chapter 5 – gravitation chapter 6 – work and...

28
Chapter 5 – Gravitation Chapter 6 – Work and Energy

Upload: vannga

Post on 26-Aug-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Chapter 5 – Gravitation

Chapter 6 – Work and Energy

Page 2: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Chapter 5

• (5.6) Newton’s Law of Universal Gravitation

• (5.7) Gravity Near the Earth’s Surface

Chapter 6 (today)

• Work Done by a Constant Force

• Kinetic Energy, and the Work-Energy Principle

Page 3: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Old assignments can be picked up

in my office

(LB-212)

Page 4: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Chapter 5

Circular Motion; GravitationCircular Motion; Gravitation

Page 5: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

• Kinematics of Uniform Circular Motion

• Dynamics of Uniform Circular Motion

• Highway Curves, Banked and Unbanked

• Non-uniform Circular Motion

• Centrifugation

Will be covered after chapter 7

• Centrifugation

• (5.6) Newton’s Law of Universal Gravitation

• (5.7) Gravity Near the Earth’s Surface

Page 6: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

If the force of gravity is being exerted on objects on Earth, what is the origin of that force?

Newton’s realization was that the forceNewton’s realization was that the forcemust come from the Earth .

He further realized that this force must be what keeps the Moon in its orbit .

Page 7: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

More than that: the Earth exerts a downward force on you , and you exert an upward force on the Earth .

When there is such a difference in masses, the reaction force is undetectable.

But for bodies more equal in mass it can be significant .

Therefore, the gravitational force must be proporti onal to both masses.

Page 8: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

By observing planetary orbits, Newton also concluded that the gravitational force must decrease as the inverse of the square of the distance between the masses .

Summary: The gravitational force is directly proportional to the masses and inversely proportional to the square of their distance.

Or, as stated in Newton’s law of universal gravitation :

“ Every particle in the universe attracts every other particle with a force that is

proportional to the products of their masses and in versely proportional to the

square of the distance between them. This forces ac ts along the line joining

the two particles.”

Page 9: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

The magnitude of this force is given by:

Where:

(4.7)

Page 10: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

We know the relation between force and acceleration: . But what is a in

?

If m2 is the object exerting a force on m1 , then the gravitational acceleration felt by object 1 can be identified as:

(4.8)⇒ ⇒

The opposite is also true: object 2 will feel an acceleration

due to the gravitational force applied by object 1.

You can then write for the force acting on m1 and for the force acting on m2 .

Page 11: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Gravity Near the Earth’s SurfaceGravity Near the Earth’s Surface

An object of mass m ON the surface of the Earth will feel a force given by:

Where,

mE = mass of the Earth ;

rE = 6.38 x 106 m = radius of the Earth.

g has been measured and it is known to be 9.80 m/s2.

(4.9)

g has been measured and it is known to be 9.80 m/s2.

In fact, the value of g can be considered constant at any position near the Earth’s surface (this is what we have been assuming without much discussion so far).

Note that knowing G, rE and g, we can calculate the mass of the Earth. From eq. 4.9:

More accurate calculations lead to mE = 5.974 x 1024 Kg

Page 12: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

Problem 5-31 (textbook): A hypothetical planet has a radius 1.5 times that of Earth, but has the same mass. What is the acceleration due to gravity near its surface?

Solution :

The acceleration due to gravity at any location on or above the surface of a planet is given by

2

planet Planetg G M r=

where r is the distance from the center of the planet to the location in question.

( )

22Planet Earth Earth

planet Earth22 2 2 2 2

EarthEarth

1 1 9.8 m s4.4 m s

1.5 1.5 1.51.5

M M Mg G G G g

r RR= = = = = =

Page 13: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Newton’s Law of Universal GravitationNewton’s Law of Universal Gravitation

Problem 5-34 (textbook): Calculate the effective value of g, the acceleration of gravity, at (a) 3200 m, and (b) 3200 km, above the Earth’s surface.

Solution :

The acceleration due to gravity at any location at or above the surface of a planet is given by

where r is the distance from the center of the planet to the location in question. For this problem,

(a)

2

p lan et P lanetg G M r=

2 4

P lanet E arth 5 .97 10 kgM M= = ×

(a)

(b)

6

Earth 3200 m 6.38 10 m 3200 mr R= + = × +

( ) ( )( )

24

11 2 2 2Earth

22 6

5.97 10 kg6.67 10 N m kg 9.77 m s

6.38 10 m 3200 m

Mg G

r−

×= = × =

× +�

6 6 6

Earth 3200 km 6.38 10 m 3.20 10 m 9.58 10 mr R= + = × + × = ×

( ) ( )( )

24

11 2 2 2Earth

22 6

5.97 10 kg6.67 10 N m kg 4.34 m s

9.58 10 m

Mg G

r−

×= = × =

�

Page 14: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Chapter 6

Work and EnergyWork and Energy

Page 15: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

So far, we have discussed the motion of an object in terms of Newton’s three laws of motion. However, there is a more powerful way to develop these studies using the concepts of momentum and energy.

Most theories in physics are based on the fact that the TOTAL energy and momentum of a system are conserved, or in other words, they do not change with time. These are known as conservation laws of energy and momentum.

Work Done by a Constant ForceWork Done by a Constant Force

In general, it is easier to analyze the motion of a body using these concepts rather than using Newton’s three laws.

In fact, the Newton’s laws are not even completely correct as they are just an approximation for objects moving at very low speeds compared to the speed of light (300.000 Km/s) � they have to be corrected to account for very fast moving objects.

On the other hand, the conservation laws are valid regardless how fast an object moves.

Page 16: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

So, let’s get started!

The work done by a constant force is defined as the distance moved multiplied by the component of the force in the direction of displacement :

Work Done by a Constant ForceWork Done by a Constant Force

(6-1)

Page 17: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

In the SI system, the units of work are joules :

This follows from equation 6.1:

Units of force are Newtons;

Work Done by a Constant ForceWork Done by a Constant Force

Units of force are Newtons;

Units of distance are meters.

���� [W] = [N] · [m] = [J]

Page 18: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Note:

Assume this person as moving with constant velocity (no net applied force) along a horizontal plane.

Work Done by a Constant ForceWork Done by a Constant Force

Then, as long as the person does NOT lift or lower the bag of groceries, he is doing NO work on it . The forcebag of groceries, he is doing NO work on it . The forcehe exerts has NO component in the direction of motion .

� He applies a force to counter-balance the force of gravity. Both forces make a 90o angle relative to the displacement of the bag. From eq. 6.1 follows:

W P= FP d cosθ = FP d cos(90o) = 0

W G= FG d cosθ = FG d cos(90o) = 0

Page 19: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work is a scalar quantity � it has only magnitude that can be positive or negative

� It is positive when the component of the force along the line of displacement is in the direction of the displacement vector

Work Done by a Constant ForceWork Done by a Constant Force

θ

� It is negative when the opposite happens

Note that friction force always does negative work (it always points in the opposite direction relative to the displacement).

θ

Page 20: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-3 (textbook): A 1300-N crate rests on the floor. How much work is required to move it at constant speed

(a) 4.0 m along the floor against a friction force of 230 N, and

(b) 4.0 m vertically?

Page 21: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-3:

(a)

See the free-body diagram for the crate as it is being pulled.

Since the crate is not accelerating horizontally,

2 3 0 NF F= =m gr

NFr

PFr

frFr

∆xr

The work done to move it across the floor is the work done by the pulling force. Theangle between the pulling force and the direction of motion is 0o.

P f r 2 3 0 NF F= =

( )( )( )o 2

P P cos 0 230 N 4.0 m 1 9.2 10 JW F d= = = ×

NF

Page 22: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-3:

(b)

The diagram of forces for this problem is shown.

Since the crate is not accelerating vertically, the pulling force is the same magnitudeas the weight. The angle between the pulling force and the direction of motion is 0o.

( )( )o 3

P P cos 0 1300 N 4.0 m 5.2 10 JW F d mgd= = = = ×

Page 23: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-10 (textbook): What is the minimum work needed to push a 950-kg car 810 m up along a 9.0º incline?

(a) Ignore friction.

(b) Assume the effective coefficient of friction retarding the car is 0.25.

Page 24: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-10:

Draw a free-body diagram of the car on the incline. Include a frictional force, but ignore it in part (a) of the problem.

The minimum work will occur when the car is moved at a constant velocity.

Fr

y

θ

mgr

NFfrFr

Page 25: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-10:

(a)

Write Newton’s 2nd law in both the x and y directions, noting that the car is unaccelerated

N Ncos 0 cosyF F mg F mgθ θ= − = → =∑

The work done by in moving the car a distance d along the plane (parallel to ) is given by

P Psin 0 sinxF F mg F mgθ θ= − = → =

PFr

PFr

( ) ( )( )o 2 o 6

P P cos 0 sin 950 kg 9.80 m s 810 m sin 9.0 1.2 10 JW F d mgd θ= = = = ×

Page 26: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Work Done by a Constant ForceWork Done by a Constant Force

Problem 6-10:

(b)

Now include the frictional force, given by:

We still assume that the car is not accelerated. We again write Newton’s 2nd

law for each direction:

� The y-forces are unchanged by the addition of friction, and so we still have

fr NkF Fµ=

� The y-forces are unchanged by the addition of friction, and so we still have

� In the x-direction we have

The work done by in moving the car a distance d along the plane (parallel to ) is given by

N c o sF m g θ=

P fr P frsin 0 sin cos sinx kF F F mg F F mg mg mgθ θ µ θ θ= − − = → = + = +∑

PFr

PFr

( )( )( )( )( )

o

P P

2 o o 6

cos 0 sin cos

950 kg 9.80 m s 810 m sin 9.0 0.25 cos 9.0 3.0 10 J

kW F d mgd θ µ θ= = +

= + = ×

Page 27: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Kinetic Energy, and the Work Energy PrincipleKinetic Energy, and the Work Energy Principle

I mentioned, in the begin of this lecture, that the concept of energy is very important in physics. Yet, I started discussing about work done by a force.

� What is the connection between these two quantities?

A good definition of energy was introduced by the Einstein’s theory of relativity:

E = mc2

But this is beyond the scope of this course.But this is beyond the scope of this course.

In mechanics, we can use a less precise definition of energy as:

“The ability to do work”

In this course we will be defining translational kinetic energy and some forms of potential energies , though other forms of energy exist such as nuclear energy, heat energy, etc.

Page 28: Chapter 5 – Gravitation Chapter 6 – Work and Energyuregina.ca/~barbi/academic/phys109/2009/notes/lecture-13.pdf · Chapter 5 • (5.6) Newton’s Law of Universal Gravitation

Kinetic Energy, and the Work Energy PrincipleKinetic Energy, and the Work Energy Principle

Kinetic Energy

A moving object can do work on a second object. Example:

A car hits another car � the first car applies a force to the second (say, at rest) which consequently undergoes a displacement.

This has the implication that the first car has the ability to do work, consequently it has (or carries) energy.

(to be continued in the next lecture)