chapter 2 macromechanical analysis of a lamina 3d stiffness and compliance matrices dr. autar kaw...

43
EML 4230 Introduction to Composite Materials Chapter 2 Macromechanical Analysis of a Lamina 3D Stiffness and Compliance Matrices Dr. Autar Kaw Department of Mechanical Engineering University of South Florida, Tampa, FL 33620 Courtesy of the Textbook Mechanics of Composite Materials by Kaw

Upload: russell-joshua-mcdowell

Post on 14-Dec-2015

247 views

Category:

Documents


1 download

TRANSCRIPT

EML 4230 Introduction to Composite Materials

Chapter 2 Macromechanical Analysis of a Lamina

3D Stiffness and Compliance Matrices

Dr. Autar KawDepartment of Mechanical Engineering

University of South Florida, Tampa, FL 33620

Courtesy of the TextbookMechanics of Composite Materials by Kaw

Lamina and Laminate

FIGURE 2.1Typical laminate made of three laminas

Compliance Matrix [S] for General Material

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Stiffness Matrix [C] for General Material

Stiffness matrix [C] has 36 constants

γ

γ

γ

ε

ε

ε

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Compliance Matrix [S] for Isotropic Materials

τ

τ

τ

σ

σ

σ

SS

SS

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Stiffness Matrix [C] for Isotropic Materials

τ

τ

τ

σ

σ

σ

CC

CC

CC

CCC

CCC

CCC

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Compliance Matrix [S] for Isotropic Materials

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

Stiffness Matrix [C] for Isotropic Materials

,

G00000

0G0000

00G000

000

)+)(12-(1

)-E(1

)+)(12-(1

E

)+)(12-(1

E

000

)+)(12-(1

E

)+)(12-(1

)-E(1

)+)(12-(1

E

000

)+)(12-(1

E

)+)(12-(1

E

)+)(12-(1

)-E(1

=

xy

zx

yz

z

y

x

xy

zx

yz

z

y

x

Compliance Matrix [S] for Anisotropic Material

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Stiffness Matrix [C] for Anisotropic Material

Stiffness matrix [C] has 36 constants

γ

γ

γ

ε

ε

ε

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

Compliance Matrix [S] for Anisotropic Material

Stiffness Matrix [C] for Anisotropic Material

Monoclinic Materials

FIGURE 2.11Transformation of coordinate axes for 1-2plane of symmetry for a monoclinic material

Monoclinic Materials

FIGURE 2.12Deformation of a cubic elementmade of monoclinic material

Monoclinic Materials

FIGURE 2.13A unidirectional lamina as amonoclinic material with fibersarranged in a rectangular array

Compliance Matrix [S] for Monoclinic Materials

τ

τ

τ

σ

σ

σ

SSSS

SS

SS

SSSS

SSSS

SSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66362616

5545

4544

36332313

26232212

16131211

12

31

23

3

2

1

00

0000

0000

00

00

00

Stiffness Matrix [C] for Monoclinic Materials

γ

γ

γ

ε

ε

ε

CCCC

CC

CC

CCCC

CCCC

CCCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

66362616

5545

4544

36332313

26232212

16131211

12

31

23

3

2

1

00

0000

0000

00

00

00

Compliance Matrix [S] for Monoclinic Materials

Stiffness Matrix [C] for Monoclinic Materials

Orthotropic Materials

FIGURE 2.14Deformation of a cubic element madeof orthotropic material

Compliance Matrix [S] for Orthotropic Materials

τ

τ

τ

σ

σ

σ

S

S

S

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

Stiffness Matrix [C] for Orthotropic Materials

γ

γ

γ

ε

ε

ε

C

C

C

CCC

CCC

CCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

Compliance Matrix [S] for Orthotropic Materials

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

12

31

23

33

32

3

31

2

23

22

21

1

13

1

12

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

Stiffness Matrix [C] for Orthotropic Materials

γ

γ

γ

ε

ε

ε

G

G

G

EEEEEE

EEEEEE

EEEEEE

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

12

31

23

21

2112

31

311232

32

322131

31

311232

31

3113

32

312321

32

322131

32

312321

32

3223

12

31

23

3

2

1

00000

00000

00000

0001

0001

0001

Transversely Isotropic Materials

FIGURE 2.15A unidirectional lamina as atransversely isotropic material withfibers arranged in a rectangular array

Compliance Matrix [S] for Transversely Isotropic Materials

τ

τ

τ

σ

σ

σ

S

S

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

55

55

)2322

222312

232212

121211

12

31

23

3

2

1

00000

00000

00(2000

000

000

000

Stiffness Matrix [C] for Transversely Isotropic Materials

γ

γ

γ

ε

ε

ε

C

C

CC

CCC

CCC

CCC

=

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

55

55

2322

222312

232212

121211

12

31

23

3

2

1

00000

00000

00

2

000

000

000

000

Compliance Matrix [S] for Transversely Isotropic Materials

Stiffness Matrix [C] for Transversely Isotropic Materials

Compliance Matrix [S] for Isotropic Materials

τ

τ

τ

σ

σ

σ

SS

SS

SS

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Stiffness Matrix [C] for Isotropic Materials

τ

τ

τ

σ

σ

σ

CC

CC

CC

CCC

CCC

CCC

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

1211

1211

1211

111212

121112

121211

12

31

23

3

2

1

)(200000

0)(20000

00)(2000

000

000

000

Compliance Matrix [S] for Isotropic Materials

τ

τ

τ

σ

σ

σ

G

G

G

EEE

EEE

EEE

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

12

31

23

3

2

1

100000

010000

001000

0001

0001

0001

Stiffness Matrix [C] for Isotropic Materials

,

G00000

0G0000

00G000

000

)+)(12-(1

)-E(1

)+)(12-(1

E

)+)(12-(1

E

000

)+)(12-(1

E

)+)(12-(1

)-E(1

)+)(12-(1

E

000

)+)(12-(1

E

)+)(12-(1

E

)+)(12-(1

)-E(1

=

xy

zx

yz

z

y

x

xy

zx

yz

z

y

x

Independent Elastic Constants

Material TypeIndependent Elastic

Constants

Anisotropic 21

Monoclinic 13

Orthotropic 9

Transversely Isotropic 5

Isotropic 2

Plane Stress Assumption

Upper and lower surfaces are free from external loads

0,0, 2 33 13 = 0 =

, 0 = 3 12 33 0,0, FIGURE 2.17Plane stress conditions for a thin plate

Reduction of Compliance Matrix in 3D to 2D for Orthotropic Materials

τ

τ

τ

σ

σ

σ

S

S

S

SSS

SSS

SSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

66

55

44

332313

232212

131211

12

31

23

3

2

1

00000

00000

00000

000

000

000

,

τ

σ

σ

S

SS

SS

=

γ

ε

ε

12

2

1

66

2212

1211

12

2

1

00

0

0

,σS+σS = ε 2231133

Compliance Matrix

Reduction of Stiffness Matrix in 3D to 2D for Orthotropic Materials

γ

ε

ε

Q

QQ

QQ

=

τ

σ

σ

12

2

1

66

2212

1211

12

2

1

00

0

0

,S SS

S = Q2122211

2211

,S SS

S = Q2122211

1212

,S SS

S = Q2122211

1122

S = Q

6666

1

END

15 unknowns

w

v

u

γ

γ

γ

ε

ε

ε

τ

τ

τ

σ

σ

σ

12

31

23

3

2

1

12

31

23

3

2

1

15 equations

0

0

0

Zy

τ

x

τ

z

σ

Yz

τ

x

τ

y

σ

Xz

τ

y

τ

x

σ

yzzxz

yzxyy

zxxyx

EQUILIBRIUM

15 equations

STRESS-STRAIN

τ

τ

τ

σ

σ

σ

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

SSSSSS

=

γ

γ

γ

ε

ε

ε

12

31

23

3

2

1

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

3

2

1

15 equations

COMPATIBILITY

zyxzyx

zxzx

zyxyzx

zyyz

zyxxzy

yxxy

xyxzyzz

xzxz

xyxzyzy

yzzy

xyxzyzx

xyyx

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

END