chapter 2

103
Dr. S. M. Condren Atoms, Molecules & Ions Chapter 2

Upload: roanna-mclaughlin

Post on 15-Mar-2016

52 views

Category:

Documents


1 download

DESCRIPTION

Chapter 2. Atoms, Molecules & Ions. Quantum Corral. http://www.almaden.ibm.com/vis/stm/corral.html. Scanning Tunneling Microscope. Scanning Tunneling Microscope. Scanning Tunneling Microscope. http://www.cbu.edu/~mcondren/SeeAtoms.htm. http://mrsec.wisc.edu/. http://mrsec.wisc.edu/. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 2

Dr. S. M. Condren

Atoms, Molecules& Ions

Chapter 2

Page 2: Chapter 2

Dr. S. M. Condren

Quantum Corral

http://www.almaden.ibm.com/vis/stm/corral.html

Page 3: Chapter 2

Dr. S. M. Condren

Scanning Tunneling Microscope

Page 4: Chapter 2

Dr. S. M. Condren

Scanning Tunneling Microscope

Page 5: Chapter 2

Dr. S. M. Condren

Scanning Tunneling Microscope

Page 6: Chapter 2

Dr. S. M. Condren

http://www.cbu.edu/~mcondren/SeeAtoms.htm

Page 7: Chapter 2

Dr. S. M. Condren

http

://m

rsec

.wis

c.ed

u/

http://mrsec.wisc.edu/

Developed in collaboration with theInstitute for Chemical Education and the

Magnetic Microscopy CenterUniversity of Minnesota

http://www.physics.umn.edu/groups/mmc/

Page 8: Chapter 2

Dr. S. M. Condren

Pull Probe StripProbe

Sample

Pull Probe Strip

http://ww

w.nsf.gov/m

ps/dmr/m

rsec.htm

http://www.nsf.gov/mps/dmr/mrsec.htm

Page 9: Chapter 2

Dr. S. M. Condren

(a) (b)

North South

(c)

Which best represents the poles?

Page 10: Chapter 2

Dr. S. M. Condren

Atoms & MoleculesAtoms

• can exist alone or enter into chemical combination

• the smallest indivisible particle of an element

Molecules• a combination of atoms that has its own

characteristic set of properties

Page 11: Chapter 2

Dr. S. M. Condren

Law of Constant Composition

A chemical compound always contains the same elements in the same proportions by mass.

Page 12: Chapter 2

Dr. S. M. Condren

Law of Multiple Proportions

• the same elements can be combined to form different compounds by combining the elements in different proportions

Page 13: Chapter 2

Dr. S. M. Condren

Dalton’s Atomic Theory

Postulates• proposed in 1803• know at least 2 for first exam

Page 14: Chapter 2

Dr. S. M. Condren

Dalton’s Atomic Theory

Postulate 1• An element is composed of tiny particles

called atoms. • All atoms of a given element show the same

chemical properties.

Page 15: Chapter 2

Dr. S. M. Condren

Dalton’s Atomic Theory

Postulate 2• Atoms of different elements have different

properties.

Page 16: Chapter 2

Dr. S. M. Condren

Dalton’s Atomic Theory

Postulate 3• Compounds are formed when atoms of two

or more elements combine.• In a given compound, the relative number

of atoms of each kind are definite and constant.

Page 17: Chapter 2

Dr. S. M. Condren

Dalton’s Atomic Theory

Postulate 4• In an ordinary chemical reaction, no atom

of any element disappears or is changed into an atom of another element.

• Chemical reactions involve changing the way in which the atoms are joined together.

Page 18: Chapter 2

Dr. S. M. Condren

Radioactivity

Page 19: Chapter 2

Dr. S. M. Condren

Radioactivity

• Alpha – helium-4 nucleus• Beta – high energy electron• Gamma – energy resulting from transitions

from one nuclear energy level to another

Page 20: Chapter 2

Dr. S. M. Condren

Alpha Radiation

• composed of 2 protons and 2 neutrons• thus, helium-4 nucleus• +2 charge• mass of 4 amu• creates element with atomic number 2

lower• Ra226 Rn222 + He4()

Page 21: Chapter 2

Dr. S. M. Condren

Beta Radiation• composed of a high energy electron which

was ejected from the nucleus• “neutron” converted to “proton”• very little mass• -1 charge• creates element with atomic number 1

higher• U239 Np239 + -1

Page 22: Chapter 2

Dr. S. M. Condren

Gamma Radiation

• nucleus has energy levels• energy released from nucleus as the nucleus

changes from higher to lower energy levels• no mass• no charge• Ni60* Ni60 +

Page 23: Chapter 2

Dr. S. M. Condren

Cathode Ray Tube

Page 24: Chapter 2

Dr. S. M. Condren

Thompson’s Charge/Mass Ratio

Page 25: Chapter 2

Dr. S. M. Condren

Millikin’s Oil Drop

Page 26: Chapter 2

Dr. S. M. Condren

Rutherford’s Gold Foil

Page 27: Chapter 2

Dr. S. M. Condren

Rutherford’s Model of the Atom

Page 28: Chapter 2

Dr. S. M. Condren

Rutherford’s Model of the Atom

• atom is composed mainly of vacant space• all the positive charge and most of the mass

is in a small area called the nucleus• electrons are in the electron cloud

surrounding the nucleus

Page 29: Chapter 2

Dr. S. M. Condren

Structure of the Atom Composed of:

• protons• neutrons• electrons

Page 30: Chapter 2

Dr. S. M. Condren

Structure of the Atom

Composed of:• protons• neutrons• electrons

• protons– found in nucleus– relative charge of +1– relative mass of 1.0073 amu

Page 31: Chapter 2

Dr. S. M. Condren

Structure of the Atom

Composed of:• protons• neutrons• electrons

• neutrons– found in nucleus– neutral charge– relative mass of 1.0087 amu

Page 32: Chapter 2

Dr. S. M. Condren

Structure of the Atom

Composed of:• protons• neutrons• electrons • electrons

– found in electron cloud– relative charge of -1– relative mass of 0.00055 amu

Page 33: Chapter 2

Dr. S. M. Condren

Size of Nucleus

If the nucleus were1” in diameter,

the atom would be 1.5 miles in diameter.

Page 34: Chapter 2

Dr. S. M. Condren

Ions

• charged single atom• charged cluster of atoms

Page 35: Chapter 2

Dr. S. M. Condren

Ions

• cations– positive ions

• anions– negative ions

• ionic compounds– combination of cations and anions– zero net charge

Page 36: Chapter 2

Dr. S. M. Condren

Atomic number, Z

• the number of protons in the nucleus• the number of electrons in a neutral atom• the integer on the periodic table for each

element

Page 37: Chapter 2

Dr. S. M. Condren

Isotopes

• atoms of the same element which differ in the number of neutrons in the nucleus

• designated by mass number

Page 38: Chapter 2

Dr. S. M. Condren

Mass Number, A

• integer representing the approximate mass of an atom

• equal to the sum of the number of protons and neutrons in the nucleus

Page 39: Chapter 2

Dr. S. M. Condren

Masses of Atoms

Carbon-12 Scale

Page 40: Chapter 2

Dr. S. M. Condren

Isotopes of Hydrogen H-1, 1H, protium

• 1 proton and no neutrons in nucleus• only isotope of any element containing no

neutrons in the nucleus• most common isotope of hydrogen

Page 41: Chapter 2

Dr. S. M. Condren

Isotopes of Hydrogen H-2 or D, 2H, deuterium

• 1 proton and 1 neutron in nucleus

Page 42: Chapter 2

Dr. S. M. Condren

Isotopes of Hydrogen H-3 or T, 3H, tritium

• 1 proton and 2 neutrons in nucleus

Page 43: Chapter 2

Dr. S. M. Condren

Isotopes of Oxygen

O-16• 8 protons, 8 neutrons, & 8 electronsO-17• 8 protons, 9 neutrons, & 8 electronsO-18• 8 protons, 10 neutrons, & 8 electrons

Page 44: Chapter 2

Dr. S. M. Condren

The radioactive isotope 14C has how many neutrons?

6, 8, other

Page 45: Chapter 2

Dr. S. M. Condren

The identity of an element is determined by the number of which particle?

protons, neutrons, electrons

Page 46: Chapter 2

Dr. S. M. Condren

Mass Spectrometer

Page 47: Chapter 2

Dr. S. M. Condren

Mass Spectra of Neon

Page 48: Chapter 2

Dr. S. M. Condren

Measurement of Atomic Masses

Mass Spectrometer

a simulation is available athttp://www.colby.edu/chemistry/OChem/DEMOS/MassSpec.html

Page 49: Chapter 2

Dr. S. M. Condren

Atomic Masses andIsotopic Abundances

natural atomic masses =sum[(atomic mass of isotope)

*(fractional isotopic abundance)]

Page 50: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37

x + y = 1 y = 1 - x

(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453Thus:34.96885*x + 36.96590*y = 35.453

Page 51: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x

Page 52: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x

(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

Page 53: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37

x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

34.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453

Page 54: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x

(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

34.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 =

35.453

Page 55: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x

(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

34.96885*x + 36.96590*y = 35.453

34.96885*x + 36.96590*(1-x) = 35.453

(34.96885 - 36.96590)x + 36.96590 = 35.453

Page 56: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x

(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

34.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453

(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)

Page 57: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.453

34.96885*x + 36.96590*y = 35.453

34.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)

- 1.99705x = - 1.5129

Page 58: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.453

34.96885*x + 36.96590*(1-x) = 35.453

(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129

Page 59: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129

x = 0.7553 <=> 75.53% Cl-35

Page 60: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129 x = 0.7553 <=> 75.53% Cl-35

y = 1 - x

Page 61: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129 x = 0.7553 <=> 75.53% Cl-35

y = 1 - x = 1.0000 - 0.7553

Page 62: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129 x = 0.7553 <=> 75.53% Cl-35

y = 1 - x = 1.0000 - 0.7553 = 0.2447

Page 63: Chapter 2

Dr. S. M. Condren

Example: Chlorine has two isotopes, Cl-35 and Cl-37, which have masses of 34.96885 and 36.96590 amu, respectively. The natural atomic mass of chlorine is 35.453 amu. What are the percent abundances of the two isotopes?let x = fraction Cl-35 y = fraction Cl-37x + y = 1 <=> y = 1 - x(AW Cl-35)(fraction Cl-35) + (AW Cl-37)(fraction Cl-37) = 35.45334.96885*x + 36.96590*y = 35.45334.96885*x + 36.96590*(1-x) = 35.453(34.96885 - 36.96590)x + 36.96590 = 35.453(34.96885 - 36.96590)x = (35.453 - 36.96590)- 1.99705x = - 1.5129

1.99705x = 1.5129 x = 0.7553 <=> 75.53% Cl-35

y = 1 - x = 1.0000 - 0.7553 = 0.2447 24.47% Cl-37

Page 64: Chapter 2

Dr. S. M. Condren

Development of Periodic TableNewlands - English

1864 - Law of Octaves - every 8th element has similar

properties

Page 65: Chapter 2

Dr. S. M. Condren

Development of Periodic TableDmitri Mendeleev - Russian

1869 - Periodic Law - allowed him to predict properties of

unknown elements

Page 66: Chapter 2

Dr. S. M. Condren

Mendeleev’s Periodic Tablethe elements are arranged according to

increasing atomic weights

Page 67: Chapter 2

Dr. S. M. Condren

Missing elements: 44, 68, 72, & 100 amu

Mendeleev’s Periodic Table

Page 68: Chapter 2

Dr. S. M. Condren

Properties of Ekasilicon

Page 69: Chapter 2

Dr. S. M. Condren

Modern Periodic TableMoseley, Henry Gwyn Jeffreys1887–1915, English physicist.Studied the relations among bright-line spectra of different

elements.Derived the ATOMIC NUMBERS from the frequencies of

vibration of X-rays emitted by each element. Moseley concluded that the atomic number is equal to the

charge on the nucleus.This work explained discrepancies in Mendeleev’s Periodic

Law.

Page 70: Chapter 2

Dr. S. M. Condren

Modern Periodic Tablethe elements are arranged according to

increasing atomic numbers

Page 71: Chapter 2

Dr. S. M. Condren

I A II A III B IV B V B VI B VII B VIII B I B II B III A IV A V A VI A VII A VIII A1 1 2

1 H H He1.008 1.008 4.0026

3 4 5 6 7 8 9 10

2 Li Be B C N O F Ne6.939 9.0122 10.811 12.011 14.007 15.999 18.998 20.18311 12 13 14 15 16 17 18

3 Na Mg Al Si P S Cl Ar22.99 24.312 26.982 28.086 30.974 32.064 35.453 39.94819 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr39.102 40.08 44.956 47.89 50.942 51.996 54.938 55.847 58.932 58.71 63.54 65.37 69.72 72.59 74.922 78.96 79.909 83.8

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe85.468 87.62 88.906 91.224 92.906 95.94 * 98 101.07 102.91 106.42 107.9 112.41 114.82 118.71 121.75 127.61 126.9 131.29

55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

6 Cs Ba **La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn132.91 137.33 138.91 178.49 180.95 183.85 186.21 190.2 192.22 195.08 196.97 200.29 204.38 207.2 208.98 * 209 * 210 * 222

87 88 89 104 105 106 107 108 109 110 111 112 113 114 115 116 118

7 Fr Ra ***Ac Rf Ha Sg Ns Hs Mt Uun Uuu Uub Uut Uuq Uup Uuh Uuo* 223 226.03 227.03 * 261 * 262 * 263 * 262 * 265 * 268 * 269 * 272 * 277 *284 *285 *288 *292 *294

Based on symbols used by ACS S.M.Condren 2007

58 59 60 61 62 63 64 65 66 67 68 69 70 71

* Designates that **Lanthanum Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Luall isotopes are Series 140.12 140.91 144.24 * 145 150.36 151.96 157.25 158.93 162.51 164.93 167.26 168.93 173.04 174.97radioactive 90 91 92 93 94 95 96 97 98 99 100 101 102 103

*** Actinium Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Series 232.04 231.04 238.03 237.05 * 244 * 243 * 247 * 247 * 251 * 252 * 257 * 258 * 259 * 260

Periodic Table of theElementsPeriodic Table of the ElementsPeriodic Table of the Elements

Page 72: Chapter 2

Dr. S. M. Condren

Organization of Periodic Table• period - horizontal row• group - vertical column

Page 73: Chapter 2

Dr. S. M. Condren

Family NamesGroup IA alkali metalsGroup IIA alkaline earth metalsGroup VIIA halogensGroup VIIIAnoble gasestransition metalsinner transition metals• lanthanum series rare earths• actinium series trans-uranium series

Page 74: Chapter 2

Dr. S. M. Condren

Types of Elementsmetals

nonmetalsmetalloids - semimetals

Page 75: Chapter 2

Dr. S. M. Condren

Elements, Compounds, and Formulas

Elements• can exist as single atoms or moleculesCompounds• combination of two or more elements• molecular formulas for molecular

compounds• empirical formulas for ionic compounds

Page 76: Chapter 2

Dr. S. M. Condren

Organic CompoundsOrganic Chemistry

• branch of chemistry in which carbon compounds and their reactions are studied.

• the chemistry of carbon-hydrogen compounds

Page 77: Chapter 2

Dr. S. M. Condren

Inorganic Compounds Inorganic Chemistry

• field of chemistry in which are studied the chemical reactions and properties of all the chemical elements and their compounds, with the exception of the hydrocarbons (compounds composed of carbon and hydrogen) and their derivatives.

Page 78: Chapter 2

Dr. S. M. Condren

Molecular and Structural Formulas

Page 79: Chapter 2

Dr. S. M. Condren

Bulk Substances

• mainly ionic compounds– empirical formulas– structural formulas

Page 80: Chapter 2

Dr. S. M. Condren

Models of Sodium Chloride

NaCl “table salt”

Page 81: Chapter 2

Dr. S. M. Condren

How many atoms are in the formula Al2(SO4)3?

3, 5, 17

Page 82: Chapter 2

Dr. S. M. Condren

Naming Binary Molecular Compounds

• For compounds composed of two non-metallic elements, the more metallic element is listed first.

• To designate the multiplicity of an element, Greek prefixes are used:mono => 1; di => 2; tri => 3; tetra => 4; penta => 5; hexa => 6; hepta => 7; octa => 8

Page 83: Chapter 2

Dr. S. M. Condren

Common CompoundsH2O

waterNH3

ammoniaN2O

nitrous oxideCO

carbon monoxideCS2

carbon disulfide

SO3

sulfur trioxideCCl4

carbon tetrachloridePCl5

phosphorus pentachlorideSF6

sulfur hexafluoride

Page 84: Chapter 2

Dr. S. M. Condren

Alkanes - CnH2n+2

• methane - CH4

• ethane - C2H6

• propane - C3H8

• butanes - C4H10

• pentanes - C5H12

• hexanes - C6H14

• heptanes - C7H16

• octanes - C8H18

• nonanes - C9H20

• decanes - C10H22

Page 85: Chapter 2

Dr. S. M. Condren

Burning of Propane Gas

Page 86: Chapter 2

Dr. S. M. Condren

Butanes

Page 87: Chapter 2

Dr. S. M. Condren

Ionic BondingCharacteristics of compounds with ionic

bonding:• non-volatile, thus high melting points• solids do not conduct electricity, but melts

(liquid state) do• many, but not all, are water soluble

Page 88: Chapter 2

Dr. S. M. Condren

Ion Formation

Page 89: Chapter 2

Dr. S. M. Condren

ValanceCharge on Ions

• compounds have electrical neutrality• metals form positive monatomic ions• non-metals form negative monatomic ions

Page 90: Chapter 2

Dr. S. M. Condren

Valence of Metal IonsMonatomic IonsGroup IA => +1Group IIA => +2

Maximum positive valenceequals

Group A #

Page 91: Chapter 2

Dr. S. M. Condren

Valence of Non-Metal IonsMonatomic IonsGroup VIA => -2Group VIIA => -1

Maximum negative valence equals

(8 - Group A #)

Page 92: Chapter 2

Dr. S. M. Condren

Charges of Some Important Ions

Page 93: Chapter 2

Dr. S. M. Condren

Polyatomic Ions• more than one atom joined together• have negative charge except for NH4

+ and its relatives

• negative charges range from -1 to -4

Page 94: Chapter 2

Dr. S. M. Condren

Polyatomic Ionsammonium NH4

+

perchlorate ClO41-

cyanide CN1-

hydroxide OH1-

nitrate NO31-

sulfate SO42-

carbonate CO32-

phosphate PO43-

Page 95: Chapter 2

Dr. S. M. Condren

Names of Ionic Compounds1. Name the metal first. If the metal has more than one oxidation

state, the oxidation state is specified by Roman numerals in parentheses.

2. Then name the non-metal, changing the ending of the non-metal to

-ide.

Page 96: Chapter 2

Dr. S. M. Condren

NomenclatureNaCl

sodium chlorideFe2O3

iron(III) oxideN2O4

dinitrogen tetroxide

KIpotassium iodide

Mg3N2

magnesium nitrideSO3

sulfur trioxide

Page 97: Chapter 2

Dr. S. M. Condren

NomenclatureNH4NO3

ammonium nitrateKClO4

potassium perchlorateCaCO3

calcium carbonateNaOH

sodium hydroxide

Page 98: Chapter 2

Dr. S. M. Condren

Nomenclature DrillAvailable for PCs:

– on your disk to use at home or in the dorm

– in the Chemistry Resource Center– off the web under Chapter 2, Links

http://www.cbu.edu/~mcondren/c115lkbk.html

Page 99: Chapter 2

Dr. S. M. Condren

How many moles of ions are there per mole of Al2(SO4)3?

2, 3, 5

Page 100: Chapter 2

Dr. S. M. Condren

Chemical Equation

• reactants• products• coefficients

reactants -----> products

Page 101: Chapter 2

Dr. S. M. Condren

Writing and BalancingChemical Equations

• Write a word equation.• Convert word equation into formula

equation.• Balance the formula equation by the use of

prefixes (coefficients) to balance the number of each type of atom on the reactant and product sides of the equation.

Page 102: Chapter 2

Dr. S. M. Condren

ExampleHydrogen gas reacts with oxygen gas to

produce water.Step 1.hydrogen + oxygen -----> waterStep 2.H2 + O2 -----> H2O

Step 3.2 H2 + O2 -----> 2 H2O

Page 103: Chapter 2

Dr. S. M. Condren

ExampleIron(III) oxide reacts with carbon monoxide to

produce the iron oxide (Fe3O4) and carbon dioxide.

iron(III) oxide + carbon monoxide -----> Fe3O4 + carbon dioxide

Fe2O3 + CO -----> Fe3O4 + CO2

3 Fe2O3 + CO -----> 2 Fe3O4 + CO2