chapter 15 - الصفحات الشخصية | الجامعة الإسلامية...

73
Chapter 15 Inertia Forces in Reciprocating Parts

Upload: doanminh

Post on 10-Mar-2018

241 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Chapter 15

Inertia Forces in Reciprocating Parts

Page 2: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

n = Ratio of length of connecting rod to the radius of crank = l/r

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

2

Page 3: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Velocity of the piston

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

3

Page 4: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Velocity of the piston

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

4

Page 5: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Velocity of the piston

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

5

Page 6: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Acceleration of the piston

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

6

Page 7: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Acceleration of the piston

At the inner dead center (IDC), q = 0°

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

7

Page 8: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Approximate Analytical Method for Velocity and Acceleration of the Piston

Acceleration of the piston

At the outer dead center (ODC), q = 180°

As direction of motion is reversed at the ODC therefore changing the sign of the

above expression,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

8

Page 9: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Angular Velocity and Acceleration of the Connecting Rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

9

Page 10: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Angular Velocity and Acceleration of the Connecting Rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

10

Page 11: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Angular Velocity and Acceleration of the Connecting Rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

11

Page 12: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Angular Velocity and Acceleration of the Connecting Rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

12

Page 13: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Angular Velocity and Acceleration of the Connecting Rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

13

Since sin2q is small as compared to n2, and 1.0 is small compared to n2 therefore:

Page 14: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.3

If the crank and the connecting rod are 300 mm and 1000 m long respectively and

the crank rotates at a constant speed of

200 rpm, determine:

1. The crank angle at which the maximum velocity occurs

2. Maximum velocity of the piston

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

14

Page 15: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.4

The crank and connecting rod of a steam engine are 0.3 m and 1.5 m in length. The

crank rotates at 180 rpm cw. Determine the

velocity and acceleration of the piston when the crank is at 40° from the IDC

center position. Also determine the position of the crank for zero acceleration of the

piston.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

15

Page 16: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.5

In a slider crank mechanism, the length of the crank and connecting rod are 150 mm

and 600 mm respectively. The crank

position is 60° from IDC. The crank shaft

speed is 450 rpm cw. Using analytical

method, determine:

1. Velocity and acceleration of the slider

2. Angular velocity and angular

acceleration of the connecting rod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

16

Page 17: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

17

Page 18: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

Piston effort: net force acting on the piston or crosshead pin, along the line of

stroke. It is denoted by FP.

mR = Mass of reciprocating parts, piston,

crosshead pin or gudgeon pin etc.

WR = mR.g

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

18

Page 19: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

19

Page 20: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

20

In a horizontal engine, the reciprocating parts are accelerated from rest when the

piston moves from IDC to ODC)

It is, then, retarded during the latter half of

the stroke when the piston moves from ODC

to IDC

Page 21: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

21

The inertia force due to the acceleration of the reciprocating parts, opposes the force

on the piston due to the difference of

pressures in the cylinder on the two sides of

the piston

The inertia force due to retardation of the reciprocating parts, helps the force on the

piston.

Page 22: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

22

The –ve sign is used when the piston is accelerated, and +ve sign is used when the

piston is retarded.

Page 23: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

23

In a double acting reciprocating steam engine, net load on the piston,

FL = p1 A1 – p2 A2 = p1 A1 – p2 (A1 – a)

p1, A1 = Pressure & cross-sectional area on

back end side of the piston

p2, A2 = Pressure & cross-sectional area on crank end side of the piston

a = Cross-sectional area of the piston rod

Page 24: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

24

In case of a vertical engine, the weight of the reciprocating parts assists the piston

effort during the downward stroke (when

piston moves from TDC to BDC) and

opposes during the upward stroke of the

piston (when the piston moves from BDC to TDC).

Piston effort,

Page 25: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

25

Force acting along the connecting rod.

Page 26: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

26

Crank-pin effort and thrust on crank shaft bearings

Crank-pin effort, FT: component of FQ

perpendicular to the crank

FB: component of FQ along crank produces

a thrust on the crank shaft bearings

Page 27: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

27

Crank-pin effort and thrust on crank shaft bearings

Crank-pin effort, FT: component of FQ

perpendicular to the crank

FB: component of FQ along crank produces

a thrust on the crank shaft bearings

Page 28: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

28

Crank effort or turning moment or torque on the crank shaft

Page 29: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

29

Crank effort or turning moment or torque on the crank shaft

Page 30: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

30

Crank effort or turning moment or torque on the crank shaft

Page 31: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Forces on Reciprocating Parts of an Engine, Neglecting Weight of ConRod

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

31

Crank effort or turning moment or torque on the crank shaft

Page 32: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.6

Find the inertia force for the following data of an I.C. engine. Bore = 175 mm,

stroke = 200 mm, engine speed = 500

rpm, length of connecting rod = 400

mm, crank angle = 60° from TDC and

mass of reciprocating parts = 180 kg.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

32

Page 33: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.7 The crank-pin circle radius of a horizontal engine is

300 mm. The mass of the reciprocating parts is 250 kg. When the crank has travelled 60° from IDC, the

difference between the driving and the back pressures is 0.35 N/mm2. The connecting rod length between centers is 1.2 m and the cylinder bore is 0.5

m. If the engine runs at 250 rpm and if the effect of piston rod diameter is neglected, calculate :

1. pressure on slide bars

2. thrust in the connecting rod

3. tangential force on the crank-pin

4. turning moment on the crank shaft.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

33

Page 34: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.8 A vertical double acting steam engine has a

cylinder 300 mm diameter and 450 mm stroke and runs at 200 rpm. The reciprocating parts has a mass

of 225 kg and the piston rod is 50 mm diameter. The connecting rod is 1.2 m long. When the crank has turned through 125° from the TDC, the steam

pressure above the piston is 30 kN/m2 and below the piston is 1.5 kN/m2. Calculate the effective

turning moment on the crank shaft.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

34

Page 35: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.9 The crank and connecting rod of a petrol engine,

running at 1800 rpm are 50 mm and 200 mm respectively. The diameter of the piston is 80 mm

and the mass of the reciprocating parts is 1 kg. At a point during the power stroke, the pressure on the piston is 0.7 N/mm2, when it has moved 10 mm from

the inner dead center. Determine :

1. Net load on the gudgeon pin

2. Thrust in the connecting rod

3. Reaction between the piston and cylinder

4. The engine speed at which the above values become zero

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

35

Page 36: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.10 During a trial on steam engine, it is found that the

acceleration of the piston is 36 m/s2 when the crank has moved 30° from the IDC position. The net

effective steam pressure on the piston is 0.5 N/mm2 and the frictional resistance is equivalent to a force of 600 N. The diameter of the piston is 300 mm and

the mass of the reciprocating parts is 180 kg. If the length of the crank is 300 mm and the ratio of the

connecting rod length to the crank length is 4.5, find:

1. Reaction on the guide bars

2. Thrust on the crank shaft bearings

3. Turning moment on the crank shaft.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

36

Page 37: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.11 A vertical petrol engine 100 mm diameter and 120

mm stroke has a connecting rod 250 mm long. The mass of the piston is 1.1 kg. The speed is 2000 rpm.

On the expansion stroke with a crank 20° from TDC, the gas pressure is 700 kN/m2. Determine:

1. Net force on the piston

2. Resultant load on the gudgeon pin

3. Thrust on the cylinder walls

4. Speed above which, other things remaining

same, the gudgeon pin load would be reversed in direction.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

37

Page 38: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.12 A horizontal steam engine running at 120 rpm has a

bore of 250 mm and a stroke of 400 mm. The connecting rod is 0.6 m and mass of the

reciprocating parts is 60 kg. When the crank has turned through an angle of 45° from the IDC, the steam pressure on the cover end side is 550 kN/m2

and that on the crank end side is 70 kN/m2. Considering the diameter of the piston rod equal to

50 mm, determine:

1. turning moment on the crank shaft

2. thrust on the bearings

3. acceleration of the flywheel, if the power of the engine is 20 kW, mass of the flywheel 60 kg and

radius of gyration 0.6 m.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

38

Page 39: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Equivalent Dynamical System

To determine the motion of a rigid body, it is

usually convenient to replace the rigid body by two masses placed at a fixed distance apart, in

such a way that:

1. Sum of their masses = total mass of body

2. Center of gravity of the two masses coincides with that of the body

3. Sum of mass moment of inertia of the masses

about their center of gravity = mass moment of inertia of the body

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

39

Page 40: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Equivalent Dynamical System

kG = Radius of gyration about G

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

40

Page 41: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Equivalent Dynamical System

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

41

Page 42: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

4.8. Compound

Pendulum

When a rigid body is

suspended vertically, and it oscillates with a

small amplitude under the action of force of gravity, the body is

known as compound pendulum

m = Mass of pendulum

W = m g

kG = Radius of gyration

about G

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

42

Page 43: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

4.8. Compound

Pendulum

If pendulum is given a

small angular displacement q, then

the couple tending to restore the pendulum to the equilibrium

position OA,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

43

Page 44: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

4.8. Compound

Pendulum

Angular acceleration of the pendulum

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

44

Page 45: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

4.8. Compound

Pendulum

Comparing this equation with the equation of

simple pendulum, we see that the equivalent length of a simple pendulum, which gives the

same frequency as compound pendulum, is

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

45

Page 46: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Equivalent Dynamical System

When the radius of gyration kG is not known, then the position of the 2nd mass

may be obtained by considering the

body as a compound pendulum

The length of the simple pendulum which gives the same frequency as the rigid

body (compound pendulum) is

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

46

Page 47: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Equivalent Dynamical System

The second mass is situated at the center of oscillation of the body

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

47

Page 48: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Determination of Equivalent

Dynamical System of Two Masses by Graphical Method

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

48

Page 49: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.15

The connecting rod of a gasoline

engine is 300 mm long between its centers. It has a mass of 15 kg and

mass moment of inertia of 7000 kg-mm2. Its center of gravity is at 200 mm from its small end center.

Determine the dynamical equivalent two-mass system of the

connecting rod if one of the masses is located at the small end center.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

49

Page 50: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.16

A connecting rod is suspended from a point 25 mm above the

center of small end, and 650

mm above its center of gravity,

its mass being 37.5 kg. When

permitted to oscillate, the time period is found to be 1.87

seconds. Find the dynamical

equivalent system constituted of

two masses, one of which is

located at the small end center.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

50

Page 51: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.17 The following data relate to a

connecting rod of a reciprocating engine: Mass = 55 kg; Distance

between bearing centers = 850 mm; Diameter of small end bearing = 75 mm; Diameter of big end bearing =

100 mm; Time of oscillation when the connecting rod is suspended

from small end = 1.83 s; Time of oscillation when the connecting rod is suspended from big end = 1.68 s.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

51

Page 52: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.17 Determine:

1. Radius of gyration of the rod

about an axis passing through center of gravity and

perpendicular to plane of oscillation

2. Moment of inertia of the rod about the same axis

3. Dynamically equivalent system for the connecting rod, constituted of two masses, one of which is

situated at the small end center.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

52

Page 53: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

When two masses are placed arbitrarily, then the following conditions will only

be satisfied:

The Moment of inertia condition is not

possible to satisfy.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

53

Page 54: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

Consider two masses, one at A and the other at D be placed arbitrarily

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

54

Page 55: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

I1 = New mass moment of inertia of the two masses

k1 = New radius of gyration

kG = Radius of gyration of a dynamically

equivalent system

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

55

Page 56: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

Torque required to accelerate the body,

Torque required to accelerate the two-

mass system placed arbitrarily,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

56

Page 57: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

Correction couple: difference of torques T‘

This couple must be applied, when the

masses are placed arbitrarily to make the system dynamical equivalent.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

57

Page 58: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Correction Couple to be Applied to Make Two Mass System Dynamically Equivalent

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

58

Page 59: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.18 A connecting rod has a mass of 2 kg and the

distance between the center of gudgeon pin & center of crank pin is 250 mm. The CG falls at a

point 100 mm from the gudgeon pin along the line of centers. The radius of gyration about an axis through the CG perpendicular to the plane of

rotation is 110 mm. Find the equivalent dynamical system if only one of the masses is located at

gudgeon pin. If the connecting rod is replaced by two masses, one at the gudgeon pin and the other at the crank pin and the angular acceleration of

the rod is 23000 rad/s2 cw, determine the correction couple applied to the system to reduce it to a

dynamically equivalent system.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

59

Page 60: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque The mass of connecting rod (mC) is divided into two

masses. One mass at crosshead pin P and the other at crankpin C, so that CG of these two masses

coincides with CG of the rod G.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

60

Page 61: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque Inertia force due to mass at C acts radially

outwards along crank OC

mass at C has no effect on crankshaft torque

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

61

Page 62: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

Mass of connecting rod at P

Mass of reciprocating parts (mR) is also

acting at P

Total equivalent mass of reciprocating parts acting at P

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

62

Page 63: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

Total inertia force of equivalent mass acting at P,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

63

Page 64: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

Corresponding torque exerted on crank shaft,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

64

Page 65: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

In deriving the above equation of the torque exerted on the crankshaft, it is

assumed that one of the two masses is

placed at C and the other at P.

This assumption does not satisfy the condition for kinetically equivalent system

of a rigid bar.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

65

Page 66: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

To compensate for it, a correcting torque is necessary whose value is given by

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

66

Page 67: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

The correcting torque T' may be applied to the system by two equal and opposite

forces FY acting through P and C

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

67

Page 68: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

68

Page 69: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

The equivalent mass of rod acting at C,

Torque exerted on crank shaft due to mass

m2 ,

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

69

Page 70: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Analytical Method for Inertia Torque

Total torque exerted on the crankshaft due to the inertia of the moving parts =TI + TC +

TW

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

70

Page 71: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.20 The following data refer to a steam engine:

Diameter of piston = 240 mm

Stroke = 600 mm

length of connecting rod = 1.5 m

mass of reciprocating parts = 300 kg

mass of connecting rod = 250 kg

speed = 125 rpm

center of gravity of connecting rod from crank pin = 500 mm

radius of gyration of connecting rod about an axis through the center of gravity = 650 mm

Determine magnitude and direction of torque exerted on the crankshaft when the crank has turned through 30° from IDC.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

71

Page 72: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.21

A vertical engine running at 1200 rpm with a stroke of 110

mm, has a connecting rod 250

mm between centers and

mass 1.25 kg. The mass center

of the connecting rod is 75 mm from the big end center and

when suspended as a

pendulum from the gudgeon

pin axis makes 21 complete

oscillations in 20 seconds.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

72

Page 73: Chapter 15 - الصفحات الشخصية | الجامعة الإسلامية بغزةsite.iugaza.edu.ps/mhaiba/files/2013/09/CH15-Inertia...Example 15.7 The crank-pin circle radius

Example 15.21 1. Calculate the radius of gyration of the

connecting rod about an axis through its mass center.

2. When the crank is at 40° from TDC and the piston is moving downwards, find analytically, the acceleration of the piston and the angular acceleration of the connecting rod. Hence find the inertia torque exerted on the crankshaft. To make the two-mass system to be dynamically equivalent to the connecting rod, necessary correction torque has to be applied and since the engine is vertical, gravity effects are to be considered.

11/20/2014

Dr. Mohammad Suliman Abuhaiba, PE

73