chapter 58 - cannabinoids and the cannabinoid receptors ......way how the precursors are chemically...

11
C H A P T E R 553 Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00068-5 Copyright © 2017 Elsevier Inc. All rights reserved. 58 Cannabinoids and the Cannabinoid Receptors: An Overview D. Lu, D.E. Potter Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States SUMMARY POINTS Cannabinoids are a group of biologically active ingredients isolated from cannabis. The representative member of cannabinoids is ()-9 -tetrahydrocannabinol (9 -THC), which binds to cannabinoid receptors to exert its biological effects, including psychoactive effects. So far, at least two types of cannabinoid receptors have been identified and defined respectively as cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), which are G-protein coupled receptors specifically responding to phytocannabinoids, endocannabinoids and synthetic cannabimimetic compounds. The cannabinoid receptors are widely distributed. The CB1 receptors are primarily found in the central nervous system, whereas the CB2 receptors are mainly found in the cells of immune and hematopoietic systems. Activations of the cannabinoid CB1 and CB2 receptors generally lead to the inhibition of adenylyl cyclase, and the activation of mitogen- activated protein kinases (MAPKs). The cannabinoid receptors are involved in a large number of physiological processes, such as neuronal development, food intake and energy balance, perception process, and immune modulation. KEY FACTS According to world health organization, about 147 million people worldwide (2.5% of the world population) consume cannabis mainly for recreational purposes. Both short-term and long-term uses of cannabis have been linked to certain health hazards such as altered senses, impaired body movement, memory, and learning functions. Some synthetic cannabis-mimetics are more potent than natural cannabis ingredients. They may affect the body functions much more powerfully than cannabis. Their actual effects are unpredictable. In some cases, they can be even life-threatening. While cannabis is an illicit drug, it has been demonstrated with a number of potential medical usefulness including treatment of asthma and glaucoma, as an antidepressant, appetite stimulant, anticonvulsant, antispasmodic, antiemetic, and analgesic. By far, three cannabis-based medications have been developed, which include Dronabinol®, Cesamet®, and Sativex®. The first two were proved by FDA for the treatment of nausea and vomiting in the advanced stages of cancer and AIDS, whilst Sativex® was approved in some European countries for the treatment of spasticity from multiple sclerosis. By far in the United Sates, 25 states and Washington D.C. have legalized cannabis for medical uses.

Upload: others

Post on 16-Feb-2021

2 views

Category:

Documents


1 download

TRANSCRIPT

  • C H A P T E R

    553

    Handbook of Cannabis and Related Pathologies. http://dx.doi.org/10.1016/B978-0-12-800756-3.00068-5Copyright © 2017 Elsevier Inc. All rights reserved.

    58Cannabinoids and the Cannabinoid

    Receptors: An OverviewD. Lu, D.E. Potter

    Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, United States

    SUMMARY POINTS

    • Cannabinoidsareagroupofbiologicallyactiveingredientsisolatedfromcannabis.Therepresentativememberofcannabinoidsis(−)-∆9-tetrahydrocannabinol(∆9-THC),whichbindstocannabinoidreceptorstoexertitsbiologicaleffects,includingpsychoactiveeffects.

    • Sofar,atleasttwotypesofcannabinoidreceptorshavebeenidentifiedanddefinedrespectivelyascannabinoidreceptor1(CB1)andcannabinoidreceptor2(CB2),whichareG-proteincoupledreceptorsspecificallyrespondingtophytocannabinoids,endocannabinoidsandsyntheticcannabimimeticcompounds.

    • Thecannabinoidreceptorsarewidelydistributed.TheCB1receptorsareprimarilyfoundinthecentralnervoussystem,whereastheCB2receptorsaremainlyfoundinthecellsofimmuneandhematopoieticsystems.

    • ActivationsofthecannabinoidCB1andCB2receptorsgenerallyleadtotheinhibitionofadenylylcyclase,andtheactivationofmitogen-activatedproteinkinases(MAPKs).

    • Thecannabinoidreceptorsareinvolvedinalargenumberofphysiologicalprocesses,suchasneuronaldevelopment,foodintakeandenergybalance,perceptionprocess,andimmunemodulation.

    KEY FACTS• Accordingtoworldhealthorganization,about

    147millionpeopleworldwide(2.5%oftheworldpopulation)consumecannabismainlyforrecreationalpurposes.

    • Bothshort-termandlong-termusesofcannabishavebeenlinkedtocertainhealthhazardssuchasalteredsenses,impairedbodymovement,memory,andlearningfunctions.

    • Somesyntheticcannabis-mimeticsaremorepotentthannaturalcannabisingredients.Theymayaffectthebodyfunctionsmuchmorepowerfullythancannabis.Theiractualeffectsareunpredictable.Insomecases,theycanbeevenlife-threatening.

    • Whilecannabisisanillicitdrug,ithasbeendemonstratedwithanumberofpotentialmedicalusefulnessincludingtreatmentofasthmaandglaucoma,asanantidepressant,appetitestimulant,anticonvulsant,antispasmodic,antiemetic,andanalgesic.

    • Byfar,threecannabis-basedmedicationshavebeendeveloped,whichincludeDronabinol®,Cesamet®,andSativex®.ThefirsttwowereprovedbyFDAforthetreatmentofnauseaandvomitingintheadvancedstagesofcancerandAIDS,whilstSativex®wasapprovedinsomeEuropeancountriesforthetreatmentofspasticityfrommultiplesclerosis.

    • ByfarintheUnitedSates,25statesandWashingtonD.C.havelegalizedcannabisformedicaluses.

  • 554 58. CANNABINOIDS AND THE CANNABINOID RECEPTORS: AN OVERVIEw

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    LIST OF ABBREVIATIONS

    ∆9-THC (−)-∆9-TetrahydrocannabinolAP-3 Adaptorproteincomplex-3BC BeforeChristcAMP CyclicadenosinemonophosphateCB1 Cannabinoidreceptortype1CB2 Cannabinoidreceptortype2cDNA ComplementaryDnACHO ChinesehamsterovaryCNS CentralnervoussystemDNA DeoxyribonucleicacidFAAH FattyacidamidehydrolaseFAN Factorassociatedwithneutral

    sphingomyelinaseactivationG-protein Guaninenucleotide-bindingproteinGABA γ-AminobutyricacidGASP1 GPCr-associatedsortingprotein1GPCR G-protein-coupledreceptorJNK C-Junn-terminalkinaseMAGL MonoacylglycerollipasePI3K Phosphatidylinositide3-kinaseTM Transmembrane

    INTRODUCTION

    Cannabis has a long history for medical applica-tion, and is a psychoactive substance for recreationaluse. Isolation of its major active components (canna-binoids) and the synthesis of potent cannabimimeticsledtothediscoveriesoftwoG-proteincoupledrecep-torsthatspecificallyrespondtocannabinoids,andaredesignated as cannabinoid receptor 1 (CB1) and can-nabinoid receptor 2 (CB2). Subsequently, endogenousligands for the cannabinoid receptors (endocannabi-noids)wereidentified.Thecannabinoidreceptorsandthe endocannabinoids are involved in modulation ofmany physiological functions, not only in the centralandperipheralnervoussystems,butalsoinanumberofperipheral siteswithin thehumanbody:endocrinesystem,immunesystem,thegastrointestinaltract,car-diovascularsystem,andthereproductivesystem.Thetwo described cannabinoid receptors are encoded bydifferent genes, and exhibit a 44% homology in theirprimarystructures.Functionally,theybelongtothesu-per family of G-protein coupled receptors, and trans-ducesignalsof ligandbinding intovariousbiologicalresponses, through both G-protein-mediated andG-protein-independentpathways.

    Generally, the major role of the CB1 receptor is tomodulatethereleaseofneurotransmitters,whereasthemajor function of the CB2 receptor is to mediate theimmune modulatory effects of cannabinoids, amongothers.The functionsof cannabinoidreceptorscanbe

    modulated by: (1) a variety of ligands (agonists, par-tialagonists,neutralantagonists,andinverseagonists)that target the orthosteric binding sites on the recep-tors,or(2)allostericmodulatorsthatbindtothealloste-ricbindingsitesofthereceptors.Withthedevelopmentof a variety of new ligands of cannabinoid receptors,intensiveresearchhasbeencarriedoutinthelasttwodecadestoclarifytherolesofcannabinoidreceptorsinphysiological and pathological conditions, as well astodeterminehowthediseasestatesinvolvingthecan-nabinoidreceptorscanbetreatedmoreeffectivelyandsafely.Inthischapter,somehistoricalandfundamentalaspectsaboutcannabinoidsandcannabinoidreceptorsarereviewed.

    CANNABIS AND CANNABINOIDS

    The plant Cannabis sativa linne is one of the oldestplantsusedbyhumansasfolkloremedicine.Theearli-estrecordofmedicaluseofcannabisappearedaround2737 BC in a Chinese pharmaceutical compendium,Shennong Bencao Jing (The Divine Farmer’s MateriaMedica),inwhichCannabiswasdocumentedasamagicmood-andmemory-booster,anantiinflammatoryherb,andasatherapeuticformanyotherconditions,includ-ingdisordersofthefemalereproductivetract,constipa-tion,gout,rheumatism,stroke,andabsent-mindedness(yang,1998).Duringthelonghistoryofagriculturalmi-grationofcannabisfromChinaandIndiatotheMiddleEastandEurope,variousmedicalusefulnessofcanna-bis have been noted (Mack & Joy, 2000). In 1850, can-nabiswas included in theUSpharmacopeia formanyailments, including neuralgia, tetanus, typhus, chol-era, rabies, dysentery, alcoholism, opiate addiction,anthrax, leprosy, incontinence, gout, convulsive dis-orders, tonsillitis, insanity, excessive menstrual bleed-ing, and uterine bleeding (Boire & Feeney, 2006). Thebroad pharmacological effects of cannabis stimulatedthe search for its bioactive ingredients, and led to theisolationandstructuralcharacterizationof(−)-∆9-trans-(6aR,10aR)-tetrahydrocannabinol (∆9-THC) in 1964(Gaoni & Mechoulam, 1964). ∆9-THC is the most psy-choactive substance present in cannabis. To date, 489constituentshavebeenisolatedfromcannabis(Elsohly& Slade, 2005). These natural compounds can be clas-sified into 18 distinct chemical groups such as canna-binoids (∼70), terpenoids (∼103),hydrocarbons (∼50),amino acids (∼18), steroids (∼11), and flavaniidglyco-sides(∼19),amongothers(Elsohly&Slade,2005;Turner,Elsohly,&Boeren,1980).Cannabinoidsisagroupof70terpenophenolic compounds that generally contain amonoterpenemoiety connected toaphenol ring,hav-inga3-to5-carbonalkylchainlocatedinthepositionmetatothephenolichydroxylgroup.Thereare12major

  • CANNABIS AND CANNABINOIDS 555

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    types of cannabinoids, all of which are derived fromcannabigerol typeprecursors,anddiffermainly in thewayhowtheprecursorsarechemicallycyclizedwithinthe structure.The representativemembersof cannabi-noidsareillustratedinFig.58.1.

    The discoveries of endogenous cannabinoids (endo-cannabinoids) and the development of synthetic can-nabimimetic compounds have prompted the use of“phytocannabinoids” to describe plant-derived cannabi-noids.Amongthesephytocannabinoids,(−)-∆9-THC(1)and

    (−)-∆8-THC(2)aretwopsychologicallyactiveconstituents.Besidesthepsychoactivecannabinoids,othercannabinoidssuchascannabinol (3), cannabidiol (4),andcannabigerol(7)alsoexhibitavarietyofpharmacologicaleffects(Izzo,Borrelli,Capasso,DiMarzo,&Mechoulam,2009).notably,cannabidiol(4)andcannabigerol(7)arenotpsychotropicbecauseoftheirinabilitytointeractwithcannabinoidCB1receptorsinthebrain(Izzoetal.,2009).

    Consumption of Cannabis can lead to a varietyof behavioral effects such as sedation, impairment

    FIGURE 58.1 Chemical structures of main phytocannabinoids isolated from Cannabis sativa L.

  • 556 58. CANNABINOIDS AND THE CANNABINOID RECEPTORS: AN OVERVIEw

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    ofshort-termmemory,motor incoordination;moodal-ternations that include euphoria, calmness, anxiety, orparanoia.Becauseofthehighlylipophilicpropertiesofphytocannabinoids,earlyscientificinquiresonhowcan-nabisworksledtoahypothesisthatcannabinoidsmayelicittheirbiologicaleffectsthroughnonspecificperturb-ingthemembranelipids(lawrence&Gill,1975).How-ever, this concept was diminished by the discovery ofthefirstcannabinoidreceptorinthelate1980s.

    CANNABINOID RECEPTORS: WHAT THEY ARE

    Discovery of Cannabinoid Receptors

    Although nonspecific action of cannabis was thoughtto be possible, a series of pharmacological studies inlate 1980s indicated a receptor-mediated mechanismof action (Howlett & Fleming, 1984; Howlett, Qualy, &Khachatrian, 1986; little, Compton, Johnson, Melvin, &Martin,1988).ThefirstevidencefortheexistenceofabraintypecannabinoidreceptorcamefromdemonstrationofthespecificbindingsitesofsyntheticcannabimimeticsinratbrainP2membranesandsynaptosomes(Devane,Dysarz,Johnson,Melvin,&Howlett,1988).Thislandmarkfindingwasfollowedbytheconfirmationofcannabinoid-specificbinding sites in the brains of several other mammalianspecies, including human (Herkenham et al., 1990). Theconclusiveprooffortheexistenceofacannabinoidrecep-torwasprovidedbycloningandexpressionofacomple-mentaryDnA(cDnA),SKr6, fromaratcerebralcortexcDnA library (Matsuda, lolait, Brownstein, young, &Bonner,1990).TheproteinproductofSKr6differedsig-nificantly fromanyotherknownreceptor inaminoacidsequence,andshowshighselectivityforbindingtophyto-cannabinoidsandcannabimimeticagents.Becausethedis-tributionofitsmrnAmatchedwellwiththebindingsitesofcannabimimeticsinthebrain,thisreceptorwasnamedascannabinoidreceptor, formalizedlaterascannabinoidreceptortype1(CB1).SoonaftertheidentificationofCB1receptor,homologycloningdisclosedanotherformofcan-nabinoidreceptorfromthehumanpromyelocyticcelllineHl60 (Munro, Thomas, &Abu-Shaar, 1993). Because itsmrnAcouldnotbedetectedinthecentralnervoussys-temduringtheinitialcharacterizations,thisreceptorwasfirstly recognized as a peripheral cannabinoid receptor,andlaterwasformallydesignatedascannabinoidreceptortype2(CB2).FollowingthecloningofhumanCB2,therat(Griffin,Tao,&Abood,2000)andmouse(Shireetal.,1996),CB2 receptors were disclosed. Unlike the CB1 receptorwhich exhibits high amino acid identity across human,rat,andmouse(>97%)(Abood,Ditto,noel,Showalter,&Tao,1997;Gerard,Mollereau,Vassart,&Parmentier,1991),theCB2 receptordisplaysonly81%aminoacid identity

    betweenhumanandrat,and82%identitybetweenhumanand mouse, respectively. notably, the sequences of hu-man,rat,andmouseCB2receptorsmarkedlydifferattheC-terminus.ThemouseCB2isshorterby13aminoacids;theratCB2is50aminoacidslongerthanthehumanCB2(Console-Bram,Marcu,&Abood,2012).

    Endogenous Ligands of Cannabinoid Receptors

    ThecloningofCB1andCB2receptorsmotivatednu-merous efforts to pursue the endogenous ligands thatcanactivatethecannabinoidreceptors.Itwasthendem-onstrated that mammalian tissues do synthesize andrelease lipid-derived molecules that can activate canna-binoid receptors and generate pharmacological effectssimilar to those from ∆9-THC (Di Marzo, De Petrocellis,& Bisogno, 2005; Hanuš, 2009; Martin, Mechoulam, &razdan, 1999). The first identified endogenous cannabi-noid, N-arachidonoylethanolamine (anandamide), wasisolatedfromporcinebrainin1992(Hanuš,2009).Itsiden-tityasanendogenouscannabinoidwasprovenbymanyin vitro and in vivo studies (Felder et al., 1996; Martinetal.,1999).later,another lipidderivative,2-arachidon-oylglycerol (2-AG) isolated from canine gut was showntobeapotentendogenouscannabinoid,andbindstotheCB1andCB2receptorsmoredevotedlythananandamide(Martinetal.,1999).Inthebrain,theconcentrationof2-AGisabout50–500-foldhigherthantheconcentrationofanan-damide.Additionally,2-AGbehavesasafullagonistfortheCB1andCB2receptors,whereasanandamideisapar-tialagonistatbothreceptors(DiMarzoetal.,2005).Thedegradationofanandamideisprimarilycatalyzedbyfattyacidamidehydrolase(FAAH),while2-AGismainlyme-tabolizedbymonoacylglycerollipase(MAGl)(DiMarzoetal.,2005).othercompoundsthathavebeenshownasendocannabinoidsincludenoladinether,N-arachidonoyl-dopamine, N-docasatetraenoylethanolamide, dihomo-γ-linolenoylethanolamide, o-arachidonoyl-ethanolamine(virodhamine), and meadethanolamide (Di Marzoetal.,2005;Hanuš,2009;Martinetal.,1999).ThestructuresoftheseendocannabinoidsarepresentedinFig.58.2.Theidentification of endogenous ligands completed the dis-coveryofcannabinoidCB1andCB2receptors.

    The Structural Characteristics of CB1 and CB2 Receptors

    TheCB1receptorisaproteinencodedbyCnr1genelocatedonhumanchromosome6,whereastheCB2re-ceptor is encoded by Cnr2 gene located on chromo-some1(yao&Mackie,2009).ExpressionsofthehumanCnr1andCnr2genes,respectively,provideaproteinwith472aminoacids(CB1),andaproteinwith360ami-no acids (CB2). The primary structures of human CB1andCB2receptorsareillustratedinFig.58.3.

  • CANNABINOID RECEPTORS: wHAT THEY ARE 557

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    FIGURE 58.2 Chemical structures of known endocannabinoids.

    FIGURE 58.3 Primary structures of CB1 and CB2 receptors. The amino acid sequence of thehuman CB1 (top panel) and CB2 (lower panel)receptors.ThehumanCB1receptorcomprisesof472aminoacids,whereasthehumanCB2receptorcontains 360 amino acids. The individual aminoacid is presented by one letter abbreviation. Theregionsshownwithred lettersaretransmembranedomains. The length and sequence homology ofthe third intracellular loop (regions representedwithblue characters)andtheC-terminals(regionsrepresentedwithgreen characters)ofthetworecep-torsubtypesarenotablydifferent.Theproteinse-quencesanddomainassignmentswereretrievedfrom the freelyaccessibleprotein-sequencedata-baseUniprot(http://www.uniprot.org).

    http://www.uniprot.org/

  • 558 58. CANNABINOIDS AND THE CANNABINOID RECEPTORS: AN OVERVIEw

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    The two cannabinoid receptors belong to the largestfamily of receptors, which couple to guanine-nucleo-tide-binding proteins (G-proteins) at their intracellularsites. They share the structural characteristics of all G-protein-coupled receptors (GPCrs), possessing sevenhydrophobicdomains that transpass thecellmembraneseven times, forming helix bundles when embedded incell membrane. The seven transmembrane domains arelinkedbythreeextracellularandthreeintracellularloops,an extracellular n-terminal, and an intracellular C-ter-minal(Fig.58.3).Structurally,theCB1andCB2receptorsdistinguish themselves frommanyotherGPCrs in twoaspects(Matsuda,1997).UnlikemanyotherGPCrs,bothCB1andCB2receptorsdonotcontainconservedcyste-ineresidueswithinthesecondextracellulardomain(el1),whereasthethirdextracellulardomain(el2)containstwoormorecysteines.TheconservedcysteineresiduesinthesecondandthirdextracellulardomainsofGPCrsappeartostabilizethetertiarystructureofthereceptorthroughtheformationofintramoleculardisulfidelinkagewiththeneighboring transmembrane domains (TMs). Addition-ally,bothCB1andCB2 lackahighlyconservedprolineresidue in the fifth transmembrane (TM5) domain, bywhich a structural kink could be formed usually in thehelix(Matsuda,1997).IncomparisonwiththeCB2recep-tor,theCB1receptorhasanadditional72aminoacidresi-duesinthen-terminalsegment,15additionalresiduesinthethirdintracellularloop,and13additionalresiduesintheC-terminalregion(Figs.58.3and58.4).Thesequencehomology between the two cannabinoid receptors is44% in the full-length protein, and ranges from 33% to

    82%withintheseventransmembraneregions(Fig.58.4).ThehighesthomologybetweenCB1andCB2isfoundinthetransmembraneTM2,TM3,TM6,andTM7domains(TM1:50%;TM2:66%;TM3:80%;TM4:33%;TM5:40%;TM6:60%;andTM7:82%)(Matsuda,1997).TheprimarystructuresofCB1andCB2receptorsshowthatthelengthand sequence homology of the third intracellular loopsand the C-terminals of the two receptors are consider-ablydifferent.Thesevariationsmightaffecttheircellularresponse to a ligand, because these regions are knownto mediate G-protein signal transduction (Howlett &Shim,2004),aswellasreceptordesensitizationandinter-nalization(Hsieh,Brown,Derleth,&Mackie,1999).

    Atpresent,X-raycrystallographicstructuresofcanna-binoidreceptorsremainunknown.Intheabsenceofcrys-tallographicstructuresforCB1andCB2receptors,compu-tationalhomologymodelsofhumanCB1receptor(Shim,Welsh,&Howlett,2003)andhumanCB2receptor(raitio,Salo, nevalainen, Poso, & Jarvinen, 2005; Xie, Chen, &Billings,2003)havebeen respectivelyconstructedusingbovinerhodopsinastheprototypeofGPCrs.Site-directedmutation and computer-modeling have been employedtoidentifythekeyaminoacids(ormotif)involvedinli-gandbindingandreceptoractivation/deactivation.no-tableresidues identifiedincludelys192ofCB1receptor(Song&Bonner,1996)andSer112/T116ofCB2receptor(Taoetal.,1999),whichareinstrumentalforthebindingofmostcannabinoidligands.Thefunctionalresidues/motifinvolvedinligandbindingtotheCB1/CB2receptorhasbeen thoroughly reviewed (ortega-Gutierrez & lopez-rodriguez,2005).

    FIGURE 58.4 Schematic representation of the cannabinoid CB1 and CB2 receptors.ThebluemodelrepresentsCB1receptorandthegreenmodelrepresentstheCB2receptor.TM,transmembrane;el,extracellularloop;il,intracellularloop.TheCB1receptorisalargerprotein,andhasadditional72aminoacidresiduesinthen-terminalsegment,13additionalresiduesinthethirdintracellularloop,and14additionalresiduesintheC-terminalregion.

  • CANNABINOID RECEPTORS: wHAT THEY DO 559

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    THE CANNABINOID RECEPTORS: WHERE THEY ARE

    The cannabinoid receptors are widely distributedin the human body. CB1 is expressed primarily in thecentralnervoussystem(CnS),andisthemostabundantG-protein-coupled receptor in the brain (Mackie, 2005).Quantitative autoradiography revealed that the concen-trationofCB1receptors inbrain iscomparable to thoseofcorticalbenzodiazepinereceptor,striataldopaminere-ceptor,andwhole-brainglutamatereceptor(Herkenhametal.,1990).ThehighestdensityofCB1receptorsisfoundinthebasalganglia,particularlyinputamen,whichisin-volvedinmotorcontrol.HighlevelsofCB1receptorsarealsodetected incerebellum,hippocampus,andcerebralcortex.Thesebrainregionsareinvolvedincoordinatingbodymovements,learningandmemory,andhighercogni-tivefunctions,respectively(Mackie,2005;Pertwee,1997).ModeratelevelsofCB1receptorswerealsofoundinthebrainstem,spinalcord,hypothalamus,amygdala,centralgray, and nucleus of the solitary tract (Pertwee, 1997).BesidestheirpresenceinCnS,CB1receptorshavebeenfound in periphery, but at much lower level comparedtoitsbrainlevel.SomeimmunocytochemicalanalysesofCB1mrnAindicatedthepresenceofCB1receptor inavarietyofperipheraltissues/organs,includingliver,pan-creas,testis,fat,skeletalmuscle,retina,sperms,peripheralneurons,adrenalgland,heart,lung,prostate,uterus,ova-ry,bonemarrow,spleen,thymus,andtonsils(Bouaboulaet al., 1993; Galiegue et al., 1995; Pertwee, 1997; rice,Shannon,Burton,&Fiedeldey,1997).

    EarlyinvestigationsofthemrnAofCB2receptorinthecerebraltissuesledtotheinferencethatCB2receptorisab-sentinthecentralnervoussystem,andpredominantlyex-pressedinthetissues/organsoftheimmunesystem,suchasspleen,tonsil,thymus,andlymphoidtissues(Galiegueetal.,1995;Munroetal.,1993;Schatz,lee,Condie,Pulaski,&Kaminski,1997).oftheseperipheralsites,tonsilsexhibitthehighestCB2mrnAlevel,whichisevenhigherthanthetotalconcentrationofCB1mrnAinthebrain(Galiegueetal.,1995).QuantitativeanalysisofCB2mrnArevealsthatmoderatetolowlevelsofCB2receptorscanbefoundin pancreas, bone marrow, uterus, and lung. likewise,highconcentrationsofCB2receptorscanbeidentifiedinhuman leukocytes such as B-cells, nK-cells, monocytespolymorphonuclear neutrophils, CD8+-T-lymphocytesandCD4+-T-lymphocytes(Bouaboulaetal.,1993;Galiegueetal.,1995).AlthoughearlyinvestigationsofCB2receptordidnotdetectthisreceptorinthebrain,VanSickleetal.(2005) have demonstrated that functional CB2 receptorsdo exist in the central nervous system, albeit in muchlowerconcentrationthanintheperiphery.SeveralrecentreportsalsodisclosedtheCB2immunoreactivityinmanybrainareas,suchasthehippocampalformation,olfactorybulb, cortex,midbrain,and thalamus (Gongetal., 2006;

    onaivietal.,2006,2008a,b).Theseresultssupportthecon-clusionthatCB2receptorisnotanexclusivelyperipheralcannabinoid receptor. Additionally, CB2 receptors showaninduciblenatureundercertaindiseaseconditions.Forexample,microglialcellsinhealthybraindonotappeartoexpressCB2.However,inneurodegenerativedisordersas-sociatedwiththeactivationofbrainmicroglialcells,suchasAlzheimerandHuntingtondiseases,theexpressionofCB2 receptors in the brain can be significantly elevated(Benitoetal.,2003;Palazuelosetal.,2009).ThemultifocalexpressionsofCB2receptorsinthebrainsuggestthatCB2receptors may play broader roles in the central nervoussystemthanpreviouslypostulated.

    CANNABINOID RECEPTORS: WHAT THEY DO

    Thecannabinoidreceptorsaspartoftheendocannabi-noidsystemhavebeenshowntoplayimportantrolesinavarietyofphysiologicalconditions,includingneuronaldevelopment,neuronalplasticity,foodintakeandenergybalance, perception process, immune modulation, cellapoptosis, cardiovascular and reproductive functions(Marzo,Bifulco,&DePetrocellis,2004;rodriguezdeFon-secaetal.,2005).Themultifacetedfunctionsofcannabi-noidreceptorsarerootedbytheircellularphysiologyandcomplexsignalingpathwaysintransducingthebindingofcannabinoidligandsintobiologicalresponses.

    Cell Physiology of Cannabinoid Receptors

    Manystudieshavedemonstrated thatendocannabi-noidsfunctionasretrogrademessengersintheCnS.Theyare released from postsynaptic neurons in a calcium-dependent manner, and traverse retrogradely ontopresynaptic cannabinoid CB1 receptors. Subsequently,they produce a transient or prolonged reduction inthe release of neurotransmitters such as the inhibitoryγ-aminobutyricacid(GABA),excitatoryglutamate,acetyl-choline,andnoradrenaline(Piomelli,2003;rodriguezdeFonsecaetal.,2005).Unlikeclassicalpeptideneurotrans-mitters, endocannabinoids are not presynthesized andstored in vesicles before release. In contrast, they aresynthesized“ondemand,”viaenzymaticpathwaystrig-geredbyarapidincreaseofintracellularcalciumthroughcelldepolarizationorreceptoractivation.Atpresent,theknowledgeconcerningthephysiologyofCB2receptorsis relatively less than that of CB1 receptors. Given thehighlevelofCB2receptorsonthecellsofimmuneandhematopoieticsystems,CB2receptorsaremostlikelyin-volvedininflammation-associatedpathologies.Ingeneral,CB2receptorsareinvolvedinregulationofimmunecellsinseveralways,including:(1)inducingimmunecellapop-tosis,(2)suppressingproliferationofimmunecellsandthe

  • 560 58. CANNABINOIDS AND THE CANNABINOID RECEPTORS: AN OVERVIEw

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    production of proinflammatory cytokines/chemokines,(3)increasingsecretionofantiinflammatorycytokines,(4)inducingregulatoryTcells,and(5)promotingthetraffick-ingandmigrationofimmunecells(Klein&Cabral,2006;rom&Persidsky,2013).

    Signal Transductions of CB1 and CB2 Receptors

    Cannabinoidreceptorstransducesignalsthroughvari-ouspathways:G-protein-dependentprocesses (Demuth& Molleman, 2006; Pertwee, 1997) and G-protein-independentprocesses (Turu&Hunyady,2010;Velascoetal.,2005).ThemajorsignaltransductionsofbothCB1and CB2 receptors are primarily mediated through theinhibitory Gi and Go proteins. However, under certainconditions,signaltransductionsofCB1receptorthroughGq/11 and stimulatory Gs are also possible (Turu &Hunyady,2010).IncontrasttoCB1receptors,CB2receptorsdonottransducesignalsthroughstimulatoryGs(Demuth&Molleman,2006).Uponstimulationbyagonists, can-nabinoidreceptorsmodulateadenylylcyclaseand,conse-quently,alterthecellularproductionofcAMP.Althoughactivationofcannabinoidreceptorstypicallysuppressesadenylylcyclaseanddownregulatessignalingresponsesmediated by second messenger cAMP, evidence sug-gests that the isoformsofadenylylcyclaseexpressed incellsdeterminetheoutcomeofcAMPproduction.Forin-stance,inCoS-7cellsthatcoexpressCB1/CB2withnineisoformsofadenylylcyclase1to9,activationofthecan-nabinoidreceptorsCB1andCB2inhibitedtheactivityofadenylylcyclaseisoforms1,3,5,6,and8.Incontrast,ad-enylylcyclaseisozymes2,4,and7werestimulated(rhee,Bayewitch,Avidor-reiss, levy, & Vogel, 1998). In addi-tion, theCB1andCB2 receptors cancarry signal trans-ductionsthroughtheactivationofphosphatidylinositide3-kinases(PI3K),butwithdifferentmechanisms(Demuth&Molleman,2006;Howlett&Shim,2004).BoththeCB1andCB2cannabinoidreceptorsregulatethephosphory-lation and activation of different members of all threefamilies of mitogen-activated protein kinases (MAPKs),including p44/42 MAP kinase, p38 kinase, and JUn-terminalkinase (Atwood&Mackie,2010;Turu&Hun-yady,2010).UnliketheactivationofCB2receptor,whichgenerallyhasnoeffectonionchannels,activationofCB1receptor inhibits n- and P/Q-type voltage-gated Ca2+channels and activates A-type and G-protein-coupledinwardly-rectifyingK+channels(GIrK)(Howlett,2005).AlongwiththeG-proteinmediatedsignaltransductions,theCB1receptorcaninteractwithavarietyofnon-Gpro-teinpartners(eg,β-arrestins,adaptorproteinAP-3,GP-Cr-associatedsortingprotein1(GASP1),andtheadaptorproteinFAn)tocontrolreceptorsignalingortrafficking(Howlett, Blume, & Dalton, 2010; Smith, Sim-Selley, &Selley,2010).TheCB1andCB2cannabinoidreceptorscanalso transduce signals through G-protein independent

    pathwaysthatemployceramideasthesecondmessenger(Velascoetal.,2005).Activationofcannabinoidreceptorsimpactsboththeshort-termandlong-termceramideac-cumulation, which is respectively resulted from sphin-gomylinhydrolysisandceramidedenovosynthesis.Ce-ramide,inturn,mediatescannabinoid-inducedmetabolicregulationandcellapoptosis(Herreraetal.,2006;Velascoetal.,2005).ThemajorsignalingpathwaysoftheCB1andCB2receptorsaresummarizedinFig.58.5.

    The signaling events of CB1 and CB2 receptors canbe attenuated by desensitization of the receptor, fol-lowedbyan internalizationprocess (Atwood,Straiker,& Mackie, 2012). Desensitization involves G-protein-receptor-kinase-mediated phosphorylation of multipleserine/threonineresiduesofthereceptors,followedbybindingoftheβ-arrestins.Theinternalizedreceptorscanbe either transported to endosomes for dephosphory-lation,and then returned to thecellmembrane for thenext signaling event, or transported to lysosomes fordegradation. Apart from the agonist-initiated signaltransductions,bothCB1andCB2receptorscan inducecellular responses through constitutive activities (socalled “constitutive tone”). In the absence of agonists,thetwocannabinoidreceptorshavebeenshowntoex-hibit a spontaneous activation of Gi/o-proteins, and in-creased constitutive MAPK-activating properties (yao&Mackie,2009).Theseconstitutiveactivitiescanbere-spectivelyattenuatedbyinverseagoniststhatcanselec-tivelyinteractwiththeCB1andCB2receptors.

    CONCLUDING REMARKS

    Theisolationof∆9-THCfromcannabis,theidentifica-tion and cloning of the two cannabinoid receptors, andthediscoveryofendogenousCBligands,revealedtheex-istenceoftheendocannabinoidsystem.Inthepastthreedecades,investigationofthemolecularbiologyandphar-macologyoftheendocannabinoidsystemhasimplicateditsimportanceinalargenumberofphysiologicalfunctionsinhuman.Modulatingthefunctionsof thecannabinoidreceptors, either directly or indirectly, holds therapeuticpromisesforamelioratinganumberofpathologicalcon-ditions, ranging from the diseases of nervous systems,suchaspsychiatricdisorders,ParkinsonandHuntingtondisease,multiplesclerosisandspinalcordandbrainin-juries,topain,inflammation,andcancer,aswellassomecardiovascular and metabolic disorders including ath-erosclerosis,myocardial infarction,hypertension,stroke,obesity/metabolic syndrome, and osteoporosis, amongothers (Pacher, Bátkai, & Kunos, 2006). Further under-standingthemolecularbiologyandpharmacologyofthecannabinoidreceptorswillcreatemoreopportunitiesforthediscoveryofnovelandsafermedicationsbytargetingofcannabinoidreceptorsmoreselectively.

  • V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    REFERENCES 561

    MINI-DICTIONARY

    Cannabinoid receptors CannabinoidreceptorsaretheG-protein-coupledreceptorsthatmediatethebiologicaleffectsofphytocannabinoids,endocannabinoids,andsyntheticcannabimimeticcompounds.Cannabinoids Cannabinoidsareagroupofbiologicallyactivecompoundsisolatedfromtheplantcannabis,andareoftenreferredtoasphytocannabinoids,someofwhichareresponsibleforthepsychoactiveeffectsofcannabis.Endocannabinoids Endocannabinoidsarethemoleculesproducedbyhumanandanimalswhichexhibitsimilarbiologicalactivitiesasphytocannabinoids.G-protein-coupled receptors G-protein-coupledreceptors(GPCrs)aremembrane-boundsignaltransductionproteinsthatassociatewithguanosinenucleotide-bindingproteins(G-proteins)ontheirintracellularside.Uponbindingtocertaintypeofchemicalcompounds,theGPCrschangeshapes,andcausethedisassemblyoftheassociatedG-proteinsintosubunits,whichfurthertransducethesignaltothedownstreamproteinsandeventuallyleadtocellularresponses.

    Synthetic cannabimimetics Chemicalcompoundssynthesizedinlaboratoriesthatexhibitsimilarbiologicalactivitiesasphytocannabinoids.

    ReferencesAbood, M. E., Ditto, K. E., noel, M.A., Showalter, V. M., & Tao, Q.

    (1997).IsolationandexpressionofamouseCB1cannabinoidrecep-tor gene. Comparison of binding properties with those of nativeCB1 receptors in mouse brain and n18TG2 neuroblastoma cells.Biochemical Pharmacology,53(2),207–214.

    Atwood,B.K.,&Mackie,K.(2010).CB2:acannabinoidreceptorwithanidentitycrisis.British Journal of Pharmacology,160(3),467–479.

    Atwood, B. K., Straiker, A., & Mackie, K. (2012). CB(2): therapeutictarget-in-waiting.Progress in Neuropsychopharmacology and Biological Psychiatry,38(1),16–20.

    Benito,C.,nunez,E.,Tolon,r.M.,Carrier,E.J.,rabano,A.,Hillard,C.J.,&romero,J.(2003).CannabinoidCB2receptorsandfattyacidamidehydrolaseareselectivelyoverexpressedinneuriticplaque-associated glia inAlzheimer’s disease brains. Journal of Neurosci-ence,23(35),11136–11141.

    FIGURE 58.5 Major signaling pathways initiated from activation of the cannabinoid CB1 and CB2 receptors.Themajorsignalingpathwaysinitiatedbythebindingofagonists(ECB)tocannabinoidreceptorsinvolvetheactivationanddissociationofthecoupledGi/o-proteinheterotrimers(ie,αandβγsubunits).ThereleasedGαsubunitsinteractwithadenylylcyclase(AC)andinhibititsactivityinsynthesisofcAMP.ThisdecreasestheactivationofproteinkinaseA(PKA),whichinturndownregulatesPKA-mediatedsignalingevents.Theβγsubunitscanevokethephosphati-dylinositide3-kinase(PI3K)andproteinkinaseB(PKB)pathways,whichinturninducethephosphorylationofP42/44MAPKandothermembersofMAPKsuchasJnKandp38MAPK.TheCB1andCB2receptorscanalsocoupletonon-G-proteinpartnerssuchasFAn,whichactivatesneutralsphingomyelinase(SMase)thatmediatesthegenerationofceramidefromsphingomyelin.Whileceramideisinvolvedinotherfunctions,itcanfunctionasasecondmessengertoactivateseveraldownstreameffectors,includingErK,JnK,andp38thatarefurtherinvolvedinthecontrolofgenetranscriptionsandcellfate.ActivationofCB1receptorinhibitsnandP/Qtypesofvoltagegatedcalciumchannels(VGCC),whilepositivelyregulatesA-typeK+(KA),andinwardlyrectifyingK+(Kir)channels.ThemodulationsofionchannelsbyCB1areindependentofthecAMPpathway,andareinvolvedintheregulationofneurotransmitterrelease.Incontrast,activationofCB2receptorsgenerallydoesnotregulateionchannels.

    http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0010http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0010http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0010http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0010http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0010http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0015http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0015http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0020http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0020http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0020http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0025http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0025http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0025http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0025http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0025

  • 562 58. CANNABINOIDS AND THE CANNABINOID RECEPTORS: AN OVERVIEw

    V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    Boire,r.G.,&Feeney,K(2006).Medical marijuana law.oakland,CA:roninPublishing.

    Bouaboula,M.,rinaldi,M.,Carayon,P.,Carillon,C.,Delpech,B.,Shire,D.,...,Casellas,P.(1993).Cannabinoid-receptorexpressioninhu-manleukocytes.European Journal of Biochemistry,214(1),173–180.

    Console-Bram,l.,Marcu,J.,&Abood,M.E.(2012).Cannabinoidre-ceptors:nomenclatureandpharmacologicalprinciples.Progress in Neuropsychopharmacology and Biological Psychiatry,38(1),4–15.

    Demuth, D. G., & Molleman,A. (2006). Cannabinoid signalling. Life Sciences,78(6),549–563.

    Devane, W. A., Dysarz, F. A., III, Johnson, M. r., Melvin, l. S., &Howlett, A. C. (1988). Determination and characterization of acannabinoid receptor in rat brain. Molecular Pharmacology, 34(5),605–613.

    DiMarzo,V.,Bifulco,M.,&DePetrocellis,l.(2004).Theendocannabi-noidsystemanditstherapeuticexploitation.Nature Reviews Drug Discovery,3(9),771–784.

    DiMarzo,V.,DePetrocellis,l.,&Bisogno,T.(2005).Thebiosynthesis,fate and pharmacological properties of endocannabinoids. Hand-book of Experimental Pharmacology,168,147–185.

    Elsohly,M.A.,&Slade,D.(2005).Chemicalconstituentsofmarijuana:the complex mixture of natural cannabinoids. Life Sciences, 78(5),539–548.

    Felder,C.C.,nielsen,A.,Briley,E.M.,Palkovits,M.,Priller,J.,Axelrod,J.,Becker,G.W.,etal.(1996).Isolationandmeasurementoftheen-dogenouscannabinoidreceptoragonist,anandamide,inbrainandperipheraltissuesofhumanandrat.FEBS Letters,393(2–3),231–235.

    Galiegue,S.,Mary,S.,Marchand,J.,Dussossoy,D.,Carriere,D.,Caray-on,P.,...,Casellas,P.(1995).Expressionofcentralandperipheralcannabinoid receptors in human immune tissues and leukocytesubpopulations.European Journal of Biochemistry,232(1),54–61.

    Gaoni, y., & Mechoulam, r. (1964). Isolation, structure and partialsynthesisofanactiveconstituentofhashish.Journal of the American Chemistry Society,86,1646–1647.

    Gerard,C.M.,Mollereau,C.,Vassart,G.,&Parmentier,M.(1991).Mo-lecularcloningofahumancannabinoidreceptorwhichisalsoex-pressedintestis.Biochemical Journal,279(Pt1),129–134.

    Gong, J. P., onaivi, E. S., Ishiguro, H., liu, Q. r., Tagliaferro, P.A.,Brusco,A.,&Uhl,G.r.(2006).CannabinoidCB2receptors:immu-nohistochemical localization in rat brain. Brain Research, 1071(1),10–23.

    Griffin,G.,Tao,Q.,&Abood,M.E.(2000).Cloningandpharmacologi-calcharacterizationoftheratCB(2)cannabinoidreceptor.Journal of Pharmacology and Experimental Therapeutics,292(3),886–894.

    Hanuš,l.o.(2009).Pharmacologicalandtherapeuticsecretsofplantand brain (endo) cannabinoids. Medicinal Research Reviews, 29(2),213–271.

    Herkenham,M.,lynn,A.B.,little,M.D.,Johnson,M.r.,Melvin,l.S.,DeCosta,B.r.,&rice,K.C.(1990).Cannabinoidreceptorlocal-izationinbrain.Proceedings of the National Academy of Sciences of the United States of America,87(5),1932–1936.

    Herrera,B.,Carracedo,A.,Diez-Zaera,M.,GomezdelPulgar,T.,Guz-man,M.,&Velasco,G.(2006).TheCB2cannabinoidreceptorsignalsapoptosisviaceramide-dependentactivationofthemitochondrialintrinsicpathway.Experimental Cell Research,312(11),2121–2131.

    Howlett,A.C.(2005).Cannabinoidreceptorsignaling.Handbook of Ex-perimental Pharmacology,168,53–79.

    Howlett,A.C.,Blume,l.C.,&Dalton,G.D.(2010).CB(1)cannabinoidreceptorsandtheirassociatedproteins.Current Medicinal Chemistry,17(14),1382–1393.

    Howlett,A.C.,&Fleming,r.M.(1984).Cannabinoidinhibitionofad-enylate cyclase. Pharmacology of the response in neuroblastomacellmembranes.Molecular Pharmacology,26(3),532–538.

    Howlett,A.C.,Qualy,J.M.,&Khachatrian,l.l.(1986).Involvementof Gi in the inhibition of adenylate cyclase by cannabimimeticdrugs.Molecular Pharmacology,29(3),307–313.

    Howlett,A.C.,&Shim,J.y.(2004).Cannabinoidreceptorsandsignaltransduction.InV.DiMarzo(Ed.),Cannabinoids(pp.84–97).newyork, ny/Georgetown, TX: Kluwer Academic/Plenum Publish-ers–landesBioscience.

    Hsieh,C.,Brown,S.,Derleth,C.,&Mackie,K.(1999).Internalizationand recycling of the CB1 cannabinoid receptor. Journal of Neuro-chemistry,73(2),493–501.

    Izzo,A.A., Borrelli, F.,Capasso,r.,DiMarzo,V.,&Mechoulam,r.(2009).non-psychotropicplantcannabinoids:newtherapeuticop-portunitiesfromanancientherb.Trends in Pharmacological Sciences,30(10),515–527.

    Klein, T. W., & Cabral, G. A. (2006). Cannabinoid-induced immunesuppressionandmodulationofantigen-presentingcells.Journal of Neuroimmune Pharmacology,1(1),50–64.

    lawrence,D.,&Gill,E.(1975).Theeffectsof∆1-tetrahydrocannabinolandothercannabinoidsonspin-labeledliposomesandtheirrela-tionshiptomechanismsofgeneralanesthesia.Molecular Pharmacol-ogy,11(5),595–602.

    little,P.J.,Compton,D.r.,Johnson,M.r.,Melvin,l.S.,&Martin,B.r.(1988).Pharmacologyandstereoselectivityofstructurallynovelcannabinoidsinmice.Journal of Pharmacology and Experimental Ther-apeutics,247(3),1046–1051.

    Mack, A., & Joy, J. (2000). A brief history of medical marijuana. InMarijuana as medicine? The science beyond the controversy(pp.13–19).Washington,DC:nationalAcademiesPress.

    Mackie,K.(2005).Distributionofcannabinoidreceptorsinthecentralandperipheralnervoussystemcannabinoids.Handbook of Experi-mental Pharmacology,168,299–325.

    Martin,B.r.,Mechoulam,r.,&razdan,r.K.(1999).Discoveryandcharacterizationofendogenouscannabinoids.Life Sciences,65(6–7),573–595.

    Matsuda, l. A. (1997). Molecular aspects of cannabinoid receptors.Critical Reviews in Neurobiology,11(2–3),143–166.

    Matsuda,l.A.,lolait,S.J.,Brownstein,M.J.,young,A.C.,&Bonner,T.I.(1990).Structureofacannabinoidreceptorandfunctionalex-pressionoftheclonedcDnA.Nature,346(6284),561–564.

    Munro,S.,Thomas,K.l.,&Abu-Shaar,M.(1993).Molecularcharacter-izationofaperipheralreceptorforcannabinoids.Nature,365(6441),61–65.

    onaivi,E.S.,Ishiguro,H.,Gong,J.P.,Patel,S.,Meozzi,P.A.,Myers,l.,...,Uhl,G.r.(2008).BrainneuronalCB2cannabinoidreceptorsindrugabuseanddepression:frommicetohumansubjects.PLoS One,3(2),e1640.

    onaivi,E.S.,Ishiguro,H.,Gong,J.P.,Patel,S.,Meozzi,P.A.,Myers,l.,...,Uhl,G.r.(2008).FunctionalexpressionofbrainneuronalCB2canna-binoidreceptorsareinvolvedintheeffectsofdrugsofabuseandindepression.Annals of the New York Academy of Sciences,1139,434–449.

    onaivi,E.S.,Ishiguro,H.,Gong,J.P.,Patel,S.,Perchuk,A.,Meozzi,P.A.,...,Uhl,G.r.(2006).DiscoveryofthepresenceandfunctionalexpressionofcannabinoidCB2receptorsinbrain.Annals of the New York Academy of Sciences,1074,514–536.

    ortega-Gutierrez,S.,&lopez-rodriguez,M.l.(2005).CB1andCB2cannabinoidreceptorbindingstudiesbasedonmodelingandmu-tagenesis approaches. Mini Reviews in Medicinal Chemistry, 5(7),651–658.

    Pacher,P.,Bátkai,S.,&Kunos,G.(2006).Theendocannabinoidsystemasanemergingtargetofpharmacotherapy.Pharmacological Reviews,58(3),389–462.

    Palazuelos,J.,Aguado,T.,Pazos,M.r.,Julien,B.,Carrasco,C.,resel,E.,...,Galve-roperh,I.(2009).MicroglialCB2cannabinoidrecep-tors are neuroprotective in Huntington’s disease excitotoxicity.Brain,132(Pt11),3152–3164.

    Pertwee,r.G.(1997).PharmacologyofcannabinoidCB1andCB2re-ceptors.Pharmacology and Therapeutics,74(2),129–180.

    Piomelli,D.(2003).Themolecularlogicofendocannabinoidsignalling.Nature Reviews Neuroscience,4(11),873–884.

    http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0030http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0030http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0035http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0035http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0035http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0040http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0040http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0045http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0045http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0045http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0045http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0050http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0050http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0050http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0055http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0055http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0055http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0060http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0060http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0060http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0065http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0065http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0065http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0065http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0070http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0070http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0070http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0075http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0075http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0075http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0080http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0080http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0080http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0080http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0085http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0085http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0085http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0090http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0090http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0090http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0095http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0095http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0095http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0095http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0100http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0100http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0100http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0100http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0105http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0105http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0110http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0110http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0110http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0115http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0115http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0115http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0120http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0120http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0120http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0125http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0125http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0125http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0125http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0130http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0130http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0130http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0135http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0135http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0135http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0135http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0140http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0140http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0140http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0145http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0145http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0145http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0145http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0150http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0150http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0150http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0150http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0155http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0155http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0155http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0160http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0160http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0160http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0165http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0165http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0165http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0170http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0170http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0175http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0175http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0175http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0180http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0180http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0180http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0185http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0185http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0185http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0185http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0190http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0190http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0190http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0195http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0195http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0200http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0200

  • V. PHArMAColoGyAnDCEllUlArACTIVITIESoFCAnnABInoIDSAnDEnDoCAnnABInoIDS

    REFERENCES 563

    raitio,K.,Salo,o.,nevalainen,T.,Poso,A.,&Jarvinen,T.(2005).Tar-geting the cannabinoid CB2 receptor: mutations, modeling anddevelopmentofCB2selectiveligands.Current Medicinal Chemistry,12(10),1217–1237.

    rhee, M. H., Bayewitch, M., Avidor-reiss, T., levy, r., & Vogel, Z.(1998).Cannabinoidreceptoractivationdifferentiallyregulatesthevariousadenylylcyclaseisozymes.Journal of Neurochemistry,71(4),1525–1534.

    rice,W.,Shannon,J.M.,Burton,F.,&Fiedeldey,D.(1997).Expressionofabrain-typecannabinoidreceptor(CB1)inalveolarTypeIIcellsinthelung:regulationbyhydrocortisone.European Journal of Phar-macology,327(2–3),227–232.

    rodriguezdeFonseca,F.,DelArco,I.,Bermudez-Silva,F.J.,Bilbao,A.,Cippitelli,A.,&navarro,M.(2005).Theendocannabinoidsys-tem:physiologyandpharmacology.Alcohol and Alcoholism,40(1),2–14.

    rom,S.,&Persidsky,y.(2013).Cannabinoidreceptor2:potentialroleinimmunomodulationandneuroinflammation.Journal of Neuroim-mune Pharmacology,8(3),608–620.

    Schatz,A.r.,lee,M.,Condie,r.B.,Pulaski,J.T.,&Kaminski,n.E. (1997). Cannabinoid receptors CB1 and CB2: a characteriza-tionofexpressionandadenylatecyclasemodulationwithintheimmune system. Toxicology and Applied Pharmacology, 142(2),278–287.

    Shim,J.y.,Welsh,W.J.,&Howlett,A.C.(2003).HomologymodeloftheCB1cannabinoidreceptor:sitescriticalfornonclassicalcannabi-noidagonistinteraction.Biopolymers,71(2),169–189.

    Shire,D.,Calandra,B.,rinaldi-Carmona,M.,oustric,D.,Pessegue,B.,Bonnin-Cabanne,o.,...,Ferrara,P.(1996).Molecularcloning,ex-pressionand functionof themurineCB2peripheral cannabinoidreceptor.Biochimica et Biophysica Acta,1307(2),132–136.

    Smith,T.H.,Sim-Selley,l.J.,&Selley,D.E.(2010).CannabinoidCB1receptor-interactingproteins:noveltargetsforcentralnervoussys-temdrugdiscovery?British Journal of Pharmacology,160(3),454–466.

    Song,Z.H.,&Bonner,T.I.(1996).AlysineresidueofthecannabinoidreceptoriscriticalforreceptorrecognitionbyseveralagonistsbutnotWIn55212-2.Molecular Pharmacology,49(5),891–896.

    Tao,Q.,McAllister,S.D.,Andreassi, J.,nowell,K.W.,Cabral,G.A.,Hurst,D.P., . . .,Abood,M.E. (1999).roleofaconservedlysineresidueintheperipheralcannabinoidreceptor(CB2):evidenceforsubtypespecificity.Molecular Pharmacology,55(3),605–613.

    Turner, C. E., Elsohly, M.A., & Boeren, E. G. (1980). Constituents ofCannabissatival.XVII.Areviewofthenaturalconstituents.Jour-nal of Natural Products,43(2),169–234.

    Turu,G.,&Hunyady,l. (2010). Signal transductionof theCB1can-nabinoidreceptor.Journal of Molecular Endocrinology,44(2),75–85.

    VanSickle,M.D.,Duncan,M.,Kingsley,P.J.,Mouihate,A.,Urbani,P.,Mackie,K.,...,Sharkey,K.A.(2005).IdentificationandfunctionalcharacterizationofbrainstemcannabinoidCB2 receptors.Science,310(5746),329–332.

    Velasco, G., Galve-roperh, I., Sanchez, C., Blazquez, C., Haro,A., &Guzman,M.(2005).Cannabinoidsandceramide:twolipidsactinghand-by-hand.Life Sciences,77(14),1723–1731.

    Xie, X. Q., Chen, J. Z., & Billings, E. M. (2003). 3D structural modeloftheG-protein-coupledcannabinoidCB2receptor.Proteins,53(2),307–319.

    yang,S.(1998).The divine farmer’s materia medica: a translation of the Shen nong ben cao jing.Boulder,Co:BluePoppyEnterprises,Inc.

    yao,B.,&Mackie,K.(2009).Endocannabinoidreceptorpharmacology.InD.Kendall,&S.Alexander(Eds.),Behavioral neurobiology of the endocannabinoid system (pp. 37–63). Berlin Heidelberg, Germany:Springer.

    http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0205http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0205http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0205http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0205http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0210http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0210http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0210http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0210http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0215http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0215http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0215http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0215http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0220http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0220http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0220http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0220http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0225http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0225http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0225http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0230http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0230http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0230http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0230http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0230http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0235http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0235http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0235http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0240http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0240http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0240http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0245http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0245http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0245http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0255http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0255http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0255http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0260http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0260http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0265http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0265http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0265http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0270http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0270http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0270http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0275http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0275http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0280http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0280http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0280http://refhub.elsevier.com/B978-0-12-800756-3.00068-5/ref0280

    Chapter 58 - Cannabinoids and the Cannabinoid Receptors: An OverviewList of AbbreviationsIntroductionCannabis and cannabinoidsCannabinoid receptors: what they areDiscovery of Cannabinoid ReceptorsEndogenous Ligands of Cannabinoid ReceptorsThe Structural Characteristics of CB1 and CB2 Receptors

    The cannabinoid receptors: where they areCannabinoid receptors: what they doCell Physiology of Cannabinoid ReceptorsSignal Transductions of CB1 and CB2 Receptors

    Concluding remarksMini-dictionaryReferences