chapter 8 - mechanical characterization

Upload: cody-yu

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    1/43

    1

    Chapt er 7hapt er 7M echanical Charact erizat ion of t heechanical Charact erizat ion of t heE lect ronic Packageslectronic Packages

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    2/43

    2

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    3/43

    3

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    4/434

    Thermal M ismat chhermal M ismat chSi (CTE=2~3 ppm/C)

    Substrate (CTE=15~20 ppm/C)

    EU solder (CTE=25 ppm/C)Underfill (CTE=7 ppm/C)

    Thermal mismatch in elect ronic package is due to t he diff erent

    coeff icient s of t herm al expansion (CTE) in dissim ilar m aterials(Si/ solder, Si/ underfi l l , Si/ subst rate) or t he temperaturegradient

    Thermal st ress and t he associated therm al st rains w ill ar ise in

    t he connect ion joint or all interconnect ions.

    Thermal fatigue failures result from the therm al m ismatchduring t herm al cycle (uniform temperature environment ) orpower cycle (pow er on/ off, program running)

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    5/435

    Thermal F at iguehermal F at igue

    Low cycle fat igue ( LCF) : below 106 cycles, plast icity encount ered w it hobvious plast ic deform ation.

    High cycle fat igue(HCF) : above 106 cycles, st rains are elastic andw it hout obvious plast ic deformation.

    Thermal fat igue is a classic case of low cycle fat igue (LCF)

    For solder, the st rain encount ered in t hermal cycle can be a few t imes

    as large as t he yield strain

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    6/436

    F at igue L i f e Predict ion Procedureat igue L i f e Predict ion ProcedureF

    F

    M

    M

    Shear Stress

    Shear Strain

    1. Det ermine syst em forces and deformations

    2. Det erm ine local stresses and str ains in solder

    3. Est imate fat igue life

    Estimation

    Local st resses/ st rains are cri t ical t o the suscept ible element inpackages (solder j oint )

    Local shear st rains in solder j oint dominate t he failure mode and areused fro t he predict ion of t he thermal fat igue l i fe

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    7/437

    Thermal St ress/ St rainhermal Stress/StrainChip "1"

    Joint "C"

    Substrate "2"

    =T

    =L

    =C

    h

    =

    Temperaturerise

    Beam length

    Joint height

    CTE

    Shear St ress Shear St rain

    ( )

    cc

    cc

    c

    c

    IE

    Ah

    G

    h

    TL

    12

    3

    21

    +

    =

    ( )

    ch

    TL

    =21

    1. E1, E2, I 1, I 2 are very large values

    2. Shape of solder is righ t circular cylinder

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    8/438

    Coffinoff in-M anson Relat ionshipanson Relat ionshipL

    ch

    Formation

    Large t emperat ure excursions cause diff erentdamage mechanism w hich depends onoverstress and st rong variat ion of t heproper t ies of solder

    Solder j oint qualit y w hich may cause fracturein solder t hat fails t his model

    High frequency/ low temperat ure make solderbehavior like an elast ic material, t hus plast icst rain is not close to t he local st rain

    C

    f

    fN

    1

    '22

    1

    =

    442.0

    325.0'

    =

    =

    C

    f

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    9/439

    Examplexample5 mm

    100 um

    dia.hc

    1

    2

    C

    Temperatur e range: 35C t o 85C

    Solder height effect on fat igue life:

    6100

    110

    5020

    100

    3874

    90

    Nf (cycle)

    Height ( um)

    442.0;325.0;50)3585(

    /4.4/)6.27(

    ' ====

    ==

    cCT

    CppmCppm

    f

    502065.0

    011.0

    2

    1 442.01

    =

    =

    fN011.0

    100

    504.45000=

    =

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    10/4310

    Pref erred Solut ionreferred Solution Thermal st ress:

    By decreasing:

    By increasing:

    Thermal st rain:

    By decreasing:

    By increasing:

    ccEGLT ,,,,

    LT,,

    c

    c

    c I

    A

    h ,

    ch

    The height of solder j oint is suggested the higher t he bet t er

    can be low ered by selected a proper substrate

    Smaller suggested using soft er solder material

    DNP(L): t he dist ance betw een a solder j oint and the neut ral point of t hechip ( chip cent er)

    ccGE ,

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    11/43

    11

    Quick E st imat ion of Solder H eightuick E st imat ion of Solder H eight The solder volume of a spherical solder j oint :

    Height of a furst rum of a crone:

    Vert ical loading per j oint :

    ( )[ ]222 36

    css

    s rrHH

    V ++=

    [ ] [ ] 31

    3231

    32 BAABAAHs

    ++++=

    VA 3= 22

    scrrB +=

    ( )223

    sscc

    crrrr

    VH++

    =

    ( )sc

    sn

    HHHHFf

    =

    ( ) ( ) ( ){ }

    ++

    ++

    = 21

    22

    21

    222

    2

    222

    2 244

    csccssscs

    s

    css

    s

    sc

    rrHrrHHrrH

    rrHr

    HHF

    sH

    cH

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    12/43

    12

    D if f erent Solder V olumeif f erent Solder V olume I nput Data

    Final Height & Deposit ion Height + / - Variat ion:

    cmdyne

    gfdynef

    umcmr

    umcmr

    n

    s

    c

    /325

    005.09.4

    50005.0

    50005.0

    ===

    ==

    ==

    70

    110

    78

    X 502 X 110

    CASE 3

    64

    90

    69

    X 502 X 90

    CASE 2

    67

    100

    73

    X 502 X 100

    CASE 1

    )( 3umV

    )(umHs

    )(umHc

    )(umH

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    13/43

    13

    Examplexample400um

    600um

    TRADE-OFF BETWEEN FATIGUE, THERMAL AND PROCESSING

    PROCESSING VARATIONStandard joint height: 15um ; deposition thickness: 15.2 um

    Standard deviation 10% of specified thickness (within 3-sigma deviation)

    Max. joint height = 19.3um Min. joint height = 10.6um

    FATIGUE AND THERMAL RESISTANCE VARIATION

    51

    23000

    Min.

    54

    51000

    Mean

    56

    93000

    Max.

    Thermal resistance (C/ W)

    Fat igue life (cycles, delt a T = 60C)

    Joint height

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    14/43

    14

    M icrost ruct ure of 63Sn/ 37Pb E ut ect ic Soldericrost ruct ure of 63Sn/ 37Pb E ut ect ic Solder

    The coarsened region is inherent ly w eaker and t hrough w hich crackspropagate to fi nal solder f ailure

    The heterogeneous coarsened band is approx imately parallel t o t heimposed shear strain

    Quant it ative modeling of t he microst ructure change is not possible

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    15/43

    15

    A u/ N i M et al li zat ion on a Cu Padu/ N i M et al l izat ion on a Cu PadSolder Ball

    Die

    Solder MaskCu Pad/Trace

    Solder Ball

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    16/43

    16

    F ini t e E lement A nalysis of Solder F at igue L i f eini t e E lement A nalysis of Solder F at igue L i f e

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    17/43

    17

    A nalysis A lgori t hm f or Solder F at iguenalysis A lgori t hm f or Solder F at igue

    ANSYS Modeling

    Fatigue Life

    * Material Properties Analysis Procedure

    Data Output Prediction Model

    Solder ball profile Solder Material Specific Temp. cycle

    Solution MethodologyGeometry consideration Bump+Underfill

    composite properties

    Converge criteriaBoundary conditionsComponent properties

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    18/43

    18

    F E A M odel ing SchemesE A M odel ing SchemesReferred from: Finite Element Modeling of BGA Packages for Life Prediction

    2000 Electronic Components and Technology Conference, pp.1059-1063

    Modeling Method Modeling Desciption Advantage/Disadvantage Remark

    Nonlinear slice model

    1.Octant symmetry, untilizes inly a diagonal slice of the package

    2.The model imposes symmetric boundary conditions on the slice plane coinciding

    with the true symmetry plane

    Reduce computation time Most Conservative

    Nonlinear global model withlinear super model

    1.Package and board are modeled as two super element and all of the solder ballsas three-dimensional finite elements

    2.Except for the critical joints, the solder balls are modeled with a coarse mesh

    Avoid the assumptions associated withthe boundary conditions of the slice

    model

    Not acceptable

    Linear global model with

    nonlinear submodel

    1.Linear model of substrate and board and all of the solder balls using three-

    dimensional f inite elements

    2.The global model includes only linear material properties, whereas the submodel

    includes nonlinear material behavior

    3.The linear global model is s

    Permit the simulation of any thermal

    cycle using only one set of global model

    results

    Most f idelity

    Nonlinear global model with

    nonlinear submodel

    1.Nonlinear global model with a very coarse mesh for the substrate and board and

    for the solder balls

    2.Providing the critical solder joint for the subsequent nonlinear submodeling

    Displacements become the coundary

    conditions for the nonlinear submodel of

    the critical joint in accordance with the

    thermal cycling

    Nonlinear global model

    1.Global model employs a relatively coarse mesh for all of the components of a

    package except for the critical joints

    2.It is not feasibile to model all of solder joints if the package consists of a large

    number of solder joints

    Time consuming

    Selected Modeling Methodologies:

    Nonlinear slice model: single chip package

    Linear global model with nonlinear sub-model: SiP or MCM packages

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    19/43

    19

    Approaching Architecturespproaching A rchi t ect uresViscoplasticity

    Plasticity

    Elasto-plastic + Creep

    - curves (SOLID185)

    Creep Model (SOLID185)

    Anands Model (VISCO107)

    Darveaux (plastic work)

    Coffin-Manson (Equivalent plastic strain)

    2

    10

    K

    aveWKN =dN

    da

    aN += 0

    m

    f

    p CN=

    Finite Element Solution DomainExperimental+Analytical Solution Domain

    ANSYS Environment

    43 KaveWK

    dN

    da

    = 2=ffN

    Approaching Method Property Implement Advantages Disadvantagess

    1. popular for life prediction of eutectic solder 1. limitation of material informations (LF)

    2. has been proven and widely used 2. only plastic work can be read out

    3. nonlinear plasticity & creep involved 3. life prediction variables are dif ficult obtained1. stress-strain curves can be experimented (LF) 1. only plasticity behavior without creep effect

    2. Cof fin-Manson variables can be determined

    3. both two kinds of life prediction methods can be used

    1. can be used for low frequency fatigue analysis 1. difficult converge and time consuming

    2. both two kinds of life prediction methods can be used 2. not real plasticity behavior involved

    3. creep functions can be determined by experiments

    Viscoplasticity

    Plasticity

    Temp. dependent elastic

    modulus and creep functionElasto-plastic + Creep

    Temp. dependent

    stress-strain curves

    Anand's model

    Plasticity (high-cycle fatigue) +Creep (low-cycle fatigue) = Viscoplasticity (in-elastic fatigue)

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    20/43

    20

    F at igue A nalysis using A N SYS Codeat igue A nalysis using A N SYS Codecr

    eq

    pl

    eq

    in

    eq +=

    ( ) ( ) ( )i

    in

    eqi

    in

    eq

    in

    eq = +1

    ( ) ( ) ( )saturated

    in

    eqn

    in

    eqn

    in

    eq === + L1

    ( )Csaturated

    in

    eqf BN =

    FEM: Plasticity & Elasto-plastic +Creep

    After nth cycles

    Modified Coffin-Manson Law

    Plasticity: equivalent plastic strain grows in the ramp duration and stays in the hold-time (dwell)

    Elasto-plastic + Creep: creep strain accumulates more in the hold-time duration (dwell)

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    21/43

    21

    Tw ow o-st age A nalysis M et hodt age A nalysis M et hodC*** SOLDER !MATERIAL PROPERTIES OF SOLDER BALL

    MP,EX,1,30E3MP,NUXY,1,0.4

    MP,ALPX,1,24.7E-6

    TB,BKIN,1,3

    TBTEMP,273 ! Temperature = 273

    TBDATA,1,46,(55-46)/(0.45-0.025) ! Stresses at temperature = 273 (0)

    TBTEMP,323 ! Temperature = 323

    TBDATA,1,34,(39-34)/(0.45-0.025) ! Stresses at temperature = 323 (50)

    TBTEMP,373 ! Temperature = 393

    TBDATA,1,18,(20-18)/(0.45-0.025) ! Stresses at temperature = 393 (100)

    EquivalentEquivalent Plastic StrainPlastic Strain

    C*** SOLDER !MATERIAL PROPERTIES OF SOLDER BALL

    MP,EX,1,30E3

    MP,NUXY,1,0.4

    MP,ALPX,1,24.7E-6

    TB,BISO,1,3

    TBTEMP,273 ! Temperature = 273

    TBDATA,1,46,(55-46)/(0.45-0.025) ! Stresses at temperature = 273 (0)

    TBTEMP,323 ! Temperature = 323TBDATA,1,34,(39-34)/(0.45-0.025) ! Stresses at temperature = 323 (50)

    TBTEMP,373 ! Temperature = 393

    TBDATA,1,18,(20-18)/(0.45-0.025) ! Stresses at temperature = 393

    (100)

    TB,CREEP,1,,,8 !CREEP MODEL

    TBDATA,1,12423.2,0.125938,1.88882,61417

    Stage 1: Plasticity analysis

    -Temp. dependent stress-strain curves

    -Nonlinear kinematic strain hardening

    EquivalentEquivalent Creep StrainCreep Strain

    Stage 1: Plasticity + Creep analysis

    -Temp. dependent stress-strain curves

    -Isotropic strain hardening

    -Creep function

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    22/43

    22

    Temperature Cycle Prof i leemperature Cycle Prof i le

    0

    100

    25

    1st cycle 2nd cycle 3rd cycle

    Dwell period of 5 mins Ramp rate = 10/min

    (L)

    (A) (B)

    (C) (D)

    (E) (F)

    (G) (H)

    (I) (J)

    (K)

    Time

    Temp

    183

    Remark:

    Board Level TC: 0~100C; 5 mins dwell and ramp rate with 10C/min

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    23/43

    23

    Stresstress-st rain Curves of Solder Jointt rain Curves of Solder JointKinematic Hardening

    Stress-Strain Curves of Eutectic Solder (63Sn/37Pb)

    Remark: To used bi-linear stress-strain model instead of multi-linear

    model can make a balance between computation accuracy and

    time consuming

    Kinematic hardening effect must be considered into the FEA

    analysis

    C

    D

    Yield Surface

    Bauschinger Effect

    F

    0

    3

    2

    O

    S

    0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5

    Strain

    0.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    Stress(MPa)

    Temp. = 0 C

    Temp. = 50 C

    Temp. = 100 C

    B

    A

    O

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    24/43

    24

    M at erial Propert iesat erial Propert iesMaterial Type Temp. (K) Yield Strength (MPa)

    22000 x,y 0.28 xz,yz 19 x,y

    10000 z 0.11 xy 70 zSolder Mask 298 3448 0.35 elastic 30

    Copper Pad 298 68900 0.34 69 16.7

    26000 x,y 0.39 xz,yz 15 x,y

    11000 z 0.11 xy 52 z

    < 70 7 32

    > 70 0.04 110

    Silicon Chip 298 162000 0.28 elastic 2.3< -120

    > -120 0.35 232

    < 49 39

    > 49 162

    Heat Spreader 298 71 0.0334 elastic 18

    0.38 elastic

    Temp.-dependent

    nonlinear0.3Adhesive

    TIM

    7/273,4/298,0.7/323,0.09/348,0.

    075/373,0.075/423

    BT Laminate 298 elastic

    Underfill 0.33 elastic

    Elastic Modulus (MPa) Poisson's Ratio CTE (ppm/K)

    FR-4 Board 298 elastic

    Solder creep function: for 63Sn/37Pb solder( )[ ] Tcreep e88882.1

    125938.0sinh2.12423= 61417

    &

    U S U S U Eeq, Geq, veq, eq

    j+1

    j+1

    j

    j j

    j

    j+1

    j+1Solder bump + Underfill

    V

    uVsV

    VVn uu /=

    VVn ss /=Total volume:

    Bump volume:Underfill volume:

    ssuueq nEnEE += ssuueq nn +=

    Equivalent material properties

    Composite Algorithm

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    25/43

    25

    F ini t e E lement M odel & BCinit e E lement M odel & B Cs

    Remark:

    Diagonal slice modeling for single-chip module

    Solder ball profile is determined by program prediction

    Coupling constraints make structure behave plane strain condition

    Coupling UY

    UX=0

    UY=0

    Coupling UX

    Fix

    Single-chip Module Modeling

    Symmetric BCs

    Symm

    etricBCs

    Slice Model

    Substrate opening: 0.5 mm

    PCB opening: 0.4 mm

    Standoff height: 0.4 mm

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    26/43

    26

    A ccumulated Plast ic and Creep St rainccumulated Plast ic and Creep St rainAccumulated equivalent

    plastic strain (1st cycle)

    Accumulated equivalent

    plastic strain (2nd cycle)

    Accumulated equivalent

    plastic strain (3rd cycle)

    Accumulated equivalentcreep strain (2nd cycle) Accumulated equivalentcreep strain (3rd cycle)Accumulated equivalentcreep strain (1st cycle)

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    27/43

    27

    E xample of Case St udyingxample of Case Studying(a) 4112 cycles

    (b) 1897 cycles

    (c) 1151120 cycles

    (d) 18036 cycles

    (a) (c)

    Ni PEEQ CEEQ IEEQ IEEQ Ni PEEQ CEEQ IEEQ IEEQ

    Cycle 1 0.012766 1.332E-15 1.277E-02 0.0127660 Cycle 1 0.001228 5.995E-15 1.228E-03 0.0012280Cycle 2 0.028515 1.998E-15 2.852E-02 0.0157490 Cycle 2 0.002155 1.044E-14 2.155E-03 0.0009270

    Cycle 3 0.044276 2.665E-15 4.428E-02 0.0157610 Cycle 3 0.003071 1.488E-14 3.071E-03 0.0009160

    (b) (d)

    Ni PEEQ CEEQ IEEQ IEEQ Ni PEEQ CEEQ IEEQ IEEQ

    Cycle 1 0.025338 1.332E-15 2.534E-02 0.0253380 Cycle 1 0.009468 1.776E-15 9.468E-03 0.0094675

    Cycle 2 0.049560 2.665E-15 4.956E-02 0.0242220 Cycle 2 0.017186 3.109E-15 1.719E-02 0.0077185

    Cycle 3 0.073809 3.997E-15 7.381E-02 0.0242490 Cycle 3 0.024829 4.441E-15 2.483E-02 0.0076430

    Substrate Edge / Substrate Side

    Substrate Edge / PCB Side

    Chip Edge / Substrate Side

    Chip Edge / PCB Side

    Fatigue life at substrate edge / substrate side: 4412 cycles

    Fatigue life at substrate edge / PCB side:1897 cycles (ASE:2000 cycles )

    Fatigue life at chip edge / substrate side:1151120 cycles

    Fatigue life at chip edge / PCB side:18036 cycles

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    28/43

    28

    Predict ion of Solder B al l Prof i leredict ion of Solder B al l Prof i le

    -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.000.00

    0.10

    0.20

    0.30

    0.40

    PBC pad open: 0.380 mm

    PBC pad open: 0.400 mm

    PBC pad open: 0.475 mm

    PBC pad open: 0.500 mm

    Substrate pad open PCB pad open Standoff height

    Case1 0.525 mm 0.380 mm 0.404 mm

    Case2 0.525 mm 0.400 mm 0.399 mm

    Case3 0.525 mm 0.475 mm 0.381 mm

    Case4 0.525 mm 0.500 mm 0.374 mm

    Programming by CY @ CCU (2000)

    Original data are followed by KC

    Pitch: 1 mm

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    29/43

    29

    PCB Pad Opening E f f ectCB Pad Opening E f f ectTime (min) Pad=0.38 mm Pad=0.4 mm Pad=0.475 mm Pad=0.5 mm

    0 0.000E+00 0.000E+00 0.000E+00 0.000E+00

    600 1.572E-03 1.509E-03 1.409E-03 1.368E-03

    900 1.572E-03 1.509E-03 1.409E-03 1.368E-031500 2.495E-02 2.467E-02 2.060E-02 1.983E-02

    1800 2.790E-02 2.753E-02 2.285E-02 2.201E-02

    2400 3.442E-02 3.397E-02 2.852E-02 2.754E-02

    2700 3.442E-02 3.397E-02 2.852E-02 2.754E-02

    3300 5.238E-02 5.099E-02 4.181E-02 3.972E-02

    3600 5.527E-02 5.376E-02 4.405E-02 4.187E-02

    4200 6.232E-02 6.054E-02 5.023E-02 4.789E-02

    4500 6.232E-02 6.054E-02 5.023E-02 4.789E-02

    5100 8.018E-02 7.733E-02 6.298E-02 5.960E-025400 8.310E-02 8.012E-02 6.523E-02 6.176E-02

    cycle1 2.790E-02 2.753E-02 2.285E-02 2.201E-02

    cycle2 2.738E-02 2.623E-02 2.120E-02 1.987E-02

    cycle3 2.783E-02 2.636E-02 2.118E-02 1.989E-02

    PEEQ 2.760E-02 2.630E-02 2.119E-02 1.988E-02

    Time (min) Pad=0.38 mm Pad=0.4 mm Pad=0.475 mm Pad=0.5 mm

    0 0 0 0 0

    600 0.000E+00 0.000E+00 0.000E+00 0.000E+00

    900 8.882E-16 8.882E-16 8.882E-16 8.882E-161500 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    1800 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    2400 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    2700 2.220E-15 2.220E-15 2.220E-15 2.220E-15

    3300 2.665E-15 2.665E-15 2.665E-15 2.665E-15

    3600 2.665E-15 2.665E-15 2.665E-15 2.665E-15

    4200 2.665E-15 2.665E-15 2.665E-15 2.665E-15

    4500 3.553E-15 3.553E-15 3.553E-15 3.553E-15

    5100 3.997E-15 3.997E-15 3.997E-15 3.997E-155400 3.997E-15 3.997E-15 3.997E-15 3.997E-15

    cycle1 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    cycle2 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    cycle3 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    CEEQ 1.332E-15 1.332E-15 1.332E-15 1.332E-15

    1000

    1500

    2000

    2500

    3000

    3500

    Pad=0.38 mm Pad=0.4 mm Pad=0.475 mm Pad=0.5 mm

    Predictition ASE

    Pad Open 0.38 mm 0.40 mm 0.475 mm 0.50 mm

    Prediction 1470 1617 2469 2797

    ASE Data 1710 2056 2780 3388

    Difference 16.3% 27.2% 12.6% 21.1%

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    30/43

    30

    M oire I nt erf eromet ryoire I nt erf eromet ry M et hodethod

    oire I nt erf eromet ry ethod

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    31/43

    31

    M oire I nt erf eromet ry M et hod

    M oire I nt erf eromet ryoire I nt erf eromet ry M et hodethod

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    32/43

    32 Shadowhadow M oireoire M et hodethod

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    33/43

    33

    :...

    Shadowhadow M oireoire M et hodethod

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    34/43

    34 Shadowhadow M oireoire M et hodethod

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    35/43

    35 E lect rical Speckle Pat t ern I nt erf eromet er (E SPI )lect rical Speckle Pat t ern I nt erf eromet er (E SPI )

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    36/43

    36

    (ESPI)

    :(NDE) ...

    E lect rical Speckle Pat t ern I nt erf eromet er (E SPI )lect rical Speckle Pat t ern I nt erf eromet er (E SPI )

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    37/43

    37 Three Point Bendinghree Point B ending

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    38/43

    38

    Stiffness is a measure of how easily an object will bend when put under. It isoften necessary to have stiff components, and this is achieved through the

    combination of design, ie the geometry, and material selection. The main material

    property that affects the stiffness is the Young's modulus, which has a large range

    of values for different materials.

    A strip of balsa undergoing a 3-point

    bending test

    The three-point bend can also

    allow us to find the Young'sModulus (E) of the material once

    the second moment of area (I) isknown.

    This is done by relating the

    vertical displacement , to theload W (= Mg) using the formula:

    = WL3/48EIwhere L = distance between thesupports.

    D erivat ion of equat ion under 3erivat ion of equat ion under 3-point Bendingoint B ending

    http://www.doitpoms.ac.uk/tlplib/BD1/secondmoment.phphttp://www.doitpoms.ac.uk/tlplib/BD1/secondmoment.php
  • 8/2/2019 Chapter 8 - Mechanical Characterization

    39/43

    39

    Starting with

    take moments about left hand end:

    and integrate:

    At x = L/2, dy/dx = 0, hence C1 = WL2/16

    Integrate again:

    At x = 0, y = 0, hence C2 = 0.

    y is at a maximum at x = L/2, so

    and

    3-Point B ending f or F ract ure I nt ensi t yoint Bending f or F ract ure I nt ensi t y

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    40/43

    40 F our Point B endingour Point Bending

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    41/43

    41 F our Point Bending I nst rumentour Point B ending I nst rument

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    42/43

    42 4-Point B ending A ppl icat ionoint Bending A ppl icat ion

  • 8/2/2019 Chapter 8 - Mechanical Characterization

    43/43

    43

    Four point bending test

    With four point bending fixture a constant bending moment is achieved betweenthe two indenters. In three point bending the moment increases linearly from

    support to the indenter.

    The strain (and stress) in four point bending varies linearly across the test

    specimen. e = M y / EI, where y is distance from the center of test sample Because

    the bending moment is constant between the indenters also the strain is.

    When the reliability of solder joints is tested 4 point bending test is good because

    all joints between the indenters are under equal loading.