chapter 2 section 2. lemma 2.2.1 let i=1 and j=2, then

21
Chapter 2 Section 2

Upload: haleigh-deaton

Post on 01-Apr-2015

228 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Chapter 2

Section 2

Page 2: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= −7 − 2 + 9 = 0

Page 3: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= −7 − 2 + 9 = 0

Page 4: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= −7 − 2 + 9 = 0

Page 5: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= 7 + 2 − 9 = 0

Page 6: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= 7 + 2 − 9 = 0

Page 7: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1

A =

1 2 3

3 4 2

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Let i=1 and j=2, then

ai1A j1 + ai2A j 2 + ai3A j 3= a11A21 + a12A22 + a13A23

= A21 + 2A22 + 3A23

= −2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= −(10 − 3) + 2(5 − 6) − 3(1− 4)

= −7 − 2 + 9 = 0

Page 8: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

Lemma 2.2.1Notice

=−2 3

1 5+ 2

1 3

2 5− 3

1 2

2 1

= det(B)

where

B =

1 2 3

1 2 3

2 1 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 9: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Switching Row 2 and Row 3, and calculating the determinant,

a11 a12 a13

a31 a32 a33

a21 a22 a23

= a11

a32 a33

a22 a23

− a12

a31 a33

a21 a23

+ a13

a31 a32

a21 a22

=−a11

a22 a23

a32 a33

+ a12

a21 a23

a31 a33

− a13

a21 a22

a31 a32

=− a11

a22 a23

a32 a33

− a12

a21 a23

a31 a33

+ a13

a21 a22

a31 a32

⎝ ⎜

⎠ ⎟

=−det(A)

Page 10: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Multiplying Row 3 by 4 and calculating the determinant,

a11 a12 a13

a21 a22 a23

4a31 4a32 4a33

= a11

a22 a23

4a32 4a33

− a12

a21 a23

4a31 4a33

+ a13

a21 a22

4a31 4a32

=4a11

a22 a23

a32 a33

− 4a12

a21 a23

a31 a33

+ 4a13

a21 a22

a31 a32

=4 a11

a22 a23

a32 a33

− a12

a21 a23

a31 a33

+ a13

a21 a22

a31 a32

⎝ ⎜

⎠ ⎟

=4 det(A)

Page 11: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

• If E is an elementary matrix, then

where

det(EA) = det(E)det(A)

det(E) =

−1

α ≠ 0

1

⎨ ⎪

⎩ ⎪

If E is of type I

If E is of type II

If E is of type III

Page 12: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

• Similar results hold for column operations. Indeed, if E is an elementary matrix, then ET is also an elementary matrix and

det(AE)

= det((AE)T )

= det(E TAT )

= det(E T )det(AT )

= det(E)det(A)

Page 13: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

• Similar results hold for column operations. Indeed, if E is an elementary matrix, then ET is also an elementary matrix and

det(AE)

= det((AE)T )

= det(E TAT )

= det(E T )det(AT )

= det(E)det(A)

Page 14: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

• Similar results hold for column operations. Indeed, if E is an elementary matrix, then ET is also an elementary matrix and

det(AE)

= det((AE)T )

= det(E TAT )

= det(E T )det(AT )

= det(E)det(A)

Page 15: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

• Similar results hold for column operations. Indeed, if E is an elementary matrix, then ET is also an elementary matrix and

det(AE)

= det((AE)T )

= det(E TAT )

= det(E T )det(AT )

= det(E)det(A)

Page 16: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant

Page 17: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant

Page 18: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant

Page 19: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant

Page 20: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant

Page 21: Chapter 2 Section 2. Lemma 2.2.1 Let i=1 and j=2, then

I. Interchanging two rows (or columns) of a matrix changes the sign of the determinant.

II. Multiplying a single row (or column) of a matrix by a scalar has the effect of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change the value of the determinant