chapter 5 carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfw.k. chen...

18

Click here to load reader

Upload: buihanh

Post on 15-Mar-2018

273 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 1

Chapter 5Carrier transport phenomena

W.K. Chen Electrophysics, NCTU 2

Transport

The net flow of electrons and holes in material is called transport

Two basic transport mechanismsDrift: movement of charged due to electric fields

Diffusion: the flow of charges due to density gradient

We implicitly assume the thermal equilibrium during the carrier transport is not substantially disturbed

Page 2: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 3

Outline

Carrier drift

Carrier diffusion

Graded impurity distribution

The Hall effect

W.K. Chen Electrophysics, NCTU 4

5.1 Carrier driftDrift: the net movement of charge due to electric fields is called drift

Drift current: The net drift of charge gives rise to a drift current

)cmsec

#( densityFlux

)sec

#(

)(Flux

2⋅=

Φ=

=ΔΔ

υφ

υυ

nA

nAt

tnA

t

nA

t

N

l

l l

A

N: total number of flow chargen: volume density of flow chargeA: cross-sectional areaυ: average drift velocityl: traveling length of carrier per Δt

)cm

A( density current Drift

2dqnqJ υφ ==Ampere

Page 3: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 5

mobilityThe average drift velocity for low electric fields is directly proportional to the electric field, similar to the terminal velocity case in “Fundamental Physics”

E)(* eamF p +==

υdp: average drift velocity for holesμp: hole mobility, proportionality factor

crystal

extFr

amFext*=

r

Err

pdp μυ =

The mobility describe how well a particle will move due to an electric field

E)()(, pdpdrfp pepeJ μυ +=+=Drift current due to holes

Hole: E: electric field

W.K. Chen Electrophysics, NCTU 6

E

EeF )(+=EeF )(−=

)cm

A(

2dqnqJ υφ ==

Errndn μυ −=

)()()(, EpeneqnJ ndpdrfn μυυ −−=−==

E, ndrfn enJ μ=Drift current due to electrons

E)(,, pndrfpdrfn epenJJJ μμ +=+=Total drift current

drfpJ ,

drfnJ ,

nφFlux pφFlux

Page 4: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 7

Example 5.1 drift current density

21619

,,

A/cm136)10)(10)(8500)(106.1(

E)(

=×=

+=+=

−dft

pndrfpdrfndft

J

epenJJJ μμ

V/cm 10E field electric applied ifdensity current drift theCalulate

ionization complete Assume

cm 10 ,0 300K,at sample GaAs 316

=⇒

== −da NN

Solution:

V/cm 10E field electric applied ifdensity current drift theCalulate

cm 1024.310

)108.1(

cm 10 ionization complete

3-416

2162

-316

=⇒

×=×

==

=≈⇒

n

np

Nn

i

d

W.K. Chen Electrophysics, NCTU 8

5.1.2 Mobility effect

tm

ee

dt

dmamF

ppp *** E

E)( =⇒+=== υυ

Eity peak velocmean *, ⎟⎟⎠

⎞⎜⎜⎝

⎛=

p

cppeakd m

eτυ

F

t

Under thermal equilibrium

Assume the net drift velocity is a small perturbation on the random thermal velocity, so the time between collision will not be altered appreciably

τcp: mean time between collisions

Page 5: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 9

E2

1 velocity average

* ⎟⎟⎠

⎞⎜⎜⎝

⎛=

p

cpd m

eτυ

Due to the statistic nature, the factor of ½ does not appear in a more accurate model

*

*

E

,E

n

cndnn

p

cpdpp

m

e

m

e

τυμ

τυμ

==

==

The average drift velocity is one half the peak value

EE velocity average p*μ

τυ =⎟

⎟⎠

⎞⎜⎜⎝

⎛=

p

cpdp m

e

The less the collisions, the longer the mean collision time and the higher the mobility

W.K. Chen Electrophysics, NCTU 10

Scattering (collision) mechanismsTwo major scattering mechanisms

Phonon (lattice) scattering

A perfect periodic potential in a solid allows electrons to move unimpeded, or with no scattering, through the crystal

The thermal vibrations of lattice atoms cause a disruption in the perfect periodic potential, resulting the interactions between the electrons or holes and the vibrating lattice atoms

Ionized impurity scattering

The impurites in semiconductor at higher temperatures. The coulomb interactions between the electrons or holes and the ionized impurities produce scattering or collisions.

2/3−∝TLμ

II N

T 2/3−

∝μ

lattice

impurity )(

impurity ionized total−+ += adI NNN

Page 6: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 11

Mobilitis versus temperarure

Inserts show the temperature dependence for “almost” intrinsic silicon

The inserts show that the parameter n is not equal to 3/2, but is 2.2, as the first-order scattering theory predicted. However , the mobilites do increase as the temperature increases

W.K. Chen Electrophysics, NCTU 12

Mobilties versus impurity concentrations at 300K

Ge

Si

GaAs

Page 7: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 13

τμτυμτυ

μ ∝⇒==== E

,E **

n

cndnn

p

cpdpp m

e

m

eQ

LI

dtdtdt

τττ+=

LI μμμ111

+=

The probability of a scattering even in the differential time dt is the sum of individual events

Net mobility

The net mobility due to the ionized and lattice scattering processes

High effective mass of carrier results in low mobility

The mobility will increase with the increasing collision time

W.K. Chen Electrophysics, NCTU 14

5.1.3 Conductivity

EE)( σμμ =+= pn epneJ

)( pn epen μμσ += )(

11

pn epne μμσρ

+==

A

L

A

LRIRV

σρ

=== ,

E1E/ σ

σ

=⎟⎠⎞

⎜⎝⎛⋅===

ALA

L

A

RV

A

IJ

Eσ=J

The conductivity and resistivity of an extrinsic semiconductor are a function primarily of the majority carrier parameters, such carrier concentrations and mobilities

Page 8: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 15

Resistivity versus impurity concentration at 300K

Si Ge, GaAs and GaP

W.K. Chen Electrophysics, NCTU 16

In the midtemperature range (extrinsic range)

We have complete ionization, the electron concentration remains essentially constant, However, the mobility decreases with increasing temperature

At higher temperatures

The intrinsic carrier concentration begins to dominate the electron concentration as well as the conductivity

ipni nee )( μμσ +=

Page 9: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 17

Example 5.2 mobility

mobilityelectron andion concentratdonor theDetermine

cm 10a ,cm)-( 16

300K,at Si type-n dCompensate3161

⇒=Ω= −− Nσ

Solution:

)10()106.1(16

)(

)(

300Kat ionization complete andtor semiconduc dcompenstae

1719 −×=

−=≈−≈⇒

−dn

adnn

ad

N

NNene

NNn

μ

μμσ

1-2

3-173-17

cm)-( 16.8 s-/Vcm 510Then

)cm102 .,.( cm103

choose weif exampleFor

error and l with triafigureleft theUse

Ω=⇒=

×=×=−= −+

σμn

dadI NeiNNN

W.K. Chen Electrophysics, NCTU 18

1-2

3-173-17

cm)-( 8.20 s-/Vcm 325Then

)cm105 .,.( cm106

choose weIf

Ω=⇒=

×=×=−= −+

σμn

dadI NeiNNN

e)given valu with (agree cm)-( 16

s-/Vcm 400

)cm105.3

cm105.4

yieldserror and alFurther ti

1-

2

3-17

3-17

Ω=⇒

=

×=

×=+= −+

σ

μn

d

adI

N

NNN

Page 10: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 19

5.1.4 Velocity saturation

kTm th 2

3

2

1 2 =υ

eV03885.0)0259.0(2

3

2

1

K 300Tat

2 ==

=

thmυ

m/s 10)1011.9(

)106.1)(03885.0(2)eV03885.0(2 531

19

≈×

×== −

mυth

cm/s 107≈thυ

W.K. Chen Electrophysics, NCTU 20

Figure 5.8

For SiAt low electric fields, there is linear variation of velocity with electric field

At high electric fields, the velocity saturated at approximately 107cm/s

Page 11: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 21

For GaAsDue to low effective mass, the low-electric field electron velocity in GaAs is much larger than in Si.

At high electric fields, negative differential mobility occurs due to the scattering of electrons into upper valley. Because of larger effective mass in the upper valley (0.55 mo vs. 0.067 mo), the intervalley transfer mechanism results in decreasing average drift velocity of electrons with electric field.

onon mmmm 08.1 :Si 067.0 :GaAs ** ==

W.K. Chen Electrophysics, NCTU 22

5.2 Carrier diffusion

)(xn

xox

ox

dx

dnlF thn υ−=

cnthl τυ=(1)(2)

ox lxo +lxo −

Page 12: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 23

During electron travel between collisions

In a mean free time, One half of electrons at segment (1) will move to the right and cross the xoplane into segment (2)

One half of electrons at segment (2) will move to the left and cross the xo plane into (segment (1))

)(2

1)(

)(2

1

2

1

2

1)(

flux)(electron right the toflowelectron of rateNet

21

2121

ldx

dnxF

ldx

dnnn

nnnnxF

thn

thththon

−⋅=⇒

−≈−

−=−=

υ

υυυ

dx

dnlF thn υ

2

1flux electron net −=

cnthl τυ=

(1)(2)

ox lxo +lxo −

l

1n2n

W.K. Chen Electrophysics, NCTU 24

dx

dnleFeJ thnn υ

2

1)( +=−=

dx

dneDJ ndifn =,

lD thn υ2

1

t coefficiendiffusion electron

=

dx

dpeDJ pdifp −=,

lD thp υ2

1

coefficentdiffusion hole

=

cnthl τυ=

cpthl τυ=

Hole diffusion current

Electron diffusion current

Page 13: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 25

Example 5.4

21718

19

,

A/cm 10810.0

107101)225)(106.1( =⎟⎟

⎞⎜⎜⎝

⎛ ×−××=

ΔΔ

≈=

x

neD

dx

dneDJ nndifn

/scm 225t coefficiendiffusion ifcurrent diffusion theCalculate

cm 0.10 of distance

aover cm 107 to101 fromlinearly ion variesconcentratelectron The

300K,at GaAs type-n

2

31818

=⇒

×× −

nD

Solution:

W.K. Chen Electrophysics, NCTU 26

5.2.2 Total current density

dx

dpeD

dx

dneDJepenJ pndifnpn −+++= ,EE μμ

peDneDJepenJ pndifnpn ∇−∇+++= ,EE μμ

Page 14: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 27

5.3 Graded impurity distribution

)(1

FiF EEe

−=⇒φ

dx

dE

edx

d Fix

1E =−=

φ)( e

Ec−

The electric field is defined as

The electric potential is related to the electric potential energy by the charge ( -e)

In nonuniform doped semiconductor, there will be a diffusion of majority electrons from the region of high concentration to the region of low concentration.

The flow of electrons leave behind positively charged donor ions. The separation of positive and negative charges induces a electric field

W.K. Chen Electrophysics, NCTU 28

The induced electric field due to the nonuniform doping

dx

xdN

xNe

kT d

dx

)(

)(

1E ⎟

⎠⎞

⎜⎝⎛−=

⎟⎟⎠

⎞⎜⎜⎝

⎛=−⇒≈⎥

⎤⎢⎣

⎡ −=

i

dfifd

fifio n

xNkTEExN

kT

EEnn

)(ln )(exp

dx

xdN

xN

kT

dx

dEd

d

fi )(

)(=−

Page 15: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 29

Example 5.5)1(0 )(cm 1010 )( -31916 mxxxNd μ≤≤−=

V/cm 9.25)0(E

find we,0At

)1010(

)10)(0259.0()(

)(

1E

1916

19

==

=

−−=⎟

⎠⎞

⎜⎝⎛−=

x

x

xdx

xdN

xNe

kT

x

d

dx

Solution:

W.K. Chen Electrophysics, NCTU 30

5.3.2 The Einstein relation

dx

xdNeDenJ

dx

dneDenJ

dnnn

nnn

)(E0

E0

+==

+==

μ

μ

dx

xdNeD

dx

xdN

xNe

kTen d

nd

dn

)()(

)(

10 +

⎭⎬⎫

⎩⎨⎧

⎟⎠⎞

⎜⎝⎛−= μ

e

kTD

n

n =μ e

kTDD

p

p

n

n ==μμ

In thermal equilibrium, the individual electron and hole current must be zero

)()( xNxn d≈Q

Page 16: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 31

The hole current must also be zero

e

kTDD

p

p

n

n ==μμ

Einstein relation K 300Tat 0256.0 =

300K Tat 40 =≈D

μ

W.K. Chen Electrophysics, NCTU 32

BqFB ×= υ

zxy Bqqq

BqF

υυ==

=×+=

HEE

0]E[

WV HH E+=

The Hall effect is used

to distinguish whether a semiconductor is n-type or p-type

To measure the majority carrier concentration and

Majority carrier mobility

The induced electric field in the y-direction is called the Hall field

The induced electric field produce a voltage in the y-direction is called the Hall Voltage

5.4 The Hall effect

zxH WBV υ= citydrift velo :xυ

Page 17: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 33

))(( Wdep

I

ep

J xxdx ==υ

For p-type semiconductor, the drift velocity is related to material parameters

H

zx

edV

BIp =

epd

BIV zxH =⇒

ned

BIV zxH =⇒

H

zx

edV

BIn =

Semiconductor type & concentration

W.K. Chen Electrophysics, NCTU 34

xpx epJ Eμ=Q

L

Vep

Wd

I xp

x ⋅= μ

WdepV

LI

x

xp =μ

WdenV

LI

x

xn =μ

mobilityOnce the majority carrier concentration is determined, we can calculate the low-field majority carrier mobility

Page 18: Chapter 5 Carrier transport phenomenaocw.nctu.edu.tw/upload/classbfs120904360159510.pdfW.K. Chen Electrophysics, NCTU 1 Chapter 5 Carrier transport phenomena W.K. Chen Electrophysics,

W.K. Chen Electrophysics, NCTU 35

Example 5.7 carrier concnetration & mobility

mV 25.6 and tesla,105 gauss 005 V, 5.12 mA, 0.1

cm 10 cm, 10 cm, 1.0

H2

zx

32

−=×====

===−

−−

VBVI

dWL

x

Solution:

3153213519

23

cm 105m 105)1025.6)(10)(106.1(

)105)(10(×=×=

×−××−

= −−−

−−

nH

zx

edV

BIn =

WdenV

LI

x

xn =μ

s-/Vcm 1000

s-/Vm 10.0)10)(10)(5.12)(105)(106.1(

)10)(10(

2

2542119

33

=

=××

= −−−

−−

n

n

μ

μ

W.K. Chen Electrophysics, NCTU 36

Figure 5.14 Figure for Problem 5.22