chapter 2 (math 10-3)

Upload: jcll

Post on 06-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    1/66

    Chapter 2

    ALGEBRAIC EXPRESSIONS

    Every day, we encounter situations or phenomena that we need to study and analyze.

    Expressing this mathematically will simplify the whole process of analysis. The mathematical

    expressions used to model situations may involve quantities of known values or quantities whosevalues are changing.

    This chapter introduces the concept of algebraic expressions. It also includes a discussion

    of the terminologies and principles, as well as the operations, which apply to algebraicexpressions.

    2.1 ALGEBRAIC EXPRESSIONS

    Mathematical statements use two types of quantities: constant and variables. A variable  

    is a quantity whose value changes while a constant  is a quantity whose value does not change. It

    is common to represent each of these quantities by a symbol and since the value of a constant

    does not change, it is normal to use in place of the symbol the value itself. The following areexamples of constants:

    ea  f) 3.1375- e) 5 d) c) 2

    1  b) 2 )      

    On the other hand, since a variable takes on different values, it is customary to represent

    it by a symbol. The values that the variables can be substituted with can be any real number and

    as such the properties of the real numbers apply for variables and constants. By convention, anyletter of the English or Greek alphabet is used as a variable name. The following are examples of

    variables:

    a) t   b) s c)u  d)    e)    f)  

    When constants and variables are associated by any of the fundamental operations, we

    have an algebraic expression. By definition,

    The following are examples of algebraic expressions:

    a) 2  x  c) y

    2  e)  x  2 y2 , 3 x2y-2xy2 3y3   g ) 3x

    b) x y 3   d ) 2 x4y

       f  )  xy

     

    An algebraic expression is the result of associating constants and

    variables by addition, subtraction, multiplication, division, including roots and

     powers.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    2/66

      22

    In the expression  x2 y, each of the factors 2 , y and x can be considered as a coefficient

    of the other, where 2 is called the numerical coeff icient  of x y and xy is the li teral coeff icient  of2. The expression consisting of a product of constants and variables including the (+) or ( – ) sign

     preceding it is called an algebraic term  or simply a term. Thus in the expression:

    a)  x2   there is one term

     b) 5(x+y) there is one term

    c) 2  x2 4 y( xy1)   there are 2 terms, namely: )1(4,22   xy y x  

    d) 3y2xy-y3 322  x   there are 3 terms, namely: 3y,2xy-y,3 322  x  

    In expressions such as xy- andy3 , it is implied that the numerical coefficients are 1 and

    -1, respectively. When two or more terms have the same literal coefficients, they are called

    similar or like terms.

    An algebraic expression may involve a power given by the formna , where a  is called

    the base and n , the exponent. The power expressionna is a product of n-factors of a.

    2.2 TYPES OF ALGEBRAIC EXPRESSIONS

    An algebraic expression may be classified as a polynomial , a rational expression  or an

    ir rational expression .

    The following are examples of polynomials.

    475362 ) 23456   x x x x x xa  

    96 ) 48   x xb  6542332456

    61520156 )   y xy y x y x y x y x xc    1 ) 10  xd   

    Polynomials may be classified according to degree, according to the number of terms present, or according to the nature of the numerical coefficient.

    A polynomial   is an algebraic expression consisting of one or more terms inwhich the exponent of the variable or of the variables is a non-negative integer. A polynomial may involve one or more variables.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    3/66

      23

    The degree of a term   is the sum of the integral exponents of the variables in the term.

    Thus, the degree of each of the following terms is as indicated.

    8 )a   zero degree

    wb 7 )     1st degree

    62- )   xc   6th degree227 )   y xd    4th degree

    37 )   yz  xe   11th

     degree

    The degree of a polynomial   in one variable is the highest degree of the variable in the

     polynomial. If the polynomial is in two or more variables, then the degree of the polynomial is

    the highest degree among the terms of the polynomials. Polynomials are classified according todegree as:

    a)  zero degree

    b) 

    1st degree or linearc)  2

    nd degree or quadratic

    d)  3rd

     degree or cubic

    e)  4th

     degree or quartic f)  nth degree , for any n a positive integer

    The following polynomials are classified according to its degree.

    23456 5362 )   x x x x xa     6th degree

    43- )   14511   x x xb   14th degree

     y x xy y xc 435 23 )     6th degreew-x6w27x- ) 4224 d    4th degree

    12 )    xe   1st degree or linear

    When polynomials are classified according to the number of terms it has, the polynomial

    may be described as:

    a)  monomial –  a polynomial of one term

    b)   binomial - a polynomial of two termsc)  trinomial –  a polynomial of three terms

    d) 

    multinomial or simply polynomial –  polynomial of four or more terms

    Thus;62 )   xa   monomial

    47 )    xb   binomial

    23 ) 35   x xc   trinomial

    4753 ) 23   x x xd    multinomial or polynomial

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    4/66

      24

    Polynomials can also be classified according to the nature of its numerical coefficient as

     being integral, rational or i rr ational . A polynomial that is integral has integers as numerical

    coefficients of all of the terms. When some of the numerical coefficients are expressed as a ratioof two integers or as a fraction or as decimal numbers, the polynomial is said to be rational. At

    times, some of the coefficients of the terms are irrational numbers. In cases like these, the

     polynomial is said to be a real polynomial. Thus an integral or a rational polynomial is also a real polynomial. The following illustrates this concept.

    475362 ) 23456   x x x x x xa   integral, real

     x x xb 24 ) 38   integral, real

    12 ) 53  y yc   real1 )    xd        real

    e)1

    2 x2

    3

    4 x  4  rational, real

    A rati onal expression   is an algebraic expression involving a ratio of two polynomials.Examples are the following:

    2x

    3 a)

     

    2x

    y-x  b)  

    42x

    1x c)4

    3

     x 

    An ir rational expression   is an algebraic expression that involves variables raised to

    fractional exponents, such as the following:

    12xy )   a   3zy-2x-xyz ) 3 b    y-x ) 4 3c  

    2

    1

    2

    1

     )   y xd     uv

    w )

    5

    4

     

      

     

    e  

    Exercises:

    I.  Classify each of the following as to the nature of the algebraic expression.

    1. 7 x4 2 x  4 x2 3 

    2. 5 x    x 2

    3 x4 16 x2  

    3. 2 yx2  xy2 3 x3 5 y3 1 

    4.1

    2 x    2 x23 x3 5 

    5. x

     y2 x 7 y2 2 y 

     2

     x 

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    5/66

      25

    II.  Complete the table below by classifying each of the given polynomials according

    to the stated parameters.

    Classification according to:Polynomial  Number ofterms

    Degree Nature of Numerical

    Coefficient

    1. 8 2 x  2.  x6 3 x2 2 x 3 

    3.1

    3( y  3)

    2

    5( y  3)7 1 

    4. 2 x   x2  ex 3 5  

    5.  x2 y  3 xy2 3 x3 4 y4 1 6. ab2c3 2a3bc2 4a3b2c  a2b2c2  

    7. 52mn4 3m2n3  m3n2 3m4n 2m5 n5 

    EVALUATION OF ALGEBRAIC EXPRESSIONS

    The value of an algebraic expression can be evaluated at particular values of the variables

     by substituting the given values in the expressions and evaluating the expression subject to the

    rules of signed numbers. The value of each of the following expressions is as follows:

    a) 362  22   xy x y x  when evaluated at x = 2 and y = 3 is

    3)3)(2()2(6)3()2(2 

    22

     = 27

     b)42x

    1x 4

    3

     x  when evaluated at x = -1 is

    4)1(2(-1)

    1(-1) 4

    3

      =

    421

    11- 

     =

    5

     =

    5

    c) 1   x   when evaluated at x = 5 is

    1)5(      = 15      

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    6/66

      26

    Exercises: Evaluate each of the following algebraic expressions at the indicated values of

    the variables.

    1. ))(( 33 nmnm     where m = 2 and n = -1

    2. 22 23

    )2)((

     y xy x

     y x y x

      where x = 3 and y = 1

    3.2)4(3

    2 y y x

     x   where x = 2 and y = 4

    4.4224 2   s sr r      where r = 4 and s = 2

    5.222222  ya xbba

    ab

    c   where a =4, b = 9, c = 1, x=2, and y = 1

    6. ( x  2)2 y  3( x  2) y2 3( x  2)3 4 y4 1  where x = 1 and y = -2

    7. 2 x2 y3   x

     y2   xy  4   where x = 2 and y = 1

    2.3 INTEGER EXPONENTS

    If a is any real number and n is a positive integer then the exponential notation na  , readas the nth power of a , is the product of n-factors of a. That is,

    a n  a a a a an factors

     

    In this notation, a  is called the base  and n  is the exponent . The nth power of some numbers aregiven below.

    a) 243)3)(3)(3)(3(33  5  

     b)16

    1

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1 4

      

      

      

      

      

      

      

      

      

        

    c)125

    8 5

    2

    5

    2

    5

    2

    5

    3

      

      

      

      

      

      

      

        

    There will be instances where we encounter an exponential notation of the form   na 

    where n is a negative integer or zero. Provided 0  a and n is a positive integer, then

    1  0 a   andn

    n

    aa1

       

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    7/66

      27

    Examples:

    a) 13  0   b) 1)2(  0   c) 12

    0

     

      

      

    d)3

    3

    2

    12    e)

    5

    5

    2

    1

    1

    2

      

      

     

      

      

     

    To get our way around algebraic expressions involving exponential notations, we should be familiar with the rules that govern them.

    Laws of Exponents

    For any a and b , real numbers  not equal to zero and for any n  and m  ,positive integers  

    1.  Product of two powers of the same basenmnm aaa    

    2.  Quotient of two powers of the same base

    mn

    nm

    n

    m

    a

    a

    a

    a

    1

    mnif 

    nmif 

    nmif 

     

     

    3.  Power of a Power

      mnnm aa    

    4.  Power of a Product

      mmm baab    

    5. 

    Power of a Quotient

    m

    mm

    b

    a

    b

     

      

      

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    8/66

      28

    Example: Simplify each of the following in a form free of zero or negative exponents.

    a)   52323 222   y y y y      

     b) 1

    5

    20

     

     

     

       x 

    c)   6623323122

    01

    32

     y x y x y x y x

     y x

     

      

         

    d)22

    22

    2324

    322

    23

    32

    24

    2 11

    mr rm sm sr 

    r m

     sm

     sr 

    m

      

      

     

      

     

     

      

      

      

       

    Exercises: Simplify the following expressions. Assume no denominator is equal to zero.

    Express the results with positive exponents. 

    1. 

     sr  sr 6

    45

      6. 2

    34

    6425

    93

      

      

    cbacba  

    2.  2332 33     x x   7. 27ab3c7

    d 2

     

     1

    9a3b3c6

     

     

    2

     

    3. 

    0

    33

    22

    4

    8

     

      

     

    nm

    nm  8.

    64 x2 y6 z 6

    v3w2

     

     

    216 x3 y 3 z 6

    v2w

     

     3

    2 x5 y3 z 6

    vw

     

     

    4. 22

    23

    )(

    )(

     x

     x

    b

    b

      9.

    21 x 2 y3 z 2

    vw2

     

     1

    6 xyz 3

    v2w5

     

     

    02 x 0 y3 z 4

    v3w2

     

     

    2

     

    5. 

    1

    41

    321

    6

    3

     

      

      xy

     y x 

    2.4 OPERATIONS WITH ALGEBRAIC EXPRESSIONS

    The four fundamental operations ,as well as determining powers and roots, can be carried

    out with algebraic expressions.

    Addition/Subtraction of Algebraic Expressions:

    When two or more algebraic expressions are added, the sum is obtained by adding similar

    terms together. The sum of similar terms is the sum of the numerical coefficients multiplied by

    the common literal coefficients. To simplify the procedure, the terms may be arranged incolumns so that similar terms lie in one column.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    9/66

      29

    Likewise, when the difference between any two algebraic expressions is required, the

    difference is obtained by subtracting similar terms. The difference of similar terms is the

    difference of the numerical coefficients multiplied by the common literal coefficients. Again,similar terms may be arranged in one column for easy manipulation. One may look at subtraction

    in terms of addition as equal to the sum of the minuend and the negative of the subtrahend. That

    is, A –  B = A + (-B).

    Examples: Find the indicated sum or difference:

    1.  Find the sum of the following expressions:

    a.  xy x y y xy x x y xy 95611,3734,9843    Solution:

    3xy  –   4y –   8x + 9

    3xy - 7y + 4x –  3

    -9xy + 6y –  5x +11

    -3xy - 5y  –  9x + 17

     b.  y x x xy y xy y x x y x xy y x xy 222222 3867y,373,6494128    Solution:

    8 xy2 12 x 2 y 4 xy 9 x  4 y 6

    - 7 xy2 3 x 2 y   x 3 y

      6xy2 3 x 2 y  8x 7y

     

    7 xy2

      12 x2

     y 4 xy 18 x  6

    2.  From the sum of 265323 43   y y x xy xy and 12y4 43   y x xy , subtract

    7542 43   y xy y x xy .

    Solution: Add the first two expressions

    265323 43   y y x xy xy  

    14y2  43   y x xy  

    259y4 3 4   y x xy   ( This is the minuend for subtraction)-

    7 5 2 4 43   y y x xy xy   ( Subtrahend)

    32 14 6 -  43   y y x xy xy  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    10/66

      30

    Exercises:

    I. Find the sum of the given expressions.

    a. 2 x  3 y 6 z , 5 y  4 z  3 x,  z  3 x 5 y  

    nmqp pqnm pq

    mnqp pqmn pq

    mnqp pqnm pqmnb

    342

    324

    342

    73mn 

    2nm- 

    753 .

     

    c. 3rs 4rs2 3r 2 s 12r 2 s2 5rs 3rs2  r 2 s 8r 2 s2 rs rs2 2r 2 s  r 2 s2 

    d. m3n3 2m2n4 4mn5 6n6 5m2n4 8n6 4m3n3 5mn5 3m2n4 2m3n3 3n6  mn5  

    II. Subtract from the sum of the first two expressions the third expression.

    a.  xyz   4 x 2 yz   3 xy2 z   4 xyz 2  6 xyz 2 5 xyz   5 xy2 z   8 x 2 yz  2 xy 2 z   3 xyz 2 2 xyz  10 x 2 yz  

     b. 2abc2ad  4bc ac bc 2ac 5ab 3ab 5ac 5bc abc 

    III. What must be added to a5b 3ab2 a3 3b4 a 5  to give27 3a5b 5ab2 4a 3a3 2b4   ?

    IV. From what polynomial should alm3 5a2lm2 4al 3m 2a 6l  4m   be subtractedfrom to give 3m l  3a 2alm3 5a2lm2 2al 3m   ?

    V. What must be subtracted from the sum of m3in 3mi2n2 4m 6i3n 2i   and6m 3m3in 2i mi2n2 6i3n   to give 5i 9m 4m3in 6i3n 9mi2n2 ?

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    11/66

      31

    Simplifying Algebraic Expressions by Removal of Symbols of Groupings

    There will be occasions where complicated forms of algebraic expressions need to besimplified. Forms of algebraic expressions become complicated when different groupings of

    terms are given, some of which maybe embedded within groups. To simplify expressions of this

    nature, we perform the indicated operations starting with the innermost group moving out.Similar terms within groups need to be added together before another grouping symbol isremoved.

    Examples: Simplify the given expression by removing symbols of grouping:

    a. 3  x2 3 xy 2 y2 2 7 y2  x2  xy  =  x 2 9 xy 6 y 2 14 y 2 2 x 2 2 xy  =  x 2 7 xy  20 y 2  

    b. 2  x 9 4 3 x 2 6 x 5 x  2  = 2 x 18 4 3 x 12 2 x 5 x  2  = 2 x 18 4 4 x 10  = 2 x 18 16 x 40 = 14 x 58 

    c. 3   x 2  x  3  x 1 2 x 4 3 x  2 2  x   = 3   x 2  x 3 x 32 x 4 3 x  4 2 x  

    = 3   x 2 2 x  3 4   x  4  = 3   x  4 x  6 4 x 16  = 3   x  22  = 3 x 66 

    Exercises: Simplify the given expressions by removing symbols of grouping:

    1. 2 x 5 y  7   y  7 x  2. 3  ab 3cd  4 2ba 5cd  3 ab 7cd   3. 3 2w 3 s   w  s   w  s  4. 2   x 2 1 3 x 2   x 2 3 2  x 4 x 1

      5.   a b c 2  ab 3 c  d   ab 3 z  4 c c 32a   6. 3 2  x  4 3 x  2  x  3 4 3 x  

    7. 2  x  y 2 3 x 4   x 5 y  4 3 y 5 x  3 7 y  x 8 2 x  y 2   8.   a 4  b 6c 2 3 5c 3a 7 b c 2 3b c 4  b c 6c  a  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    12/66

      32

    Multiplication of Algebraic Expressions

    The product of algebraic expressions is the result of applying the distributive propertyand the laws of exponents, where each and every term of the first factor is multiplied with all

    the terms of the second factor. The result is simplified by adding similar terms together.

    Examples:

    1.  Multiply 5)-3yx()4352( 22   y x x xy  Solution:

    5)-3yx()4352( 22   y x x xy  

    =   x)4352( 22   y x x xy + 3y)4352( 22   y x x xy +  5)-()4352( 22   y x x xy  

    = x)4352( 2322   y x x y x + )129156( 322  y y x xy xy   +  )20152510( 22   y x x xy  

    = 20151295621352 223222322   y x y y x xy xy x y x x y x  

    2.  Multiply y)x()6433( 54322345   y xy y x y x y x x  Solution:

    y)x()6433( 54322345   y xy y x y x y x x  

    = x)()6433( 54322345  y xy y x y x y x x   + (y))6433( 54322345  y xy y x y x y x x    

    = )6433( 542332456  xy y x y x y x y x x   + )6433( 654233245  y xy y x y x y x y x    

    = 6542332456 6254223   y xy y x y x y x y x x    

    Or

    y)x()6433( 54322345   y xy y x y x y x x  

     y x

     y xy y x y x y x x

     

    6433 54322345 

    542332456 6433   xy y x y x y x y x x     ( product of the first factor with x)654233245 6433  y xy y x y x y x y x     ( product of the first factor with y)

    6542332456 6254223   y xy y x y x y x y x x     ( product of the two factors)

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    13/66

      33

    The product of a polynomial with another polynomial in the same variable can be

    simplified if done in tabular form as follows:

    1.  Arrange both polynomials in descending order of a chosen variable, inserting missingterms with zero coefficient.

    2.  Use the coefficients of the terms of the first polynomial , written from left to right, as

    column headings of the table and the coefficients of the terms of the second polynomial ,written from top to bottom starting with the second row on the right end of the table, asrow headings.

    3.  A particular entry of the table is obtained multiplying its column and row headings. This

    is done for all entries of the table.4.  These entries are added diagonally starting from the upper right entry to the lower left

    entry. The diagonal sums are the coefficients of the terms of the product whose degree is

    the sum of the degrees of the two polynomials multiplied.

    Example: Find the product as specified.

    1. Product of 2 x5

    3 x4

    5 x3

     x2

    7 x  5 and  x3

    4 x2

    5 x  3 

    Solution:

    2 -3 5 1 -7 5

    2 -3 5 1 -7 5 1

    8 -12 20 4 -28 20 4

    -10 15 -25 -5 35 -25 -5

    6 -9 15 3 -21 15 3

    2 5 -17 42 -37 -13 58 -46 15

    The product is 2 x8 5 x7 17 x6 42 x5 37 x4 13 x3 58 x2 46 x 15 

    2. (3 x5  x4 y  3 x3 y2  x 2 y3 4 xy4 6 y5) ( 3x 2y)

    Solution:

    3 -1 3 1 4 -6

    9 -3 9 3 12 -18 3

    6 -2 6 2 8 -12 2

    9 3 7 9 14 -10 -12

    The product is 9 x

    6

    3 x5

     y  7 x4

     y

    2

    9 x3

     y

    3

    14 x2

     y

    4

    10 xy5

    12 y6

     

    Exercises:

    I. Multiply the given expressions:

    1. 12 xy2 z 2 5 x3 yz  24 xy2z , 3 xy3z4 2. ab2c  abc 2bc2  , 2a 5c  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    14/66

      34

    3.  x 3  y 3  ,  x  y  

    4. m5  n5  , m  n  5. a2 ab b2  , a b 6.  x 4 + 4x3y+6x2y2 +4xy3 + y4   , x+2y

    7. 5 x 4y - x3y2 - 2x2y3 +4xy4 - 5y5  , 2x- 5y

    8. 3m7 12m5 6m4 5m2 +3m- 7 , 2m5 2m3 3m2  m 1 

    II.  Multiply 3 x  2 y  3 z  with the sum of  xy2 5 yz 3  x2 yz  and 9 xy2  yz 3 5 x2 yz .

    III. Find the product of  x2  y 2   and  x2  y 2 .IV. Find the required quantity:

    a.  area of a right triangle whose legs are (2x-1) and (x+4).

     b.  Perimeter of a rectangle with sides (y-z+2) and (3+4z-y).c.  Volume of a rectangular prism with sides (m-n+3), (3n+2-7m) and

    ( 5m-5n+7).

    Division of Algebraic Expressions

    The quotient of dividing an algebraic expression by another is based on the divisionalgorithm. That is,

    )(

    )()(

    )(

    )()()()()(

     x D

     x R xQ

     x D

     x N  x R x D xQ x N    .

    The quotient of an algebraic expression with a monomial divisor is the sum of the

    quotients obtained from dividing each of the terms of the dividend by the monomial divisor.

    That is,

     B

     A

     B A

    .

    However, when the divisor is not a monomial, the quotient is obtained by a process of

    long division as follows:

    1. Arrange the terms of the dividend and the divisor in the descending order of the power

    of the variable, including terms with zero coefficient. In case the dividend and divisor are

     polynomials in two or more variables, the terms should be arranged in the descending order ofthe power of a chosen variable.

    2. Divide the first term of the dividend by the first term of the divisor to get the first term

    of the quotient.3. Multiply this term of the quotient with each of the terms of the divisor and subtract the

     product from the dividend.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    15/66

      35

    4. Using the difference obtained in step 3 as new dividend, repeat steps 2 and 3 until such

    time that the difference obtained from this step is of degree less than the divisor. This expression

    is the remainder.

    Examples:

    1.  Divide 22432532 3 by36126   y x y x y x y x   .

    Solution:

    2322

    43

    22

    25

    22

    32

    22

    432532

    12423

    36

    3

    12

    3

    6

    3

    36126 xy x y

     y x

     y x

     y x

     y x

     y x

     y x

     y x

     y x y x y x

     

    2. Divide 32 by4456 23   x x x x .

    Solution:

     ________  

    32x 

    4x2 

     __________  

    64- 

    44- 

     ______  __________  

    96x 

    123

    4456 32 

    2

    2

    23

    2

    23

     x x

     x x

     x

     x x

     x x x x

     

    The quotient can be checked by verifying whether

    44561)32)(123( 232   x x x x x x ?

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    16/66

      36

    2.  Divide 13 by1272 234   x x x x x .

    Solution:

    2-6x

     _  __________  

    13x- x- 

    1x3x- 

     ____  __________  

    3  x 

    22  x 

     _  __________  __________  

    26x2x 

    12

    12072 13 x

    2

    2

    23

    23

    234

    2

    2342

     x x

     x x

     x

     x x

     x x x x x

     

    Exercises: Perform the indicated operations:

    1. 35 y8 z 3    5 y2z2 2. (24a5b3c2 +36a8 b5c8 - 60a7 b4c5)   12a4 b2c2 

    3. m2  n2     m- n  

    4. 12a2 26a 16 2a 1  5. 9 x2 24 x 16 3 x  4 y  5.  p3 q3 ( p q)  6. r 8  t 8 (r   t )  7. 3 x7  x6 2 x5  x4 3 x3  x 2 3 x 5 ( x  3) 8. 3a6 5a4b2 8a3b3 5a2b4 b6

    (a b) 

    9. 12m5 15m4n 18m3n2 22m2n3 6mn4 10n5 (2m 3n) 10. 2a6 5a5b 8a4b2 5a3b3 6a2b4 4ab5 8b6 (2a2 5ab  b2)  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    17/66

      37

    Synthetic Division

    The process of long division of a polynomial P(x) in one variable divided by a binomialof the form ( x –  r ) can be simplified using synthetic division doing the following steps.

    1.Arrange the terms of the polynomial in the descending order of the power of the

    variable, from the leading term to the constant term supplying missing terms with coefficientzero whenever necessary2. Take note of the numerical coefficients of these terms and arrange them in a row.

    3. Bring down the first number in the sequence in a new row and multiply this by r.

    4. Add the product to the next number in the previous row and placed the sum in the newrow. Multiply this new number with r.

    5. Repeat step 4 until the product is added to the last number of the previous row.

    6. The first to the second to the last numbers in the new row are the coefficients of the

    terms of the quotient, a polynomial of degree one less than the degree of the dividend, arrange inthe descending order of the power of the variable. The last number is the remainder.

    Examples:

    1.  Divide 2 by3366232 234567   x x x x x x x x .

    Solution: The coefficients of the terms arranged in the descending order of the power of x are 2,

    -3, 1, -2, -1, 6, 4, 3 and r = 2.By synthetic division:

    4 2 6 8 14 40 8

    2 -3 1 -2 -1 6 -36 -3 2

    2 1 3 4 7 20 4 5

    Thus, the quotient of dividing 2 x7 3 x6  x 5 2 x4  x3 6 x2 36 x 3 by  x 2   is

    4207432 23456   x x x x x x   remainder 5.

    2.  Divide 3 by641625522 23468   x x x x x x .

    Solution: The coefficients of the terms arranged in the descending order of the power of

    x, including missing terms, are 1, 0, -2, 0, 2, -1, 6, 0, 4 and r = -3.By synthetic division:

    -3 9 -21 63 -33 24 -24 721 0 -2 0 -52 25 -16 0 -64 -3

    1 -3 7 -21 11 -8 8 -24 8

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    18/66

      38

    Thus,  x8 2 x6 52 x4 25 x3 16 x2 64 divided by  x  3 

    is 2488112173 234567   x x x x x x x remainder 8.

    3.  Divide 42 by188120522 345   x x x x .

    Solution I: Since the divisor is not of the form (x-r), the dividend and the divisor have to

     be transformed by dividing both the dividend and the divisor by 2 to get

     x5 26 x4 60 x3 94 divided by  x 2.

    It is to the expression  x5 26 x4 60 x3 94 divided by  x 2 that we apply syntheticdivision.

    2 -48 24 48 96

    1 -26 60 0 0 -94 21 -24 12 24 48 2

    The terms of the quotient obtained by dividing 2 x5 52 x4 120 x3 188 by 2 x  4  are with coefficients given by the numbers in the new row, except for the last number

    which will give the remainder after multiplying it by 2 (the factor used to divide the

    dividend and divisor). Thus, 2 x5 52 x4 120 x3 188 divided by 2 x 4 is

    48241224 234   x x x x remainder 4.

    Or:

    Solution II: Transform the expression by dividing the divisor by the coefficient of its

    leading term, 2. Then proceed with synthetic division, dividing

    2 by188120522 345   x x x x  as follows:

    4 -96 48 96 192

    2 -52 120 0 0 -188 _ 2

    2 -48 24 48 96 4

    The terms of the quotient obtained dividing 2 x5 52 x4 120 x3 188 by 2 x 4   arewith coefficients equal to the numbers of the new row divided by two, except the last number

    which is the remainder. Thus, 2 x5 52 x4 120 x3 188 divided by 2 x  4   is

    48241224234

      x x x x with remainder 4.

    The process of synthetic division can be extended to divide a polynomial by another

     polynomial provided the dividend and the divisor are in terms of the same variable. The general procedure is described as follows.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    19/66

      39

    Steps for Extended Synthetic Division:

    1. Arrange the terms of the dividend and the divisor in the descending order of the power of the variable, inserting missing terms with zero-coefficient.

    Let the degree of the dividend be m and of the divisor be n.

    2. Form (n+2) number of rows.3.  Arrange the coefficients of the terms of the dividend from step 1 in the first row.There will be (m+1) number of columns.

    4.  If the coefficient of the leading term of the divisor is 1, change the signs of the terms

    of the divisor. Then, starting with the coefficient of the second term, write thecoefficients of this expression downward ( forming a column) at the right end of each

    rows starting with the second row. Let this be the (m+2)-th column.

    5.  Bring down the first number of the first row as first number of the (n+2)th row.

    Multiply this number with the first number of the (m+2)-th column and write the product in the same row under column 2. Add the numbers of the second column and

    write this as entry of the last row.

    6. 

    Using the numbers of the last row ( moving from right to left) and the numbers of the(m+2)-th column ( moving downward) , multiply numbers in corresponding

     positions. Write the products under the next column in the same row as the used

    numbers of the (m+2)-th column. Starting with the second column upto the nth

    column, a new column will have one term more than the previous term.7.  Repeat #6 procedure until the (n-1) column from the right is obtained. The (n-1)

    column entry of the last row is the coefficient of the first term of the remainder.

    8.  Starting with the (n-2)th column from the right, the entries in a new column woulddecrease by one term (starting from the top) until the (m+1)th column.

    9.  The entries of the last row from the first to the nth column from the right are the

    coefficients of the terms of the quotient , a polynomial with degree (m-n). The entries

    of the last row from the (n-1)-th column from the right are the coefficients of theterms of the remainder, a polynomial of degree ( n-1).

    10. If the coefficient of the leading term of the divisor is not 1, then in doing steps 5 and

    6, the entries of the last row should be divided first by the coefficient of the leadingterm of the divisor before the products are obtained. This is done for all entries except

    for those entries representing the coefficients of the terms of the remainder.

    Examples: Use extended synthetic division to obtain the required quotient.

    1. Divide  x6 - 3x5 +2x4 +x3 +3x2 - 2x +5 by x2 - 2x +3

    Solution:

    1 -3 2 1 -13 -2 5

    2 -2 -6 -4 -16 2

    -3 3 9 6 24 -3

    1 -1 -3 -2 -8 -12 29

    The quotient is x4 - x3 - 3x2 - 2x- 8 remainder -12x +29

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    20/66

      40

    2. Divide 6 x8 5 x7 3 x6 +24x5 -11x4 +22x3 - 2x2 - 4x +4 by 2x3 +3x2 -x+2

    Solution:

    6 5 3 24 -11 22 -2 -4 4-9 6 -18 3 -3 -9 -3/2

    3 -2 6 -1 1 3 ½

    -6 4 -12 2 -2 -6 -1

    2  6 -4 12 -2 2 6 -8 -3 -23 -2 6 -1 2 3

    The quotient is 2-3x-8x-remainder3+x+x-6x+2x-3x   22345 .

    Exercises: Divide the first polynomial by the second using synthetic division.

    1.  4 x7 3 x6 2 x5  x4 5 x3 3 x2 7 x 2 ,  x - 3

    2.  121011154   234   mmmm   , 3m  3.   x8 4 x5 2 x  4 ,  x  4  

    4. 432

    3142840   x x x x     , 5 x  5.  213610   23   aaa   , 75   a  

    6.  a8 8a7 28a6 56a5 70a456a3 28a2 8a 1 , a 1 7.  10921   324   cccc   , 527   2   cc  8. 

    25 y

    9

    15 y6

    20 y 10 ,  y3

    2 y2

    3 y 1 

    9.  m9 1 , m2 +m+1 10. b9 7b8 2b6 5b3 2b 6 , 2b3 2b 1 

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    21/66

      41

    2.5 SPECIAL PR0DUCTS

    Certain types of products occur so frequently that they deserve our particular attention.Such products are called special products and they should be learned and memorized in order to

    save time in multiplication.

    Product of Two Binomials

    The product of two binomials equals the product of the first terms plus the product of the

    outer terms, the product of the inner terms, and the product of the last terms.

    (ax + by)(cx + dy) = acx 2  + adxy +bcxy + bdy 

    2  

    Combining similar terms, we have

    (ax + by)(cx+dy) = acx 

    2

    + (ad + bc)xy + bdy 

     

    Example: Find the indicated product.

    1)  (3x –  5y)(4x + 7y) = 12x2 + xy –  35y

    The following diagram may be helpful but all multiplications and additions should be

    done mentally.

    First : (3x)(4x) _______________ 12x2 

    Outer + Inner : (3x)(7y) + (-5y)(4x) _____ 21xy + (- 20 xy) = xy

    Last: (-5y)(7y)______________ -35y2 

    2. (9x –  7)(2x –  3) = 18x2  –  41x + 21

    F: (9x)(2x) _________________ 18x2

    O + I : (9x)(-3) + (-7)(2x) _________ -27x - 14x = - 41x

    L: (-7)(-3) __________________ 21

    3. (2ab2 + 3c)(5ab

    2  –  6c) = 10a

    2 b

    4 + 3ab

    2c –  18c

    Square of a Binomial

    The square of the sum ( or difference) of two binomials equals the square of the first

    term plus ( or minus) twice the product of the two terms plus the square of the second term.

    (a + b) 2  = a 

    2  + 2ab + b 

    2  

    (a  –  b) 2= a 

    2   –  2ab + b 

    2  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    22/66

      42

    Examples : Perform the indicated operation:

    1. 222 )7()7)(2(2)2()72(     x x x  = 49284   2   x x  

    2. 233222232 )4()4)(3(2)3()43(   t t  z  z t  z     = 6324 16249   t t  z  z     

    3.   222 )2()2)(4)(2()4()2(4   y x y x y x    = 22 4416816   y xy x y x    

    Product of the Sum and Difference of Two Terms

    The product of the sum and difference of two binomials equals the square of the first

    term minus the square of the second term.

    (a + b)(a  –  b) = a 2 –  b 

    2  

    Examples: Find the product of each of the following:

    1. 22 )2()7()27)(27(   y x y x y x    = 22 449   y x    

    2.

    22

    3

    4

    4

    3

    3

    4

    4

    3

    3

    4

    4

    3

      

      

      

      

      

      

      

      

      bababa 

    =9

    16

    16

    9   22 ba  

    3. 6565   22   y y y y  = )65()65(   22   y y y y  = 222 )65()(     y y  = 366025   24   y y y  = 366025   24   y y y  

    4. 23223232   pnm pnm pnm d bad bad ba    

    =

     pnm

    d ba

      624

     

    Cube of a Binomial

    The cube of a binomial equals the cube of the first term plus (or minus) thrice the productof the first term squared and the second term plus thrice the product of the first term and the

    square of the second term plus (or minus) the cube of the second term.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    23/66

      43

    (a + b) 3  = a 

    3  + 3a 

    2 b + 3ab 

    2  + b 

    3  

    (a  –  b) 3  = a 

    3   –  3a 

    2 b + 3ab 

    2   –  b 

    3

    Examples: Find the product of each of the following:

    1.   32233

    )4()4)(3(3)4()3(3)3(43   y y x y x x y x    = 3223 6414410827   y xy y x x    

    2.   3323232232332 )7()7)(5(3)7()5(3)5(75   nnmnmmnm    =

    962346 343735525125   nnmnmm    

    3. 32233 232322   y y x y x x y x bbabaaba    =  y y x y x x bbabaa   3223 6128    

    Square of a Trinomial

    The square of a trinomial equals the sum of the squares of the three terms plus twice the product of each term and each term that follows it.

    (a + b + c) 2  = a 

    2  + b 

    2  +c 

    2  + 2ab + 2ac + 2bc

    Examples: Find the required product.

    1. cbcabacbacba   342322422342342   2222  = bcacabcba   2412169164

      222  

    2. 224   w z  y x   = ))((2)2)((2)4)((2416   2222 w x z  x y xw z  y x    ))(2(2))(4(2)2)(4(2   w z w y z  y    

    =   zw yw yz  xw xz  xyw z  y x   4816248416   2222  Alternate Solutions:

    1. 22 342342   cbacba    

    = 22 3)3(42242   ccbaba    =

    222 9241216164   cbcacbaba    2. 224   w z  y x   = 224   w z  y x    

    = 22 22424   w z w z  y x y x    = 2222 4481624168   wwz  z wy yz  xw xz  y xy x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    24/66

      44

    Exercises: Find the indicated product.

    1. )43)(32(     x x   3. )32()32(   22   x x x x  2. )25)(94(   22  z  xy z  y x     4. 322 53   y x    

    5.232

    )43(   z t     8. 32

    3   ba    

    6.

    2

    3

    2

    2

    1

    27

     

      

        cab   9. 232 32   z  y x    

    7. 2222 3232   baba     10. 2)23(35)23(4     y x y x  

    PASCAL’S TRIANGLE 

    One technique of finding the nth power of a binomial is by means of Pascal’s Triangle

    which is shown below. The numbers in each row are the numerical coefficients of the terms of

    the expansion of (x + y)n

    for n = 0,1,2,3,…n. 

    n = 0 1 (x + y)0 

    n = 1 1 1 (x + y)1

    n = 2 1 2 1 ( x + y)2

    n = 3 1 3 3 1 (x + y)3 

    n = 4 1 4 6 4 1 (x + y)4 

    n = 5 1 5 10 10 5 1 (x + y)5

    n = 6 1 6 15 20 15 6 1 (x + y)6

    n = 7 1 7 21 35 35 21 7 1 (x + y)7 

     Notes: 1. The terms should be arranged in descending powers of one variable.

    2.  For (x –  y)n , the signs are alternate plus and minus.

    Example. Expand (3x –  y)5.

      543223455 )3(5)3(10)3(10)3(5)3(3   y y x y x y x y x x y x    = 54322345 1590270405243   y xy y x y x y x x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    25/66

      45

    Exercises: Expand each of the following by using Pascal’s triangle. 

    1. 62 x  

    2. 432   ba   

    3.

    7

    43   d c   

    2.6 FACTORING

    Factoring is the process of finding two or more expressions whose product is the original

    expression. The quantities that are multiplied are called factors. When the factors of a number (orexpression) are one and itself, then the number is called a prime number (or prime polynomial). A

    number, greater than 1, that is not prime is called a composite number.

    To factor a polynomial completely is to express it as a product of two or more prime

     polynomials. Thus,

    F(x) = F1(x) · F2(x) · F3(x) · · · Fn(x)

    where F1(x), F2(x), F3(x), · · · , Fn(x) are prime polynomials.

    FACTORIZATION PATTERNS

    Common Factors

    If each term of a polynomial has the same number (or expression) as a factor, then thisnumber (or expression) is called a common factor. The distributive law in reverse is then applied.

      

      

    a

    ac

    a

    ac

    a

    abaad acab  

    )(   d cbaad acab    

    Examples: Factor the following:

    1. )124(2248   223   aaaaaa  

    2. )95(327153   232232245243324  z  y y x z  x z  xy z  xy z  y x z  y x    

    3. 5342 )(42)(18)(12   pnm pnm pnm   = 332 7)(32)(6   p pnmnm p    

    Exercises: Factor the following:

    1. 862  2   x x  

    2.234 1263   x x x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    26/66

      46

    3. 22222 365442   yxaby xcab    4.  pt t  pt  p   486012   342  5. )2(144)2(120)2(24   23 bababa    6. mmm  x x x   48213   12    

    FACTORS OF BINOMIALS

    The special products taken up earlier can be of great help when factoring certain binomials

    or even polynomials.

    Difference of Two Squares:

    The difference of the squares of two numbers is equal to the product of the sum and the

    difference of the square roots of the two numbers.

    a 2   –  b 

    2  = ( a + b)(a - b)

    Examples: Factor the following algebraic expressions.

    1. 2222 )3()2(94   y x y x    = )32)(32(   y x y x   .

    2. )(53)(53)(259   2  y x y x y x    = (   )553)(553   y x y x    

    3. )116)(116(1256   224   y y y  = )116)(14)(14(   2   y y y  

    Sum and Difference of Two Cubes

    Let a and b be real numbers, variables or algebraic expressions. Then,

    a 3+ b 

    3= (a + b)(a 

    2   –  ab + b 

    2  )

    a 3   –  b 3  = (a

     –  b)(a 2  + ab + b 2  )  

    Examples: Find the factors of the following:

    1. 3333 )3()2(278   nmnm    = 22 )3()3)(2()2()32(   nnmmnm    = )964)(32(   22 nmnmnm    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    27/66

      47

    2. 32363 )4()3(6427   baba    = 22222 )4()4)(3()3()43(   bbaaba    = )16129)(43(   4222 bababa    

    3. 3234612 )5()(125   y x y x    = 22242424 )5()5)(()()5(   y y x x y x    = )255)(5(   424824  y y x x y x    

    4. 333 )2()2(8)2(     y x y x  

      4)2(2)2(2)2(   2   y x y x y x  

    5. 323266 )()(   y x y x    

    = ))((   422422  y y x x y x    = ))()((   4224  y y x x y x y x    

     Note: 4224  y y x x    can be factored by adding and subtracting 22 y x . This will be discussed later.

    Alternate Solution: 232366 )()(   y x y x    

    = ))((   3333  y x y x    

    = ))()()((   2222  y xy x y x y xy x y x    

    = ))()()((

      2222

     y xy x y xy x y x y x    

    Sum and Difference of Two Odd Powers

    If a and b are real numbers or expressions, then

    ))((   1342321     nnnnnnn bbababaababa    

    ))((   1342321     nnnnnnn bbababaababa    

    Note: For an + b

    n, the terms of the second factor have alternate plus and minus signs and for

    an - bn , the signs of the terms of the second factor are all positive. Examples:

    1. Factor 128x7 + y

    7.

    7777 )2(128   y x y x    =   6542332456 )2()2()2()2()2()2()2(   y y x y x y x y x y x x y x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    28/66

      48

    = )248163264)(2(   6542332456  y xy y x y x y x y x x y x    

    2. Factor99 wv   .

    ))((   8762534435267899 wvwwvwvwvwvwvwvvwvwv    

    Alternate Solution:

    ))(()()(   633633333399 wwvvwvwvwv    

    =   ))()((   633622 wwvvwvwvwv    

    Exercises: Factor each of the following completely.

    1. 44 8116   y x     6. 639 827   cba    2. 637 1219   ut t      7. 55 321024   ba    

    3.q p

    nm  82

      8.55

    243)(   z  y x    4.

    36125   z  x     9. 8416   q p    

    5. nn ba   66 6449     10. 1)(64   3  wu  

    FACTORING TRINOMIALS

    Certain trinomials can easily be factored by recalling some special products.

    Perfect Square Trinomial

    Let a and b be real numbers, variables or algebraic expressions. The perfect square

    trinomials can then be factored as shown below. Note that the first and last terms are perfectsquares.

    a 2  + 2ab + b 

    2  = (a + b) 

    2  

    a 2  - 2ab + b 

    2  = (a - b) 

    2  

    Examples: Factor the following perfect square trinomials.

    1.222

    )32(9124   y x y xy x    2. )256036(256036   223   aaaaaa  

    = 2)56(   aa  

    3. 16)32(8)32(   2   y x y x  = 24)32(     y x  = 2)432(     y x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    29/66

      49

    Quadratic Trinomial

    Factoring a quadratic trinomial ax2 + bx + c is usually done by trial and error. Factors mx +

    r and nx + s must be found such that mn = a and rs = c.

    ax 

     + bx +c = (mx + r )(nx +s)

     Note that mn = a 

    rs = c

    ms + nr = b

    If a = 1, then ax2 + bx + c may be factored as shown below.

    x 2  + bx + c = (x + r)(x + s)

    where rs = cr + s = b.

    Note: If a, b, c are integers, then ax

    2

     + bx + c is factorable with integer coefficients if b

    2

      –  4acis a non-negative perfect square.

    Examples: Factor each of the following:

    1. )2)(4(822   x x x x  2. 3108

      2   x x  = (4x + 3)(2x + 1)3.

    222 45369   cabcba    = 222 54(9   cabcba   )= 9(ab + c)(ab –  5c)

    4. 10)1(7)1(   222   z  z  = 5)1(2)1(   22   z  z   = )4)(1(   22   z  z   = (z –  1)(z + 1)(z –  2)(z + 2)

    Exercises: Factor the following trinomials completely.

    .1   49284   2   y y  2.

    567 497025   x x x    3. 1816

      24   x x  

    4. 64489

    2

    2

     p

     p 

    5. 121115   2   y y  6. 224 49730   y y x x    7. 4236 61712   z  z  y y    8. 32)2(18)2(   24   y x y x  9. 532   36   p p  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    30/66

      50

    10. 45)73(2)73(8   2   aa  

    FACTORING BY GROUPING

    The terms of a polynomial can be grouped in such a way that each group has a common

    factor. To factor this type of polynomial, we begin by grouping those terms that have commonfactors and then we use the distributive law to complete the factoring.

    Sometimes the terms of the polynomial can be grouped to form a factorable binomial or

    trinomial. In this case, we apply the rules for factoring binomials or trinomials after the terms have

     been grouped.

    Examples: Factor the following completely.

    1. 1   baab = )1()(     baab  = )1()1(     bba  = )1)(1(     ab  

    2. cbaacaba   2  = )()(   2 cbaacaba    = )()(   cbacbaa    = )1)((     acba  

    3.  yz  xz  y xy x     22 2  = )()2(   22  y x z  y xy x    

    =   )(2  y x z  y x    

    =  z  y x y x     )()(  = ))((   z  y x y x    

    4.222 4425   d bd ba     = )44(25   222 d bd ba    

    = 22 )2(25   d ba    = )2(5)2(5   d bad ba    = )25)(25(   d bad ba    

    OTHER TYPES OF FACTORING:

    If a perfect square monomial is added to and subtracted from a trinomial that is not a

     perfect square, then the resulting expression can be factored as a difference of two squares.

    Examples:

    1. Factor 4224 716   y y x x   .Solution: Add and subtract 22 y x .

    2242224222 )816(716   y x y y x x y y x x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    31/66

      51

    = 22222 )4(   y x y x    =  xy y x xy y x     )4()4(   2222  =  xy y x xy y x     2222 44  

    2. Factor 922  24   x x .

    Solution: Add and subtract 16x2.

    922   24   x x  = 224 1696   x x x    = 222 16)3(   x x    =  x x x x   4)3(4)3(   22  = )34)(34(   22   x x x x  

    3.  Factor 8424 984   bbaa   .

    Solution: Add and subtract 424   ba  4284248424 4)9124(984   babbaabbaa    

    = 22242 )2()32(   abba    

    = (   )232)(232(   242242 abbaabba    

    The factor theorem may be used to find the factors of a polynomial. The factor

    theorem states that x-c is a factor of a polynomial f(x) if and only if f(c) = 0. In this case,

    synthetic division may be used to determine if the trial divisor is a factor or not.

    Examples: Factor the following polynomials by synthetic division.

    1. 1632  23   x x x  

    2 3 -6 1 1

    2 5 -1

    2 5 -1 0

    hence, )1(    x is a factor of 1632   23   x x x  and the other factor is )152(   2   x x  

    Thus, 1632   23   x x x = )152)(1(   2   x x x  

    2. 1036  23   x x x  

    1 -6 3 10 2

    2 -8 -10

    1 -4 -5 0 55 5

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    32/66

      52

    1 1 0

    -1 -1

    1 0

    Thus, 1036   23   x x x = )1)(5)(2(     x x x  

    Exercises: Factor the following:

    1. wxvwuxuv   105126    2. kjhjhk h   2135915   2  3. 222 91249   z  yz  y x    4. 4224 41125   bbaa    5. 25164   24   z  z   6. 4285

      234   x x x x  7. 222 818122   d baba    

    8. 45   24   x x  9. 652   23   x x x  10. 673   x x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    33/66

      53

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.1

    Classification of Algebraic Expressions

    I. Classify each of the algebraic expressions as to whether a polynomial, rational or irrational.

    1.21   xy  

    2. 53 32   y yx x    

    3.3

    427   y x  

    4.  xy y x     721  

    5. y x

     y xy x

      22 5

     

    II. Classify each of the following expression according to the number of terms present.

    1.  xy2  

    2.252

    1 y x

     y x

     

    3.22

    2   y x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    34/66

      54

    4. 1345   35   x x x  

    5.  z  x   321

     

    III. Classify each of the polynomials according to the nature of the numerical coefficients of the

    terms.

    1. 12542     y x yz  zx  

    2. 323   2   y x  

    3.  y z  x4

    175.0

    2

    1  

    4.2

    3 z  x  

    5.  xy y x     721  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    35/66

      55

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No.2.2

    Evaluation of Algebraic Expressions

    Evaluate each of the following expressions at the given values of the variables.

    1.  BH 

    2

    1  where B = 30 and H = 5

    2.22

     y x     where x = 3 and y = 4

    3.2

     where))()((2

    1   cba sc sb sa s s

        and a=5, b=8 and c= 7

    4.21

    11

     R R

      where 5 and 2 21     R R  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    36/66

      56

    5. 22  xaa

    b   where x = 4, a = 12, and b = 3

    6. 222   y x xy     where x = -1 and y = 3

    7. (5x+4)(3x+2) where x = -2

    8. y x

     x

    6

    41

      where x = -3 and y = 5

    9.)4)(3(

    12

    3

     x x

     x  where

    2

    1 x  

    10. 432234 464   babbabaa     where a = 4 and b = 3

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    37/66

      57

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.3

    Simplifying Algebraic Expressions by Removal of Symbols of Groupings

    Simplify each of the following expressions by removing symbols of groupings.

    1.  x y y x     43432  

    2. ba xba x   2534    3. nmanmbbanbam     32222  4.  x y x x x   53253    5.  z  z  y x y x z  y x     243325  

    6.   432334223     nnmmnm  

    7.   cct mcmt mc   42226    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    38/66

      58

    8.   6343431     x x y y x  

    9. 32423     r  s sr r  s  

    10.   mmmmmm   213235    

    NAME:___________________________________ DATE:_____________INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.4

    Simplifying Algebraic Expressions by Removal of Symbols of Groupings

    1.  x y y x y x y x     23442  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    39/66

      59

    2. 2133242     x x x  

    3. t r r t t r rt    2323323    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    40/66

      60

    4. 1894243334     nmnmmnnmmn  

    NAME:___________________________________ DATE:_____________INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.5

    Integer Exponents

    Simplify each of the following expressions to a form free of negative or zero exponents.

    1. 32 23   xy y x  

    2. 654 2 y y y    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    41/66

      61

    3. 34  x  

    4. 53202   y x  

    5.

    2

    4

    33

    43

    23

    82

     

     

     

     

     

     

     

     

    ca

    d c

    ba 

    6. 23323 2   baab  

    7.

    3

    025

    232 

     

     

     

     

    cba

    cba 

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    42/66

      62

    8.

    2

    036

    432

     

     

     

     

     y z  x

     z  y x 

    9. 2230832 3   z ab z ba    

    10.132

    32312

    aaa

    aaa

     z  y x

     z  y x 

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.6

    Operations with Algebraic Expressions

    Perform the indicated operations then simplify the results.

    I.  For each of the following sets of expressions:

    a.  z  y x z  y x z  y x   625 , 52 , 343    

     b. nmmnmmnmnmnmnnm  222222

    268mn ,n62 , 253    c. 532 , 4386 , 1523   34234234   x x x x x x x x x x x  

    find:

    1. the sum of the three expressions

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    43/66

      63

    2. the difference between the sum of the first two expressions diminished by the third expression.

    11.  The difference between the first expression diminished by the sum of the last two

    expressions.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    44/66

      64

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.7

    Operations with Algebraic Expressions

    Perform the indicated product.

    1.  y x y x   5235    

    2.  z  y x z  y x   4232    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    45/66

      65

    3. nmnm   233232    

    4.  z  y x z  z  y x z      32543  

    5. m z  y xm z  y x   343232    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    46/66

      66

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.8

    Operations with Algebraic Expressions

    1. )4386()1523(   234234   x x x x x x x x  

    2. y)x5253xy-()5xyyxy23( 432234432234   y x y x x y x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    47/66

      67

    II.  Use method of long division to find the quotient, dividing the first expression by the

    second expression.

    1. abababba   3 , 36213   32  

    2. 32243362 5x- , 20155   y y x y x y x    

    3. 32128966432 2x1 , 4432   y y x y x y x y x    

    4. 43 , 8-3yy-7y5y-y-253  22345678   y y y y y  

    III.  Use synthetic division to find the quotient dividing the first expression by the second:

     y 8 7 by y-2  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    48/66

      68

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.9

    Special Products

    Find the indicated product.

    1. 753     y y  

    2. 23 265   baba    

    3.  pqmnq pnm   392   232  

    4. 225   y x   

    5. 222 94   ba    

    6. 2)(   z  y x    

    7. 5353   22    x x  

    8.   

      

      

      

    a

    b

    b

    a

    a

    b

    b

    a

    3

    2

    4

    5

    3

    2

    4

    9. 4343   22   x x x x  

    10. 334   v z    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    49/66

      69

    11.

    3

    23 

      

      

     nm 

    12. 222   w z  y x    

    13. uuuuuuuu     3232  

    14.   2332     y x y x  

    15. 2423     q p  

    16. 1111   22   hh  

    17. 22 11   bb    

    18.

    21

      

      

    cc  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    50/66

      70

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.10

    Special Products

    Find the indicated product.

    1. 4332     x x  

    2.  z  y x z  xy   2594   22  

    3. 232 43   t  z    

    4.

    2

    3

    2

    2

    1

    27

     

     

     

        cab  

    5. 2222 3232   baba    

    6 . 3232   22   x x x x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    51/66

      71

    7. 322 53   y x    

    8. 333   bm    

    9. 232 32   z  y x    

    . 2)23(35)23(4     y x y x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    52/66

      72

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.11

    Special Products

    Find the indicated product.

    1. 3)35(   r  p  

    2. 234 )3(   nm cb    

    3.

    2

    325

    3

      

        pr   

    4. ))((   y x y x    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    53/66

      73

    5. 1)2(51)2(5     y x y x  

    6.

     

      

     

     

      

     

    68

    5

    34

    2222 nmnm 

    7. )1)(1(     z  y x z  y x  

    8. (p2

    + q2  –  r 

    2)(p

    2  –  q

    2+ r 

    2)

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    54/66

      74

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.12

    Factoring

    A. Factor the following by taking out the common factors.

    1.7456 742   nmnm    

    2. 8910 483276   y y y    

    3. 255     p  

    4.494385267 3212864   cbacbacba    

    5. 22422222 )(5)(2   y x y x y x x    

    6. 21

    2

    1

    4 )1(2)1(

      x x x x  

    7. 31

    3

    2

    2

    1

    4 xy y x    

    8.11 44     nn  x x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    55/66

      75

    B. Factor the following binomials completely.

    1. 400121   2  p  

    2.246 4936   u z v    

    3.22 81225   ba    

    4. 814 n y  

    5. 88  y x    

    6. 273  y  

    7. 648  6  x  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    56/66

      76

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.13

    Factoring

    Factor the following binomials completely.

    1. 162  3  z   

    2. 33 1258   r t    

    3.1212 nm    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    57/66

      77

    4. 3)(1000   r q  

    5.15105243   cba    

    6. 1287 q  

    7. 333 )()(   nmnm    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    58/66

      78

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.14

    Factoring

    Express the following trinomials in factored form.

    1. 7132  24   z  z   

    2.422244 81818   ccbaba    

    3.2345 20244   nmnmm    

    4. 45122   cc  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    59/66

      79

    5. 569180   2   hh  

    6. 49284  2   aa  

    7. 25309  24   k k   

    8.100

    81

    25

    36

    25

    16   2   y y  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    60/66

      80

    NAME:___________________________________ DATE:_____________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.15

    Factoring

    Factor the following expressions completely.

    1. 81)2(18)2(   2   y x y x  

    2. qqnn  p pmm   22 44    

    3. 2022  xy y x  

    4. 562   aa qq  

    5. 257049   2   mm  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    61/66

      81

    6.16

    14  2 t t   

    7. 256036   2   z  z   

    8. 22 7176   vuvu    

    9. 15a4 b

    4 + 7a

    2 b

    2c

    2  –  2c

    10. 14x6y

    2 + 41x

    3yz + 15z

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    62/66

      82

    NAME:___________________________________ DATE:___________

    INSTRUCTOR:____________________________ SECTION:_________

    Activity No. 2.16

    Factoring

    Factor the following by grouping, by adding or subtracting a monomial term or by syntheticdivision.

    1.222 496   t  srsr     

    2.222

    91249   z  yz  y x    

    3. decebecd cbc   161281296  2  

    4.3322 2   bababa    

    5.4224 716   d d cc    

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    63/66

      83

    6. 25164   24   x x  

    7. 20918   2   x x  

    8. 122  23   x x x  

    9. 653856   234   y y y y  

    10. 24 )23(     x x  A. Factor the following by taking out the common factors.

    1.7456 742   nmnm    

    2. 8910 483276   y y y    

    B. Factor the following binomials completely.

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    64/66

      84

    1. 400121   2  p  

    2.246 4936   u z v    

    Factor the following binomials completely.

    1. 162   3  z   

    2.33 1258   r t    

    Express the following trinomials in factored form.

    1. 7132  24   z  z   

    2.

    422244

    81818   ccbaba    

    Factor the following expressions completely.

    1. 81)2(18)2(   2   y x y x  

    2. qqnn  p pmm   22 44    

    Factor the following by grouping, by adding or subtracting a monomial term or by synthetic

    division.

    1. 222 496   t  srsr     

    2. 222 91249   z  yz  y x    

    3. decebecd cbc   161281296  2

     

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    65/66

      85

    4. 3322 2   bababa    

    5.4224 716   d d cc    

    6. 25164   24   x x  

    7. 20918   2   x x  

    8. 122  23   x x x  

    9. 653856   234   y y y y  

  • 8/17/2019 CHAPTER 2 (Math 10-3)

    66/66

    10.24

    )23(     x x