chapter 3 diagonalizableming/diagonalizable.pdf · 教學卓越 線性代數...

41
教學卓越 線性代數 指導教授:陳啟銘老師 1 應用數學系 Chapter 3 Diagonalizable (對角化) 章節引導: Aa diagonal matrix A k = k nn k k a a a 0 . . . 0 0 . 0 . . 0 . 0 . . 0 . 0 . . 0 0 0 . . . 0 22 11 其中 AM n*n ( ) 主對角線 A = nn a a a 0 . . . 0 0 . 0 . . 0 . 0 . . 0 . 0 . . 0 0 0 . . . 0 22 11 Definition Definition Definition Definition: :(Similar) (Similar) (Similar) (Similar) Remark Remark Remark Remark: 1AA I M n*n ( ) A = I -1 AI AB M n*n ( ) A is similar to B P M n*n ( )invertible(可逆) B = P -1 AP Q = P -1 B = QAQ -1 Pinvertible P -1 PP -1 = P -1 P = I Pinvertible P -1 invertible Q

Upload: others

Post on 24-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    1 應用數學系

    Chapter 3 Diagonalizable (對角化)

    章節引導:

    A:a diagonal matrix ⇒Ak =

    k

    nn

    k

    k

    a

    a

    a

    0...0

    0.0.

    .0.0.

    .0.0.

    .00

    0...0

    22

    11

    其中 A∈Mn*n(ℜ )

    主對角線

    A =

    nna

    a

    a

    0...0

    0.0.

    .0.0.

    .0.0.

    .00

    0...0

    22

    11

    DefinitionDefinitionDefinitionDefinition::::(Similar)(Similar)(Similar)(Similar)

    RemarkRemarkRemarkRemark::::

    (1)A~A ⇔ ∃ I∈Mn*n( ℜ)

    ∋ A = I-1AI

    A、B ∈ Mn*n(ℜ)

    A is similar to B

    ⇔ ∃ P∈Mn*n(ℜ),invertible(可逆)

    ∋ B = P-1AP

    ∃ Q = P-1

    ∋ B = QAQ-1

    P:invertible

    ⇔ ∃ P-1 ∋ PP-1 = P-1P = I

    P:invertible

    ⇒P-1:invertible

    Q

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    2 應用數學系

    (2)A~B⇒ B~A

    ⇕ ∃ P:invertible ∃ P-1:invertible

    ∋ B = P-1AP ⇔ ∋ A = (P-1)-1BP-1

    B = P-1

    AP

    ⇒BP-1 = P-1APP-1 = P-1A

    ⇒PBP-1 = PP-1A = A

    ⇒ (P-1)-1BP-1 = A

    (3)If A~B,B~C

    ⇒A~C

    ProveProveProveProve::::

    ∵ A~B ∴ ∃ P:invertible ∋ B = P-1AP ∵ B~C ∴ ∃ Q:invertible ∋ C = Q-1AQ ⇒ C = Q-1AQ

    = Q-1

    (P-1

    AP)Q

    = (Q-1

    P-1

    )A(PQ)

    = (PQ)-1

    A(PQ)

    ⇒ ∃ PQ:invertible

    ∋ C = (PQ)-1A(PQ)

    ⇒ A~C

    (4)A~0 ⇔ A = 0 (zero matrix)

    (5)A~I ⇔ A = I

    ProveProveProveProve::::

    ∵ A~I ∴ ∃ P:invertible ∋ I = P-1AP ⇒PIP-1 = A

    ∥ I

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    3 應用數學系

    ExampleExampleExampleExample::::

    A、B、C、D ∈ Mn*n(ℜ )

    If A~B、C~D

    ⇒ AC ≁ BD

    SolutionSolutionSolutionSolution::::

    舉反例

    A =

    01

    10

    B =

    1-0

    01

    C =

    00

    01 = D

    (1)C~D is ok (2)A~B

    ∵ ∃ P =

    1-1

    11

    ∋ B = P-1AP

    ∴ A~B

    思考路徑:

    (2)證 A~B

    令 P =

    dc

    ba

    ⇒B = P-1AP

    PB = AP

    dc

    ba

    1-0

    01 =

    01

    10

    dc

    ba

    dc

    ba

    -

    - =

    ba

    dc

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    4 應用數學系

    TheoremTheoremTheoremTheorem::::

    T:V→V is li8near

    β 1、 β 2 :two bases of V

    ⇒ [ ]1

    T β ~ [ ] 2T β

    ProveProveProveProve::::

    [ ] 11

    β [ ] 12

    βv = [ ] 1

    2I

    β

    βv[ ] 2

    2T

    β

    β

    [ ] 11

    β [ ] 12

    βv[ ] 2

    1I

    β

    βv = [ ] 1

    2I

    β

    βv[ ] 2

    2T

    β

    β [ ] 21

    βv

    [ ] 11

    βv

    [ ]1

    T β = ( [ ] 21

    βv)-1 [ ]

    2T β [ ] 2

    1I

    β

    βv

    ⇒ [ ]1

    T β ~ [ ] 2T β

    [ ] 21

    β ≠ I

    ↑ ↑

    identity operator identity matrix

    Why?

    ProveProveProveProve::::

    V →I V

    β 1 β 1

    β 2 β 2

    β 1 = {u1、u2、…、uk}

    β 2 = {v1、v2、…、vk}

    [ ] 11

    β [ ] 12

    βv = [ ] 1

    2I

    β

    βv[ ] 2

    2T

    β

    β

    [ ] 12

    β [ ] 12Tβ

    β

    [ ] 11

    β = I

    [ ] 21

    β ≠ I

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    5 應用數學系

    [ ] 21

    βv =

    .....

    ...

    ...1211 aa

    ≠ I

    I(u1) = u1 = a11v1+a12v2+…

    .

    .

    .

    [ ] 11

    βv =

    1...0

    ...

    0...100

    0...010

    0...001

    Iv(u1) = u1 = 1*u1 + 0*u2 + 0*u3 + … + 0*uk

    Iv(u2) = u2 = 0*u1 + 1*u2 + 0*u3 + … + 0*uk

    .

    .

    .

    RemarkRemarkRemarkRemark::::

    (1)A、B ∈ Mn*n( ℜ )、A~B ⇒ Ak~Bk ,k ∈ N

    ProveProveProveProve::::

    ∵A~B ∴ ∃ P ∈ Mn*n( ℜ ) ,invertible ∋ B = P-1AP

    Bk = (P

    -1AP)

    k

    = (P-1

    AP) (P-1

    AP) (P-1

    AP)*…*(P-1

    AP)

    k times

    = P-1

    APP-1

    APP-1

    AP*…*P-1

    AP

    = P-1

    AkP

    ∴ Ak~Bk

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    6 應用數學系

    (2) f(x) ∈ Fn[X] f(x) = a0 + a1x + a2x2 + … + anxn

    A~B ⇒ f(A)~f(B)

    ProveProveProveProve::::

    ∵ A~B ∴ ∃ P ∈ Mn*n( ℜ ),invertible ∋ B = P-1AP

    f(B) = f(P-1

    AP)

    = a0I + a1(P-1

    AP) + a2(P-1

    AP)2 +…+ an(P

    -1AP)

    n

    = a0 (P-1

    AP) + a1(P-1

    AP) + a2(P-1

    A2P) +…+ an(P

    -1A

    n P)

    = P-1

    (a0I)P + P-1

    (a1A)P + P-1

    (a2A2)P + … + P

    -1 (anI

    n)P

    = P-1

    (a0I + a1A + … + anAn)P = P

    -1(f(A))P

    ∵ f(A)~f(B)

    (3) A,B ∈ Mn*n( ℜ ) A~B ⇒ AT~BT

    ProveProveProveProve::::

    ∵ A~B ∴∃ P∈Mn*n( ℜ )

    ∋ B = P-1AP

    Hence

    BT = (P

    -1AP)

    T

    = PTA

    T(P

    -1)T

    = PTA

    T(P

    T)

    -1

    ( = ((PT)

    -1)

    -1A

    T(P

    T)

    -1)

    ∴ AT~BT

    DefinitionDefinitionDefinitionDefinition::::

    A~B ⇔ ∃ P ∈ Mn*n( ℜ ) ,invertible

    ∋ B = P-1AP

    ⇔ ∃ Q ∈ Mn*n(ℜ ) ,invertible

    ∋ B = Q-1AQ

    此時 P = Q-1

    (1)(AB)T = BTAT (ABC)

    T = C

    TB

    TA

    T

    (2)(A-1)T = (AT)-1

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    7 應用數學系

    (4)A~B A is invertible

    ⇒B is invertible

    ProveProveProveProve::::

    ∵ A~B ∴ ∃ P ∈ Mn*n( ℜ ) ,invertible

    ∋ B = P-1AP

    ∵ A is invertible

    ∴ AA-1 = I = A-1A

    令 C = P-1A-1P 則 BC = (P-1AP)( P-1A-1P) = P

    -1AP P

    -1A

    -1P

    = I

    CB = (P-1

    A-1

    P)( P-1

    AP)

    = P-1

    A-1

    P P-1

    AP

    = I

    ∴ B is invertible

    ProveProveProveProve::::

    B ∈ Mn*n( ℜ ),B is invertible

    ⇔ 1. ∃ C ∈ Mn*n( ℜ )

    ∋ BC = I

    稱 C 為右反矩陣

    2. ∃ D ∈ Mn*n(ℜ )

    ∋ DB = I

    稱 D 為左反矩陣

    (5)A~B ⇒ det(A) = det(B)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    8 應用數學系

    ProveProveProveProve::::

    ∵A~B ∴∃ P ∈ Mn*n( ℜ) ,invertible

    ∋ B = P-1AP

    Hence

    det(B) = det(P-1

    AP)

    = det(P-1

    )det(A)der(P)

    = (det(P))-1

    det(A)det(P)

    = det(A)

    (6)A~B ⇒ tr(A) = tr(B)

    tr = trace , 跡數

    ProveProveProveProve::::

    ∵ A~B ∴ ∃ P ∈ Mn*n( ℜ ) ,invertible

    ∋ B = P-1AP

    tr(B) = tr(P-1

    AP)

    = tr(P-1

    (AP))

    = tr((AP) P-1

    )

    = tr(A)

    A =

    nnn

    n

    n

    aa

    aaa

    aaa

    ..

    ..

    ..

    ...

    ...

    1

    22221

    11211

    tr(A) = a11 + a22 + … + ann

    (7)A~B ⇒ 1. Nullity(A) = Nullity(B)

    2. Rank(A) = Rank(B)

    Hint:Rank(AP) = rank(A)

    (1)det(AB) = det(A)det(B) (2)det(A-1) = (det(A))-1

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    9 應用數學系

    ProveProveProveProve::::

    2. ∵ A~B ∴ ∃ P ∈ Mn*n( ℜ ) ,invertible

    ∋ B = P-1AP

    Rank(B) = rank(P-1

    AP) = rank(AP)

    = rank(A)

    (8)A~B ⇒ 1. charA(x) = charB(x) ∈ 特徵函數

    2. JA = JB ∈ Jordan form

    3. λ A = λ B ∈ eigenvalue ∈特徵值

    ※相似性⇒ 保 det,trace,Nullity,rank,特徵函數,Jordan form,eigenvalue

    DefinitionDefinitionDefinitionDefinition::::(invariant subspace)(invariant subspace)(invariant subspace)(invariant subspace)

    TheoremTheoremTheoremTheorem::::

    T:V → V is linear

    ⇒ (1){0} is a T – invariant subspace

    ProvProvProvProveeee::::

    T(0) = 0 ∈{0}

    (2) Ker(T) is a T – invariant subspace

    (1)V:a vector space W:a subspace of V

    (2)T = V→V is linear 則 W is called a "T – invariant subspace" ⇔ T(W) ⊆ W

    ⇔ ∀ w∈W,T(w) ∈W

    W W

    T(W

    T

    T

    V V

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    10 應用數學系

    ProveProveProveProve::::

    ∀ u ∈ Ker(T)

    ⇒T(u) = 0 ∈ Ker(T)

    (3)Im(T) is a T – invariant subspace

    ProveProveProveProve::::

    思考路徑: ∀ w ∈ Im(T) ⊂ V

    ∴∃ u ∈ V ∋ T(u) = W

    Hence

    T(w) ∈T(Im(T)) ⊂ T(V) = Im(T)

    T:V→W Im(T) = {w ∈ W │∃ u ∈ V ∋ w = T(u)} Ker(T) = {u∈V│T(u) = 0}

    ∀ W ∈ Im(T)

    ∴ T(w) ∈ T(Im(T)) ⊂ T(V) = Im(T)

    (4)If W is a T – invariant subspace

    Then T(W) is a T – invariant subspace

    ProveProveProveProve::::

    ∀ u ∈ T(W)

    ⇒ T(u) ∈ T(T(W)) ⊂ T(W)

    ↑ (∵W is a T – inveaiant subspace ⇔ T(W) ⊂ W)

    (5)If W1,W2 are two T – invariant subspaces

    then W1 ∩ W2,W1 + W2 are also T – invariant subspaces

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    11 應用數學系

    ProveProveProveProve::::

    1. ∀ u ∈W1 ∩ W2

    ⇒ u∈W1 and u∈W2

    ⇒T(u)∈W1 and T(u)∈W2

    ⇒T(u) ∈W1 ∩ W2

    2. ∀ u∈W1 + W2

    u = w1+w2,where w1∈W1,w2∈W2 ⇒T(u) = T(w1+w2) = T(w1) + T(w2) ∈ W1+W2

    ↑ T is linear

    TheoremTheoremTheoremTheorem::::

    V is a vector space,dim(V) = n T:V→V is linear If W is a T – invariant subspaces of V

    and β 1 = {u1,u2,…,uk} be an ordered basis of W

    then ∃ an ordered basis

    β 2 = { u1,u2,…,uk , u+k1,uk+2,…,un }of V

    ∋ [ ]2

    T β =

    2

    1

    A0

    CA , where A1 = [ ]

    1

    w

    ∵ β 1 is w basis 且 w 為 V 的子空間 ∴由獨立擴張定理得知 ∃ β 2 為 V 的一組基底

    T│w(u1) = T(u1) = a11u1 + a21u2 + a31u3 + … + ak1uk T│w(u2) = T(u1) = a12u1 + a22u2 + a32u3 + … + ak2uk

    .

    .

    . ⇒ [ ]1

    w =

    T│w(uk) = T(u1) = a1ku1 + a2ku2 + a3ku3 + … + akkuk = T(uk+1) = a1k+1u1 + a2k+1u2 + a3k+1u3 + … + ank+1uk

    .

    .

    = T(un) = a1nu1 + a2nu2 + a3nu3 + … + annuk

    V

    T:V→V

    W ⊂ V

    T│W:W→V

    W

    W

    uk+1

    .

    .

    u

    T(uk+1)

    w U1 U2 . . Uk

    TW

    kkkk

    k

    k

    aaa

    aaa

    aaa

    ...

    ..

    ..

    ...

    ...

    21

    22221

    11211

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    12 應用數學系

    ⇒ [ ]2

    w =

    +

    +++

    +

    +

    +

    nnkn

    nkkk

    knkkkkkk

    nkk

    nkk

    aa

    aa

    aaaaa

    aaaaa

    aaaaa

    ...0...00

    .....

    .....

    ...0...00

    ......

    .

    .

    ......

    ......

    1,

    ,11,1

    1,21

    21222221

    11111211

    det

    2

    1

    0 A

    CA = det(A1)det(A2)

    TheoremTheoremTheoremTheorem::::

    V:a vector space ,dim(V) = n If (1)T:V→V is linear

    (2)W1,W2 are two T – invariant sudspaces (3)V = W1 ○+ W2 (4) β 1 = {u1、u2、…、uk} is an ordered basis of W1

    β 2 = {v1、v2、…、vk} is an ordered basis of W2

    ⇒ 1. β 1 ∪ β 2 is an ordered basis of V

    2. [ ]βT =

    2

    1

    0

    0

    A

    A ,where A1 = [ ] 11T βw ,A2 = [ ] 22T βw

    T(u1) = a11u1 + a21u2 + … + ak1uk + 0 + … + 0

    .

    .

    T(uk) = a1ku1 + a2ku2 + … + akkuk + 0 + … + 0

    T(uk+1) = 0 + … + 0 + ak+1,k+1uk+1 + … + ank+1un

    .

    .

    T(un) = 0 + … + 0 + ak+1,n+1uk+1 + … + annun

    A1

    A2

    C

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    13 應用數學系

    ⇒ [ ]βT =

    +

    +++

    nnkn

    nkkk

    kkkk

    k

    k

    aa

    aa

    aaa

    aaa

    aaa

    ...0...00

    .....

    .....

    ...0...00

    0...0...

    .

    .

    0...0...

    0...0...

    1,

    ,11,1

    21

    22221

    11211

    A2

    A1

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    14 應用數學系

    §§§§ 3 3 3 3----2 2 2 2

    eigenvalue(eigenvalue(eigenvalue(eigenvalue(固有值固有值固有值固有值、、、、特徵值特徵值特徵值特徵值)))),,,,eigenvector(eigenvector(eigenvector(eigenvector(固有向量固有向量固有向量固有向量、、、、特徵向量特徵向量特徵向量特徵向量))))

    DefinitionDefinitionDefinitionDefinition::::

    RemarkRemarkRemarkRemark::::

    (1)u ∈ ker(T) ⇒ u is an eigenvector of T

    ProveProveProveProve::::

    ∵u ∈ ker(T)

    ⇒ T(u) = 0 = 0*u

    Hence ∃ λ = 0 ∋ T(u) = λ u = 0*u

    (2)u is an eigenvector of T wuth respect to λ , λ ∈ F

    ( ⇔ T(u) = λ u)

    ⇒ α u is also a eigenvector of T wuth respect to λ ,α ∈ F

    ProveProveProveProve::::

    T(α u) = α T(u) = α * λ u = λ (α u)

    �T is linear

    ∴α u is also a eigenvector of T w.r.t.,λ

    V:a vector

    T:V→V is linear (1) λ ∈ F λ is called an eigenvalue of T

    ⇔ ∀ u∈ V,u ≠ 0 ∋ T(u) = λ u

    (2)u∈V u is called an eigenvector of T

    ⇔ ∀ λ ∈ F ∋ T(u) = λ u

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    15 應用數學系

    ExampleExampleExampleExample::::

    If T

    y

    x=

    24

    31

    y

    x,and x1 =

    −1

    1,x2 =

    4

    3

    Then (1)x1,x2 are eigenvectors of T

    (2)Find the eigenvalues of T w.r.t. x1,x2,respectively

    SolutionSolutionSolutionSolution::::

    (2)Let λ 1, λ 2 be the eigenvalue to T w.r.t. x1,x2,respectively

    24

    31

    −1

    1 =

    2

    2-

    Then T(x1) = λ 1x1 ⇒ T

    1-

    1 = λ 1

    −1

    1 =

    1

    1

    - λ

    λ⇒ λ 1 = -2

    T(x2) = λ 2x2 T

    4

    3 = λ 2

    4

    3 =

    2

    2

    4

    3

    λ

    λ⇒ λ 2 = 5

    24

    31

    4

    3 =

    20

    51

    如何去找 eigenvalue λ ?

    λ is an eigenvalue of T

    ⇔ ∃ u∈V,u ≠ 0, ∋ T(u) = λ u

    ⇔ ∃ u∈V,u ≠ 0, ∋ (T- λ I)(u) = 0

    ⇔ T- λ I is not invertible

    ⇔ det(T - λ I) = 0

    F: V→V is invertible ⇔ def(F) ≠ 0

    ⇔ if F(u) = 0,then u = 0

    ⇔ ker(F) = {0}

    F is not invertible

    ⇔ ∃u ≠ 0 ∋ F(u) = 0

    A∈ Mn*n(ℜ )

    ⇔ A is invertible

    ⇔ ker(A) = {0}

    ⇔ det(A) ≠ 0

    A is not invertible

    ⇔ det(A) = 0

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    16 應用數學系

    DefinitionDefinitionDefinitionDefinition::::

    ExampleExampleExampleExample::::

    Find the eigenvalues of A =

    11

    14 = ?

    SolutionSolutionSolutionSolution::::

    charA(x) = det(A-xI) = 0

    det(A-xI) = x

    x

    −14

    1-1

    = (1-x)2-4

    = x2 – 2x -3

    ∴charA(x) = x2-2x-3 = 0

    (x-3)(x+1) = 0

    x = -1 or 3

    the eigenvalues of T are -1 or 3

    ExampleExampleExampleExample::::

    Define T: [ ]x2ℜ → [ ]x2ℜ By T(f(x)) = f(x) + xf’(x)

    Find the eigenvalue of T ?

    SolutionSolutionSolutionSolution::::

    β = {1,x,x2} is an standard ordered basis of [ ]x2ℜ T(1) = 1 + x*0 = 1 = 1*1 + 0*x + 0*x

    2

    λ is an eigenvalue of T

    charT(x) ≜ det(T- λ I) = 0

    �the characteristic equation of T

    charT(x) = det(T- λ I)

    � the char polynomial of T

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    17 應用數學系

    T(x) = x + x*1 = 2x = 0*1 + 2*x + 0*x2

    T(x2) = x

    2 + x*2x = 3x

    2 = 0*1 + 0*x + 3*x

    2

    ⇒ [ ]βT =

    300

    020

    001

    charT(x) = det (T-xI) = det( [ ]βT -xI) = 0

    det([ ]βT -xI) = x

    x

    x

    300

    020

    00-1

    charT(x) = (1-x)(2-x)(3-x) = 0

    ∴x = 1,2,3

    RemarkRemarkRemarkRemark::::

    相似保固有值,特徵多項式

    If A,B∈ Mn*n(ℜ ),A~B

    Then (1) λ A = λ B

    (2)charA(x) = charB(x)

    ProveProveProveProve::::

    ∵A~B

    ∴∃P∈Mn*n(ℜ ),invertible

    ∋ B = P-1AP

    (2)charB(x) = det(B-xI) = det(P-1AP)

    = det(P-1

    (A-xI)P)

    = det(A-xI)

    = charA(x)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    18 應用數學系

    DefinitionDefinitionDefinitionDefinition::::(eigenspace) (eigenspace) (eigenspace) (eigenspace) 固有子空間固有子空間固有子空間固有子空間

    RRRRemarkemarkemarkemark::::

    (1){0} ⊂ V( λ )

    0∈V( λ )

    (2)V( λ ) ≜ {u∈V│T(u) = λ u}

    = {u∈V│(T- λ I)(u) = 0}

    = ker(T- λ I)

    ※ V( λ ) = ker(T- λ I)

    V( λ ) = ker(A- λ I)

    (1)V:an vector space

    (2)T:V→V is linear

    (3) λ is an eigenvalue of T

    Define V( λ ) ≜ {u∈V│T(u) = λ u}

    We called V( λ ) is an eigenspace of T(w.r.t. λ )

    = A∈Mn*n( ℜ )

    λ is an eigenvalue of A

    V( λ ) ≜ {u∈Mn*n( ℜ )│Au = λ u}

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    19 應用數學系

    LemmaLemmaLemmaLemma::::

    V( λ ) is a T – invariant subspace of V

    ProProProProveveveve::::

    證:"∀ u ∈V( λ )⇒T(u) ∈V( λ )"

    For any u∈V( λ )⇒ T(u) = λ u

    Hence

    T(T(u)) = T( λ u)

    = λ T(u)

    � ∵ T is linear

    LemmaLemmaLemmaLemma::::

    λ is an eigenvalue of T

    ⇔ V( λ ) ≠ {0}

    ProveProveProveProve::::

    (方法一)

    λ is an eigenvalue of T

    ⇔ ∃ u∈V, ∋ T(u) = λ u

    u ≠ 0

    ∴∃ u ≠ 0,u∈V ∋ u∈V( λ )

    ⇒V( λ ) ≠ {0}

    (方法二)

    λ is an eigenvalue of T

    ⇔ ∃ u ≠ 0,u∈V, ∋ T(u) = λ u

    ⇔ ∃ u ≠ 0,u∈V, ∋ (T- λ I)(u) = 0

    ⇔ ker(T- λ I) ≠ {0}

    ⇔ V( λ ) ≠ {0}

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    20 應用數學系

    RemarkRemarkRemarkRemark::::

    V( λ ) = {0}

    ⇔ λ is not an eigenvalue of T

    ExampleExampleExampleExample::::

    A =

    14

    11

    Find the eigenvalues , eigenvectors are eigenspace?

    SolutionSolutionSolutionSolution::::

    (1)charA(x) = det(A-xI)

    = x

    x

    −14

    1-1

    = x2-2x-3

    x2-2x-3 = 0

    (x-3)(x+1) = 0

    x = 3 or -1

    ∴the eigenvalues of A are 1,-3

    (2)

    V(-1) = (A-(-1)I)

    = (A+I) = {u ∈F2*1│(A+I)u = 0}

    V(-1) = {u ∈F2*1( ℜ )│A(u) = -u}

    � -1 的 eigenspace

    = {u =

    y

    x∈F2*1( ℜ )│

    14

    11

    y

    x = -

    y

    x}

    = {u =

    y

    x∈F2*1( ℜ )│

    +

    +

    yx

    yx

    4 =

    y

    x }

    = {u =

    y

    x∈F2*1( ℜ )│y = -2x}

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    21 應用數學系

    = {u =

    − x

    x

    2│x∈ ℜ }

    = {t

    − 2

    1│t∈ ℜ }

    -1 的 eigenvector = { t

    − 2

    1│t∈ ℜ 且 t ≠ 0}

    ExampleExampleExampleExample::::

    Find the eigenvalues,eigenvector and eigenspaces of A =

    022

    1-22

    1-13

    SolutionSolutionSolutionSolution::::

    charA(x) = det(A-xI)

    =

    x

    x

    x

    −−

    22

    122

    11-3

    = -x3+5x

    2-8x+4

    = -(x-1)(x-2)2

    ∴1,2,2 為矩陣 A 的 eigenvalues

    V(1) = ker(A-I)

    = {u =

    z

    y

    x

    ∈F3*1( ℜ )│

    022

    1-22

    1-13

    z

    y

    x

    = 1

    z

    y

    x

    }

    = {

    z

    y

    x

    ∈F3*1( ℜ )│

    +

    −+

    −+

    yx

    zyx

    zy

    22

    22

    3x

    =

    z

    y

    x

    }

    = {t

    2

    0

    1

    ∈F3*1( ℜ )│t∈ ℜ }

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    22 應用數學系

    ⇒相對 eigenvalue 1 的 eigenvectors

    = {t

    2

    0

    1

    ∈F3*1( ℜ )│t∈ ℜ,t ≠ 0}

    V(2) = ker(A-2I)

    = {

    z

    y

    x

    ∈F3*1( ℜ )│

    022

    1-22

    1-13

    z

    y

    x

    = 2

    z

    y

    x

    }

    = {

    z

    y

    x

    ∈F3*1( ℜ )│

    +

    −+

    −+

    yx

    zyx

    zy

    22

    22

    3x

    =

    z

    y

    x

    2

    2

    2

    }

    = {t

    2

    0

    1

    │t∈ ℜ }

    ⇒相對 eigenvalue 2 的 eigenvectors

    = {t

    2

    1

    1

    │t∈ ℜ,t ≠ 0}

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    23 應用數學系

    TheoremTheoremTheoremTheorem::::

    (1)T:V→V is linear

    (2) λ 1 , λ 2 , … , λ k are distinct eigenvalues of T

    ⇒(a)V( λ 1) , V( λ 2) , … , V( λ k) are independent

    (b) If ui∈V( λ i) for all i = 1 , 2 , … , k

    then {u1 , … ,un} is linear independent

    Prove Prove Prove Prove ::::

    (a)設 n = 2,V( λ 1),V( λ 2):independent

    If u1 + u2 = 0,u1∈V( λ 1),u2∈V( λ 2)

    T(u1) = λ 1u1� � T(u2) = λ 2u2

    then u1 = u2 = 0

    T(u1 + u2) = T(0) = 0

    T(u1) + T(u2)

    λ 1u1 + λ 2u2

    ⇒ λ 1u1 + λ 2u2 = 0 – (1)

    λ 2(u1 + u2) = λ 2*0 = 0

    ⇒ λ 2u1 + λ 2u2 = 0 – (2)

    (2) - (1)⇒ ( λ 2- λ 1)u1 = 0

    ⇒ u1 = 0 代入(1)

    ⇒ λ 2u2 =0

    ∴u2 = 0

    設 n = k-1 時,V( λ 1) , V( λ 2) , … , V( λ k-1) are independent

    當 n = k,

    if u1 + u2 + … + uk = T(0) = 0,ui∈V( λ i),i = 1 , 2 , … , k

    then T(u1 + u2 + … + uk) = T(0) = 0

    ⇒T(u1) + T(u2) + … + T(uk) = 0

    (1)S1 , S2 , … , Sk

    Si ⊂ V,subspace S1 , S2 , … , Sk independent

    ⇔ if u1 + u2 + … + un = 0,ui ∈Si

    then u1 = u2 = … = uk = 0

    (2)S is linear independent

    ⇔ if α1u1 + … +αnun = 0,

    u1,…,un ∈S

    thenα1 = … =αn = 0

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    24 應用數學系

    ⇒ λ 1u1 + … + λ kuk = 0 -(1)

    λ k(u1 + … + uk) = λ k*0 = 0

    ⇒ λ ku1 + … + λ kuk = 0 -(2)

    (2)-(1)

    ∴( λ k- λ 1)u1 + ( λ k- λ 2)u2 + … + ( λ k- λ k-1)uk-1 = 0

    �w1 �w2 �wk-1

    ∵V( λ 1) , V( λ 2) , … , V( λ k-1) are independent

    ∴( λ k- λ 1)ui = 0,∀ i = 1 , 2 , … , k-1

    ∵λ k ≠ λ i ,∀ i = 1 , 2 , … , k-1

    ∴ui = 0,∀ i = 1 , 2 , … , k-1 (代回(1))

    λ 1*0 + λ 2*0 + … + λ k-1*0 + λ kuk = 0

    ⇒ λ kuk = 0

    ⇒ uk = 0

    (b)Ifα1u1 + … +αnun = 0,where ui ∈ V( λ i),i = 1 , 2 , … ,k

    Then (1) αiui ∈ V( λ i),∀ i = 1 , 2 , … , k

    (2) αiui = 0,∀ i = 1 , 2 , … , k

    (∵V( λ 1) , V( λ 2) , … , V( λ k) are independent )

    ⇒α1 = … =αk = 0

    (∵ui ≠ 0,∀ i = 1 , 2 , … , k)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    25 應用數學系

    RemarkRemarkRemarkRemark::::

    (1) 若λ 1, λ 2 are independent

    則 λ 1 ≠ λ 2

    ⇔ V( λ 1) ∩V( λ 2) = {0}

    (2)1. V1 is an eigenvector of T w.r.t. λ 1

    若 2. V2 is an eigenvector of T w.r.t. λ 2

    3. V1 + V2 ≠ 0

    則 λ 1 ≠ λ 2 ⇔ u1 + u2 is not an eigenvector of T

    ( λ 1 = λ 2 ⇔ u1 + u2 is an eigenvector of T)

    Prove Prove Prove Prove ::::(2)

    "⇒"(反證法)

    Suppose u1 + u2 is an eigenvector of T w.r.t λ

    Then T(u1 + u2) = λ ( u1 +u2)

    T(u1) + T(u2)

    λ 1u1 + λ 2u2

    ⇒ λ 1u1 + λ 2u2 = λ u1 + λ u2

    ⇒ ( λ 1- λ )u1 + ( λ 2- λ )u2 = 0

    �V( λ 1) �V( λ 2)

    ⇒ ( λ 1- λ )u1 = 0

    ( λ 2- λ )u2 = 0

    ⇒ λ 1 = λ

    λ 2 = λ ………..(�)

    "⇐"(反證法)

    Suppose λ 1 = λ 2 = λ

    Then T(u1 +u2) = T(u1) + T(u2) = λ u1 + λ u2

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    26 應用數學系

    = λ (u1 +u2)

    ⇒ λ u1 + λ u2 is an eigenvector of T ………. (�)

    (3)u is an eigenvector of T w.r.t. λ

    ⇒αn is an eigenvector of T w.r.t. λ

    (4)u1,u2 is an eigenvector of T w.r.t. λ

    ⇒ u1 +u2 is not also eigenvector of T w.r.t. λ

    SolutionSolutionSolutionSolution::::((((反例反例反例反例))))

    u = u1 is an eigenvector

    -u = u2 is an eigenvector

    ⇒ u + (-u) = 0 ∴不為 eigenvector

    ExampleExampleExampleExample::::

    Find the eigenvalue of A =

    3-4-613-

    0501-2

    1-11071

    0001-2-

    00034

    SolutionSolutionSolutionSolution::::

    charA(x) = det(A-xI)

    =

    x

    x

    x

    x

    −−−−

    −−

    −−

    −−−

    34613

    05012

    711071

    00012

    0003x-4

    =

    x

    x

    x

    x

    x

    −−−

    −−

    −−−346

    050

    7110

    12

    3-4

    = [(x-4)(x+1) + 6][-(x-10)(x-5)(x+3) + 42(5-x)]

    = (x2-3x+2)[-(x-5)(x

    2-7x-30+42)]

    = -(x-1)(x-2)(x-5)(x-3)(x-4)

    A =

    2

    1 0

    AC

    A

    det(A) = det(A1)det(A2)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    27 應用數學系

    DefinitionDefinitionDefinitionDefinition::::(diagonalizable) (diagonalizable) (diagonalizable) (diagonalizable) 對角化之判別與方法對角化之判別與方法對角化之判別與方法對角化之判別與方法

    TheoremTheoremTheoremTheorem::::

    T:V→V is linear,dim(V) = n,A∈ Mn*n( ℜ )

    If A~ [ ]βT , β is a basis of V

    Then ∃ β ` is a basis of V

    ∋ A = [ ] 'T β

    TheoremTheoremTheoremTheorem::::

    T:V→V is linear

    T is diagonalizable

    ⇔ ∀ β :a basis of V

    (1) T:V→V is linear

    T is diagonalizanle

    ⇔ ∃ β is a basis of V

    ∋ [ ]βT is a diagonal matrix

    (2)A∈Mn*n( ℜ )

    A is diagonalizable

    ⇔ ∃ P∈ Mn*n( ℜ ) is invertible

    �不唯一

    ∋ P-1AP is a diagonal matrix

    � = D

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    28 應用數學系

    [ ]βT :diagonalizable

    ProveProveProveProve::::

    "⇒"

    T is diagonalizable

    ⇔ ∃ β ` is a basis of V

    ∋ [ ] 'T β is a diagonalizable matrix

    Hence for any basis β of V

    (1)若 β = β `,則 OK

    (2)若 β ≠β `,則 [ ] 'T β = P-1 [ ]βT P,其中 P = [ ]'

    VIβ

    β

    ⇒ [ ]βT is diagonalizable

    ExampleExampleExampleExample::::

    是對矩陣 A =

    14

    11作對角化?

    (1)charA(x) = det(A-zI)

    = x

    x

    −14

    1-1

    = x2-2x-3

    (2)令 charA(x) = 0

    則 x2-2x-3 = 0

    x = -1,3

    (3)V(-1) = {t

    2-

    1│ t ∈R}

    V(3) = {t

    2

    1│ t ∈R}

    (4)P =

    22-

    11

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    29 應用數學系

    (5)P-1AP = D

    -1

    22-

    11

    14

    11

    22-

    11 =

    30

    01-

    ExampleExampleExampleExample::::

    Find A =

    411

    121

    221

    (1)the eigenvalues,eigenvectors,eigenspaces

    (2)對 A 作對角化,並求其一轉換矩陣

    SolutionSolutionSolutionSolution::::

    (1)

    1. charA(x) = det(A-xI)

    =

    x

    x

    x

    −−

    411

    121

    22-1

    = - x3 + 7x

    2 – 15x + 9

    let charA(x) = 0

    ⇒ x = 1,3,3

    ∴eigenvalue = 1,3,3

    2. V(1) = {

    z

    y

    x

    ∈ M3*1( ℜ ) │

    411

    121

    221

    z

    y

    x

    = 1*

    z

    y

    x

    }

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    30 應用數學系

    = {

    z

    y

    x

    ∈ M3*1( ℜ ) │

    ++−

    −+

    ++

    zyx

    zyx

    zyx

    4

    2

    22

    =

    z

    y

    x

    }

    = { t

    1

    1

    2

    │ t∈ ℜ } the eigenspace of T w.r.t. 1

    V(3) = {

    z

    y

    x

    ∈ M3*1( ℜ ) │

    411

    121

    221

    z

    y

    x

    = 3

    z

    y

    x

    }

    = {

    z

    y

    x

    ∈ M3*1( ℜ ) │

    ++−

    −+

    ++

    zyx

    zyx

    zyx

    4

    2

    22

    =

    z

    y

    x

    3

    3

    3

    }

    = { t1

    0

    1

    1

    + t2

    1

    0

    1

    │t1 , t2 ∈ ℜ }the eigenspace of T w.r.t. 3

    3. V(1) = { t

    1

    1

    2

    │ t ≠ 0 t∈ ℜ } the eigenspace of T w.r.t. 1

    V(3) = { t1

    0

    1

    1

    + t2

    1

    0

    1

    │t1 , t2 不全為 0∈ ℜ }the eigenspace of T w.r.t. 3

    (2)P =

    101

    011-

    112

    ,則 P-1AP = D =

    300

    030

    001

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    31 應用數學系

    DefinitionDefinitionDefinitionDefinition::::((((代數相重數代數相重數代數相重數代數相重數,,,,幾何相重數幾何相重數幾何相重數幾何相重數))))

    ExampleExampleExampleExample::::

    A =

    022

    1-22

    1-13

    ,找代數相重數,幾何相重數?

    (1) the eigenvalues of A:1,2,2

    ⇒m(1) = 1

    m(2) = 2

    (2)V(1) = { t

    2

    0

    1

    │ t∈ ℜ }

    V(2) = { t

    2

    1

    1

    │ t∈ ℜ }

    ⇒ gm(1) = dimV(1) = 1

    gm(2) = dimV(2) = 1

    (1)T:V�V is linear,dim(V) < ∞

    (2) λ is an eigenvalue of T

    ⇒ (a) charT(x) = 0 中的重根數

    稱為λ 的代數相重數 , 記作( λ )

    (b) dimV( λ ) = dimker(T- λ I)

    稱為λ 的幾何相重數 , 記作 gm( λ )

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    32 應用數學系

    此矩陣無法對角化

    ∵ 2 = gm(2) ≠ m(2) = 1

    TheoremTheoremTheoremTheorem::::

    (1)T:V�V is linear,dim(V) = n

    (2) λ is an eigenvalue of T

    ⇒ 1 ≤ gm( λ ) ≤ m( λ ) ≤ n

    ProveProveProveProve::::※※※※幾何相重幾何相重幾何相重幾何相重數數數數≤代數相重數代數相重數代數相重數代數相重數

    (1)1 ≤ gm( λ )

    gm( λ ) = dimV( λ )

    λ is an eigenvalue of T

    ⇔ ∃ u ≠ 0,u∈V, ∋ T(u) = λ u

    ⇔ ∃ u ≠ 0,u∈V, ∋ (T- λ I)(u) = 0

    ⇔ ker(T- λ I) ≠ {0} �∃ u ≠ 0,u∈V, ∋ u∈ker(T- λ I)

    ⇔ V( λ ) ≠ {0}

    ⇔ dimV( λ ) ≥ 1

    (2)dim(V) = n

    ⇒代表 charA(x)的最高次方為 n

    ∴m(λ ) ≤ dim(V) = n

    (3)gm( λ ) ≤ m( λ )

    k

    (a) k = gm( λ ) = dimV(λ )

    (b) V( λ ) is T-invariant subspace of V

    ProveProveProveProve::::(b)(b)(b)(b)

    ∀ u∈V( λ )

    ⇒T(u) = λ u

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    33 應用數學系

    ⇒T(T(u)) = T( λ u) = λ T(u)

    ⇒T(u) ∈V( λ )

    choose β 1 = {u1 , u2 , … , un} is a basis of V( λ )

    and β = {u1 , u2 , … , un} is a basis of V

    then [ ]βT =

    C0

    BA =

    −++

    xC

    xC

    nn

    kk

    .C"

    C'.

    .

    .

    1,1

    λ

    λ

    A = [T│V( λ )]1β =

    k*k

    .

    .

    λ

    λ

    charT(X) = det( [ ]βT -XI)

    =

    ++

    xC

    xC

    x

    x

    nn

    kk

    .C"

    C'.

    .

    .

    -

    1,1

    λ

    λ

    = ( λ -x)kg(x)

    = (-1)k(x- λ )kg(x)

    m( λ ) ≥ k

    0

    B

    B

    0

    0

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    34 應用數學系

    TheoremTheoremTheoremTheorem::::((((可對角化的充要條件可對角化的充要條件可對角化的充要條件可對角化的充要條件))))

    若 T:V�V is linear,dim(V) = n

    則下列敘述是等價

    (a) T is diagonalizable

    ⇔ (b) 1. chart(x)可在 [ ]XF 上完全分解成一次因式乘積(允許重根)

    2. gm( λ i) = m( λ i),∀ λ i:eigenvalues of T

    ⇔ (C) 若λ 1 , λ 2 , … , λ n 為 T 的所有 eigenvalues

    則 V = V( λ 1)○+ V( λ 2) ○+ … ○+ V( λ k)

    ProveProveProveProve::::

    (a) ⇒ (b)

    Suppose λ 1 , λ 2 , … , λ n are all disjoint eigenvalues of T

    then V( λ 1) , V( λ 2) , … , V(λ k) are all eigenspaces of T

    Let β 1 = {u11 , u12 , … , u1m1} is a basis of V( λ 1)

    β 2 = {u21 , u22 , … , u2m2} is a basis of V(λ 2)

    .

    .

    β 1 = {uk1 , uk2 , … , ukmk} is a basis of V(λ k)

    and, β = β 1 ∪ β 2 ∪ … ∪ β k is a basis of V

    such that

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    35 應用數學系

    [ ]βT =

    k

    k

    λ

    λ

    λ

    λ

    λ

    λ

    .

    .

    .

    .

    .

    .

    .

    .

    2

    2

    1

    1

    ⇒○1 m1 + m2 + … + mk = n

    ○2 charT(x) = det([ ]βT -xI) =

    x

    x

    x

    x

    x

    x

    k

    k

    λ

    λ

    λ

    λ

    λ

    λ

    .

    .

    .

    .

    .

    .

    .

    .

    -

    2

    2

    1

    1

    = ( λ 1-x) 1m ( λ 2-x) 2

    m … (λ k-x) km

    0

    0

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    36 應用數學系

    ExampleExampleExampleExample::::

    T: 33 ℜ→ℜ by

    T

    ++

    −−

    =

    z

    zyx

    zy

    z

    y

    x

    33

    32

    找一個基底 ß,使得 [T] ß 為 diagonal matrix 並求此對角矩陣

    想法:

    (1)利用 standard basis ß 1 of 3ℜ ⇒ 求出 [T] 1ß

    (2)對[T]1ß做對角化

    SolutionSolutionSolutionSolution::::

    ß 1 =

    1

    0

    0

    ,

    0

    1

    0

    ,

    0

    0

    1

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    37 應用數學系

    T

    ⋅+

    ⋅+

    ⋅=

    =

    1

    0

    0

    0

    0

    1

    0

    1

    0

    0

    1

    0

    0

    1

    0

    0

    0

    1

    T

    ⋅+

    ⋅+

    ⋅−=

    =

    1

    0

    0

    0

    0

    1

    0

    3

    0

    0

    1

    )2(

    0

    3

    2

    0

    1

    0

    T

    ⋅+

    ⋅+

    ⋅−=

    =

    1

    0

    0

    1

    0

    1

    0

    3

    0

    0

    1

    )3(

    1

    3

    3

    1

    0

    0

    A= [T]1ß=

    −−

    100

    331

    320

    另解 [T]1ß

    T

    ++

    −−

    =

    z

    zyx

    zy

    z

    y

    x

    33

    32

    =

    −−

    z

    y

    x

    100

    331

    320

    \\

    [T]1ß

    (1)

    Char A (x) = det (A-XI)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    38 應用數學系

    =

    x

    x

    x

    −−−

    100

    331

    32

    = -(x-1) 2 (x-2)

    ∴eigenvalues of T : 1,1,2

    (2)

    V(1) =

    ⋅=

    −−

    z

    y

    x

    z

    y

    x

    z

    y

    x

    1

    100

    331

    320

    =

    ℜ∈

    +

    2121 ,

    1

    0

    3

    0

    1

    2

    tttt

    V(2) =

    ℜ∈

    − tt

    0

    1

    1

    1

    ⇒ A 可以做對角化,且其對角方矩 D =

    200

    010

    001

    P =

    −−

    010

    101

    132

    : 可逆 ∋ P 1− AP = D

    改成

    ⇒取 ß = ∋

    0

    1

    1

    ,

    1

    0

    3

    ,

    0

    1

    2

    [T]1ß =

    200

    010

    001

    ExampleExampleExampleExample::::

    A ∈ M 33× (C)

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    39 應用數學系

    A =

    101

    010

    111

    (1) Find the eigenvalues

    (2) Find an invertible matrix P∈ M 33× (C) ∋ P 1− AP = D : a diagonal matrix

    SolutionSolutionSolutionSolution::::

    (1)

    Char A (x) = det(A-XI)

    =

    x

    x

    x

    −−

    101

    010

    111

    = -x 3 + 3x 2 - 4x + 2

    = -(x +1)(x 2 - 2x + 2)

    = -(x - 1)(x- 1 - i)(x- 1 + i)

    ∴ eigenvalues of T: 1,1+i,1-i

    (2)

    V(1) =

    ℜ∈

    tt

    1

    1

    0

    V(1+i) =

    ℜ∈

    t

    i

    t

    1

    0

    V(1-i) =

    ℜ∈

    t

    i

    t 0

    1

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    40 應用數學系

    ⇒ P =

    i

    i

    11

    001

    10

    ,D =

    +

    i

    i

    100

    010

    001

    DefinitionDefinitionDefinitionDefinition::::((((同步對角化同步對角化同步對角化同步對角化))))

    Remark: Remark: Remark: Remark:

    A, B∈ M nn× (F)

    A,B 可對角化

    ⇒AB≠ BA

    Lemma:Lemma:Lemma:Lemma:

    A, B∈ M nn× (F)

    A,B 同步對角化

    ⇒AB = BA

    ProveProveProveProve::::

    Q A,B:同步對角化

    P∃ ∈ M nn× (F) , invertible

    ∋ P 1− AP = D 1 ,P1− BP = D 2 ,where D 1 、D 2 : diagonal matrix

    ⇒ A = P D 1 P1− ,B = P D 2 P

    1−

    ⇒ AB = (P D 1 P1− )( P D 2 P

    1− ) = P D 1 D 2 P1− = P D 2 D 1 P

    1−

    (1)T,G : V →V are linear

    T and G are simultaneously diagonalizable

    ß∃⇔ : a baisi of V

    ∋ [T] ß ,[G] ß : diagonal matrices

    (2)A,B∈M 33× (F)

    A,B : simultaneously diagonalizable

    P∃⇔ ∈ M 33× (F),可逆

    ∋ P 1− AP = D 1

    P 1− BP = D 2 diagonal matrices

  • 教學卓越 線性代數

    指導教授:陳啟銘老師

    41 應用數學系

    = ( P D 2 P1− )(P D 1 P

    1− ) = BA

    Lemma:Lemma:Lemma:Lemma:

    A,B ∈ Mn*n( F )

    (1)A,B:diagonalizable

    (2)AB = BA

    ⇒A,B:可同步對角化