chapter 3: interpolation and polynomial approximationmagan/math3311_2013/notenew/ch3.1_short.pdf ·...

23
Chapter 3: Interpolation and Polynomial Approximation

Upload: others

Post on 31-Jan-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapter 3: Interpolation and

    Polynomial Approximation

  • x

    y Known data

    Unknown

    Can we get unknown data from those known? How?

    Yes!

    By interpolation: find a polynomial that gives function y(x)

    which fits all known data and is relatively accurate in the

    whole data domain, so that unknown y(x) can be found.

  • 3.1:Interpolation and the Lagrange

    Polynomial

    • The polynomial that passes two known data

    points (x0,y0) and (x1,y1) can be expressed as

    01

    0)(1

    and

    10

    1)(0

    ;1

    )1

    (,0

    )0

    (

    where

    ),()()()()( 1100

    xx

    xxxL

    xx

    xxxL

    yxfyxf

    xfxLxfxLxP

    −=

    −=

    ==

    +=

  • points.data known two thethrough

    passing function One) (Degreelinear unique theis

    )( ,)( 1100

    P

    yxPyxP ==Q

  • For case with n+1 known data points,

    4444444 34444444 21pointsdata 1

    1100 ))(,()),...,(,()),(,((

    +n

    nn xfxxfxxfx

  • )).......()((

    )......)((numerator where

    ,...2,1,0,)(

    11

    10

    ,

    nkk

    k

    kkn

    xxxxxx

    xxxx

    nkxxnumerator

    numeratorLL

    −−−

    −−=

    ==

    ==

    +−

    10

    1 case points for two :example For .except all contain i.e

    0 xx

    xxLkxxixx −

    −=−−

    ∑=

    =++=n

    k

    knkknnn xLxfLxfxLxfxP0

    ,,0,0 )()()()()()( L

  • Theorem 3.2

    )()(

    )()( where

    )()()(

    ,....1,0),()( whichin

    exists )( uniqueTHEN

    ........,at given are )( of values

    and numbers,distinct 1 are ......., If

    0,

    0

    k

    10

    10

    xLxx

    xxxL

    xLxfxP

    nKxPxf

    xP

    xxxxf

    nxxx

    k

    ik

    in

    kii

    kn

    n

    k

    k

    kK

    n

    n

    =−

    −Π=

    =

    ==

    +

    ≠=

    =

    P(x) Satisfies given data

  • Example 1

    Three points data:

    ,25.0)(,4.0)( ,5)(

    4 ,5.2 ,2

    210

    210

    ===

    ===

    xfxfxf

    xxx

    15.1)425.005.0()()()(

    3

    5)5.4(

    ))((

    ))(()(

    3

    32)244(

    ))((

    ))(()(

    10)5.6())((

    ))(()(

    0

    1202

    102

    2101

    201

    2010

    210

    +−==

    +−=

    −−

    −−=

    −+−=

    −−

    −−=

    +−=−−

    −−=

    ∑=

    xxxLxfxP

    xx

    xxxx

    xxxxxL

    xx

    xxxx

    xxxxxL

    xxxxxx

    xxxxxL

    n

    k

    kk

    Degree two polynomial

  • [ ] well.)( esapproximat )( , withinfound isIt ).(for )(

    construct to1

    )( of pts 3 uses (example) case thefact, In

    20 xfxPxx

    xfxP

    xxf =

    =1/x

  • Theorem 3.3 (Error of interpolation using Lagrange polynomial )

    [ ] [ ][ ] [ ]

    withexists

    ,in )(number a , each for :THEN

    , and ,,......, If 110

    baxbax

    baCfbaxxx nn

    ζ

    +∈∈

    ))....()(()!1(

    )()()(or

    ))....()(()!1(

    ))(()()(

    10

    )1(

    10

    1

    n

    n

    n

    n

    xxxxxxn

    fxPxf

    xxxxxxn

    xfxPxf

    −−−+

    =−

    −−−+

    +=

    +

    +

    ζ

    ζ

  • available. be should

    bonds its and ion,interpolat theof

    error theestimate to3.3 Theorem use To

    )1( +nf

    )(

    )()(),()()(

    where

    00 ik

    in

    Kii

    kk

    n

    K

    kxx

    xxxLxLxfxP

    −Π==≠=

    =

  • •Recursively Lagrange Polynomial

    k

    k

    mmm

    mmm

    xxxxf

    xP

    ......, pointsat )( with

    agrees valueits that defined is )(

    :Define

    21

    21 ...,

  • xe

    xxxxx

    for

    .6 ,4 ,3 ,2 ,1 have weif e.g. 43210 =====

    43

    210

    43

    21

    40302010

    4321

    443322

    1100

    4

    0

    ))()()((

    ))()()((

    )()()(

    )()()()(

    )()(

    xx

    xxx

    ik

    i

    kii

    eLeL

    eLeLexxxxxxxx

    xxxxxxxx

    xfLxfLxfL

    xfLxfLxfxx

    xxxP

    ++

    ++−−−−

    −−−−=

    +++

    +=−

    −Π=≠=

  • 421 ..........))((

    ))(()(

    4121

    424,2,1

    xxxeee

    xxxx

    xxxxxP ++

    −−

    −−=

    421 ,, points 3 useonly i.e. xxx

    Theorem 3.5

    ).....,( of numbersdistinct two

    be and (2) ;.....,at defined be (1) If

    10

    10

    k

    jik

    xxx

    xxxxxf

    But,

  • THEN:

    )(

    )()()()(

    ..1,1,....1,0..1,1,....1,0

    ji

    kiiikjjj

    xx

    PxxxPxxxP

    −−−= +−+−

  • Theorem 3.5 Says,

    We can construct a higher-degree (including

    more given-data points.) polynomials [P(x)

    with all data points including points. i, j ] from a

    lower-degree Polynomials without including

    points i,j.

    ], pointsdata includet don'

    ,,....1,1,......1,0 and ,....1,1,......1,0 e.g.[

    ji

    kiiPkjjP +−+−

  • Example (recursively generating Polynomial)

    Neville’s method

    1,0

    01

    0110

    10

    1

    43210

    )0,1 i.e.( )()(

    used, are and if 3.5, Theorem From

    polynomial degree-first The

    )2.2( ),9.1( ),6.1( ),3.1()( ),0.1(

    2291613101

    pointsdata givenFour

    P

    jixx

    PxxPxxP

    xx

    ffffxff

    ,., x., x., x., x.x

    =

    ==−

    −−−=

    =

    =====

    (2 pts, minimum required)

    )( 1xf )( 0xf

  • 02

    1,022,10

    2,1,0

    210

    4,33,22,1

    433221

    )()(

    , , , say, (3pts), twodegreefor 3.5, Theorem

    using degree,-higher toproceed , , , have we

    used, are pairs ),,( and ),( ),,( if Similarly,

    xx

    PxxPxxP

    xxx

    PPP

    xxxxxx

    −−−=

    lower degree

    higher degree

  • jiQ ,∴degree of polynomial j+1 data points

    last data point used (note i=0,1,2,

  • .polynomial degree having andpoint

    data 1 using is, that iteration, final theis AND

    )()(

    ,.....2,1For

    ,.....2,1For

    ioninterpolat iterated sNeville' so,

    )0(

    ,

    1,11,

    ,

    n

    nQP

    xx

    QxxQxxQ

    ij

    ni

    ij

    nn

    jii

    jiijiji

    ji

    +=

    −−−=

    =

    =

    ≤≤

    −−−−

    Iteration

    procedure

    is shown

    in the next

    pages

  • 03

    2,232,30

    33

    13

    1,231,31

    32

    23

    0,230,32

    31

    02

    1,121,20

    22

    12

    0,120,21

    21

    11

    )()(,3

    )()(,2

    )()(,13

    )()(,2

    )()(,12

    11

    xx

    QxxQxxQj

    xx

    QxxQxxQj

    xx

    QxxQxxQji

    xx

    QxxQxxQj

    xx

    QxxQxxQji

    Qji

    −−−==→

    −−−==→

    −−−==→=

    −−−==→

    −−−==→=

    →=→= )( 22 xfP = )( 1xf

  • )(

    )()( ,4

    )(

    )()( ,3

    )(

    )()( ,2

    )(

    )()( ,14

    04

    3,343,40

    4,4

    14

    2,342,41

    3,4

    24

    1,341,42

    2,4

    34

    0,340,43

    1,4

    xx

    QxxQxxQj

    xx

    QxxQxxQj

    xx

    QxxQxxQj

    xx

    QxxQxxQji

    −−−==→

    −−−==→

    −−−==→

    −−−==→=

    P.degreelow previous from

    obtained are circle red with,* jiQ4,4)( QxP =

    We get P(x) by using the previous

    lower-degree P.

  • Each row is completed before the succeeding rows

    are begun.

    Data point

    Example: Schematic Explanation of Neville’s Iteration

    interpolation using five data points (degree four)