan)

    Application in op-amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    24/62

    Inverting Amplifier

    Non-Inverting Amplifier

    Summing Amplifier

    Unity Follower

    Difference Amplifier

    Integrators

    Differentiators

    Op-amp Circuit Application

  • 8/4/2019 Chapter3 Op Amp(1)80911

    25/62

    Vo = A(V+ - V)

    Vo/A = V+ - V

    Let A --- infinitythen,

    V+ - V--- 0

    Summary of op-amp behavior

    V+ = V

    I+ = I = 0

    Seems strange, butthe input terminalsto an op-amp act asa short and open atthe same time

  • 8/4/2019 Chapter3 Op Amp(1)80911

    26/62

    Write node equations at + and - terminals

    (Ii=I+ = I-= 0)

    Set V+ = V-

    Solve for Vo

    To analyze an op-amp circuit for linear

    operation

  • 8/4/2019 Chapter3 Op Amp(1)80911

    27/62

    IDEAL OPERATIONAL AMPLIFIERS

  • 8/4/2019 Chapter3 Op Amp(1)80911

    28/62

  • 8/4/2019 Chapter3 Op Amp(1)80911

    29/62

    29

    Differential Amplifier circuits In differential amplifier, there are two inputs Vi1 and Vi2 andthere are three outputs (1) at Vo1, (2) at Vo2, and (3) across

    between Vo1 and Vo2 Dual supply +VCC and VEE are used so that Vi1 and Vi2 can beconnected to the BJT directly without coupling capacitor

    IC1 + IC2 = 2Ic flows

    through REthen VRE = 2Icx REVi1

    RC

    -VEE

    +VCC

    Vo1

    Vo2

    RC

    RE

    Vi2

    Q1 Q2AC

    AC

    VE = -0.7V

    VB = 0V dc

    +

    -

    Ce

    E

    EEC

    EEEEREEC

    I

    mV26r

    R2

    7.0VI

    7.0VV7.0VRI2

    CCCC2C1C RIVVV

    DC analysis

  • 8/4/2019 Chapter3 Op Amp(1)80911

    30/62

    30

    Example

    In differential amplifier shown,find (1) VB1= VB2 (2) VE1= VE2 (3) IC1 = IC2 and (4) VC1= VC2

    VB = 0V dc

    VE = -0.7V

    Vi1

    -9V

    +9V

    Vo1

    Vo2

    RC

    3.3kVi2

    Q1

    Q2

    AC

    AC

    3.9k

    +-

    VC

    IC

    mA26.1k3.32

    7.09

    R2

    7.0VI

    7.0VV7.0VRI2

    E

    EEC

    EEEEEEC

    V1.4k9.3mA26.19RIVV CCCCC

    V7.0V,V0V EB

  • 8/4/2019 Chapter3 Op Amp(1)80911

    31/62

    Due to biasing requirements or leakage, asmall amount of current (typically ~10nanoamperes for bipolar op-amps, tens ofpicoamperes for JFET input stages, and only a

    few pA for MOSFET input stages) flows into theinputs. When large resistors or sources withhigh output impedances are used in the circuit,these small currents can produce large

    unmodeled voltage drops. If the input currentsare matched, and the impedancelooking out of both inputs are matched, thenthe voltages produced at each input will bee ual.

    Input Bias Current

  • 8/4/2019 Chapter3 Op Amp(1)80911

    32/62

    -The output voltage of an op-amp when thedifferential input is zero should be also zero.

    - However, due to unavoidable internalimbalances and due to non-zero bias currents, asmall voltage, V

    IO, is seen between the

    terminals.- ICs provide a means to compensate for this.- This is generally done by connecting anexternal potentiometer to pins designated withOffset Null.- With zero input voltage, the output is set to zeroby adjusting the potentiometer- The pinout for the 741 op-amp (the most

    common op-amp IC) is shown next.

    Input Offset Voltages

  • 8/4/2019 Chapter3 Op Amp(1)80911

    33/62

    Input Offset Current

    - Input offset current refers to thedifference between the bias currents ofthe amplifier. Again, ideally the two

    currents should be equal to obtain azero output voltage. However, there hasto be a difference between the two bias

    currents to set the output to zero. Thisdifference is referred to as input offsetcurrent.

    - The difference in IBias between the

  • 8/4/2019 Chapter3 Op Amp(1)80911

    34/62

    Common-mode Gain

    Common mode gain is the undesiredgain when the same signal is appliedto both inputs. Ideally it should be

    zero.

  • 8/4/2019 Chapter3 Op Amp(1)80911

    35/62

    Common-mode Rejection Ratio

    The ability of a differential amplifier to notpass (reject) the portion of the signalcommon to both the + and - inputs.

  • 8/4/2019 Chapter3 Op Amp(1)80911

    36/62

    Multistages Amplifier

  • 8/4/2019 Chapter3 Op Amp(1)80911

    37/62

    Push Pull Amplifier

  • 8/4/2019 Chapter3 Op Amp(1)80911

    38/62

    Operation (Push Pull)

    Most audio power amplifiers use a Class Bconfiguration which employs two commoncollector (emitter-follower) stages where onetransistor provides power to the load during one-

    half of the waveform cycle (it pushes) and asecond transistor provides power to the load forthe other half of the cycle (it pulls).

    Neither transistor remains on for the entire cycle,giving each transistor time to rest and coolduring the waveform cycle. This makes for amore power-efficient amplifier circuit, but leads

    to a distinct type of nonlinearity known as

  • 8/4/2019 Chapter3 Op Amp(1)80911

    39/62

    Operation (Push Pull)

    Distortion occurs because there is a delaybetween the time one transistor turns off and theother transistor turns on.

    There will be no output signal until Vin 0.6V .

  • 8/4/2019 Chapter3 Op Amp(1)80911

    40/62

    Infinite gain for the differential input signal

    Zero gain for the common-mode inputsignal

    Infinite input impedance

    Zero output impedance

    Infinite bandwidth

    Characteristics of Ideal Op Amps

  • 8/4/2019 Chapter3 Op Amp(1)80911

    41/62

    (1) Infinite Open Loop gain

    - The gain without feedback- Equal to differential gain- Zero common-mode gain- Pratically, Gd = 20,000 to 200,000

    (2) Infinite Input impedance

    - Input current ii ~0A- T- in high-grade op-amp- m-A input current in low-grade op-

    amp

    (3) Zero Output Impedance

    - act as perfect internal voltage source- No internal resistance- Output impedance in series with load- Reducing output voltage to the load- Practically, Rout ~ 20-100

    +

    V1

    V2 Vo

    +

    Vo

    i1~0

    i2~0

    +

    Rout

    Vo'Rload

    outload

    load

    oloadRR

    RVV

    Ideal characteristics of Op-Amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    42/62

    Input offset voltage

    0

    when the input terminals are shorted so that , theoutput is a Virtual Ground or vout = 0

    Offset current 0

    there is assumed to be no leakage or bias currentinto the device

    Bandwidth -

    the frequency magnitude response is considered tobe flat everywhere with zero phase shift)

  • 8/4/2019 Chapter3 Op Amp(1)80911

    43/62

    Ideal Practical

    Open Loop gainA 105

    BandwidthBW 10-100Hz

    Input ImpedanceZin >1M

    Output ImpedanceZout 0 10-100

    Output Voltage Vout Depends onlyon Vd = (V+V)

    Differential

    mode signal

    Depends slightly

    on average input

    Vc = (V++V)/2Common-Mode

    signal

    CMRR 10-100dB

    +

    ~

    AVin

    Vin Vout

    Zout=0

    Ideal op-amp

    +

    AVinVin VoutZ

    out

    ~

    Zin

    Practical op-amp

    Ideal Vs Practical Op-Amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    44/62

    We are using the two

    ideal op ampproperties discussedabove to analyze thiscircuit.

    Since the amplifierhas infinite gain, it willdevelop its outputvoltage, Vout, with zeroinput voltage.

    INVERTING AMPLIFIER

    44

    INVERTING AMPLIFIER

  • 8/4/2019 Chapter3 Op Amp(1)80911

    45/62

    Since the differentialinput is zero, the full

    input voltage mustappear across Ri, makingthe current in Ri,

    Iin = Vin / Ri .

    since there is no current

    flow into either inputterminal because theinput impedance isinfinite, the current Iin

    must also flow in Rf.

    INVERTING AMPLIFIER

    45

    INVERTING AMPLIFIER

  • 8/4/2019 Chapter3 Op Amp(1)80911

    46/62

    INVERTING AMPLIFIER

    46

    V 0 Ii 0

    I1 If Ii

    Vs V

    R1V Vo

    Rf

    V V 0

    Vo

    Vs

    Rf

    R1

    Vo Rf

    R1

    Vs

  • 8/4/2019 Chapter3 Op Amp(1)80911

    47/62

    THE NON INVERTING AMPLIFIER

    The input signal is appliedto the non inverting input

    terminal.

    A resistor Ra, is connected

    from the inverting inputto the ground.

    The feedback resistor Rfis

    connected between the

    output and the invertinginput.

    47

    +Vin

    Vo

    RaRf

  • 8/4/2019 Chapter3 Op Amp(1)80911

    48/62

    THE NON INVERTING AMPLIFIER

    Since the potential at theinverting input and that at the

    non inverting input are same .

    48

    +Vin

    Vo

    RaRf

  • 8/4/2019 Chapter3 Op Amp(1)80911

    49/62

    THE NON INVERTING AMPLIFIER

    (R1 + R2 / R1) = VOUT /VA

    1 + ( R2 / R1) = VOUT /VIN

    A v =1 + ( R2 / R1).

    The output and input

    voltages are in phase.

    49

  • 8/4/2019 Chapter3 Op Amp(1)80911

    50/62

    50

    Non Inverting Amplifier

    (1) Kirchhoff node equation at V+yields,

    (2) Kirchhoff node equation at V

    yields,

    (3) Setting V+ = V yields

    or

    +VinVo

    RaRf

    iVV

    00

    f

    o

    a RVV

    RV

    0

    f

    oi

    a

    i

    R

    VV

    R

    V

    a

    f

    i

    o

    R

    R

    V

    V1

    The output and input voltages are in phase.

  • 8/4/2019 Chapter3 Op Amp(1)80911

    51/62

    The Summing Amplifier

    The summingamplifier provides

    an output equal to

    the sum of theinput voltages.

    Here we have an

    inverting amplifier,

    used to sum two

    input voltages.

    51

  • 8/4/2019 Chapter3 Op Amp(1)80911

    52/62

    The Summing Amplifier

    The input voltagesV1 and V2 are

    connected to the

    inverting inputthrough the

    resistors R1, R2 and

    RF

    is the feedback

    resistance.

    52

  • 8/4/2019 Chapter3 Op Amp(1)80911

    53/62

    The Summing Amplifier

    S i A lifi

  • 8/4/2019 Chapter3 Op Amp(1)80911

    54/62

    Summing Amplifier

    This circuit is called

    a weighted summer

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    321

    ;0

    :

    ;0

    :

    0

    R

    V

    R

    V

    R

    V

    RV

    R

    V

    R

    V

    R

    V

    R

    VVinsert

    R

    VV

    R

    VV

    R

    VV

    R

    VVso

    Iwhile

    IIIII

    KCLuse

    VV

    fo

    f

    o

    f

    o

    i

    RfiRRR

    V1

    V2

    V3

    R1

    R2

    R3

    Rf

  • 8/4/2019 Chapter3 Op Amp(1)80911

    55/62

    Subtrator Amplifier

    55

    43

    21

    RR

    RR

    )(21

    2

    4VV

    R

    RVO

  • 8/4/2019 Chapter3 Op Amp(1)80911

    56/62

    dttvRC

    tv

    dt

    tdvC

    R

    tv

    III

    io

    i

    Ci

    )(1

    )(

    )(0

    )( 0

    sC

    1

    Cj

    1X

    :impedancecetanCapaci

    C

    Integrator Amplifier

  • 8/4/2019 Chapter3 Op Amp(1)80911

    57/62

    dt

    tdvRCtv

    R

    tvV

    dt

    tdv

    C

    II

    i

    o

    oi

    RC

    )()(

    )()(

    Differentiator Amplifier

    C t

  • 8/4/2019 Chapter3 Op Amp(1)80911

    58/62

    Comparator

    Vo(V)

    10

    -5

    t

    VS(V)

    t

    Compare V+ and V-

    V+=0V-=VS

    When:VS>0,V

    +>V- so Vo=10VVS

  • 8/4/2019 Chapter3 Op Amp(1)80911

    59/62

    1VV

    O

    Unity Follower(Pengikut Voltan)

  • 8/4/2019 Chapter3 Op Amp(1)80911

    60/62

    Instrumentation Amplifier

  • 8/4/2019 Chapter3 Op Amp(1)80911

    61/62

    Non-linear application is where the op-ampoperate in non-linear region

    By comparing these two input voltages: positive

    input voltages, V+

    and negative input voltage, V-

    where:

    VO = VCC if V+ > V-

    VO = -VCC if V+ < V-

    Input current, Ii = 0

    Non-linear application in op-amp

  • 8/4/2019 Chapter3 Op Amp(1)80911

    62/62