chapter 6 binary bch codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท...

38
Chapter 6 Binary BCH Codes Dr.Mohammed Taha El Astal

Upload: others

Post on 11-May-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Chapter 6

Binary BCH CodesDr.Mohammed Taha El Astal

Page 2: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Introduction

โ€ข The BCH codes form a large class of cyclic

codes

โ€ข This class is a remarkable generalization of the

Hamming codes for multiple-error correction.

โ€ข Binary BCH codes were discovered by

Hocquenghem in 1959 and independently by

Bose and Chaudhuri in 1960.

โ€ข Cyclic structure was proved by Peterson in

1960.

โ€ข Binary BCH codes were generalized to codes

in pm symbols (p is a prime) by Gorenstein

and Zierler in 1961. (most important subclass

is the class of Reed-Solmon RS codes (1960)2

Page 3: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

EELE 6338 3

Definition

Clearly, this code is capable of correct any combination of t

errors or fewer.

The generator polynomial is specified in terms of its roots

from GF(2๐‘š).

Page 4: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Roots of the primitive polynomial

โ€ข Let ๐›ผ be a primitive element in GF( 2๐‘š ). The generator

polynomial of the t-error-correcting BCH code of length 2๐‘š โˆ’ 1is the lowest-degree polynomial over GF(2) that has

๐›ผ, ๐›ผ2, ๐›ผ3, โ‹ฏ , ๐›ผ2๐‘ก

as its roots [i.e., ๐‘” ๐›ผ๐‘– = 0 โˆ€ 1 โ‰ค ๐‘– โ‰ค 2๐‘ก].

โ€ข As a result of Theorem 2.11, ๐‘”(๐‘ฅ) has ๐›ผ, ๐›ผ2, ๐›ผ3, โ‹ฏ , ๐›ผ2๐‘ก and their

conjugates as all its roots.

EELE 6338 4

Page 5: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

โ€ข Given that ๐›ผ๐‘– has a minimal polynomial denoted as

๐œ™๐‘–(๐‘ฅ), then ๐‘”(๐‘ฅ) must be the least common multiple

(LCM) of ๐œ™1 ๐‘ฅ , ๐œ™2 ๐‘ฅ ,โ‹ฏ , ๐œ™2๐‘ก ๐‘ฅ ,

๐‘” ๐‘ฅ = ๐ฟ๐ถ๐‘€ ๐œ™1 ๐‘ฅ , ๐œ™2 ๐‘ฅ ,โ‹ฏ , ๐œ™2๐‘ก ๐‘ฅ .

โ€ข Then, you can deduce that for some i, ๐›ผ๐‘– = ๐›ผ๐‘–โ€ฒ 2๐‘™

( conjugate of ๐›ผ๐‘–โ€ฒ). As a result, both ๐›ผ๐‘– and ๐›ผ๐‘–

โ€ฒhave the

same minimal polynomial (๐œ™๐‘– ๐‘ฅ = ๐œ™๐‘–โ€ฒ ๐‘ฅ ).

โ€ข Refer to the chapter 2 note here to recall minimal polynomial 5

Roots of the primitive polynomial (2)

โ€ข If ๐‘– is an even integer, then it can be expressed as a product of

๐‘– = ๐‘–โ€ฒ2๐‘™ ,where ๐‘–โ€ฒ is an odd number, and ๐‘™ โ‰ฅ 1.

โ€ข i.e: 2=1ร—21, 4=1 ร— 22,6=3 ร— 21,8=1 ร— 23,10=5 ร— 21,12=3ร—22

Page 6: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Roots of the primitive polynomial (3)

โ€ข Summary: Every even power of ๐›ผ has same minimal

polynomial as some preceding odd power of ๐›ผ.

โ€ข Result: The generator polynomial ๐‘” ๐‘ฅ of the binary t-

error-correcting BCH code of length 2๐‘š โˆ’ 1 can be

reduced from๐‘” ๐‘ฅ = ๐ฟ๐ถ๐‘€ ๐œ™1 ๐‘ฅ , ๐œ™2 ๐‘ฅ ,โ‹ฏ , ๐œ™2๐‘ก ๐‘ฅ .

to

๐‘” ๐‘ฅ = ๐ฟ๐ถ๐‘€ ๐œ™1 ๐‘ฅ , ๐œ™3 ๐‘ฅ ,โ‹ฏ , ๐œ™2๐‘กโˆ’1 ๐‘ฅ .

โ€ข The # become t instead of 2t.

EELE 6338 6

Page 7: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Roots of the primitive polynomial (4)

โ€ข Because the degree of each minimal polynomial is ๐‘š or less

(Thm. 2.19), then the degree of ๐‘” ๐‘ฅ is at most ๐‘š๐‘ก(๐‘š ร— ๐‘ก),which is the number of parity-check digits ๐‘› โˆ’ ๐‘˜.

โ€ข The parameters of all binary

BCH with m โ‰ค10 are given

Table 6.1.

โ€ข Try to generate the table entries for

a given m?EELE 6338 7

Continue (page 195)

Page 8: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Examples

โ€ข Discuss the single error correcting BCH code .

As it is single-error correcting, this means that t=1 and

hence ๐‘” ๐‘ฅ = ๐œ™1(๐‘ฅ). (๐œ™2(๐‘ฅ) is same as ๐œ™1 ๐‘ฅ , this is

because ๐›ผ2 is conjugate of ๐›ผ1).

length 2๐‘š โˆ’ 1

As ๐›ผ is a primitive element of GF(2๐‘š) ๐œ™1 ๐‘ฅ has a

degree m , then ๐‘” ๐‘ฅ has degree of m too (as t=1). This

mean that ๐‘› โˆ’ ๐‘˜ = ๐‘š.

It is Hamming code

EELE 6338 8

Page 9: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Examples (2)

EELE 6338 9

Double EC BCH

means that t=2,

hence 2t-1=3.

Thus, LCM of

โˆ…1 ๐‘‹ and โˆ…3 ๐‘‹

Page 10: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Examples (3)

EELE 6338 10

This means that

mร—t=8=n-k

This mean that

mร—t=10=n-k

Page 11: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

ELEE 6338 11

The Parity Check Matrix of BCH Codes

โ€ข Let v(X) be a codeword of a t-error correcting BCH code of

length . Then are roots of v(X) (can you

state Why?):

or

12m 2 2, , , t

2 ( 1)

1 2 1v( ) 0 ; 1 2i i i n i

o nv v v v for i t

2

1 1

( 1)

1

, , , 0 ; 1 2

i

i

o n

n i

v v v i t

Why? This is because they are all root of g(X) and based on v(X)=u(X)ร—g(X),

consequently what is root of g(X) it is directly also root of v(X).

Page 12: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

12

โ€ข

1๐›ผ๐‘–

โ‹ฎ๐›ผ ๐‘›โˆ’1 ๐‘–

1 โ‰ค ๐‘– โ‰ค 2๐‘ก

โ€ข As a result of , H is a parity check matrix of the code.

โ€ข Based on (mean is root) and is a conjugate of ,

then too. As any even power of is conjugate of a

proceeding odd power of , the H matrix may be reduced to:

2 3 1

2 2 2 2 3 2 1

3 3 2 3 3 3 1

2 2 2 2 3 2 1

1

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

n

n

n

t t t t n

H

0T v H

The Parity Check Matrix of BCH Codes (2)

v( ) 0i j

v( ) 0i

2 3 1

3 3 2 3 3 3 1

5 5 2 5 3 5 1

2 1 2 1 2 2 1 3 2 1 1

1

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

n

n

n

t t t t n

t n

H

Page 13: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

13ELEE 6338

t=2 means

that 2ร—2

roots which

are=๐›ผ1, ๐›ผ2 ,

๐›ผ3, ๐›ผ4

You should

refer to chapter

2 to see how

Table 2.8 can

be generated

Page 14: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Minimum Distance proof

โ€ข Proving that a BCH code with 2t consecutive roots has a

minimum distance :

We need to show that no 2t or fewer columns of H sum to

zero.

Suppose there exists a nonzero codeword v with weight

.

Let be the nonzero components of v.

The product of reduces to:

ELEE 6338 14

2 1t

2t

1 2, , , j j jv v v

v TH

Page 15: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

15

Interchanging powers of , we get:

1 1 1

2 2 2

1 2

2 2

2 2

2 2

( ) ( )

( ) ( )( , , , ) 0

( ) ( )

j j jt

j j jt

j j j

j j jt

v v v

1 1 1

2 2 2

2 2

2 2

2 2

( ) ( )

( ) ( )(1, 1, , 1) 0

( ) ( )

j j j t

j j j t

j j j t

ELEE 6338

Page 16: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

16

The big matrix is . The product of

with the matrix formed from the first

columns should also be zero.

It follows that the determinant of the following

matrix must be zero:

OR

โ€ข But this is a Vandermonde determinant that is nonzero.

Therefore, our assumption that there exists a nonzero

codeword v of weight is invalid. Consequently, the

minimum distance of the code is at least

2 (2 )t t

(1, 1, , 1)

1 1 1

2 2 2

2 2

2 2

2 2

( ) ( )

( ) ( )0

( ) ( )

j j j t

j j j t

j j j t

ELEE 6338

1 1

2 2

1 2

1

1

( )

1

1 ( )

1 ( )0

1 ( )

j j

j j

j j j

j j

2t 2 1t

Page 17: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

17

โ€ข Notes:

โ€ข If g(X) has ๐‘™ roots that are consecutive powers of , an

element of GF( ), then the code generated has a minimum

distance .

โ€ข If , a primitive element of GF( ), the code generated

is a primitive BCH code.

โ€ข If ๐›ฝ is not a primitive element of GF( ), the code is not a

primitive BCH code and ๐‘› โ‰  2๐‘š โˆ’ 1 .

โ€ข This chapter considers the primitive BCH code

2m

min 1d l

2m

ELEE 6338

2m

Page 18: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

18

Decoding BCH Codes

โ€ข Decoding steps:

1. Syndrome computation.

2. Error pattern computation.

3. Correction .*v (X) r(X) e(X)

1. Syndrome computation:

Recalling the structure of H,

Show?

By examining H, you can deduce

that r.HT process is like ๐‘Ÿ(๐›ผ๐‘–).

Try it by yourself.

r( ) ; 1 2i

iS i t

1 2 2t, , , T S S S S r H

2 3 1

3 3 2 3 3 3 1

5 5 2 5 3 5 1

2 1 2 1 2 2 1 3 2 1 1

1

1 ( ) ( ) ( )

1 ( ) ( ) ( )

1 ( ) ( ) ( )

n

n

n

t t t t n

t n

H

Page 19: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

19ELEE 6338

t=2 means that 2ร—2

roots which

are=๐›ผ1, ๐›ผ2 , ๐›ผ3 , ๐›ผ4

and S is 4-digits too

Page 20: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ
Page 21: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ
Page 22: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ
Page 23: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

23

Step 2: Error pattern computation:

An error pattern e(X) of errors at locations

is:

The syndrome and the error pattern are related by:

Let

1 2e(X) X X Xjj j

1 2

1 2

1 2

1

2 2 2

2

2 2 2

2

r( ) v( ) e( ) e( ) ; 1 2

( ) ( ) ( )

( ) ( ) ( )

i i i i

i

jj j

jj j

jj jt t t

t

S i t

S

S

S

1 2, , , j j j

1 2

Solve these equations

for , , ,

There are many solutions

j j j

ELEE 6338

error location numbers ; 1lj

l l

Page 24: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

24

Then,

Define the error-location polynomial:

The roots of ๐œŽ ๐‘‹ are the inverses of error location #โ€™s.

can be expanded to:

where

1 1 2

2 2 2

2 1 2

2 2 2

2 1 2

( ) ( ) ( )

( ) ( ) ( )t t t

t

S

S

S

Power-sum

symmetric

functions

๐ˆ ๐‘ฟ โ‰œ ๐Ÿ + ๐œท๐Ÿ๐‘ฟ . ๐Ÿ + ๐œท๐Ÿ๐‘ฟ โ‹ฏ(๐Ÿ + ๐œท๐’—๐‘ฟ)

(X) 2

1 2(X) X X Xo

1 1 2

2 1 2 2 3 1

1 2

1

o

's are called

elementary symmetric

functions of '

i

l s

Page 25: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

25

It is clear that are related to . In fact, their relation

follows the Newtonโ€™s identities:

Again, there are many solutions, but we are interested in

finding the one that yields with minimum degree.

'si 'sjS

ELEE 6338

1 1

2 1 1 2

3 1 2 2 1 3

1 1 1 1

1 1 1 2 1

0

2 0

3 0

0

0

S

S S

S S S

S S S

S S S S

2t equations

๐’Œ๐ˆ๐’Œ +

๐’Š=๐Ÿ

๐’Œ

๐ˆ๐’Œโˆ’๐’Š๐‘บ๐’Š = ๐ŸŽ

(X)

Page 26: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

26

Decoding procedures (Updated):

1. Compute from r(X) .

2. Determine from by solving Newtonโ€™s

equations.

3. Find the roots of to determine the error location

numbers, then correct the errors in r(X) accordingly.

1 2 2( , , , )tS S S S

(X) 1 2 2( , , , )tS S S

(X)

ELEE 6338

Page 27: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

27

Finding the Error Location Polynomial:

1. Find a minimum-degree polynomial whose

coefficients satisfy the 1st Newton identity.

3. Carry on like this until you form ๐œŽ 2๐‘ก (๐‘‹), which is

the required polynomial, i.e. ๐œŽ ๐‘‹ = ๐œŽ 2๐‘ก (๐‘‹).

(1) (X)

(1) (X)

(1) (X)(2) (1)(X) (X) term

(2) (X)

EELE 6338

2. Test if also satisfies the 2nd identity. We do this

with the aid of a quantity called the discrepancy โ€dโ€.

(2) (1)(X) (X) add a correction term to ,

i.e. ,

such that satisfies both

identities.

Page 28: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

The discrepancy quantity of the step is given by:

Where

In case that ๐‘‘๐œ‡ โ‰  0, then go back and find ๐œŒ and determine

If the degree of , then the errors can be correctly

located and corrected.

28

(X) t

th

EELE 6338

Page 29: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

โ€ข If ๐‘‘๐œ‡ = 0, the

๐œŽ ๐œ‡+1 ๐‘‹ = ๐œŽ ๐œ‡ ๐‘‹ and๐‘™๐œ‡+1 = ๐‘™๐œ‡

โ€ข If ๐‘‘๐œ‡ โ‰  0, we find another row ๐œŒ prior to the ๐œ‡๐‘กโ„Ž row such

that ๐‘‘๐œŒ โ‰  0 and the number ๐œŒ โˆ’ ๐‘™๐œŒ in the last column of the

table has the largest value (.

โ€ข The error location polynomial should be modified and ๐‘™๐œ‡+1= max ๐‘™๐œ‡, ๐‘™๐œŒ + ๐œ‡ โˆ’ ๐œŒ .

29

Iterative Algorithm

As shown, initialize the rows for ๐œ‡= โˆ’1 ๐‘Ž๐‘›๐‘‘ 0

EELE 6338

Page 30: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Example 6.5

EELE 6338 30

Page 31: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Simplified Algorithm for Error Finding

โ€ข The simplified algorithm applies only to binary codes

while the previous algorithm applies for both binary and

non-binary BCH codes including Reed-Solomon codes.

โ€ข The previous algorithm can be simplified into t-steps.

โ€ข The (2๐œ‡-1)th and the 2๐œ‡ th steps of iteration can be

combined only even steps are needed.

โ€ข Step 1: Initialize the rows

for ๐œ‡ = โˆ’1

2๐‘Ž๐‘›๐‘‘ 0 as shown.

31

Page 32: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Simplified Iterative Algorithm (2)

โ€ข If ๐‘‘๐œ‡ = 0, the ๐œŽ ๐œ‡+1 ๐‘‹ = ๐œŽ ๐œ‡ ๐‘‹

โ€ข If ๐‘‘๐œ‡ โ‰  0, we find another row ๐œŒ prior to the ๐œ‡๐‘กโ„Ž row such that

๐‘‘๐œŒ โ‰  0 and the number 2๐œŒ โˆ’ ๐‘™๐œŒ in the last column of the table

has the largest value. The error location polynomial should be

modified and ๐‘™๐œ‡+1 = ๐‘‘๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐œŽ ๐œ‡+1 (๐‘‹).

โ€ข ๐‘‘๐œ‡ = ๐‘†2๐œ‡+1 + ๐œŽ1๐œ‡๐‘†2๐œ‡ +โ‹ฏ+ ๐œŽ๐‘™๐œ‡

๐œ‡๐‘†2๐œ‡+1โˆ’๐‘™๐œ‡

EELE 6338 32

Page 33: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Example 6.5 can be solved using the simplified algorithm to

get the same solution

โ€ข H.W โ€“ Detail all the steps required to get this table.

Example 6.6

EELE 6338 33

Page 34: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

Chien Circuit

โ€ข Used to find the error location number which is the

inverse of the roots of .

โ€ข Remember that the roots of is found by substituting

1, ๐›ผ, ๐›ผ2, โ‹ฏ , ๐›ผ๐‘›โˆ’1 in .

โ€ข Since ๐‘› = 2๐‘š โˆ’ 1 , if ๐›ผ๐‘™ is a root ๐›ผโˆ’๐‘™ = ๐›ผ๐‘›โˆ’๐‘™ is an

error location.

โ€ข The received codeword is decoded bit by bit starting from

the high order bits.

EELE 6338 34

(X)

(X)

(X)

Page 35: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

35

Chien Circuit:

If the last bit is erroneous, then is an error location

number and hence is a root of . In this case:

So, by forming this sum we can determine if is

erroneous or not (and can be corrected).

If the bit is erroneous, then is an error location

number and hence is a root of . In this case:

1nr 1n

(X)

2

1 21 0t

t

1nr

2nr 2n

2 (X)

2 4 2

1 21 0t

t

EELE 6338

Page 36: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

36

In general, the bit can be checked by the sum: n lr

2

1 21 0l l tl

t

EELE 6338

Page 37: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

37

The circuit works as follows:

The logic circuit A is designed to output โ€œ1โ€ if the sum is

โ€œ1โ€. Otherwise the output is zero.

Initially, the buffer contains the received vector, and the

registers contain .

On the first pulse, the registers will contain ,

respectively. If is a root, the output of A will be

โ€œ1โ€ and the bit will be corrected. If not, the output will

be โ€œ0โ€, and the bit is delivered as is.

1 2, , , t

i i

1 i t

1nr

1nr

EELE 6338

Page 38: Chapter 6 Binary BCH Codessite.iugaza.edu.ps/mtastal/files/ch6final1.pdfย ยท 2016. 5. 3.ย ยท error-correcting BCH code of length 2 1can be reduced from ๐‘ฅ ๐ถ ๐œ™1๐‘ฅ,๐œ™2๐‘ฅ,โ‹ฏ,๐œ™2๐‘ก๐‘ฅ

38

On the next pulse, the contents of the registers will be

modified to , . If their sum is โ€œ0โ€ then

is a root. Logic circuit A will generate โ€œ1โ€ and the bit

is corrected.

On the pulse, the contents of the registers will be

, , and their sum will be used to correct

bit.

thl

2i

i 1 i t 2

1nr

n lr li

i 1 i t