chapter 2: em waves and propertiesand other radiations if any) is an electromagnetic disturbance in...

36
2/27/2020 Electromagnetism 1 Chapter 2: EM Waves and properties

Upload: others

Post on 16-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • 2/27/2020 Electromagnetism 1

    Chapter 2: EM Waves and properties

  • Waves, a reminder

    2/27/2020 Electromagnetism 2

  • 2/27/2020 3

    Trough or

    deep

    Wave is a disturbance propagating though a medium. The disturbance moves, but the

    medium itself does not. Physical waves come in two

    varieties: transverse and longitudinal and are characterized by three

    parameters: amplitude, frequency, and wavelength.

    Both varieties are described by the same periodic function ๐œ“ ๐‘ฅ,๐‘ก = ๐‘“(๐‘ฅ ยฑ ๐‘ฃ๐‘ก), where ๐‘ฃ is the propagation velocity of the wave (disturbance/perturbation).

    https://phet.colorado.edu/en/simulations/category/physics/sound-and-waves

    Wave characteristics (1):

    https://phet.colorado.edu/en/simulations/category/physics/sound-and-waves

  • 2/27/2020 Electromagnetism 4

    ๐œ“

    ๐‘†

    ๐‘ฅ๐‘กโ€ฒ

    ๐‘ฅ๐‘ก

    ๐‘ฅ

    ๐‘†โ€ฒ

    ๐‘ฃ

    ๐‘ฃ๐‘ก

    ๐‘๐‘  ๐‘๐‘ 

    The disturbance ๐œ“ (its nature is not important) which moves in the positive ๐‘ฅ direction with a constant velocity ๐‘ฃ, and must be a function of both positions ๐‘ฅ and time ๐‘ก and can be expressed as ๐œ“ = f x, t . The shape of ๐œ“ at any instance, say at ๐‘ก = 0, can be found by holding time constant at that value, i.e.:

    ๐œ“ = ศf x, t ๐‘ก=0=f x, 0 = f x

    Representing the shape or profile of the wave at that time point.

    Wave characteristics (2):

    ๐‘ฅ๐‘กโ€ฒ

  • 2/27/2020 Electromagnetism 5

    Propagation of a pulse on a spring. The section of

    the spring moves up and down as the pulse travels

    from left to right.

    In a way, the process is analogous to โ€œtakingโ€ a

    โ€œphotographโ€ of the disturbance as it travels by.

  • 2/27/2020 Electromagnetism 6

    Wave characteristics (3):

    Hence, for instance, ๐œ“ ๐‘ฅ, ๐‘ก = ๐œ“0๐‘’โˆ’(๐‘ฅโˆ’๐‘ฃ๐‘ก)2 is a bell-shaped wave, traveling in the

    positive ๐‘ฅ direction with a speed ๐‘ฃ.

    Relating to ๐œ“ (not deformed through space) in coordinate system ๐‘†โ€ฒ, which travels with the pulse at a speed ๐‘ฃ, ๐œ“ is no longer a function of time, and as we move along with ๐‘†โ€ฒ, we see a stationary constant profile with the same functional form as at๐‘ก = 0, i.e. ๐œ“ = ศ๐‘“ x, t ๐‘ก=0=๐‘“ x, 0 =๐‘“ x but for xโ€ฒ, ๐œ“ = ๐‘“ xโ€ฒ

    According to the figure above, xโ€ฒ= x๐‘ก -๐‘ฃ๐‘ก. Hence ๐œ“ can be written in terms of the variables associated with the stationary ๐‘† system as:

    ๐œ“ ๐‘ฅ, ๐‘ก = ๐‘“(๐‘ฅ โˆ’ ๐‘ฃ๐‘ก)

    This then, represents the most general form of one-dimensional wave function.

    It should be emphasized that one should only choose the shape (function), say

    j(x), and then substitute (๐‘ฅ โˆ’ ๐‘ฃ๐‘ก) for ๐‘ฅ in j(x), to make it a wave.

  • 2/27/2020 Electromagnetism 7

    Wave characteristics (4):

    Does ๐œ“ ๐‘ฅ, ๐‘ก = ๐‘“ ๐‘ฅ ยฑ ๐‘ฃ๐‘ก = f u indeed addresses the partial wave function?

    To prove that, we apply the chain rule for derivation [i.e. ๐‘‘๐‘ฆ

    ๐‘‘๐‘ฅ=

    ๐‘‘๐‘ฆ

    ๐‘‘๐‘ข

    ๐‘‘๐‘ข

    ๐‘‘๐‘ฅ]. In our case:

    ๐œ•๐‘ข

    ๐œ•๐‘ฅ= 1 and

    ๐œ•๐‘ข

    ๐œ•๐‘ก= ยฑ๐‘ฃ.

    Then:๐œ•๐œ“

    ๐œ•๐‘ฅ=

    ๐œ•๐œ“

    ๐œ•๐‘ข

    ๐œ•๐‘ข

    ๐œ•๐‘ฅ=

    ๐œ•๐œ“

    ๐œ•๐‘ขand

    ๐œ•๐œ“

    ๐œ•๐‘ก=

    ๐œ•๐œ“

    ๐œ•๐‘ข

    ๐œ•๐‘ข

    ๐œ•๐‘ก= ยฑ๐‘ฃ

    ๐œ•๐œ“

    ๐œ•๐‘ข

    Next, taking the second derivatives, one gets:

    Combining both results, a and b, to eliminate ๐œ•2๐œ“

    ๐œ•๐‘ข2, we get:

    ๐œ•2๐œ“

    ๐œ•๐‘ฅ2=

    1

    ๐‘ฃ 2๐œ•2๐œ“

    ๐œ•๐‘ก2

    Proving that ๐œ“ ๐‘ฅ, ๐‘ก = ๐‘“ ๐‘ฅ ยฑ ๐‘ฃ๐‘ก is a solution of the partial differential wave equation, independent of the form of the function ๐‘“.

    ๐œ•2๐œ“

    ๐œ•๐‘ฅ2=

    ๐‘‘

    ๐‘‘๐‘ข

    ๐œ•๐œ“

    ๐œ•๐‘ฅ

    ๐œ•๐‘ข

    ๐œ•๐‘ฅ=

    ๐‘‘2๐œ“

    ๐‘‘๐‘ข2[a] ๐‘Ž๐‘›๐‘‘

    ๐œ•2๐œ“

    ๐œ•๐‘ก2=

    ๐‘‘

    ๐‘‘๐‘ข

    ๐œ•๐œ“

    ๐œ•๐‘ก

    ๐œ•๐‘ข

    ๐œ•๐‘ก= ยฑ๐‘ฃ โˆ™

    ๐œ•2๐œ“

    ๐œ•๐‘ข2โˆ™ ยฑ๐‘ฃ = ๐‘ฃ 2

    ๐œ•2๐œ“

    ๐œ•๐‘ข2[b]

  • 2/27/2020 Electromagnetism 8

    Wave characteristics (5): The vector significance of the wave number เดค๐‘˜

    This yields a plane to which เดค๐‘˜ must be perpendicular to and าง๐‘Ÿ๐‘– is the position of each point ๐‘๐‘– on this plane in respect to a given origin).

    ๐œ†

    ๐œƒ๐‘–

    ๐‘๐‘–

    Plane wavefront, เดฅ๐’Œ, เดฅ๐’“๐‘– and ๐’Œ โˆ™ เดค๐’“ = constant

    A wave front (upper figure) is a surface on

    which points ๐‘๐‘– are affected in the sameway by a wave at a given time.

    In other words: the surface on which points have

    identical phases, i.e. ฯ• = เดค๐‘˜ โˆ™ าง๐‘Ÿ ยฑ ๐œ”๐‘ก = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก [like

    potential surface in electrostatics] for a given time

    point.

    Wavefront for a harmonic plane wave

    A representative wave ๐œ“ ๐‘Ÿ and corresponding plane wave fronts are given in the lower figure.

    The shortest form of the equation of a plane perpendicular

    to เดฅ๐’Œ is: เดฅ๐’Œ โˆ™ เดค๐’“ = constant, i.e.

    The product เดค๐‘˜ โˆ™ าง๐‘Ÿ๐‘– = ๐‘˜๐‘Ÿ๐‘๐‘œ๐‘ ๐œƒ๐‘– must be the same for every าง๐‘Ÿ๐‘– (เดค๐‘˜ ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก).

  • 2/27/2020 Electromagnetism 9

    Wave fronts: plane (a), cylindrical (b) and spherical (c ). A-F 699

    ๐‘

    Wave characteristics (6): Various shapes of waveforms

  • 1. Plane electromagnetic wave in an unbound medium

    1.1 Plane Wave in a Simple, Source-Free ๐œŒ, ๐ฝ, ๐‘, โ„ณ = 0 and Lossless Medium

    Where ๐œŒ is the volume density of free net charge, ๐ฝ is the current surface density, ๐‘ is

    the polarization vector in dielectric (Coulombsโˆ™ ๐‘šโˆ’2) and โ„ณ is the volume Magnetization density vector (Ampereโˆ™ ๐‘šโˆ’1) in magnetic medium.

    1.1.1 ๐›ป ร— ๐ธ= -๐œ•๐ต

    ๐œ•๐‘ก

    1.1.3 ๐›ป ร— ๐ต= - ๐œ‡0๐œ€0๐œ•๐ธ

    ๐œ•๐‘ก

    1.1.2 ๐›ป โˆ™ ๐ธ= -๐œŒ

    ๐œ€0

    1.1.4 ๐›ป โˆ™ ๐ต = 0

    2/27/2020 Electromagnetism 10

    Our starting point consists of the 4 differential Maxwell equations:

    The two curl Maxwellโ€™s equations indicate the fact that changing Magnetic Field with

    time (1.1.1) produces Electric Fields and vice versa (1.1.3) and hence, necessarily

    lead to propagation of electromagnetic waves.

  • 2/27/202011

    Taking the curl of 1.1.1 and substituting it into the right side of 1.1.3 gives:

    ๐›ป ร— ๐›ป ร— ๐ธ = โˆ’๐œ•

    ๐œ•๐‘ก๐›ป ร— ๐ต = โˆ’

    ๐œ•

    ๐œ•๐‘ก( โˆ’ ๐œ‡0๐œ€0

    ๐œ•๐ธ

    ๐œ•๐‘ก) =๐œ‡0๐œ€0

    ๐œ•2๐ธ

    ๐œ•๐‘ก2

    Vector analysis teaches that ๐›ป ร— ๐›ป ร— ๐ธ = ๐›ป(๐›ป โˆ™ ๐ธ) + ๐›ป2๐ธ = ๐›ป2๐ธ since ๐›ป โˆ™ ๐ธ = ๐œŒ = 0 one gets:

    ๐›ป2๐ธ = ๐œ‡0๐œ€0๐œ•2๐ธ

    ๐œ•๐‘ก2[2]

    We identify Equations 2 and 3 as differential wave equations for ๐ธ and for ๐ต

    Similarly, taking the curl of 1.1.3 and substituting Eq. 1.1.1 into itโ€™s right side gives:

    ๐›ป ร— ๐›ป ร— ๐ต = โˆ’๐œ‡0๐œ€0๐œ•

    ๐œ•๐‘ก(๐›ป ร— ๐ธ)= โ†’ ๐ธ๐‘ž. 1.1.1 = โˆ’๐œ‡0๐œ€0

    ๐œ•

    ๐œ•๐‘ก(โˆ’๐œ•๐ต

    ๐œ•๐‘ก) = ๐œ‡0๐œ€0

    ๐œ•2๐ต

    ๐œ•๐‘ก2

    Again, ๐›ป ร— ๐›ป ร— ๐ต = ๐›ป(๐›ป โˆ™ ๐ต) + ๐›ป2๐ต = ๐›ป2๐ต and, since ๐›ป โˆ™ ๐ต = 0 , one gets:

    ๐›ป2๐ต = ๐œ‡0๐œ€0๐œ•2๐ต

    ๐œ•๐‘ก2[3]

    1.1.1 ๐›ป ร— ๐ธ= -๐œ•๐ต

    ๐œ•๐‘ก

    1.1.3 ๐›ป ร— ๐ต= - ๐œ‡0๐œ€0๐œ•๐ธ

    ๐œ•๐‘ก

  • 2/27/2020 Electromagnetism 12

    Hence in Vacuum, Maxwell Equations teaches that each of the Cartesian (scalar) components of ๐ธ and ๐ต obeys the three-dimensional wave equation:

    6 2 12 1 1 1 2 2 20 0

    9 8

    1 1

    1.2566 10 8.8541878 10 ( sec )

    0.29979 10 3 10 300,000sec sec sec

    cm kg C N kg m m C

    m m km

    Maxwellโ€™s speculation : โ€œThis velocity is so nearly that of light (measured by Fizeau (1849): 313,300

    km/second, M.D.), that it seems we have strong reason to conclude that light itself (including radiant heat,

    and other radiations if any) is an electromagnetic disturbance in the form of waves propagated through

    the electromagnetic field according to electromagnetic laws.โ€

    Further more, Maxwell Equations imply that:

    1. electromagnetic waves indeed propagate in vacuum and

    2. these waves travels at the speed c:

    22

    2 2

    1 ff

    v t

  • 2/27/2020 Electromagnetism 13

    History intermezzo:

    In 1849, Fizeau calculated a value for the speed of light to a better precision than

    the previous value determined by Ole Romer in 1676. He used a beam of light

    reflected from a mirror 8 kilometers away. The beam passed through the gaps

    between teeth of a rapidly rotating wheel. The speed of the wheel was increased

    until the returning light passed through the next gap and could be seen.

    Hippolyte Fizeau 1819-1896

    James Clerk Maxwell 1831โ€“1879

    Maxwell: โ€œThis velocity is so nearly that of light, that it seems we have strong reasonto conclude that light itself (including radiant heat, and other radiations if any) is anelectromagnetic disturbance in the form of waves propagated through theelectromagnetic field according to electromagnetic laws.โ€

    Einstein on Maxwellโ€™s work: โ€œmost profound and the most fruitful that physics has experienced since the time of Newton .โ€

  • 2/27/2020 Electromagnetism 14

    Many of the problems of mathematical physics involve the solution of partial differential equations. In electromagnetics, these can be generally divided into two types of second order partial differential equations:

    Poissonโ€™s equation: ๐œต๐Ÿ๐’– = ๐’‡(๐’™,๐’š,๐’›), where u may present the same physical quantities listed for Laplaceโ€™s equation, but in regions containing matter/electric charges, etc. The function ๐’‡ ๐’™,๐’š,๐’› is called โ€˜the source densityโ€™, for instance in electricity it is related to ๐œŒ๐‘’ .

    Laplaceโ€™s equation: ๐œต๐Ÿ๐’– = ๐ŸŽ, where the function u might describe the gravitational/electrical potential functions in no-matter/charge region and steady state temperature in a non-heat source region as well.

    Diffusion of heat flow equation: ๐œต๐Ÿ๐’– =๐Ÿ

    ๐œถ๐Ÿ๐๐’–

    ๐๐’•, where u may present non-steady state temperature in a

    non-heat source region or the concentration of diffusing material. ๐›ผ is a constant which is defined as the diffusivity.

    Wave equation: ๐œต๐Ÿ๐’– =๐Ÿ

    ๐’—๐Ÿ๐๐Ÿ๐’–

    ๐๐Ÿ๐’•, where u may present the displacement from equilibrium of (a) vibrating

    string/membrane, or (in acoustics) the vibrating medium (gas, liquid, solid), of (b) the electrical current or

    potential along a transmission line and of (c) the components ๐ธ and ๐ต of an electromagnetic wave.

    Partial differential equations, a reminder:

  • 2/27/2020 Electromagnetism 15

    We will analyze the case of the differential wave equation for ๐ธ (Equation 2). First, let us write the full expression: (Equation 2):

    2 2 2 2 2 22

    2 2 2 2 2 2

    2 2 2

    2 2 2

    2

    2 2

    ห† ห†( , , , ) ( , , , )

    ห†( , , , )

    1ห† ห† ห†( , , , ) ( , , , ) ( , , , )

    x y

    z

    x y z

    E E x y z t x E x y z t yx y z x y z

    E x y z t zx y z

    E x y z t x E x y z t y E x y z t zc t

    So the wave equation independently holds true for each of the components of the vector field เดค๐ธ . For convenience, we shall solve the scalar wave equation for ๐ธ๐‘‹:

    2 2 2 2

    2 2 2 2 2

    1( , , , ) ( , , , )x xE x y z t E x y z t

    x y z c t

  • 2/27/2020 Electromagnetism 16

    2 2 2 2

    2 2 2 2 2

    1( , , , ) ( , , , ) [4]x xE x y z t E x y z t

    x y z c t

    One way, very much popular in physics, to solve said partial differential equations, is by the method of SEPARATION OF VRIABLES.

    ๐‘‹โ€ฒโ€ฒ ๐‘ฅ ๐‘Œ ๐‘ฆ ๐‘ ๐‘ง ๐‘‡(๐‘ก) + ๐‘‹ ๐‘ฅ ๐‘Œโ€ฒโ€ฒ ๐‘ฆ ๐‘ ๐‘ง ๐‘‡(๐‘ก) + ๐‘‹ ๐‘ฅ ๐‘Œ ๐‘ฆ ๐‘โ€ฒโ€ฒ ๐‘ง ๐‘‡(๐‘ก) = 1

    ๐‘2๐‘‹ ๐‘ฅ ๐‘Œ ๐‘ฆ ๐‘ ๐‘ง แˆท๐‘‡ ๐‘ก [6]

    Dividing Eq. 6 by ๐‘‹ ๐‘ฅ ๐‘Œ ๐‘ฆ ๐‘ ๐‘ง T t ๐‘ฆ๐‘–๐‘’๐‘™๐‘‘๐‘ :๐‘‹โ€ฒโ€ฒ

    ๐‘‹+๐‘Œโ€ฒโ€ฒ

    ๐‘Œ+ ๐‘โ€ฒโ€ฒ

    ๐‘=

    1

    ๐‘2

    แˆท๐‘‡

    ๐‘‡[7]

    Since Eq. [7] holds true for every point in space (each value of x, y and z) and for every time point, each of the components of Eq. 7 must equal constant. This is to say:

    ๐‘‹โ€ฒโ€ฒ

    ๐‘‹= โˆ’๐‘Ž2;

    ๐‘Œโ€ฒโ€ฒ

    ๐‘Œ= โˆ’๐‘2 ;

    ๐‘โ€ฒโ€ฒ

    ๐‘= โˆ’๐‘‘2 and

    1

    ๐‘2

    แˆท๐‘‡

    ๐‘‡= โˆ’๐‘˜2 8

    Introducing Eq. 5 into 4 yields:

    The basic strategy is: looking for a solution in the form of products of functions, of which each depends on only one of the coordinates. That is to say:

    ๐‘ฌ ๐’™,๐’š,๐’›, = ๐‘ฟ ๐’™ ๐’€ ๐’š ๐’ ๐’› ๐“(๐ญ) [5]

    Rewriting Eq. 7 one gets:

  • 2/27/2020 Electromagnetism 17

    ๐‘‹โ€ฒโ€ฒ

    ๐‘‹= โˆ’๐‘Ž2โŸน๐‘‹โ€ฒโ€ฒ+๐‘Ž2๐‘‹ = 0 ; and similarly ๐‘Œโ€ฒโ€ฒ+๐‘2๐‘Œ = ๐‘‚ ; and ๐‘โ€ฒโ€ฒ+๐‘‘2๐‘ = ๐‘‚ ; ๐‘Ž๐‘›๐‘‘

    1

    ๐‘2

    แˆท๐‘‡

    ๐‘‡= โˆ’๐‘˜2โŸน ๐‘‡โ€ฒโ€ฒ+๐‘˜2๐‘2๐‘‡ = 0

    Therefore, the solutions of the ratio functions in [8] are to describe harmonic function, i.e. sines, cosines, and their combination. We choose the following

    X=๐‘’๐‘–๐‘Ž๐‘ฅ ; Y=๐‘’๐‘–๐‘๐‘ฆ ; Z=๐‘’๐‘–๐‘‘๐‘ง and T=๐‘’๐‘–๐‘˜๐‘๐‘ก. Consequently,

    ๐‘ฌ ๐’™, ๐’š, ๐’›, = ๐‘ฟ ๐’™ ๐’€ ๐’š ๐’ ๐’› ๐“(๐ญ)= ๐ธ0๐‘’๐‘–(๐‘Ž๐‘ฅ+๐‘๐‘ฆ+๐‘‘๐‘งโˆ’๐‘˜๐‘๐‘ก) = = ๐ธ0๐‘’

    ๐‘– (๐‘Ž๐‘ฅ เทœ๐‘ฅ+๐‘๐‘ฆ เทœ๐‘ฆ+๐‘‘๐‘ง ฦธ๐‘ง โˆ™ ๐‘ฅ เทœ๐‘ฅ+๐‘ฆ เทœ๐‘ฆ+๐‘ง ฦธ๐‘ง โˆ’๐‘˜๐‘๐‘ก] =

    = ๐‘ฌ๐ŸŽ๐’†๐’Š(เดฅ๐’Œโˆ™เดค๐’“โˆ’๐’Œ๐’„๐’•), where ๐‘˜ โ†’ เดค๐‘˜ โ‰ก ๐‘Ž๐‘ฅ เทœ๐‘ฅ + ๐‘๐‘ฆ เทœ๐‘ฆ + ๐‘‘๐‘ง ฦธ๐‘ง

    Since the multiplicity ๐’Œ๐’„๐’• must result in an angle (in radians), i. e. ๐’Œ๐’„๐’•=๐œ”๐‘ก โŸน ๐‘˜ =๐œ”

    ๐‘=

    2๐œ‹๐‘“

    ๐œ†๐‘“โŸน ๐‘˜ =

    2๐œ‹

    ๐œ†and ๐œ” =

    2๐œ‹

    ๐‘‡

    where T is defined as the cycle (period) time.

    We choose the constants to be negative: โˆ’๐‘˜2 and not positive +๐‘˜2 , since the latter results in a nonphysical solution:

    ๐‘‹โ€ฒโ€ฒ

    ๐‘‹= เต

    +๐‘˜2โŸน ๐‘Ž2 = ๐‘˜2; ๐‘Ž = ๐‘˜ โŸน ๐‘‹ ๐‘ฅ โˆ ๐‘’๐‘˜๐‘ฅ, ๐‘Ž ๐‘›๐‘œ๐‘› ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›

    โˆ’๐‘˜2โŸน ๐‘Ž2 = โˆ’๐‘˜2; ๐‘Ž = ยฑ๐‘–๐‘˜ โŸน ๐‘‹ ๐‘ฅ โˆ ๐‘’ยฑ๐‘–๐‘˜๐‘ฅ, ๐‘Ž ๐‘โ„Ž๐‘ฆ๐‘ ๐‘–๐‘๐‘Ž๐‘™ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘›

    or ๐‘ฌ ๐’™, ๐’š, ๐’›, can be ๐‘ฌ๐ŸŽ๐’„๐’๐’” เดฅ๐’Œ โˆ™ เดค๐’“ โˆ’ ๐’Œ๐’„๐’• ; ๐‘ฌ๐ŸŽ๐’”๐’Š๐’ เดฅ๐’Œ โˆ™ เดค๐’“ โˆ’ ๐’Œ๐’„๐’• or a combination of them, where เดฅ๐’Œ โˆ™ เดค๐’“ โˆ’ ๐’Œ๐’„๐’• โ‰ก ๐’˜๐’‚๐’—๐’† ๐’‘๐’‰๐’‚๐’”๐’†

    โˆ’โˆž < ๐‘ฅ < โˆž

  • 2/27/2020 Electromagnetism 18

    The relation between เดค๐ธ, เดค๐ต, ๐‘Ž๐‘›๐‘‘ เดค๐‘˜ ๐‘–๐‘› ๐‘ฃ๐‘Ž๐‘๐‘ข๐‘ข๐‘š (1):

    Taking เดค๐ธ ๐‘ฅ, ๐‘ฆ, ๐‘ง, = เดค๐ธ0๐‘’๐‘–(เดค๐‘˜โˆ™ าง๐‘Ÿโˆ’๐œ”๐‘ก), then perfoming the operations ๐›ป ร— ๐ธ= -

    ๐œ•๐ต

    ๐œ•๐‘กof Eq. 1.1.1 we get:

    ๐›ป ร— ๐ธ= ๐›ป ร— เดค๐ธ0๐‘’๐‘–(เดค๐‘˜โˆ™ าง๐‘Ÿโˆ’๐œ”๐‘ก) = ๐‘๐‘ข๐‘Ÿ๐‘™ ๐ธ๐‘œ๐‘ฅ เทœ๐‘ฅ + ๐ธ๐‘œ๐‘ฆ เทœ๐‘ฆ + ๐ธ๐‘œ๐‘ง ฦธ๐‘ง ๐‘’

    ๐‘– ๐‘˜๐‘ฅ๐‘Ÿ๐‘ฅ+๐‘˜๐‘ฆ๐‘Ÿ๐‘ฆ+๐‘˜๐‘ง๐‘Ÿ๐‘งโˆ’๐œ”๐‘ก =

    = เทœ๐‘ฅ๐œ•๐ธ๐‘ง

    ๐œ•๐‘ฆโˆ’

    ๐œ•๐ธ๐‘ฆ

    ๐œ•๐‘ง+ เทœ๐‘ฆ

    ๐œ•๐ธ๐‘ฅ

    ๐œ•๐‘งโˆ’

    ๐œ•๐ธ๐‘ง

    ๐œ•๐‘ฅ+ ฦธ๐‘ง

    ๐œ•๐ธ๐‘ฆ

    ๐œ•๐‘ฅโˆ’

    ๐œ•๐ธ๐‘ฅ

    ๐œ•๐‘ฆ=

    = ๐‘– เทœ๐‘ฅ ๐‘˜๐‘ฆ๐ธ๐‘ง โˆ’ ๐‘˜๐‘ง๐ธ๐‘ฆ + เทœ๐‘ฆ ๐‘˜๐‘ฅ๐ธ๐‘ฅ โˆ’ ๐‘˜๐‘ฅ๐ธ๐‘ง + ฦธ๐‘ง ๐‘˜๐‘ฅ๐ธ๐‘ฆ โˆ’ ๐‘˜๐‘ฆ๐ธ๐‘ฅ = ๐‘–เดค๐‘˜ ร— ๐ธ=-๐œ•๐ต

    ๐œ•๐‘ก= ๐‘–๐œ”๐ต

    เดค๐‘˜ ร— ๐ธ = ๐œ”๐ต [9]

    From [9] we conclude that in electromagnetic waves in vacuum:

    1. ๐ต ๐‘–๐‘  ๐‘๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ก๐‘œ ๐‘๐‘œ๐‘กโ„Ž ๐ธ and เดค๐‘˜

    2. ๐ธ =๐œ”

    ๐‘˜๐ต =

    ๐œ†

    ๐‘‡๐ต = ๐‘๐ต ; ๐‘–. ๐‘’. ๐‘ฌ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘’๐‘  ๐’„ ๐’•๐’Š๐’Ž๐’†๐’” ๐‘ฉ ๐‘–๐‘› ๐‘ฃ๐‘Ž๐‘๐‘ข๐‘ข๐‘š.

  • 2/27/2020 Electromagnetism 19

    ๐›ป ร— ๐ต = โˆ’ ๐œ‡0๐œ€0๐œ•๐ธ

    ๐œ•๐‘ก= โˆ’

    1

    ๐‘2๐œ•๐ธ

    ๐œ•๐‘กโŸถ เดค๐‘˜ ร— ๐ต =

    ๐œ”

    ๐‘2๐ธ = ๐‘˜ ร— ๐ต =

    ๐œ”

    ๐‘˜

    ๐‘2๐ธ =

    1

    ๐‘๐ธ [10]

    The relation between เดค๐ธ, เดค๐ต, ๐‘Ž๐‘›๐‘‘ เดค๐‘˜ ๐‘–๐‘› ๐‘ฃ๐‘Ž๐‘๐‘ข๐‘ข๐‘š (2):

    Taking เดค๐ต ๐‘ฅ, ๐‘ฆ, ๐‘ง, = เดค๐ต0๐‘’๐‘–(เดค๐‘˜โˆ™ าง๐‘Ÿโˆ’๐œ”๐‘ก), then perfoming the operations ๐›ป ร— ๐ต= - ๐œ‡0๐œ€0

    ๐œ•๐ธ

    ๐œ•๐‘กof Eq. 1.1.3 we similarly get:

    From [10] we conclude that in electromagnetic waves in vacuum:

    1. ๐ธ ๐‘–๐‘  ๐‘๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ก๐‘œ ๐‘๐‘œ๐‘กโ„Ž ๐ต and เดค๐‘˜

    2. ๐ธ =๐œ”

    ๐‘˜๐ต =

    ๐œ†

    ๐‘‡๐ต = ๐‘๐ต ; ๐‘–. ๐‘’. ๐‘ฌ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘’๐‘  ๐’„ ๐’•๐’Š๐’Ž๐’†๐’” ๐‘ฉ.

    3. Conclusion: the vectors ๐ธ ๐ต ๐‘Ž๐‘›๐‘‘ ๐‘˜ ๐‘Ž๐‘Ÿ๐‘’ ๐‘๐‘’๐‘›๐‘‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ก๐‘œ ๐‘’๐‘Ž๐‘โ„Ž ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ, ๐‘–. ๐‘’. ๐‘“๐‘œ๐‘Ÿ๐‘š๐‘–๐‘›๐‘” ๐‘Ž ๐‘Ÿ๐‘–๐‘”โ„Ž๐‘ก โ„Ž๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š.

  • 2/27/2020 Electromagnetism 20

    Except for the amplitudes, are the characteristic constants ๐œ”, ๐‘˜, ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘Ž๐‘š๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐ธ ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘œ๐‘Ÿ ๐ต? Is there phase difference between the wave fields?

    Referring to ๐œ”๐ต ๐‘Ž๐‘›๐‘‘ ๐‘˜๐ต , ๐‘Ž๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘’๐‘™๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’ ๐ต ๐‘Ž๐‘›๐‘‘ ๐‘ก๐‘œ ๐œ”๐ธ ๐‘Ž๐‘›๐‘‘ ๐‘˜๐ธ ๐‘Ž๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘’๐‘™๐‘‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’ ๐‘œ๐‘“ ๐ธ ๐‘œ๐‘›๐‘’ ๐‘”๐‘’๐‘ก ๐‘“๐‘Ÿ๐‘œ๐‘š 9 :

    เดค๐‘˜๐ธ ร— ๐ธ = เดค๐‘˜๐ธ ร— เดค๐ธ0๐‘’๐‘–(เดค๐‘˜๐ธโˆ™ าง๐‘Ÿโˆ’๐œ”๐ธ๐‘ก) = ๐œ”๐ต เดค๐ต0๐‘’

    ๐‘–(เดค๐‘˜๐ตโˆ™ าง๐‘Ÿโˆ’๐œ”๐ต๐‘ก+๐›ฟ) [11],

    ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐›ฟ is the phase difference between the waves.

    The relation between เดค๐ธ, เดค๐ต, ๐‘Ž๐‘›๐‘‘ เดค๐‘˜ ๐‘–๐‘› ๐‘ฃ๐‘Ž๐‘๐‘ข๐‘ข๐‘š (3):

    Next, dividing the left side of Eq. 11 by its right side yields unity (1), and assuming that เดค๐‘˜๐ธ ๐‘–๐‘  ๐‘›๐‘œ๐‘ก ๐‘๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ก๐‘œ ๐ธ and there is angle ๐œƒ๐ธโˆ’๐‘˜ , one gets:

    ๐‘ ๐‘–๐‘›๐œƒ๐ธโˆ’๐‘˜โˆ™๐‘˜๐ธโˆ™๐ธ0

    ๐œ”๐ต๐ต0๐‘’๐‘– (

    เดค๐‘˜๐ธโˆ’เดค๐‘˜๐‘ โˆ™ าง๐‘Ÿโˆ’(๐œ”๐ธโˆ’๐œ”๐ต)๐‘ก+๐›ฟ] โ‰ก 1, [12], ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘Ÿ๐‘ฆ ๐‘ก๐‘–๐‘š๐‘’ ๐‘ก, ๐‘๐‘œ๐‘ ๐‘–๐‘ก๐‘–๐‘œ๐‘› าง๐‘Ÿ , ๐›ฟ ๐‘Ž๐‘›๐‘‘ ๐œƒ๐ธโˆ’๐‘˜.

    This can occur only when: เดค๐‘˜๐ธ = เดค๐‘˜๐‘ = เดค๐‘˜; ๐œ”๐ธ = ๐œ”๐ต = ๐œ”, ๐›ฟ=0 and ๐‘ ๐‘–๐‘›๐œƒ๐ธโˆ’๐‘˜ = 1, ๐‘–. ๐‘’. ๐œƒ๐ธโˆ’๐‘˜ =๐œ‹

    2and it turns out that:

    ๐‘ ๐‘–๐‘›๐œƒ๐ธโˆ’๐‘˜โˆ™๐‘˜๐ธโˆ™๐ธ0

    ๐œ”๐ต๐ต0=

    ๐‘˜๐ธ0

    ๐œ”๐ต0=

    1

    ๐‘

    ๐ธ0

    ๐ต0= 1

  • 0 0 0

    2 2 2 2 2 2

    0 0 0

    2

    ห†ห† ห† ห†1 1ห† ห†4 4 4 4

    1.

    I dl r dq dll r dq dl r dqdB dt l v r

    r dt r c dt dt r c r

    v dE E Bc

    Ein case v c B

    c

    2/27/2020 21

    Biotโ€“Savart law

  • 2/27/2020 Electromagnetism 22

    Can เดค๐ธ ๐‘œ๐‘Ÿ เดค๐ต have a component vibrating in the direction of เดค๐‘˜?

    Suppose a plane front wave propagating towards เทœ๐‘ฅ, ๐‘–. ๐‘’. เดค๐ธ ๐‘ฅ, ๐‘ฆ, ๐‘ง, = เดค๐ธ0๐‘’๐‘–(๐‘˜๐‘ฅ๐‘Ÿ๐‘ฅโˆ’๐œ”๐‘ก), Therefore, on this plane, where

    ๐‘˜๐‘ฅ๐‘Ÿ๐‘ฅ=constant, เดค๐ธ ๐‘Ž๐‘›๐‘‘ เดค๐ต ๐‘Ž๐‘Ÿ๐‘’ independent of x and of y, hence the derivatives ๐œ•

    ๐œ•๐‘ฆ๐‘Ž๐‘›๐‘‘

    ๐œ•

    ๐œ•๐‘งequal 0. Next, since

    div เดค๐ธ = 0 =๐œ•๐ธ๐‘ฅ

    ๐œ•๐‘ฅ+

    ๐œ•๐ธ๐‘ฆ

    ๐œ•๐‘ฆ+

    ๐œ•๐ธ๐‘ง

    ๐œ•๐‘ง=

    ๐œ•๐ธ๐‘ฅ

    ๐œ•๐‘ฅโŸน ๐‘ฌ๐’™ = ๐œ๐จ๐ง๐ฌ๐ญ๐š๐ง๐ญ ๐ข๐ง ๐ฌ๐ฉ๐š๐œ๐ž. Similarly,

    div เดค๐ต = 0 =๐œ•๐ต๐‘ฅ

    ๐œ•๐‘ฅ+

    ๐œ•๐ต๐‘ฆ

    ๐œ•๐‘ฆ+

    ๐œ•๐ต๐‘ง

    ๐œ•๐‘ง=

    ๐œ•๐ต๐‘ฅ

    ๐œ•๐‘ฅโŸน๐‘ฉ๐’™ = ๐œ๐จ๐ง๐ฌ๐ญ๐š๐ง๐ญ ๐ข๐ง ๐ฌ๐ฉ๐š๐œ๐ž. On the other hand:

    = ๐ŸŽ = ๐ŸŽ

    = ๐ŸŽ = ๐ŸŽ๐›ป ร— เดฅ๐ธ =

    เทœ๐‘ฅ เทœ๐‘ฆ ฦธ๐‘ง๐œ•

    ๐œ•๐‘ฅ

    ๐œ•

    ๐œ•๐‘ฆ

    ๐œ•

    ๐œ•๐‘ง

    ๐ธ๐‘‹ ๐ธ๐‘ฆ ๐ธ๐‘ง

    = เทœ๐‘ฅ โˆ™ 0 โˆ’ เทœ๐‘ฆ๐œ•๐ธ๐‘ง

    ๐œ•๐‘ฅ+ เทœ๐’›

    ๐œ•๐ธ๐‘ฆ

    ๐œ•๐‘ฅ= โˆ’ แˆถ๐ต๐‘‹ เทœ๐‘ฅ + แˆถ๐ต๐‘ฆ เทœ๐‘ฆ + แˆถ๐ต๐‘ง ฦธ๐‘ง โŸน แˆถ๐‘ฉ๐‘ฟ = ๐ŸŽ โŸน ๐‘ฉ๐‘ฟ ๐’• = ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’•.

    Conclusion: ๐‘ฌ๐’™ and ๐‘ฉ๐’™ are space and time independent and hence, even not zero, cannot be a wave. That is to say the electromagnetic waves are transverse, whereas the electric and the magnetic fields are perpendicular to each other and

    both, vertical to the direction of propagation (๐‘˜), while in phase and their real amplitudes are related by:

    ๐‘ฉ๐ŸŽ =๐’Œ

    ๐Ž๐‘ฌ๐ŸŽ =

    ๐Ÿ

    ๐’„๐‘ฌ๐ŸŽ.

    The same treatment with ๐›ป ร— เดฅ๐ต =1

    ๐‘2แˆถเดค๐ธ yields: แˆถ๐‘ฌ๐‘ฟ = ๐ŸŽ โŸน ๐‘ฌ๐‘ฟ ๐’• = ๐‘ช๐’๐’๐’”๐’•๐’‚๐’๐’•.

  • 2/27/2020 Electromagnetism 23

    Replacing the minus signs in [e] and Integration over space ๐‘ฝ yields:

    ๐‘ƒ๐‘„,๐‘€ = เถฑ๐‘ฝ

    าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ ๐‘‘๐‘‰ = โˆ’เถฑ

    ๐‘‰

    เดฅ๐ป โˆ™๐œ• เดค๐ต

    ๐œ•๐‘ก+ เดค๐ธ โˆ™

    ๐œ•เดฅ๐ท

    ๐œ•๐‘ก๐‘‘๐‘‰ โˆ’ เถฑ

    ๐‘‰

    ๐‘‘๐‘–๐‘ฃ เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘‰ [๐‘“]

    Generalization of Joule's law, representing the

    rate of power dissipated in the volume ๐‘ฝ.

    Loss (negative sign) rate ofโ€œstoredโ€ electrical and magnetic(static fields) energy within thevolume ๐‘ฝ. The terms in bracketsare the magnetic and electricenergy densities, ๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘’ ,respectively .

    Utilizing divergence theorem this expression equals:

    เถป๐‘ 

    เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘ 

    Conservation of energy dictates that this term must present the flow rate of energy

    inward/outward through the surface ๐‘  enclosing the volume ๐‘‰. Hence, the vectorเดฅ๐ธ ร— เดฅ๐ป is a measure of the rate of energy flow per unit area at any point on the surface ๐‘ .

    ๐๐‘ท๐‘ธ,๐‘ด

    ๐๐‘ฝ=โˆช = โˆ’ าง๐‘ฑ โˆ™ เดฅ๐‘ฌ๐‘ธ,๐‘ด = เดฅ๐‘ฏ โˆ™

    ๐เดฅ๐‘ฉ

    ๐๐’•+ เดฅ๐‘ฌ โˆ™

    ๐เดฅ๐‘ซ

    ๐๐’•+ ๐’…๐’Š๐’— เดฅ๐‘ฌ ร— เดฅ๐‘ฏ [e]

  • 2/27/2020 Electromagnetism 24

    k

    ๐‘…๐‘’๐‘š๐‘’๐‘š๐‘๐‘’๐‘Ÿ: ๐ต ๐‘–๐‘  ๐‘ ๐‘ก๐‘–๐‘š๐‘’๐‘  ๐‘ ๐‘š๐‘Ž๐‘™๐‘™๐‘’๐‘Ÿ ๐‘กโ„Ž๐‘Ž๐‘› ๐ธ

    The electromagnetic wave

  • 2/27/2020 Electromagnetism 25

    Wave characteristics (1): โ€ข ๐œ†= the wavelength or the special period of the wave.

    โ€ข ๐‘‡= the cycle time or the temporal period of the wave.

    โ€ข ๐‘ =๐œ†

    ๐‘‡, velocity (phase velocity) of wave propagation.

    โ€ข ๐‘“ =1

    ๐‘‡๐‘ ๐‘’๐‘โˆ’1 =

    ๐‘

    ๐œ†, the temporal frequency, i.e. how many periods occurs during a unit time.

    โ€ข ๐œ” =2๐œ‹

    ๐‘‡๐‘ ๐‘’๐‘โˆ’1 , the angular temporal frequency, i.e. number of radians per period time โ†’ 2๐œ‹๐‘“ = 2๐œ‹

    ๐‘

    ๐œ†= 2๐œ‹๐‘ ๐œˆ = ๐‘˜๐‘

    โ€ข ๐‘˜ =2๐œ‹

    ๐œ†, the wavenumber, i.e. number of radians per unit distance. ๐œ† is the wavelength. The larger ๐œ†, the smaller k.

    โ€ข ๐œˆ โ‰ก1

    ๐œ†๐‘๐‘šโˆ’1 , the special frequency, i.e. number of waves per unite length (how many wavelengths in a 1 ๐‘๐‘š?)

    โ€ข ๐‘ =๐œ†

    ๐‘‡= ๐œ†๐‘“ =

    ๐œ”

    ๐‘˜

    โ€ข เดค๐‘˜ โˆ™ าง๐‘Ÿ ยฑ ๐œ”๐‘ก ๐‘Ÿ๐‘Ž๐‘‘ = ๐“, ๐’•๐’‰๐’† ๐’˜๐’‚๐’—๐’† ๐’‘๐’‰๐’‚๐’”๐’†

    โ€ข ๐ธ0 ; ๐ต0 = wave amplitudes

  • 2/27/2020 Electromagnetism 26

    ๐œ† = ๐‘๐‘‡ ๐‘‡ = ๐‘“โˆ’1 = ๐œ†๐‘โˆ’1

    ๐‘‡

    ๐‘‡

    ๐‘‡

    Figure 1: Wavelength ๐œ† and time period ๐‘‡ of a wave can be measured between any two special or temporal points with the same phase, such as between crests (on top), or troughs

    (on bottom), or corresponding zero crossing as shown.

    โ€ข ๐‘“ =1

    ๐‘‡๐‘ ๐‘’๐‘โˆ’1 ; temporal frequency, i.e. how many times the wave reaches its maximum in a unite time (right figure).

    โ€ข ๐œˆ โ‰ก1

    ๐œ†๐‘๐‘šโˆ’1 ; special frequency, i.e. how many times the wave reaches its maximum in a unite length (left figure).

    โ€ข Longitudinal wave: the wave (medium) vibrates in the direction of its propagation.

    โ€ข Transverse wave: the wave (medium) vibrates at right angles to the direction of its propagation.

    Wave characteristics (2):

  • 0 0 0

    2 2 2 2 2 2

    0 0 0

    2

    ห†ห† ห† ห†1 1ห† ห†4 4 4 4

    1.

    I dl r dq dll r dq dl r dqdB dt l v r

    r dt r c dt dt r c r

    v dE E Bc

    Ein case v c B

    c

    2/27/2020 27

    Biotโ€“Savart law

  • 2/27/2020 Electromagnetism 28

    Energy and momentum in electromagnetic wave

    Refreshing expressions: For convenience, we shall examine what happened in RLC electrical circuit (see figure).

    ๐‘‰ = ๐ผ๐‘… +๐‘„

    ๐ถ+ ๐ฟ

    ๐‘‘๐ผ

    ๐‘‘๐‘ก

    = ๐‘ฝ๐‘น + ๐‘ฝ๐‘ช + ๐‘ฝ๐‘ณ

    Multiplying the equation components by the current ๐ผ one gets the equation for power (๐‘ƒ) :

    ๐ผ๐‘‰ = ๐ผ2๐‘… +๐ผ๐‘„

    ๐ถ+ ๐ฟ

    ๐ผ๐‘‘๐ผ

    ๐‘‘๐‘ก[1]

    ๐‘ƒ๐‘’๐‘ฅ = ๐‘ƒ๐‘™๐‘œ๐‘ ๐‘  + ๐‘ƒ๐ธ + ๐‘ƒ๐ต

    ๐ธ๐‘€๐‘ƒ = ๐ผ๐‘‰ โˆ’ ๐ผ2 ๐‘… =

    ๐ผ๐‘„

    ๐ถ+ ๐ฟ

    ๐ผ๐‘‘๐ผ

    ๐‘‘๐‘ก[2]

    Moving the expression ๐ผ2๐‘… to the left side of the equality sign of [1] thepower related to the EM๐‘ƒ, i.e. ๐‘ƒ๐ธ+ ๐‘ƒ๐ต, is isolated, namely:

    Lets assume that all components has the same cross section S, length ๐‘™ and the same volume ๐‘‰, ๐‘กโ„Ž๐‘’๐‘›:

  • 2/27/2020 Electromagnetism

    29

    ๐ผ๐‘‰ โˆ’ ๐ผ2๐‘… =๐ผ๐‘„

    ๐ถ+ ๐ฟ

    ๐ผ๐‘‘๐ผ

    ๐‘‘๐‘ก[2]

    Introducing : ๐ผ = ๐ฝ โˆ™ ๐‘†, ๐ฝ = ๐œŽ๐ธ, ๐‘„ = ๐œŽ๐‘ž๐‘†, ๐‘… =๐œŒ๐‘™

    ๐‘ =

    ๐‘™

    ๐œŽ๐‘ , B =

    ๐œ‡๐ผ

    ๐‘™โŸน ๐ผ๐ต =

    ๐ต๐‘™

    ๐œ‡, ๐ฟ =

    ๐œ™๐ต

    ๐ผ=

    ๐ตโˆ™๐‘†

    ๐ผ, ๐ถ =

    ๐œ€๐‘†

    ๐‘‘๐‘Ž๐‘›๐‘‘ ๐‘‘ โˆ™ ๐‘† = ๐• ๐‘–๐‘›๐‘ก๐‘œ:

    (๐ฝ๐‘†)(๐ธ๐‘™) โŸถ าง๐ฝ โˆ™ เดค๐ธ๐•

    ๐ฝ2๐‘†2๐‘™

    ๐œŽ๐‘ =๐ฝ2

    ๐œŽ๐• โŸถ

    าง๐ฝ โˆ™ าง๐ฝ

    ๐œŽ๐•

    ๐œ€ /๐œ€๐ธ

    ๐ผ๐‘„

    ๐ถ= ๐ผ๐‘‰ =

    ๐œ•(๐œŽ๐‘ž ๐‘†)

    ๐œ•๐‘ก๐ธ๐‘‘ = ๐œ€ แˆถ๐ธ๐ธ ๐‘†๐‘‘ = แˆถ๐ท๐ธ๐• โŸถ เดค๐ธ โˆ™ แˆถเดฅ๐ท๐•

    ๐ต๐‘†

    ๐ผ๐ผ๐œ•

    ๐œ•๐‘ก(๐ต๐‘™

    ๐œ‡) โŸถ เดค๐ต โˆ™ แˆถเดฅ๐ป๐•

    Rewriting [2] with the new โ€˜fieldsโ€™ expressions:

    าง๐ฝ โˆ™ เดค๐ธ๐‘’๐‘ฅ๐‘ก๐• โˆ’๐ฝ2

    ๐œŽ๐• = เดค๐ธ โˆ™ แˆถเดฅ๐ท๐• + เดค๐ต โˆ™ แˆถเดฅ๐ป๐• [3]

    Dividing [3] by the volume ๐• , we get the โ€˜Thevolume power densityโ€™ (VPD) (i.e. the work done

    per unit time per unit volume) equation forelectric and magnetic fields and currents:

    าง๐ฝ โˆ™ เดค๐ธ๐‘’๐‘ฅ๐‘ก โˆ’๐ฝ2

    ๐œŽ= เดค๐ธ โˆ™ แˆถเดฅ๐ท + เดค๐ต โˆ™ แˆถเดฅ๐ป โ‰ก

    ๐œ•2๐‘ค๐ธ๐‘€๐œ•๐‘ก๐œ•๐‘ฝ

    =โˆช [4]

    Input power โˆ’ loss of power = โˆช , the PD of E and M fields --- all per unit volume

  • 2/27/2020

    Electromagnetism 30

    Next, Remembering that าง๐ฝ = ๐œŽ เดค๐ธ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ , we may write:

    าง๐ฝ = ๐œŽ( เดค๐ธ๐‘’๐‘ฅ+เดค๐ธ๐‘„ + เดค๐ธ๐‘€)/โˆ™ ฮคาง๐ฝ ๐œŽ

    โ‰ก เดค๐ธ๐‘„, ๐‘€โŸนโˆ’ าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ = าง๐ฝ โˆ™ เดค๐ธ๐‘’๐‘ฅ โˆ’

    ๐ฝ2

    ๐œŽ[a]

    ๐‘™๐‘œ๐‘ ๐‘  ๐‘–๐‘›๐‘๐‘ข๐‘ก โ„Ž๐‘’๐‘Ž๐‘ก

    Recalling าง๐ฝ of Maxwellโ€™s 4th equation:

    ๐›ป ร— เดฅ๐ป = าง๐ฝ +๐œ•เดฅ๐ท

    ๐œ•๐‘กโŸน โˆ’ าง๐ฝ = โˆ’๐›ป ร— เดฅ๐ป +

    ๐œ•เดฅ๐ท

    ๐œ•๐‘ก[๐‘] Introducing าง๐ฝ ๐‘œ๐‘“ ๐‘ ๐‘–๐‘›๐‘ก๐‘œ โˆ’ าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ of a yields:

    โˆ’ าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ = โˆ’เดค๐ธ โˆ™ ๐›ป ร— เดฅ๐ป + เดค๐ธ โˆ™๐œ•เดฅ๐ท

    ๐œ•๐‘ก[๐‘] Next, recalling from vector analysis that:

    26 : ๐‘‘๐‘–๐‘ฃ( เดค๐ธ ร— เดฅ๐ป) = เดฅ๐ป โˆ™ ๐›ป ร— เดค๐ธ โˆ’ เดค๐ธ โˆ™ ๐›ป ร— เดฅ๐ป [๐‘‘] and substituting โˆ’เดค๐ธ โˆ™ ๐›ป ร— เดฅ๐ป of [d] in [c], one gets:

    โˆ’ าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ = โˆ’เดฅ๐ป โˆ™ ๐›ป ร— เดค๐ธ + เดค๐ธ โˆ™๐œ•เดฅ๐ท

    ๐œ•๐‘ก+ ๐‘‘๐‘–๐‘ฃ เดค๐ธ ร— เดฅ๐ป ; ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘–๐‘›๐‘๐‘’ ๐›ป ร— เดค๐ธ = โˆ’

    ๐œ• เดค๐ต

    ๐œ•๐‘ก๐‘€๐‘Ž๐‘ฅ๐‘ค๐‘’๐‘™๐‘™ โˆ’ ๐น๐‘Ž๐‘Ÿ๐‘‘๐‘Ž๐‘ฆ ๐‘™๐‘Ž๐‘ค , the total loss of power per unit

    volume d๐‘ข๐‘’ ๐‘ก๐‘œ เดฅ๐ธ ๐‘Ž๐‘›๐‘‘ เดค๐ต ๐‘–๐‘ :

    ๐๐‘ท๐‘ธ,๐‘ด

    ๐๐‘ฝ=โˆช = โˆ’ าง๐‘ฑ โˆ™ เดฅ๐‘ฌ๐‘ธ,๐‘ด = เดฅ๐‘ฏ โˆ™

    ๐เดฅ๐‘ฉ

    ๐๐’•+ เดฅ๐‘ฌ โˆ™

    ๐เดฅ๐‘ซ

    ๐๐’•+ ๐’…๐’Š๐’— เดฅ๐‘ฌ ร— เดฅ๐‘ฏ [e]

    โ†’๐ฝ2

    ๐œŽ= าง๐ฝ โˆ™ ( เดค๐ธ๐‘’๐‘ฅ+เดค๐ธ๐‘„ + เดค๐ธ๐‘€) = าง๐ฝ โˆ™ เดค๐ธ๐‘’๐‘ฅ + าง๐ฝ โˆ™ ( เดค๐ธ๐‘„ + เดค๐ธ๐‘€) = าง๐ฝ โˆ™ เดค๐ธ๐‘’๐‘ฅ + าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ โ‡’

  • 2/27/2020 Electromagnetism 31

    ๐‘ ๐‘–๐‘›๐‘๐‘’ เดฅ๐ป โˆ™๐œ• เดค๐ต

    ๐œ•๐‘ก=

    เดค๐ต

    ๐œ‡0

    ๐œ• เดค๐ต

    ๐œ•๐‘ก=

    1

    2๐œ‡0

    ๐œ• เดค๐ต 2

    ๐œ•๐‘ก=

    1

    2

    ๐œ‡0๐œ• เดฅ๐ป2

    ๐œ•๐‘กand เดค๐ธ โˆ™

    ๐œ•เดฅ๐ท

    ๐œ•๐‘ก=

    1

    2

    ๐œ€0๐œ•( เดค๐ธ)2

    ๐œ•๐‘ก, the first expressions in the left side of

    the equilibrium sign of [f] can be rewritten to yield the following equation [g]:

    ๐‘ƒ๐‘„,๐‘€ = เถฑ๐‘ฝ

    าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ ๐‘‘๐‘‰ = โˆ’๐œ•

    ๐œ•๐‘กเถฑ

    ๐‘‰

    1

    2๐œ‡0 เดฅH

    2 +1

    2๐œ€0 เดคE

    2 ๐‘‘๐‘‰ โˆ’ เถฑ

    ๐‘‰

    ๐‘‘๐‘–๐‘ฃ เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘‰ [๐‘”]

    though the quantities ๐‘ข๐‘š =1

    2๐œ‡0 เดฅH

    2 ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘’ =1

    2๐œ€0 เดฅE

    2 are known to present electric and magnetic energy densities for

    static fields (i.e. within a condenser or a coil). However, based on the fact that the integrands in Eq. [g] are defined at agiven point, these quantities fairly represents the stored energy densities in the case of time-varying fields, as well. That is to say, that the correct amount of total electromagnetic energy density, ๐‘ข๐‘’๐‘š, is always obtained by assigning an amount:

    ๐‘ข๐‘’๐‘š = ๐‘ข๐‘š + ๐‘ข๐‘’ =1

    2๐œ‡0 เดฅH

    2 + ๐œ€0 เดคE2 =

    1

    2าง๐ต โˆ™ เดค๐ป + เดค๐ท โˆ™ าง๐ธ [h]

    ๐‘Ÿ๐‘’๐‘๐‘Ž๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ž๐‘ก:๐ป =1

    ๐œ‡๐ต =

    1

    ๐œ‡๐‘๐ธ , than ๐œ‡0 เดฅH

    2๐‘œ๐‘“ ๐ธ๐‘ž. โ„Ž = ๐œ‡0๐ธ2

    ๐œ‡0๐‘2 =โ†’ [

    1

    ๐œ‡0๐‘2 = ๐œ€0] โ†’= ๐œ€0๐ธ

    2 . Introducing into [h] yield:

    ๐’–๐’†๐’Ž = ๐‘ข๐‘š + ๐‘ข๐‘’ =1

    2๐œ€0๐ธ

    2 + ๐œ€0 เดฅE2 = ๐œบ๐ŸŽ๐‘ฌ

    ๐Ÿ = ๐๐ŸŽ๐‘ฏ๐Ÿ

    ๐‘ƒ๐‘„,๐‘€ = เถฑ๐‘ฝ

    าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ ๐‘‘๐‘‰ = โˆ’เถฑ

    ๐‘‰

    เดฅ๐ป โˆ™๐œ• เดค๐ต

    ๐œ•๐‘ก+ เดค๐ธ โˆ™

    ๐œ•เดฅ๐ท

    ๐œ•๐‘ก๐‘‘๐‘‰ โˆ’ เถฑ

    ๐‘‰

    ๐‘‘๐‘–๐‘ฃ เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘‰ [๐‘“]

  • 2/27/2020 Electromagnetism 32

    Replacing the minus signs in [e] and Integration over space ๐‘ฝ yields:

    ๐‘ƒ๐‘„,๐‘€ = เถฑ๐‘ฝ

    าง๐ฝ โˆ™ เดค๐ธ๐‘„,๐‘€ ๐‘‘๐‘‰ = โˆ’เถฑ

    ๐‘‰

    เดฅ๐ป โˆ™๐œ• เดค๐ต

    ๐œ•๐‘ก+ เดค๐ธ โˆ™

    ๐œ•เดฅ๐ท

    ๐œ•๐‘ก๐‘‘๐‘‰ โˆ’ เถฑ

    ๐‘‰

    ๐‘‘๐‘–๐‘ฃ เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘‰ [๐‘“]

    Generalization of Joule's law, representing the

    rate of power dissipated in the volume ๐‘ฝ.

    Loss (negative sign) rate ofโ€œstoredโ€ electrical and magnetic(static fields) energy within thevolume ๐‘ฝ. The terms in bracketsare the magnetic and electricenergy densities, ๐‘ข๐‘š ๐‘Ž๐‘›๐‘‘ ๐‘ข๐‘’ ,respectively .

    Utilizing divergence theorem this expression equals:

    เถป๐‘ 

    เดค๐ธ ร— เดฅ๐ป ๐‘‘๐‘ 

    Conservation of energy dictates that this term must present the flow rate of energy

    inward/outward through the surface ๐‘  enclosing the volume ๐‘‰. Hence, the vectorเดฅ๐ธ ร— เดฅ๐ป is a measure of the rate of energy flow per unit area at any point on the surface ๐‘ .

    ๐๐‘ท๐‘ธ,๐‘ด

    ๐๐‘ฝ=โˆช = โˆ’ าง๐‘ฑ โˆ™ เดฅ๐‘ฌ๐‘ธ,๐‘ด = เดฅ๐‘ฏ โˆ™

    ๐เดฅ๐‘ฉ

    ๐๐’•+ เดฅ๐‘ฌ โˆ™

    ๐เดฅ๐‘ซ

    ๐๐’•+ ๐’…๐’Š๐’— เดฅ๐‘ฌ ร— เดฅ๐‘ฏ [e]

  • 2/27/2020 Electromagnetism 33

    Motti: Explain the idea of vector Poynting and relate to the case of static electromagnetics.

    ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘’ เดค๐ธ ร— เดฅ๐ป ๐‘–๐‘  ๐‘กโ„Ž๐‘’ Poynting ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ เดฅ๐‘. It is named after its discoverer John Henry Poynting who first derived it in1884. ๐ผ๐‘ก represents the directional energy flux (the energy transfer per unit area per unit time) of an electromagnetic

    field, i.e. tโ„Ž๐‘’ ๐‘๐‘œ๐‘ค๐‘’๐‘Ÿ ๐’”๐’–๐’“๐’‡๐’‚๐’„๐’† ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ ๐‘œ๐‘“ ๐‘Ž ๐‘ก๐‘Ÿ๐‘Ž๐‘ฃ๐‘’๐‘™๐‘–๐‘›๐‘” ๐‘’๐‘™๐‘’๐‘๐‘ก๐‘Ÿ๐‘œ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘ค๐‘Ž๐‘ฃ๐‘’:

    ๐‘ƒ๐ท๐ธ๐‘€=๐œ•2๐‘Š๐ธ๐‘€๐œ•๐‘ ๐œ•๐‘ก

    =๐œ•๐‘ƒ๐ธ๐‘€๐œ•๐‘ 

    = เดฅ๐‘ โ‰ก เดค๐ธ ร— เดฅ๐ป

    John Henry Poynting (1852โ€“1914)

    ๐‘Ÿ๐‘’๐‘๐‘Ž๐‘™๐‘™๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘Ž๐‘ก:๐ป =1

    ๐œ‡๐ต =

    1

    ๐œ‡๐‘๐ธ, then:

    The MKS unit of the Poynting vector is watt per square meter, เดฅ๐‘ ๐‘€๐พ๐‘†= ๐‘Š๐‘šโˆ’2.

    เดฅ๐‘ = เดค๐ธ ร— เดฅ๐ป =1

    ๐œ‡๐‘๐ธ 2 = ๐œบ๐ŸŽ๐’„๐„

    ๐Ÿ = ๐๐ŸŽ๐’„๐‘ฏ๐Ÿ

    ๐‘ = ๐œ€0๐‘๐ธ2 = ๐ถ 2๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2๐‘š๐‘ ๐‘’๐‘โˆ’1

    ๐‘ฃ๐‘œ๐‘™๐‘ก2

    ๐‘š2= ๐ถ 2๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2๐‘š๐‘ ๐‘’๐‘โˆ’1

    ฮค๐ฝ๐‘ข๐‘œ๐‘™๐‘’2 ๐ถ 2

    ๐‘š2=

    = ๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2๐‘š๐‘ ๐‘’๐‘โˆ’1๐‘๐‘’๐‘ค2๐‘š2

    ๐‘š2=๐‘๐‘’๐‘ค ๐‘š ๐‘ ๐‘’๐‘โˆ’1

    ๐‘š2=๐ฝ๐‘œ๐‘ข๐‘™๐‘’ ๐‘ ๐‘’๐‘โˆ’1

    ๐‘š2=๐‘Š๐‘Ž๐‘ก๐‘ก

    ๐‘š2= ๐‘ƒ๐ท

  • 2/27/2020 Electromagnetism 34

    Some magnitudes of electromagnetic waves (a):

    โ€ข the electromagnetic energy per unit volume: ๐๐‘พ๐’†๐’Ž

    ๐๐‘ฝ= ๐’–๐’†๐’Ž = ๐œบ๐ŸŽ๐‘ฌ

    ๐Ÿ = ๐๐ŸŽ๐‘ฏ๐Ÿ

    โ€ข N, the surface power density is ๐œ•2๐‘Š

    ๐œ•๐‘ก๐œ•๐‘ =

    ๐œ•3๐‘Š

    ๐œ•๐‘ก๐œ•๐‘ 

    ๐œ•๐‘™

    ๐œ•๐‘™= ๐‘ข๐‘’๐‘š

    ๐œ•๐‘™

    ๐œ•๐‘ก= ๐‘ข๐‘’๐‘š๐‘ โŸน ๐‘ต = ๐’„ ๐’–๐’†๐’Ž ; ๐’–๐’†๐’Ž=

    ๐‘ต

    ๐’„= ๐œบ๐ŸŽ๐‘ฌ

    ๐Ÿ = ๐๐ŸŽ๐‘ฏ๐Ÿ

    โ€ข Irradiation (intensity) I โ‰ก ๐‘ ๐‘ก = ๐œ€0๐ธ2๐‘ก = ๐œ€0๐ธ0

    2 ๐‘๐‘œ๐‘ 2 ๐‘˜๐‘Ÿ โˆ’ ๐‘ค๐‘ก ๐‘ก =1

    2๐œ€0๐ธ0

    2 โŸน ๐‘ฐ โ‰ก ๐‘ต ๐’• =๐Ÿ

    ๐Ÿ๐œบ๐ŸŽ๐‘ฌ๐ŸŽ

    ๐Ÿ

    โ€ข ๐“…, the linear momentum per unit volume of electromagnetic waves:

    ๐‘‘๐”ญ๐‘ฃ๐‘œ๐‘™๐‘ข๐‘š๐‘’๐‘‘๐‘ก

    = ๐น โŸน ๐‘‘๐”ญ๐‘ฃ๐‘œ๐‘™ = ๐น๐‘‘๐‘ก =๐œ•๐‘Š

    ๐œ•๐‘ฅ๐‘‘๐‘ก =

    ๐‘‘๐‘Š

    ๐‘โ‡’ ๐‘‘๐“…๐‘ข๐‘›๐‘–๐‘ก ๐‘ฃ๐‘œ๐‘™ =

    ๐‘‘๐’–๐’†๐’Ž๐‘

    โŸน ๐“… 2 โˆ’ ๐“… 1 =๐‘ข2๐‘โˆ’๐‘ข1๐‘

    โŸน

    โŸน ๐“น =๐’–

    ๐’„=๐œบ๐ŸŽ๐‘ฌ

    ๐Ÿ

    ๐’„=๐’„๐œบ๐ŸŽ๐‘ฌ

    ๐Ÿ

    ๐’„๐Ÿ=

    เดฅ๐‘ฌ ร— เดฅ๐‘ฏ

    ๐’„๐Ÿโˆ™โˆ™โˆ™โŸถ

    ๐’–

    ๐’„=๐’‰๐’‡

    ๐’„=

    ๐’‰

    ฮค๐’„ ๐’‡=๐’‰

    ๐€= โ„๐’Œ

  • 2/27/2020 Electromagnetism 35

    Some magnitudes of electromagnetic waves (b):

    โ€ข โ„™, the radiation pressure per unit volume exerted upon any surface exposed to electromagnetic radiation: the amount of energy loss ๐œ•๐‘Š of electromagnetic wave along ๐‘‘๐‘ฅ of propagation is:

    โˆ’๐œ•๐‘Š

    ๐œ•๐‘ฅ๐‘‘๐‘ฅ = โˆ’โ„ฑ๐‘‘๐‘ฅ = โ„™๐‘‘๐‘ ๐‘‘๐‘ฅ = โ„™๐‘‘๐‘‰ [๐‘–],

    ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐“• ๐‘–๐‘  ๐‘Ž๐‘› "effevctive force" ๐‘Ž๐‘๐‘ก๐‘–๐‘›๐‘” ๐‘Ž๐‘™๐‘œ๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘๐‘Ž๐‘”๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘Ž๐‘กโ„Ž ๐‘Ž๐‘›๐‘‘ ๐’…๐’” ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘๐‘’๐‘Ž๐‘š ๐‘ค๐‘Ž๐‘ฃ๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘ ๐‘  ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘›.Consequently, from [๐‘–], the radiation pressure per unit volume โ„™ equales:

    โ„™ = โˆ’๐œ•๐‘ข

    ๐œ•๐‘ฅ๐‘‘๐‘ฅ = โˆ’๐œ•๐‘ข = ๐‘ข1-๐‘ข2, ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘ข = ๐œ€0๐ธ

    2 ๐‘–๐‘› vacuum ๐œ€0๐ธ2 =

    ๐ฝ๐‘ข๐‘œ๐‘™๐‘’

    ๐‘š3.

    ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’, โ„™, the radiation pressure per unit volume, is actually the consequential difference between the energy per

    unit volume of orthogonally incident and transmitted waves. The more the illuminated media absorbs the incident wave, i.e.

    ๐‘ข2 โŸผ 0 ๐‘Ž๐‘›๐‘‘ (๐œ•๐‘ข = ๐‘ข1), the greater the pressure is. On the other hand, the more transparent the media, the lower the

    pressure is.

    Practically, the radiation pressure per unit volume is evaluated in a case of fully absorbed beam, i.e. ๐‘ข2 = 0. Then,

    โ„™ = ๐‘ข1 = ๐‘ข =๐‘๐‘ข

    ๐‘= ๐‘๐“… = ๐‘

    เดค๐ธร—เดฅ๐ป

    ๐‘2โ‡’ เดฅโ„™ =

    เดฅ๐‘ต

    ๐’„

    ๐œ€0๐ธ2 = ๐ถ 2๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2

    ๐‘ฃ๐‘œ๐‘™๐‘ก2

    ๐‘š2= ๐ถ 2๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2

    ฮค๐ฝ๐‘ข๐‘œ๐‘™๐‘’2 ๐ถ 2

    ๐‘š2= ๐‘๐‘’๐‘คโˆ’1๐‘šโˆ’2

    ๐‘๐‘’๐‘ค2๐‘š2

    ๐‘š2=๐‘๐‘’๐‘ค

    ๐‘š2=๐‘š โˆ™ ๐‘๐‘’๐‘ค

    ๐‘š3=๐ฝ๐‘ข๐‘œ๐‘™๐‘’

    ๐‘š3

  • 2/27/2020 Electromagnetism 36

    Some magnitudes of electromagnetic waves (c):

    In the case of fully reflection (say from a mirror, where ๐‘ข2 = โˆ’๐‘ข1), then โ„™ = 2๐‘ข = 2c๐“น

    If the angle of incidence ๐œƒ๐‘– โ‰  0, the cosine components of the incidence, reflected and refracted waves (beams) should be considered when calculating the relevant โ„™ ๐œƒ๐‘– , ๐œƒ๐‘Ÿ .

    Interestingly enough, the PD of the incoming Sun rays, as measured on Earth, is PD = 1.4 โˆ™ 103๐‘Š๐‘šโˆ’2 = 1.4๐พ๐‘Š๐‘šโˆ’2,

    hence: ๐‘ข =๐‘ƒ๐ท

    ๐‘= 4.7 โˆ™ 10โˆ’6๐ฝ๐‘œ๐‘ข๐‘™๐‘’ โˆ™ ๐‘šโˆ’3

    Assuming that Earth is a perfect absorber, and taking into account the directional spread of the Sun rays, then

    โ„™, the radiation pressure per unit volume exerted upon Earth surfaces is:

    โ„™ โ‰…1

    3๐‘ข = 1.6 โˆ™ 10โˆ’6๐‘๐‘’๐‘ค โˆ™ ๐‘šโˆ’2

    For comparison, the atmospheric pressure is:

    1๐ด๐‘ก = 10+5๐‘๐‘’๐‘ค โˆ™ ๐‘šโˆ’2