chapter 5. stress-strain relationships and behavior

28
Seoul National University Mechanical Strengths and Behavior of Solids 2015/8/9 -1- Chapter 5. Stress-Strain Relationships and Behavior

Upload: others

Post on 16-Feb-2022

8 views

Category:

Documents


0 download

TRANSCRIPT

Seoul National University

Mechanical Strengths and Behavior of Solids

2015/8/9 - 1 -

Chapter 5. Stress-Strain Relationships and Behavior

Seoul National University

Contents

2015/8/9 - 2 -

1 Introduction

2 Models for Deformation Behavior

3 Elastic Deformation

4 Anisotropic Materials

Seoul National University

5.1 Introduction

2015/8/9 - 3 -

โ€ข Three major types of deformation: Elastic, Plastic, and Creep deformation

โ€ข In engineering analysis, constitutive equations which describe stress-strain relationships are essential to calculate stresses and deflections in mechanical components.

โ€ข Consider one-dimensional stress-strain behavior and some corresponding simple physical models for each deformation.

โ€ข Three-dimensional elastic deformation: Isotropy and Anisotropyโ€“ Isotropy: The elastic properties are the same in all directions.โ€“ Anisotropy: The elastic properties vary with direction.

Seoul National University

5.2 Models for Deformation Behavior

2015/8/9 - 4 -

Figure 5.1 Mechanical models for four types of deformation. The displacementโ€“time and forceโ€“displacement responses are also shown for step inputs of force P, which is analogous to stress ฯƒ. Displacement x is analogous to strain ฮต.

๐œ‚๐œ‚ : coefficient of tensile viscosity(in analogous to c)

Seoul National University

Plastic Deformation Models (1)

2015/8/9 - 5 -

Figure 5.3 Rheological models for plastic deformation and their responses to three different strain inputs. Model (a) has behavior that is rigid, perfectly plastic; (b) elastic, perfectly plastic; and (c) elastic, linear hardening.

๐ธ๐ธ1๐ธ๐ธ2๐ธ๐ธ1 + ๐ธ๐ธ2

Seoul National University

Plastic Deformation Models (2)

2015/8/9 - 6 -

โ€ข The point during unloading where the stress passes through zeroโ€’ Elastic unloading of the same slope ๐ธ๐ธ1 as the initial loadingโ€’ The elastic strain ๐œ€๐œ€๐‘’๐‘’ is recovered corresponds to the relaxation of spring ๐ธ๐ธ1.โ€’ The permanent or plastic strain ๐œ€๐œ€๐‘๐‘ corresponds to the motion of the slider

up to the point of maximum strain.

Figure 5.4 Loading and unloading behavior of (a) an elastic, perfectly plastic model, (b) an elastic, linear-hardening model, and (c) a material with nonlinear hardening.

Seoul National University

Creep Deformation Models (1)

2015/8/9 - 7 -

Figure 5.5 Rheological models having time-dependent behavior and their responses to a stressโ€“time step. Both strainโ€“time and stressโ€“strain responses are shown. Model (a) exhibits steady-state creep with elastic strain added, and model (b) transient creep with elastic strain added.

Spring: ๐œ€๐œ€๐‘’๐‘’ = ๐œŽ๐œŽโ€ฒ

๐ธ๐ธ1

Dashpot: ๐œ€๐œ€๐‘๐‘ = ๐œŽ๐œŽโ€ฒ

๐œ‚๐œ‚1

Linear viscoelasticity Some polymers, ceramics, and metals at high temperature, but low stress

Nonlinear viscoelasticityMetals and ceramics at high stress

Seoul National University

Creep Deformation Models (2)

2015/8/9 - 8 -

โ€ข For the steady-state creep model of Fig. 5.5(a),๐œ€๐œ€ = ๐œ€๐œ€๐‘’๐‘’ + ๐œ€๐œ€๐‘๐‘ =

๐œŽ๐œŽโ€ฒ

๐ธ๐ธ1+ ๐œ€๐œ€๐‘๐‘

The rate of creep strain: ๐œ€๐œ€๐‘๐‘ = ๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘๐‘‘๐‘‘๐‘‘๐‘‘

= ๐œŽ๐œŽโ€ฒ

๐œ‚๐œ‚1

Solving ๐œ€๐œ€๐‘๐‘ by integration, ๐œ€๐œ€ = ๐œŽ๐œŽโ€ฒ

๐ธ๐ธ1+ ๐œŽ๐œŽโ€ฒ๐‘‘๐‘‘

๐œ‚๐œ‚1 After removal of the stress, elastic strain disappears, but the creep strain accumulated during 1-2 remains as a permanent strain.

โ€ข For the transient creep model of Fig. 5.5(b),The stress in the (๐œ‚๐œ‚2,๐ธ๐ธ2) stage:

๐œŽ๐œŽ = ๐ธ๐ธ2๐œ€๐œ€2 + ๐œ‚๐œ‚2 ๐œ€๐œ€๐‘๐‘This gives

๐œ€๐œ€๐‘๐‘ =๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘๐‘‘๐‘‘๐‘‘๐‘‘ =

๐œŽ๐œŽ โˆ’ ๐ธ๐ธ2๐œ€๐œ€๐‘๐‘๐œ‚๐œ‚2

Solving this differential equation,

๐œ€๐œ€ =๐œŽ๐œŽโ€ฒ

๐ธ๐ธ1+๐œŽ๐œŽโ€ฒ

๐ธ๐ธ2(1 โˆ’ ๐‘’๐‘’โˆ’

๐ธ๐ธ2๐‘‘๐‘‘๐œ‚๐œ‚2 )

Strain rate decreases with time and creep strain asymptotically approaches the limit โ„๐œŽ๐œŽโ€ฒ ๐ธ๐ธ2. After stress removal, the transient creep strain decreases toward zero at infinite time due to the spring. The equation for the recovery response can be obtained by solving ODE.

Seoul National University

Relaxation Behavior (1) (optional)

2015/8/9 - 9 -

โ€ข Creep: Accumulation of strain with time, as under constant stressโ€ข Recovery: Gradual disappearance of creep strain that occurs after

removal of the stressโ€ข Relaxation: Decrease in stress when a material is held at constant strain

Figure 5.7 Stressโ€“time step applied to a material exhibiting strain response that includes elastic, plastic, and creep components.

Relaxation

Seoul National University

Relaxation Behavior (1) (optional)

2015/8/9 - 10 -

โ€ข Creep: Accumulation of strain with time, as under constant stressโ€ข Recovery: Gradual disappearance of creep strain that occurs after

removal of the stressโ€ข Relaxation: Decrease in stress when a material is held at constant strain

Figure 5.6 Relaxation under constant strain for a model with steady-state creep and elastic behavior. The step in strain (a) causes stressโ€“time behavior as in (b), and stressโ€“strain behavior as in (c).

Relaxation

Seoul National University

Relaxation Behavior (2) (optional)

2015/8/9 - 11 -

โ€ข About sudden strain ๐œ€๐œ€โ€ฒ, it is absorbed by the spring entirely because the dashpot requires a finite time to respond.

โ€ข Due to the total strain being held constant, the strain in the spring decreases, as the strain in the dashpot increases.

๐œ€๐œ€โ€ฒ = ๐œ€๐œ€๐‘’๐‘’ + ๐œ€๐œ€๐‘๐‘ = ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘‘๐‘‘.

The stress necessary to maintain the constant strain:๐œŽ๐œŽ = ๐ธ๐ธ1๐œ€๐œ€๐‘’๐‘’

The rate of creep strain:

๐œ€๐œ€๐‘๐‘ =๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘๐‘‘๐‘‘๐‘‘๐‘‘

=๐œŽ๐œŽ๐œ‚๐œ‚1

Combining these equations and solving the differential equation:

๐œŽ๐œŽ = ๐ธ๐ธ1๐œ€๐œ€โ€ฒ๐‘’๐‘’โˆ’๐ธ๐ธ1๐‘‘๐‘‘๐œ‚๐œ‚1

โ€ข If the strain is returned to zero, the stress is forced into compression. Additional relaxation the occurs, but in the opposite direction, as the relaxation always proceeds toward zero stress.

Seoul National University

5.3 Elastic Deformation

2015/8/9 - 12 -

Seoul National University

Elastic Constants (1)

2015/8/9 - 13 -

โ€ข Homogeneous: A material that has the same properties at all points within the solid

โ€ข Isotropic: A material whose properties are the same in all directions

Figure 5.8 Longitudinal extension and lateral contraction used to obtain constants for a linear-elastic material that is isotropic and homogeneous.

โ€’ Elastic modulus๐ธ๐ธ =

๐œŽ๐œŽ๐‘ฅ๐‘ฅ๐œ€๐œ€๐‘ฅ๐‘ฅ

โ€’ Poissonโ€™s ratio

๐œˆ๐œˆ = โˆ’๐‘‘๐‘‘๐‘ก๐‘ก๐‘ก๐‘ก๐‘๐‘๐‘๐‘๐‘ก๐‘ก๐‘’๐‘’๐‘ก๐‘ก๐‘๐‘๐‘’๐‘’ ๐‘๐‘๐‘‘๐‘‘๐‘ก๐‘ก๐‘ก๐‘ก๐‘ ๐‘ ๐‘๐‘๐‘™๐‘™๐‘๐‘๐‘๐‘๐‘™๐‘™๐‘ ๐‘ ๐‘‘๐‘‘๐‘™๐‘™๐‘‘๐‘‘๐‘ ๐‘ ๐‘๐‘๐‘ก๐‘ก๐‘™๐‘™ ๐‘๐‘๐‘‘๐‘‘๐‘ก๐‘ก๐‘ก๐‘ก๐‘ ๐‘ ๐‘๐‘

= โˆ’๐œ€๐œ€๐‘ฆ๐‘ฆ๐œ€๐œ€๐‘ฅ๐‘ฅ

โ€’ From elastic modulus and Poissonโ€™s ratio

๐œ€๐œ€๐‘ฆ๐‘ฆ = โˆ’๐œˆ๐œˆ๐ธ๐ธ๐œŽ๐œŽ๐‘ฅ๐‘ฅ

Seoul National University

Elastic Constants (2)

2015/8/9 - 14 -

โ€ข Poissonโ€™s ratio is often around 0.3, 0 < ๐œˆ๐œˆ < 0.5.

โ€ข Negative values of ๐œˆ๐œˆ imply lateral expansion during axial tension.

โ€ข ๐œˆ๐œˆ = 0.5 implies constant volume, and values lager than 0.5 imply a decrease in volume for tensile loading.

โ€ข Small-strain theory: When dimensional changes are small, original dimensions and cross-sectional areas are used to determine stresses and strains.

โ€ข If a given metal is alloyed with small percentages of other metals, the elastic constants ๐ธ๐ธ and ๐œˆ๐œˆ can be approximated as being the same as the corresponding pure metal values.โ€’ Aluminum and titanium alloys: less than 10%โ€’ Low-alloy steels: less than 5%

Seoul National University

Hookeโ€™s Law for Three Dimensions (1)

2015/8/9 - 15 -

Figure 5.9 The six components needed to completely describe the state of stress at a point.

Resulting Strain Each Direction

Stress X Y Z

๐œŽ๐œŽ๐‘ฅ๐‘ฅ ๐œŽ๐œŽ๐‘ฅ๐‘ฅ๐ธ๐ธ

โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ฅ๐‘ฅ๐ธ๐ธ

โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ฅ๐‘ฅ๐ธ๐ธ

๐œŽ๐œŽ๐‘ฆ๐‘ฆ โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ฆ๐‘ฆ๐ธ๐ธ

๐œŽ๐œŽ๐‘ฆ๐‘ฆ๐ธ๐ธ

โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ฆ๐‘ฆ๐ธ๐ธ

๐œŽ๐œŽ๐‘ง๐‘ง โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ง๐‘ง๐ธ๐ธ

โˆ’๐œˆ๐œˆ๐œŽ๐œŽ๐‘ง๐‘ง๐ธ๐ธ

๐œŽ๐œŽ๐‘ง๐‘ง๐ธ๐ธ

๐œ€๐œ€๐‘ฅ๐‘ฅ =1๐ธ๐ธ๐œŽ๐œŽ๐‘ฅ๐‘ฅ โˆ’ ๐œˆ๐œˆ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ + ๐œŽ๐œŽ๐‘ง๐‘ง

๐œ€๐œ€๐‘ฆ๐‘ฆ =1๐ธ๐ธ

[๐œŽ๐œŽ๐‘ฆ๐‘ฆ โˆ’ ๐œˆ๐œˆ ๐œŽ๐œŽ๐‘ฅ๐‘ฅ + ๐œŽ๐œŽ๐‘ง๐‘ง ]

๐œ€๐œ€๐‘ง๐‘ง =1๐ธ๐ธ

[๐œŽ๐œŽ๐‘ง๐‘ง โˆ’ ๐œˆ๐œˆ ๐œŽ๐œŽ๐‘ฅ๐‘ฅ + ๐œŽ๐œŽ๐‘ฆ๐‘ฆ ]

The strains caused by stresses in each direction: Total strain in each direction:

โ€ข Three normal stresses:๐œŽ๐œŽ๐‘ฅ๐‘ฅ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ , and ๐œŽ๐œŽ๐‘ง๐‘ง

โ€ข Three shear stresses:๐œ๐œ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ , ๐œ๐œ๐‘ฆ๐‘ฆ๐‘ง๐‘ง, and ๐œ๐œ๐‘ง๐‘ง๐‘ฅ๐‘ฅ

Seoul National University

Hookeโ€™s Law for Three Dimensions (2)

2015/8/9 - 16 -

โ€ข Shear strains (๐บ๐บ: ๐‘๐‘๐‘ ๐‘’๐‘’๐‘ก๐‘ก๐‘ก๐‘ก ๐‘š๐‘š๐‘๐‘๐‘‘๐‘‘๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™๐‘๐‘):๐›พ๐›พ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ =

๐œ๐œ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ๐บ๐บ

, ๐›พ๐›พ๐‘ฆ๐‘ฆ๐‘ง๐‘ง =๐œ๐œ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๐บ๐บ

, ๐›พ๐›พ๐‘ง๐‘ง๐‘ฅ๐‘ฅ =๐œ๐œ๐‘ง๐‘ง๐‘ฅ๐‘ฅ๐บ๐บ

โ€ข The shear strain on a given plane is unaffected by the shear stresses on other planes.

Figure 4.41 A round bar in torsion and the resulting state of pure shear stress and strain. The equivalent normal stresses and strains for a 45ยฐrotation of the coordinate axes are also shown.

Consider a state of pure shear stress, as in a round bar under torsion in Fig. 4.41.๐œŽ๐œŽ๐‘ฅ๐‘ฅ = ๐œ๐œ, ๐œŽ๐œŽ๐‘ฆ๐‘ฆ= โˆ’๐œ๐œ, ๐œŽ๐œŽ๐‘ง๐‘ง= 0, ๐œ€๐œ€๐‘ฅ๐‘ฅ=

๐›พ๐›พ2

This yields

๐›พ๐›พ =2 1 + ๐œˆ๐œˆ

๐ธ๐ธ๐œ๐œ

From ๐บ๐บ = ๐œ๐œ/๐›พ๐›พ,

๐บ๐บ =๐ธ๐ธ

2(1 + ๐œˆ๐œˆ)

Seoul National University

Volumetric Strain

2015/8/9 - 17 -

The normal strains:

๐œ€๐œ€๐‘ฅ๐‘ฅ =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

, ๐œ€๐œ€๐‘ฆ๐‘ฆ =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

, ๐œ€๐œ€๐‘ง๐‘ง =๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

From ๐‘‰๐‘‰ = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘,

๐‘‘๐‘‘๐‘‰๐‘‰ =๐œ•๐œ•๐‘‰๐‘‰๐œ•๐œ•๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘ +๐œ•๐œ•๐‘‰๐‘‰๐œ•๐œ•๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘ +๐œ•๐œ•๐‘‰๐‘‰๐œ•๐œ•๐‘‘๐‘‘

๐‘‘๐‘‘๐‘‘๐‘‘

Evaluating the partial derivatives and dividing both sides by ๐‘‰๐‘‰ = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘,

๐‘‘๐‘‘๐‘‰๐‘‰๐‘‰๐‘‰

=๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

+๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

+๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

Figure 5.10 Volume change due to normal strains.

Volumetric strain or dilatation, ๐œ€๐œ€๐‘ฃ๐‘ฃ: Ratio of the change in volume

๐œ€๐œ€๐‘ฃ๐‘ฃ =๐‘‘๐‘‘๐‘‰๐‘‰๐‘‰๐‘‰

= ๐œ€๐œ€๐‘ฅ๐‘ฅ + ๐œ€๐œ€๐‘ฆ๐‘ฆ + ๐œ€๐œ€๐‘ง๐‘ง

For an isotropic material (by Hookeโ€™s law),

๐œ€๐œ€๐‘ฃ๐‘ฃ =1 โˆ’ 2๐œˆ๐œˆ๐ธ๐ธ

(๐œŽ๐œŽ๐‘ฅ๐‘ฅ + ๐œŽ๐œŽ๐‘ฆ๐‘ฆ + ๐œŽ๐œŽ๐‘ง๐‘ง)

Seoul National University

Hydrostatic Stress

2015/8/9 - 18 -

โ€ข Hydrostatic stress: The average normal stress๐œŽ๐œŽโ„Ž =

๐œŽ๐œŽ๐‘ฅ๐‘ฅ + ๐œŽ๐œŽ๐‘ฆ๐‘ฆ + ๐œŽ๐œŽ๐‘ง๐‘ง3

Substituting this into volumetric strain for an isotropic material,

๐œ€๐œ€๐‘ฃ๐‘ฃ =3 1 โˆ’ 2๐œˆ๐œˆ

๐ธ๐ธ๐œŽ๐œŽโ„Ž

โ€ข Bulk modulus: The constant of proportionality between volumetric strain and hydrostatic stress

๐ต๐ต =๐œŽ๐œŽโ„Ž๐œ€๐œ€๐‘ฃ๐‘ฃ

=๐ธ๐ธ

3 1 โˆ’ 2๐œˆ๐œˆ

โ€ข ๐œ€๐œ€๐‘ฃ๐‘ฃ and ๐œŽ๐œŽโ„Ž are invariant quantities which always have the same values, regardless of the choice of coordinate system.

โ€ข In other words, the sum of the normal strains and the sum of the normal stresses will have the same value for any coordinate system.

Seoul National University

Thermal Strains

2015/8/9 - 19 -

โ€ข Thermal Strain: Elastic strain caused by the temperature changes๐œ€๐œ€ = ๐›ผ๐›ผ ๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡0 = ๐›ผ๐›ผ(โˆ†๐‘‡๐‘‡)

Figure 5.11 Force vs. distance between atoms. A thermal oscillation of equal potential energies about the equilibrium position xe gives an average distance xavg greater than xe.

Figure 5.12 Coefficients of thermal expansion at room temperature versus melting temperature for various materials. (Data from [Boyer 85] p. 1.44, [Creyke 82] p. 50, and [ASM 88] p. 69.)

Seoul National University

5.4 Anisotropic Materials

2015/8/9 - 20 -

Figure 5.14 Anisotropic materials: (a) metal plate with oriented grain structure due to rolling, (b) wood, (c) glass-fiber cloth in an epoxy matrix, and (d) a single crystal.

Seoul National University

Anisotropic Hookeโ€™s Law

2015/8/9 - 21 -

โ€ข The general anisotropic form of Hookeโ€™s law:๐œ€๐œ€๐‘ฅ๐‘ฅ๐œ€๐œ€๐‘ฆ๐‘ฆ๐œ€๐œ€๐‘ง๐‘ง๐›พ๐›พ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๐›พ๐›พ๐‘ง๐‘ง๐‘ฅ๐‘ฅ๐›พ๐›พ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ

=๐‘†๐‘†11 โ‹ฏ ๐‘†๐‘†16โ‹ฎ โ‹ฑ โ‹ฎ๐‘†๐‘†16 โ‹ฏ ๐‘†๐‘†66

๐œŽ๐œŽ๐‘ฅ๐‘ฅ๐œŽ๐œŽ๐‘ฆ๐‘ฆ๐œŽ๐œŽ๐‘ง๐‘ง๐œ๐œ๐‘ฆ๐‘ฆ๐‘ง๐‘ง๐œ๐œ๐‘ง๐‘ง๐‘ฅ๐‘ฅ๐œ๐œ๐‘ฅ๐‘ฅ๐‘ฆ๐‘ฆ

โ€ข ๐‘†๐‘†๐‘–๐‘–๐‘–๐‘– change if the orientation of the x-y-z coordinate system is changed.โ€ข Each unique ๐‘†๐‘†๐‘–๐‘–๐‘–๐‘– has a different nonzero value.โ€ข The matrix is symmetrical with 21 independent variables.โ€ข In the isotropic case,

๐‘†๐‘†๐‘–๐‘–๐‘–๐‘– =

1/๐ธ๐ธ โˆ’๐œˆ๐œˆ/๐ธ๐ธ โˆ’๐œˆ๐œˆ/๐ธ๐ธโˆ’๐œˆ๐œˆ/๐ธ๐ธ 1/๐ธ๐ธ โˆ’๐œˆ๐œˆ/๐ธ๐ธโˆ’๐œˆ๐œˆ/๐ธ๐ธ โˆ’๐œˆ๐œˆ/๐ธ๐ธ 1/๐ธ๐ธ

0

01/๐บ๐บ 0 0

0 1/๐บ๐บ 00 0 1/๐บ๐บ

Seoul National University

Orthotropic Materials; Other Special Cases

2015/8/9 - 22 -

โ€ข Orthotropic material: The material that possesses symmetry about three orthogonal planesโ€’ The coefficients for Hookeโ€™s law for an orthotropic material:

๐‘†๐‘†๐‘–๐‘–๐‘–๐‘– =

1/๐ธ๐ธ๐‘‹๐‘‹ โˆ’๐œˆ๐œˆ๐‘Œ๐‘Œ๐‘‹๐‘‹/๐ธ๐ธ๐‘Œ๐‘Œ โˆ’๐œˆ๐œˆ๐‘๐‘๐‘‹๐‘‹/๐ธ๐ธ๐‘๐‘โˆ’๐œˆ๐œˆ๐‘‹๐‘‹๐‘Œ๐‘Œ/๐ธ๐ธ๐‘‹๐‘‹ 1/๐ธ๐ธ๐‘Œ๐‘Œ โˆ’๐œˆ๐œˆ๐‘๐‘๐‘Œ๐‘Œ/๐ธ๐ธ๐‘๐‘โˆ’๐œˆ๐œˆ๐‘‹๐‘‹๐‘๐‘/๐ธ๐ธ๐‘‹๐‘‹ โˆ’๐œˆ๐œˆ๐‘Œ๐‘Œ๐‘๐‘/๐ธ๐ธ๐‘Œ๐‘Œ 1/๐ธ๐ธ๐‘๐‘

0

01/๐บ๐บ๐‘Œ๐‘Œ๐‘๐‘ 0 0

0 1/๐บ๐บ๐‘๐‘๐‘‹๐‘‹ 00 0 1/๐บ๐บ๐‘‹๐‘‹๐‘Œ๐‘Œ

โ€ข Cubic material: The material that has the same properties in the X-, Y-, and Z-directionsโ€’ Three independent constants: ๐ธ๐ธ๐‘‹๐‘‹,๐บ๐บ๐‘‹๐‘‹๐‘Œ๐‘Œ, ๐œˆ๐œˆ๐‘‹๐‘‹๐‘Œ๐‘Œโ€’ There is still one more independent constant than for the isotropic case, and

the elastic constants still apply only for the special X-Y-Z coordination system.โ€ข Transversely isotropic material: The properties are the same all

directions in a plane, such as the X-Y planeโ€’ Five independent constants: ๐ธ๐ธ๐‘‹๐‘‹, ๐œˆ๐œˆ๐‘‹๐‘‹๐‘Œ๐‘Œ,๐ธ๐ธ๐‘๐‘, ๐œˆ๐œˆ๐‘‹๐‘‹๐‘๐‘,๐บ๐บ๐‘‹๐‘‹๐‘๐‘

Seoul National University

Orthotropic Materials

2015/8/9 - 23 -

Orthogonal planes of symmetry

Orthotropic material Transversely isotropic material

Seoul National University

Fibrous Composites

2015/8/9 - 24 -

โ€ข For thin plates or sheets, we assume that ๐œŽ๐œŽ๐‘๐‘ = ๐œ๐œ๐‘Œ๐‘Œ๐‘๐‘ = ๐œ๐œ๐‘๐‘๐‘‹๐‘‹ = 0.โ€ข Therefore, Hookeโ€™s law can be used in following form:

๐œ€๐œ€๐‘‹๐‘‹๐œ€๐œ€๐‘Œ๐‘Œ๐›พ๐›พ๐‘‹๐‘‹๐‘Œ๐‘Œ

=1/๐ธ๐ธ๐‘‹๐‘‹ โˆ’๐œˆ๐œˆ๐‘Œ๐‘Œ๐‘‹๐‘‹/๐ธ๐ธ๐‘Œ๐‘Œ 0

โˆ’๐œˆ๐œˆ๐‘‹๐‘‹๐‘Œ๐‘Œ/๐ธ๐ธ๐‘‹๐‘‹ 1/๐ธ๐ธ๐‘Œ๐‘Œ 00 0 1/๐บ๐บ๐‘‹๐‘‹๐‘Œ๐‘Œ

๐œŽ๐œŽ๐‘‹๐‘‹๐œŽ๐œŽ๐‘Œ๐‘Œ๐œ๐œ๐‘‹๐‘‹๐‘Œ๐‘Œ

Seoul National University

Elastic Modulus Parallel to Fibers (1)

2015/8/9 - 25 -

Figure 5.15 Composite materials with various combinations of stress direction and unidirectional reinforcement. In (a) the stress is parallel to fibers, and in (b) to sheets of reinforcement, whereas in (c) and (d) the stresses are normal to similar reinforcement.

Seoul National University

Elastic Modulus Parallel to Fibers (2)

2015/8/9 - 26 -

โ€ข Fibers: isotropic material with elastic constant ๐ธ๐ธ๐‘Ÿ๐‘Ÿ , ๐œˆ๐œˆ๐‘Ÿ๐‘Ÿ, and ๐บ๐บ๐‘Ÿ๐‘Ÿโ€ข Matrix: isotropic material with elastic constant ๐ธ๐ธ๐‘š๐‘š, ๐œˆ๐œˆ๐‘š๐‘š, and ๐บ๐บ๐‘š๐‘šโ€ข Consider a uniaxial stress ๐œŽ๐œŽ๐‘‹๐‘‹ parallel to fibers.โ€ข Assumption: The fibers are perfectly bonded to the matrix.

๐ด๐ด = ๐ด๐ด๐‘Ÿ๐‘Ÿ + ๐ด๐ด๐‘š๐‘š๐œŽ๐œŽ๐‘‹๐‘‹๐ด๐ด = ๐œŽ๐œŽ๐‘Ÿ๐‘Ÿ๐ด๐ด๐‘Ÿ๐‘Ÿ + ๐œŽ๐œŽ๐‘š๐‘š๐ด๐ด๐‘š๐‘š

๐œŽ๐œŽ๐‘‹๐‘‹ = ๐ธ๐ธ๐‘‹๐‘‹๐œ€๐œ€๐‘‹๐‘‹, ๐œŽ๐œŽ๐‘Ÿ๐‘Ÿ = ๐ธ๐ธ๐‘Ÿ๐‘Ÿ๐œ€๐œ€๐‘Ÿ๐‘Ÿ , ๐œŽ๐œŽ๐‘š๐‘š = ๐ธ๐ธ๐‘š๐‘š๐œ€๐œ€๐‘š๐‘š

From the assumption (๐œ€๐œ€๐‘‹๐‘‹ = ๐œ€๐œ€๐‘Ÿ๐‘Ÿ = ๐œ€๐œ€๐‘š๐‘š), yielding the modulus of the composite material:

๐ธ๐ธ๐‘‹๐‘‹ =๐ธ๐ธ๐‘Ÿ๐‘Ÿ๐ด๐ด๐‘Ÿ๐‘Ÿ + ๐ธ๐ธ๐‘š๐‘š๐ด๐ด๐‘š๐‘š

๐ด๐ดVolume fractions:

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =๐ด๐ด๐‘Ÿ๐‘Ÿ๐ด๐ด , ๐‘‰๐‘‰๐‘š๐‘š = 1 โˆ’ ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =

๐ด๐ด๐‘š๐‘š๐ด๐ด

Thus,๐ธ๐ธ๐‘‹๐‘‹ = ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐ธ๐ธ๐‘Ÿ๐‘Ÿ + ๐‘‰๐‘‰๐‘š๐‘š๐ธ๐ธ๐‘š๐‘š

Seoul National University

Elastic Modulus Transverse to Fibers

2015/8/9 - 27 -

โ€ข Consider uniaxial stress ๐œŽ๐œŽ๐‘Œ๐‘Œ in orthogonal in-plane direction.๐œŽ๐œŽ๐‘Œ๐‘Œ = ๐œŽ๐œŽ๐‘Ÿ๐‘Ÿ = ๐œŽ๐œŽ๐‘š๐‘š

๐œ€๐œ€๐‘Œ๐‘Œ =โˆ†๐‘‘๐‘‘๐‘‘๐‘‘

, ๐œ€๐œ€๐‘Ÿ๐‘Ÿ =โˆ†๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ

, ๐œ€๐œ€๐‘š๐‘š =โˆ†๐‘‘๐‘‘๐‘š๐‘š๐‘‘๐‘‘๐‘š๐‘š

whereโˆ†๐‘‘๐‘‘ = โˆ†๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ + โˆ†๐‘‘๐‘‘๐‘š๐‘š

Therefore,

๐œ€๐œ€๐‘Œ๐‘Œ =๐œ€๐œ€๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ + ๐œ€๐œ€๐‘š๐‘š๐‘‘๐‘‘๐‘š๐‘š

๐‘‘๐‘‘1๐ธ๐ธ๐‘Œ๐‘Œ

=1๐ธ๐ธ๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘ +

1๐ธ๐ธ๐‘š๐‘š

๐‘‘๐‘‘๐‘š๐‘š๐‘‘๐‘‘

Volume fractions:

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ๐‘‘๐‘‘ , ๐‘‰๐‘‰๐‘š๐‘š = 1 โˆ’ ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =

๐‘‘๐‘‘๐‘š๐‘š๐‘‘๐‘‘

Thus,1๐ธ๐ธ๐‘Œ๐‘Œ

=๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐ธ๐ธ๐‘Ÿ๐‘Ÿ

+๐‘‰๐‘‰๐‘š๐‘š๐ธ๐ธ๐‘š๐‘š

, ๐ธ๐ธ๐‘Œ๐‘Œ =๐ธ๐ธ๐‘Ÿ๐‘Ÿ๐ธ๐ธ๐‘š๐‘š

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐ธ๐ธ๐‘š๐‘š + ๐‘‰๐‘‰๐‘š๐‘š๐ธ๐ธ๐‘Ÿ๐‘Ÿ

Seoul National University

Other Elastic Constants, and Discussion

2015/8/9 - 28 -

โ€ข Estimate of the major Poissonโ€™s ration, ๐‚๐‚๐‘ฟ๐‘ฟ๐‘ฟ๐‘ฟ๐œˆ๐œˆ๐‘‹๐‘‹๐‘Œ๐‘Œ = ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐œˆ๐œˆ๐‘Ÿ๐‘Ÿ + ๐‘‰๐‘‰๐‘š๐‘š๐œˆ๐œˆ๐‘š๐‘š

โ€ข Estimate of the shear modulus

๐บ๐บ๐‘‹๐‘‹๐‘Œ๐‘Œ =๐บ๐บ๐‘Ÿ๐‘Ÿ๐บ๐บ๐‘š๐‘š

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐บ๐บ๐‘š๐‘š + ๐‘‰๐‘‰๐‘š๐‘š๐บ๐บ๐‘Ÿ๐‘Ÿ

โ€ข Actual values of ๐ธ๐ธ๐‘‹๐‘‹ are usually reasonably close to the estimate.โ€ข Since ๐ธ๐ธ๐‘Œ๐‘Œ is a lower bound for the case of fibers, actual values are

somewhat higher.โ€ข Quasi-isotropic: A material whose elastic constants are approximately

the same for any direction in the X-Y plane, but different in the Z-direction

โ€“ Isotropic material for in-plane loadingโ€“ Transversely isotropic material for general three-dimensional analysis