chapter 16 electrical energy and capacitance conceptual quiz questions

36
Chapter 16 Electrical Energy and Capacitance Conceptual Quiz Questions

Upload: rosaline-hood

Post on 14-Dec-2015

230 views

Category:

Documents


3 download

TRANSCRIPT

Chapter 16Electrical Energy and Capacitance

Conceptual QuizQuestions

Chapter 16: Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The graph shows the relationship between the work done on a charged body in an electric field and the net charge on the body. What does the slope of this graph represent?

(A) power

(B) potential difference

(C) force

(D) electric field intensityeargch

workvoltage

Conceptual Questions Ch 16

Chapter 16: Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The diagram shows proton P located at point A near a positively charged sphere.

If 6.4 X 10-19 joule of work is required to move the proton from point A to point B, the potential difference between A and B is

(A) 6.4 × 10-19 V (C) 6.4 V

(B) 4.0 × 10-19 V (D) 4.0 V

eargchwork

voltage

Conceptual Questions Ch 16

Chapter 16: Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The diagram below shows a point, P, located midway between two oppositely charged parallel plates. If a proton is introduced at point P, the proton will

(A) travel at constant speed toward the positively charged plate.

(B) travel at constant speed toward the negatively charged plate.

(C) accelerate toward the negatively charged plate.

(D) accelerate toward the positively charged plate.

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Which of the following is not a vector?

(A) electric force

(B) electric field

(C) electric potential

(D) electric line of force

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Two identical aluminum objects are insulated from their surroundings. Object A has a net charge of excess electrons. Object B is grounded. Which object is at a higher potential?

(A) A

(B) B

(C) Both are at the same potential.

(D) cannot be determined without more information

B A

0 V 10 V

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

For an electron moving in a direction opposite to the electric field

(A) its potential energy decreases and its electric potential increases.

(B) its potential energy increases and its electric potential decreases.

(C) its potential energy increases and its electric potential increases.

(D) its potential energy decreases and its electric potential decreases.

B A

10 V 10 V

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A small charged ball is accelerated from rest to a speed v by a 500 V potential difference. If the potential difference is changed to 2000 V, what will the new speed of the ball be?

(A) v

(B) 2v

(C) 4v

(D) 16v mqV2

v

qV2

mv

qVW2

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A negative charge is moved from point A to point B along an equipotential surface.

(A) The negative charge performs work in moving from point A to point B.

(B) Work is required to move the negative charge from point A to point B.

(C) Work is both required and performed in moving the negative charge from point A to point B.

(D) No work is required to move the negative charge from point A to point B.

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

One electron-volt corresponds to

(A) 8.0 × 10-20 J.

(B) 1.6 × 10-19 J.

(C) 9.5 × 10-17 J.

(D) 1.9 × 10-16 J. qVW

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The absolute potential at the exact center of a square is 3.0 V when a charge of +Q is located at one of the square's corners. What is the absolute potential at the square's center when each of the other corners is also filled with a charge of +Q?

(A) zero

(B) 3.0 V

(C) 9.0 V

(D) 12 V

r

V3

rQk

V

r

r

QkV

rQk

r

Qk

rQk

rQk

4V

V 12V34V Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

One coulomb per volt is a

(A) joule.

(B) electron-volt.

(C) farad.

(D) watt.

VQ

C

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A parallel-plate capacitor has a capacitance of C. If the area of the plates is doubled and the distance between the plates is halved, what is the new capacitance?

(A) C/4

(B) C/2

(C) 2C

(D) 4C dA

εC o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A battery charges a parallel-plate capacitor fully and then is removed. The plates are immediately pulled apart. (With the battery disconnected, the amount of charge on the plates remains constant.) What happens to the potential difference between the plates as they are being separated?

(A) It increases.

(B) It decreases.

(C) It remains constant.

(D) cannot be determined from the information given

EdV

QE

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

If the electric field between the plates of a given capacitor is weakened, the capacitance of that capacitor

(A) increases.

(B) decreases.

(C) does not change.

(D) cannot be determined from the information given

dA

εC o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The plates of a parallel-plate capacitor are maintained with constant voltage by a battery as they are pulled apart. What happens to the strength of the electric field during this process?

(A) It decreases.

(B) It increases.

(C) It remains constant.

(D) cannot be determined from the information given

QE d

AVεQ o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Doubling the capacitance of a capacitor holding a constant charge causes the energy stored in that capacitor to

(A) quadruple.

(B) double.

(C) decrease to one half.

(D) decrease to one fourth.

C2Q

PE2

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

One joule per coulomb is a

(A) newton.

(B) volt.

(C) electron-volt.

(D) farad. qW

V

qVW

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

For a proton moving in the direction of the electric field

(A) its potential energy increases and its electric potential decreases.

(B) its potential energy decreases and its electric potential increases.

(C) its potential energy increases and its electric potential increases.

(D) its potential energy decreases and its electric potential decreases.

B A

10 V 10 V

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Several electrons are placed on a hollow conducting sphere. They

(A) clump together on the sphere's outer surface.

(B) clump together on the sphere's inner surface.

(C) become uniformly distributed on the sphere's outer surface.

(D) become uniformly distributed on the sphere's inner surface.

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A surface on which all points are at the same potential is referred to as

(A) a constant electric force surface.

(B) a constant electric field surface.

(C) an equipotential surface.

(D) an equivoltage surface.

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The energy acquired by a particle carrying a charge equal to that on the electron as a result of moving through a potential difference of one volt is referred to as

(A) a joule.

(B) a coulomb.

(C) a proton-volt.

(D) an electron-volt.

qVW

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The electron-volt is a unit of

(A) voltage.

(B) current.

(C) power.

(D) energy.

qVW

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The absolute potential at a distance of 2.0 m from a positive point charge is 100 V. What is the absolute potential 4.0 m away from the same point charge?

(A) 25 V

(B) 50 V

(C) 200 V

(D) 400 V

r

QkV

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The absolute potential at the center of a square is 3.0 V when a charge of +Q is located at one of the square's corners. What is the absolute potential at the square's center when a second charge of Q is placed at one of the remaining corners?

(A) zero

(B) 3.0 V

(C) 6.0 V

(D) 9.0 V

r

rQk

V

r

r

QkV

rQk 0

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A parallel-plate capacitor is connected to a battery and becomes fully charged. The capacitor is then disconnected, and the separation between the plates is increased in such a way that no charge leaks off. The energy stored in this capacitor has

(A) increased.

(B) decreased.

(C) not changed.

(D) become zero.

C2Q

PE2

Aε2dQ

PEo

2

dA

εC o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Two parallel-plate capacitors are identical in every respect except that one has twice the plate area of the other. If the smaller capacitor has capacitance C, the larger one has capacitance

(A) C/2.

(B) C.

(C) 2C.

(D) 4C.

dA

εC o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The plates of a parallel-plate capacitor are maintained with constant voltage by a battery as they are pulled apart. During this process, the amount of charge on the plates must

(A) increase.

(B) decrease.

(C) remain constant.

(D) either increase or decrease. There is no way to tell from the information given.

VQ

C dA

εC o

dAV

εQ o

Conceptual Questions Ch 16

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

Doubling the voltage across a given capacitor causes the energy stored in that capacitor to

(A) quadruple.

(B) double.

(C) reduce to one half.

(D) reduce to one fourth.

2CV

PE2

Conceptual Questions Ch 16

16

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

A

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

B

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

C

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

D

Chapter 16 Electrical Energy and Capacitance

~M1 ~M2 ~M3 ~M4 ~M5 ~M6 ~M7 ~M8 ~M10~M9~M11~M12~M13~M14~M15~M16~M17~M18 ~M20~M19~M21~M22~M23~M24~M25~M26~M27~M28 ~M30~M29~M31~M32~M33~M34~M35~M36~M37~M38 ~M40~M39~M41~M42~M43~M44~M45~M46~M47~M48 ~M50~M49~M51~M52~M53~M54~M55~M56~M57~M58 ~M60~M590% 20% 40% 60% 80% 100%

4

3

2

1

The absolute potential at a distance of 2.0 m from a negative point charge is -100 V. What is the absolute potential 4.0 m away from the same point charge?

(A) -25 V

(B) -50 V

(C) -200 V

(D) -400 V

r

QkV