chapter 14 kinetics 2 7 bv

Upload: harriola

Post on 04-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    1/41

    Chapter14

    ChemicalKinetics

    bv,272009

    I.Introduction

    Gasolineandairinacarengineexplodeviolently,butleftuntouched,theywillnotreactforyearsata

    time.Meatleftoutwillinvitebiochemicalreactionsthat,amongotherthing,generatebadsmelling

    gases.Ifkeptatlowertemperatures,thesereactionstakeamuchlongertimetooccur.Enzymatic

    reactionsoccurslowlyatlowtemperaturesandathightemperatures,butrapidlyatintermediate

    temperatures.Whydosomeoccurquickly,whileothersslowly?Whydosomereactionsoccuratall

    whileothersdonot?Inotherwords,whatcontrolschemicalreactivity?

    Chemicalreactivityiscontrolledbytwobroadfactors:thermodynamicsandkinetics.Thermodynamics

    considersthequestion:whichstateismorestable,reactantsorproducts.Thermodynamicsanswersthe

    question:shouldthisreactionoccur?Kinetics thesubjectofthischapter considersthequestion:what

    controlstherateofareaction?

    Inorderforareactiontooccurinapracticalsense,itmustbeboththermodynamicallyandkinetically

    favored.Thesearerelativeterms:thereactionmustbethermodynamicallyfavoredenoughtoformtheamountofproductdesired,anditmustbekineticallyfavoredenoughtobecompleteonthetimescale

    required.

    Thermodynamiccontrolofreactionsarisesfromenthalpy,entropyandthetemperature.Kineticcontrol

    ofareactionarisesfromthemannerinwhichthereactiontakesplace itsmechanism,theenergy

    barrierrequiredtobeovercome theactivationenergy,theconcentrationofreactants,andagainthe

    temperature.Inthischapterweanalyze:

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    2/41

    howconcentrationcontrolsreactionrate themathematicsconnectingconcentration,rateandtime howactivationenergycontrolsreactionrate howtemperaturecontrolsreactionrate howeachoftheseisrelatedtothereactionsmechanism

    II.CollisionTheory

    Collisiontheoryrelateshowwethinkofreactionstothereactionratesweobserve.Theideaofcollision

    theory,isthatmoleculesarecollidingallthetimeandsomefraction butnotall ofthosecollisionswill

    leadtotransformationofthereactantstotheproducts.

    1.Themoleculesmustcomeintocontact.Thisisacollision.

    2.Theymustcollidewithenoughenergytoovercomeanenergybarriertoreactioncalledthe

    activationenergy.3.Theymustcollideinanorientationthatallowsthenecessarybondbreakingandforming

    neededtotransformthereactantstotheproducts.

    Relationshipstoreactionrate:

    1.Collisions:Thisissimple.Ifsomefractionofcollisionswillleadtocreationofproducts,thenthemore

    collisionspersecond,thefasterthereactionwillproceed.Thiscollisionrequirementdoeshavealarge

    effectonwhatmediaarechosentoperformchemicalreactions.Solidstendtobeveryslowreactors

    becauseonlytheatomsonthesurfacecanhavecollisionswithotheratomsonothermolecules.Ever

    noticehowslowironrusts?Mostreactionsaredoneeitherinsolutionorinthegasphasewherefreedomofmovementofthereactantmoleculesallowsthemtoeasilycomeintocontact.

    Conclusion:Themorecollisions,thefasterthereaction.

    2.OvercomingtheActivationBarrier:AnysampleofreactantswillhaveaBoltzmanndistributionof

    molecularenergies.Somemoleculeswillhavehighenergy;somelow;manyintermediate.Onlythose

    withenergiesgreaterthantheactivationenergywillbeabletoreact.Figure15.1ashowsBoltzmann

    plotsforasetofreactantsattwodifferenttemperatures.Onlythosereactantswithenergygreaterthan

    (totherightof,intheplot)theactivationenergywillbeabletoreact.Becauseagreaterfractionof

    moleculesinthehightemperaturesampleexceedtheactivationenergy,thehightemperaturesamplewillhaveeffectivecollisionsandwillexperienceafasterreactionrate.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    3/41

    Figure15.1a:Boltzmanndistributionsofmolecularenergiesatdifferenttemperaturesshow

    thatmoremoleculesexceedtheactivationenergyathighertemperature.b:Atagiven

    temperature,moremoleculesexceedaloweractivationenergythanahighone.

    Figure15.1bshowsaBoltzmanndistributionofmolecularenergiesforasinglesample,butshowstwo

    differentactivationenergies.Agreaterfractionofthesamplemoleculesexceedtheenergyofthelower

    activation

    energy

    than

    do

    the

    higher

    activation

    energy.

    Therefore,

    those

    reactant

    molecules

    will

    undergothereactionwiththeloweractivationbarriermorerapidlythanwouldwiththehigher

    activationbarrier.

    Conclusion:Thehigherthetemperatureandthelowertheactivationenergy,thefasterthe

    reaction.

    3.CollisionOrientation:ConsiderthereactionwhereachlorideionbondstoanelectrondeficientC

    atomintheunstableC(CH3)3+carbocation.ThereactionintermsofLewisstructuresisshowninFigure

    15.2a.

    Figure15.2a

    Thereactionismoreclearwhenviewedusing3dimensionalmolecularmodels.Theseareshownin

    Figure15.2bandc.In(a)theCl ionapproachestheC(CH3)3+ionfromtheopenside,sotheCl

    lonepair

    ofelectronscanreachtheopensiteonthecentralCatomandformthebondtomaketheproduct.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    4/41

    Figure15.2bandc

    In(c)theClionapproachesfromtheendandisblockedbyoneoftheCH3groups.Itcollides,butnotin

    therightplace.So,noreaction.Inthisreactionmanyofthecollisionswillbeintheproperorientation

    butmanywillnot.Orientationeffectsslowthereaction,butnotbymuch.Somereactionsinvolvevery

    largemoleculeswithveryspecificreactionsites,andinthesealowfractionofcollisionsoccurringlead

    toproducts.

    Conclusion:Themorespecificareactionsite,theslowerthereaction.

    II.ExpressingReactionRate

    Howfastisareaction?Weknowitwhenweseeit,buthowisitexpressedquantitatively?Wedothisby

    writingaratioofchangeinconcentrationoverchangeintime.ConsiderFigure15.3,whichshowsthe

    changesinconcentrationoveraperiodof8secondsforareaction,A2B.ReactantAstartsata

    concentrationof0.50Manddropsto0Mover8seconds.ProductBstartsat0Mandincreasesto1.0

    Mover8seconds.Therearethreecommonwayswemeasurerate.

    Figure15.3ConcentrationTimeplotsduringthe

    courseofthereactionofA2B

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    5/41

    AverageRateOverTime

    Onewaywecouldexpresstherateisthechangeinconcentrationovertheperiodof8seconds.Therate

    ofproductionofBwouldbe1.00M/8s,or0.125M/s.Thisisnotparticularlyusefulbecausethereaction

    wasalreadydone.Betteristolookattherateofthereactionwhileitisoccurring.Ifwelookattheplot

    inmoredetail,weseethatthechangeinconcentrationinthefirstsecond,is:

    Inthefirstsecond,theconcentrationofBchangesfrom0Mto0.50M.Therateofchangeistherefore,

    [ ] ( )0.50 0.00.50 /

    1.0 0.0

    B M MM s

    t s s

    = =

    Likewise,inthefirstsecond,theconcentrationofAchangesfrom0.50Mto0.25M.Therateofchange

    ofAistherefore,

    [ ] ( )0.25 0.500.25 /

    1.0 0.0

    A M MM s

    t s s

    = =

    Whythenegativesign?Ratesarealwaysconsideredtobepositive.Whenexpressingarateintermsofa

    reactants(forwhichtheconcentrationdecreases)wechangethesigntomakesuretheratecomesout

    positive.Rule:Ratesexpressedforproductsdontusethenegativesign;thoseforreactantsdo.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    6/41

    Example1.

    Forthedecompositionofhydrogenperoxideindilutesodiumhydroxideat20oC

    2H2O2(aq) 2H2O(l)+O2(g)

    thefollowingdatahavebeenobtained:

    Time,minutes [H2O2],mol/L

    0 9.12x102

    434 5.66x102

    868 3.51x102

    1302 2.18x102

    WhatistheaveragerateofdisappearanceofH2O2overthetimeperiodfrom0minto434min?

    Solution:

    Therateovertimeisgivenbythechangeinconcentrationoverthechangeintime.Fora

    reactant,weaddaminussigntomakesuretheratecomesoutasapositivevalue.

    [ ] ( )2 22 2 55.66 10 9.12 10H O 7.97 10 / mintime 434min 0 min

    MRate M

    = = =

    WecanrelatetheratesofchangeofAandBusingthereactionequation.Because2molofBare

    producedforeachmolofAreacting,thechangeinconcentrationsofAandBarerelatedbyafactorof

    2.

    [ ] [ ]2

    B A

    t t

    =

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    7/41

    Example2.

    Forthedecompositionofhydrogenperoxideindilutesodiumhydroxideat20oC

    2H2O2(aq) 2H2O(l)+O2(g)

    theaveragerateofdisappearanceofH2O2overthetimeperiodfromt=0tot=516minis

    foundtobe8.08x105M/min.WhatistherateofappearanceofO2overthesametimeperiod?

    Solution:

    ThereactionequationshowsthatforeverytwomolesofH2O2thatreact,onemoleofO2is

    formed.ThereforetherateofformationofO2ishalftherateofH2O2consumption.

    [ ] [ ] 52 2 2 5O H O1 1 8.08 10 4.04 10 / min2 2 min

    MM

    t t

    = = =

    InstantaneousRate

    Weareofteninterestedinhowfastareactionisgoing,rightnow.Thisiscalledtheinstantaneousrateandisequaltotheslopeoftheconcentrationtimecurve.Ifdrawtangentsonthecurveatthe2second

    pointandmeasuretheirslopes,weseethattheinstantaneousrateat2secondsis+0.130M/sforthe

    productionofBand 0.065M/sforconsumptionofA.

    InitialRate

    Theinitialrateistheinstantaneousraterightwhenthereactionstarts.Thisisofinterestexperimentally

    becauseitistheeasiesttimeforustoknowtheexactconcentrationsofthedifferentspeciesinsolution.

    Afterthereactiongoesawhile,weneedtomakeinstantaneousmeasurementstoknowwhatthe

    concentrationsare.Sometimesthatseasy,butsometimesnot.Buttheconcentrationsatthestartof

    thereactionarealwayseasytoknow.Youmadethesolutions,afterall.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    8/41

    Theinstantaneousrateistheslopeoftheconcentrationtimecurveatthetime=0point.Again,though,

    weseethattherateofproductionofBistwicetherateofconsumptionofA.

    AFinalPoint

    Youcanuseaconcentrationtimecurvetosayalotaboutareaction.Wevealreadynotedthatthe

    concentrationtimecurveidentifiesAasareactantbecauseitdecreasesinconcentrationovertime,and

    Basaproductbecauseitincreases.Wecanalsoseethat2molofBareformedforeachmolofAthat

    reactsbecauseBgoesuptwiceasmuchasAgoesdown.

    Butwecanalsoseeinthisplotthatthereactionslowsdownasitproceeds.Notallreactionsdo.WhatthistellsusisthatthereactionratedependsontheconcentrationofAavailabletoreact.Noticethat

    when[A]islarge,theslopeofthecurveissteep.Thereactionisfastwhen[A]islarge.Laterinthe

    reaction,[A]ismuchsmaller,andsoistheslope.ThereactionslowsdownasAisusedup.Thereisa

    concentrationdependenceofrateonconcentration.Which,notcoincidentally,isthesubjectofthenext

    section.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    9/41

    III.ConcentrationEffects

    Thefrequencyofcollisionswasthefirstconsiderationweexaminedwhenthinkingaboutwhatcontrols

    reactionrates.Themorecollisions,thefastertherateshouldbe.Andthatsgenerallybutnotalways

    true.Therearetwowaystoincreasethefrequencyofcollisionsbetweenmolecules:crowdmoreof

    themtogetherinaspaceormakethemmovefaster.Movingfasterisaccomplishedbyraisingthe

    temperature,andwelldealwiththatlater.Asforcrowdingmoremoleculestogether,weretalking

    aboutconcentration.Thegreatertheconcentrationofacompound,themoremoleculeswillbepresent

    inthesamevolume,andthemorecollisionswilloccur.Thisiswhycrowdeddancefloorsarepopular,

    andemptyonesarenot.Inadditiontothatbeingtruebydefinition,ofcourse.

    Thedependenceofarateontheconcentrationofthereactantsisexpressedinaratelaw(orsometimes

    calledarateequation).ConsiderthedecompositionreactionofNH4NCO.

    NH4NCO(aq)(NH2)2CO(aq)

    Theratelawforthereactionis

    Rate=k[NH4NCO]2

    Theratelawhasthreeparts:

    Whatdoesthismean,anyway?Well,forthisreaction,itmeansthattherateofthereactionis

    proportionaltothesquareoftheconcentrationofthereactant.Youmightthinkthatifyoudoublethe

    reactantconcentration,theratewoulddouble.Inthisreaction,nottrue.Itwillquadruple.

    Moreexamples:Reaction(allgasphase) RateLaw OverallOrder

    2N2O54NO2+O2 Rate=k[N2O5] firstorder

    NO2+CONO+CO2 Rate=k[NO2]2 secondorderinNO2,zeroorderin

    CO,secondorderoverall

    2NO+O22NO2 Rate=k[NO2]2[O2] secondorderinNO,firstorderin

    O2,thirdorderoverall

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    10/41

    Acouplethingstonoticeintheexamplesabove:

    1.Theratelawsarenotderivedfromthereactionequations.Sometimestheymatch.

    Sometimestheydonot.

    2.Althoughtherateconstantisreallyanumberwithunits,whendescribingageneralratelaw,

    weusuallyjustwritek.Thisisbecausetheratelawistrueatalltemperatures,butany

    numericalkvalueistrueonlyatonetemperature.Weindicateanumberwhenwewanttouse

    theratelawincalculations.

    AnnoyingBoxAbouttheUnitsofk

    Assumingtimeismeasuredinseconds,therateofareactionisalways

    expressedintermsofM/s.Whataretheunitsofk?Well,itdependson

    thereactionorder.

    Zero

    Order

    Ifthereactioniszeroorder,theratelawis,

    Rate=k

    Theunitsofkmustbethesameasthatofrate,M/s.

    FirstOrder

    Inafirst

    order

    reaction,

    the

    rate

    law

    is,

    Rate=k[A]

    Intermsofunits,thisisM

    k Ms

    = .Theunitsofkmustbe1/s,ors1.

    SecondOrder

    Inasecondorderreaction,theratelawis,

    Rate=k[A]2

    Intermsofunits,thisis2M k M

    s= .Theunitsofkmustbe1/Ms,or

    M1s1.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    11/41

    Example3:

    Methylacetatereactswithhydroxideionaccordingtothefollowingequation,

    CH3CO2CH3+OHCH3CO2

    +CH3OH

    withtheratelaw,

    Ratek[CH3CO2CH3][OH]

    Whatistheorderofreactionforeachreactant,andtheoverallreactionorder?

    Solution:

    Becausethetherearenosuperscriptstotherightofeachconcentrationintheratelaw,it

    meanstheyareeachfirstorder.ThereactionisfirstorderinCH3CO2CH3andfirstorderinOH.It

    issecondorderoverall,because1+1doesequal2.

    Determining

    Rate

    Laws

    Using

    the

    Method

    of

    Initial

    Rates

    Ratelawsarenotderivedfromthereactionequation.Nomatterhowmanytimeswesay,peoplekeep

    thinkingitstrue.Butitsnot.

    Ratelawsarederivedfromexperimentaldata.Therearetwomethods:themethodofinitialrates,and

    thegraphicalmethod.Herewecoverthemethodofinitialratesinwhichareactionisrunmultipletimes

    withdifferentinitialconcentrationsofeachreactant.Theinitialratesofeachexperimentarecompared

    totheinitialconcentrationsofthereactantstodeterminetheorderofeach.Themethodismostoften

    performedinthefollowingway:

    1.For

    each

    reactant,

    run

    apair

    of

    reactions

    in

    which

    that

    reactants

    concentration

    isdoubled

    while

    all

    otherreactantconcentrationsareheldconstant.Thisisolatestheeffectonratetothatsinglereactant.

    2.Mostoftenoneofthreethingshappenstotheinitialratewhenthereactantconcentrationis

    doubled:

    a.Theratedoesnotchange:thismeanstherateisindependentofthatreactant.Thereactionis

    zeroorderwithrespecttothatreactant.

    b.Theratedoubles:thismeanstherateisproportionaltotheconcentrationofthatreactant.

    Thereactionisfirstorderwithrespecttothatreactant.

    a.Theratequadruples:thismeanstherateisproportionaltothesquareoftheconcentrationof

    thatreactant.Thereactionissecondorderwithrespecttothatreactant.

    3.Oncetheorderforeachreactantisfound,takeanyoftheexperimentsandpluginconcentration

    valuesandthemeasuredratetodeterminethenumericalvalueofk.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    12/41

    Example4.

    Areactionisperformedbetweentworeactant,AandB,

    A+BC

    Thefollowingdatawasobtainedfortheinitialrateofthereactioninfourseparateexperiments.

    Whatistheratelawforthereaction,andwhatisthenumericalvalueofk?

    Solution:

    Theideaistoidentifytwotrialsforwhichonereactantconcentrationisdoubledandtheotheris

    heldconstant.

    ForA,thepairtouseisTrial1andTrial2.Noticethe[B]isconstantat0.252M.When[A]is

    doubled,therateincreasesfrom0.0204M/minto0.0817M/min.Thisisanincreaseof4times.

    Thereactionratequadruples,soweknowthatthereactionissecondorderinA.

    ForB,thepairoftrialstouseisTrial1andTrial3.[A]isheldconstantat0.213Mwhile[B]is

    doubled.When[B]isdoubled,therateincreasesfrom0.0204M/minto0.409M/min.Therate

    doubleswhen[B]isdoubled,sothereactionisfirstorderinB.

    Theratelawisthen,Rate=k[A]2[B]

    Finally,wefindthevalueofkbychoosinganyofthetrials,insertingthevaluesforrate,[A],and

    [B],andsolvingfork.ChoosingTrial4(fornoparticularreason),wesee,

    0.0901M/min=k[0.761M]2[0.630]

    2 1

    2

    0.0901 / min 0.247 min[0.761] [0.630]

    Mk M = =

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    13/41

    ConcentrationTimeRelationshipsforSingleReactantReactions

    Forreactionsthatinvolveasinglereactant,wehavederivedmathematicalequationsthatrelatethe

    concentrationatanytimeduringthecourseofthereactiontotheinitialconcentrationandtherate

    constant.Thesearecalledintegratedrateequationsbecause,perhapswithoutsurprise,theyare

    derivedbyintegrationoftherateequation.Becausetherateequationsdependonthereactionorder,

    sodotheintegratedrateequations.Table13.1showsthethreeequationsintwoforms.Thefirstisthe

    regularequation.Thesecondisaversionintheformofastraightlineequation.Wellusethatlaterto

    makestraightlineplots,whicharealwaysusefulinscience.Ineachcase,[A]orepresentsthe

    concentrationofAbeforethereactionstarts.[A]trepresentstheconcentrationofAaftertimetpasses.

    Twoalgebraicversionsaregivenforthefirstordercase,becausebothareuseful.

    Equation/Order ZeroOrder FirstOrder SecondOrder

    RateLaw Rate=k Rate=k[A] Rate=k[A]2

    IntegratedRate

    Equation

    [A]o[A]t=kt[ ]

    [ ]t

    o

    kt

    t o

    Aln kt

    A

    [A] =[A] e

    =

    [ ] [ ]t o

    1 1kt

    A A =

    LinearForm [A]t= kt+[A]o

    y= mx + b

    t o

    ln[A] kt ln[A]= +

    y = mx +b

    [ ] [ ]t o

    1 1kt +A A=

    y = mx +b

    StraightLinePlot y=[A]

    x=time

    slope= k

    y=ln[A]

    x=time

    slope= k

    y=1/[A]

    x=time

    slope=k

    Theseequationsaregenerallyusefulinthreeways:

    1.Topredicttheconcentrationatsomefuturetime,givent,kand[A]o.

    2.Determinethetimerequiredfor[A]otodecreaseto[A]t.

    3.Todeterminetherateconstant,k,given[A]oand[A]tattimet.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    14/41

    Example5.

    Thedecompositionofnitrousoxideat565oC

    2N2O2N2+O2

    issecondorderinN2Owitharateconstantof1.10x103M

    1s1.Ifthereactionisinitiatedwith

    [N2O]equalto0.108M,whatwillitsconcentrationbeafter1250shaveelapsed?

    Solution

    Becausethereactionisfirstorder,weusethefirstorderintegratedrateequation.

    [ ] [ ]

    1 1

    t oktA A =

    Weknow[N2O]o,k,andt.Wesolvefor[N2O]t.

    [ ]( )3 1 1

    2 t

    1 1= 1.10 10 1250 s

    N O 0.108M s

    M

    [ ]1 1

    2 t

    19.26 1.38

    N OM M

    = +

    [N2O]t=0.940M

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    15/41

    Example6.Findingthetimerequiredfor[A]otoDecreaseto[A]t

    Theisomerizationofmethylisonitriletoacetonitrileinthegasphaseat250oC

    CH3NCCH3CN

    isfirstorderwitharateconstantof3.00x103s

    1.IftheinitialconcentrationofCH3NCis0.107

    M,howmuchtimemustpassfortheconcentrationofCH3NCtodropto0.0142M?

    Solution

    Becausethereactionisfirstorder,weusethefirstorderintegratedrateequation.Theversion

    bettersuitedtofindingtime(ork,forthatmatter)is,

    [ ][ ]

    ln t

    o

    Akt

    A=

    Weknow[CH3NC]t,[CH3NC]o,andk.Wesolvefort.

    [ ][ ]

    3 3 1t

    3 o

    3 1

    3 1

    CH NC 0.0142 Mln ln 3.00 10

    CH NC 0.107 M

    2.02 3.00 10

    2.02 6733.00 10

    s t

    s t

    t ss

    = =

    =

    = =

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    16/41

    Example7.DeterminingtheValueofk

    Thegasphasedecompositionofdinitrogenpentoxideat335K

    2N2O54NO2+O2

    isfirstorderinN2O5.Duringoneexperimentitwasfoundthataninitialconcentrationof0.249

    Mdroppedto0.0496Min230s.Whatisthevalueoftherateconstant,k,ins1?

    Solution:

    Becausethereactionisfirstorder,weusethefirstorderintegratedrateequation.Theversion

    bettersuitedtofindingkis,

    [ ][ ]

    Aln

    A

    t

    o

    kt=

    Weknow[N2O5]t,[N2O5]o,andt.Wesolvefork.

    [ ][ ]

    2 5 1t

    2 5 o

    1

    3 1

    N O 0.0496 Mln ln 230

    N O 0.249 M

    1.61 230

    1.61 7.02 10230

    k s s

    k s s

    k ss

    = =

    =

    = =

    HalfLifeandRadioactiveDating

    Theconceptofhalflifeisusefulfordescribingtheroughspeedofareaction.Thehalflifeofareactionis

    thetimeittakesforofthereactantstoturnintoproducts.Considerthefirstorderdecompositionof

    hydrogenperoxide.ThetablebelowshowstheconcentrationofH2O2inincrementsof654min.The

    dataareplottedaswell.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    17/41

    Noticethatinthefirst654min,theconcentrationdropsfrom0.020Mto0.010M.Thatis,itdropsin

    half.Thehalflifeofthereactionistherefore654min.Then,whenanother654minpasses(fromt=654

    tot=1308)theconcentrationdropsinhalfagain:from0.010Mto0.0050M.Thehalflifeisstill654

    min.Successivehalflivescuttheoriginalconcentrationtofractionsof,

    #halflives 1 2 3 4 5 6

    fractionremaining1

    2

    1

    4

    1

    8

    1

    16

    1

    32

    1

    64

    Example8.

    Thefollowingdataareforthedecompositionofsulfurylchlorideat383oC.

    SO2Cl2SO2+Cl2

    time,min 0 166 332

    [SO2Cl2],M 5.18x103 2.59x10

    3 1.30x10

    3

    Whatisthehalflifeofthereactionstartingattime0min,andattime166min?

    Solution:

    Theconcentrationdropsinhalffromto2.59x103overthefirst166minofreaction.Therefore

    thehalflifestartingatt=0minis166min(bydefinition).

    Startingat166minutes,theconcentrationdropsfrom2.59x103to1.30x10

    3of166min(from

    166minto332min).Thisisagaindroppinginhalfoverthatsametimeperiod.Thehalflife

    remains166min.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    18/41

    MathematicalRelationshipsforHalfLifeandk

    Foranyfirstorderreaction,thehalflifecanberelatedtotherateconstantinthefollowingway:

    Atthehalflife,theconcentrationforreactantAisofwhatitwasatthestartofthereaction.So,

    [ ][ ]

    [ ]

    [ ]

    ot

    o o

    1AA 2ln ln

    A A

    1ln

    2kt

    =

    =

    Therefore,

    1/2

    1/2

    1/2

    1/2

    ln(0.5)

    0.693

    0.693 0.693and

    kt

    kt

    t kk t

    =

    =

    = =

    RadioactiveDecay

    Allradioactiveisotopesdecayviafirstorderreactions.Forthesecaseswewritetheratelawandtime

    basedequationsintermsofnumbersofatomsoramountpresentinsteadofconcentration,wherethe

    letterNisusedtodenotehowmuchoftheradioactiveisotopeispresentatanyparticulartime.

    [ ][ ]

    t

    o

    kt

    t o

    Nln ktN

    [N] =[N] e

    =

    Example9.

    Theisotope32Phasahalflifeof14.3days.Ifasamplecontains0.884gof32P,whatmassof32P

    willremainafter22days?

    Solution:

    Thepathforthisproblemistousethehalflifetodeterminetherateconstantk.Thenusethe

    firstorderconcentrationtimeequationtodeterminethefinalamount.

    1

    1/2

    0.693 0.6930.0485 days

    14.3 daysk

    t

    = = =

    1(0.0485days )(22 days)0.884 0.304

    kt

    t oN N e ge g

    = = =

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    19/41

    RadioactiveCarbonDating

    Carbonexistsasmostly12C,withabout1%of13C,andaverysmallfractionofradioactive14C.Itisformed

    intheupperatmospherebyreactionof14Nwithhighenergysolarradiation.Becauseitisconstantly

    decayingandbeingreformedintheupperatmosphere,thereisarelativelyconstantconcentrationof14

    CpresentasCO2intheatmosphere.ThatCO2,likeallCO2,canbesequesteredbyphotosynthesistoformplants.Thoseplantslivetheirplantlikelife,sometimesbeingeatenbyanimals,sometimesjust

    dying.AsaplantoranimallivesitkeepsexchangingCwiththeatmosphere,andthefractionof14Cin

    theplantoranimalstaysequaltothatintheatmosphere.

    Oncethethingdies,however,itsCcontentislockedanditnolongerreceivesnew14C.Becausethe14C

    isradioactive,thefractionofitpresentinthedeadthingstartstodecrease.Ifwecomparethefraction

    presenttodaywiththefractionwepresumetobethesteadystate14Camount,wecanestimatethe

    timesincedeath.ThisisshowninFigure14.5.

    Theactualexperimentinvolvesmeasuringthe14Cradioactivityfromasample.Itisgenerallyreported

    inunitsofcountsperminutepergramofC.Thehalflifeof14Cis5730years,andthistechniqueisgood

    fordatingitemsasoldas50,000years.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    20/41

    Example10.

    AwoodenbowlisfoundinacaveinFranceisfoundtohavea14Cradioactivityof10.2countsper

    minutepergramofcarbon.Livingwoodhasanactivityof13.6countsperminutepergramof

    carbon.Howlongagodidthetreedie?

    Solution.

    Tomakethiscalculation,wemaketheassumptionthatthefractionof14Cintheatmospherehas

    beenconstantovertime.Therefore,theactivityatt=0isassumedtohavebeen13.6

    counts/ming.Becausetheradioactivityofasampleisdirectlyproportionaltotheamountof

    radioisotopepresent,theratioof14Cpresentnowandthenisequaltotheratioofradioactivity

    nowandthen.So,

    4 1

    4 1

    4 1

    ln

    0.6931.21 10

    5730

    10.2ln 1.21 10

    13.6

    0.288 1.21 10

    2380

    t

    o

    Nkt

    N

    k y ty

    y t

    y t

    t y

    =

    = =

    =

    =

    =

    DeterminingtheRateLaw:TheGraphicalMethod

    Concentrationtimeplotscanbeusedtodetermingtheratelawforsinglereactantreactions.Thelinear

    formsoftheconcentrationtimeequationsforzero,first,andsecondorderreactionspredictdifferent

    formsofequationsthatwillyieldalinearplot.

    Equation/Order ZeroOrder FirstOrder SecondOrder

    LinearForm [A]t= kt+[A]o

    y= mx + b

    t oln[A] kt ln[A]= +

    y = mx +b

    [ ] [ ]t o

    1 1kt +

    A A=

    y = mx +b

    StraightLinePlot y=[A]

    x=time

    slope= k

    y=ln[A]

    x=time

    slope= k

    y=1/[A]

    x=time

    slope=k

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    21/41

    Thegraphicalmethodfordeterminingratelawsinvolvesthesesteps:

    1.Collectconcentrationtimedatawhilethereactionproceeds.

    2.Makethreeplots:[A]vs.t,ln[A]vs.t,and1/[A]vs.t.

    3.Determinethereactionorder:

    if[A]vs.tislinear,thereactioniszeroorder

    ifln[A]vs.tislinear,thereactionisfirstorder

    if1/[A]vs.tislinear,thereactionissecondorder

    4.Theslopeoftheplotthatgivesastraightlineistherateconstantforthereaction.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    22/41

    Example11.

    Concentrationvs.timedataiscollectedforthedecompositionofH2O2.

    2H2O2(aq)2H2O(l)+O2(g)

    Usethesedatatodeterminetheratelaw,andthenumericalvalueoftherateconstant.

    Solution

    ThefirststepistoenterthedataintoagraphingprogramsuchasExcelandusethecalculation

    functionstocreatecolumnsforln[H2O2]and1/[H2O2].

    Next,createthreeplots:[H2O2]vs.t,ln[H2O2]vs.t,and1/[H2O2]vs.t.

    Theln[H2O2]plotgivesastraightline.Thismeansthatthereactionisfirstorderandtheratelaw

    is,

    Rate=k[H2O2]

    Finally,thenumericalvalueoftherateconstantistheabsolutevalueoftheslopeofthestraight

    lineplot.TheslopecanbefoundinExcelbyrightclickingononeofthedatapoints,and

    choosingAddTrendline/Linear/DisplayEquationonChart.

    Inthisreaction,k=0.00106min1.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    23/41

    IV.ActivationEnergyandTemperature

    Weallhavethefeelingthatreactionsgofasterathighertemperatures,andthatstrue.Givenequal

    concentrations,allreactionswillproceedmorerapidlyastemperatureincreases.Why?Allreactions

    haveanactivationbarrier,anenergytheymustovercomebeforeproceedingtoproducts.Consider

    thecaseofthereactionofthisorganiciodidecompound.

    The

    first

    step

    involves

    the

    breaking

    of

    the

    C

    I

    bond.

    This

    is

    an

    endothermic

    process

    and

    requires

    energy

    tomakehappen.Eventhoughlaterstepsinvolvebondformationandareexothermic,andcanmakethe

    overallreactionexothermic,energymustbeusedtogetthefirststeptooccur.

    ReactionCoordinateDiagrams

    Theenergeticchangesthatoccurduringtheprogressofareactionareoftendisplayedgraphicallyusing

    areactioncoordinatediagram.Thisisaplotwithenergyofthechemicalsystemontheyaxisandthe

    progressofthereaction fromreactantsonthelefttoproductsontheright alongthexaxis.

    Figure14.5showsrepresentativereactioncoordinatediagramsfortwosimplereactions,one

    exothermicand

    the

    other

    endothermic.

    Figure14.5Reactioncoordinatediagramsforanexothermicreactionandanendothermicreaction.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    24/41

    Importantfactsaboutreactioncoordinatediagrams:

    Energymustbegainedbythereactantsinordertoreachtheactivatedcomplex(alsocalledthetransitionstate)

    Theenergyrequiredisthereactionsactivationenergy,andthesymbolgivenisEa. Theactivationenergyisalwaystheenergydifferencebetweenthatofthereactantsandthatof

    theactivatedcomplex.

    o Activationenergyisalwayspositive. Theenergychangeforthereaction(E)istheenergydifferencebetweenthereactantsandthe

    products.

    o EcanbeeitherpositiveornegativeWhenintroducingcollisiontheory,wesawthatanysampleofreactantswillhaveaBoltzmann

    distributionofmolecularenergies.Onlythosewithenergiesgreaterthantheactivationenergywillbe

    Figure14.6aandb.Boltzmanndistributionsofmolecularenergiesatdifferenttemperatures

    showthatmoremoleculesexceedtheactivationenergyathighertemperature.b:Atagiven

    temperature,moremoleculesexceedaloweractivationenergythanahighone.

    abletoreact.Figure14.6ashowsBoltzmannplotsforsamplesatlowandhightemperature.Agreater

    fractionofmoleculesexceedtheactivationenergyinthehightemperaturesample.Thisleadstoa

    greaterfrequencyofeffectivecollisionsandafasterreactionrate.Figure14.6bshowshowactivation

    energyaffectsrate.Highactivationenergyleadstoasmallerfractionofmoleculesthatcanreact,anda

    slowerrate.

    Temperatureandactivationenergythereforeplayoffeachothertocontrolreactionrate.Greater

    activationenergydecreasesthefractionofcollisionswithsufficientenergytoreact.Buthighactivation

    energycanbeovercomewithhighertemperatures.

    ConsidertheconcentrationtimecurvesinFigure14.7a.Iftworeactionsarerunatthesame

    temperature,theonewiththegreateractivationenergywillbeslower.Figure14.7bshowsthatasingle

    reactionwillproceedfasteratahighertemperature.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    25/41

    Figure14.7aTworeactionsrunatthesametemperature,butwithdifferentactivationenergies.

    Thehighactivationenergycasegivestheslowerreaction.

    Figure14.7bThesamereactionrunattwodifferenttemperatures.Thehightemperaturecase

    givesthefasterreaction.

    Remembertheratelaw?Itwassupposedtocontrolrate,andsoitstilldoes.Recallthatforasimplefirst

    orderreaction,AB,theratelawis,

    Rate=k[A]

    Temperatureandactivationenergyeffectsarepartoftherateconstant,k,asdescribedbythe

    Arrheniusequation.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    26/41

    TheArrheniusequationshowsusthat:

    ahigherfractionofcollisionswithcorrectorientationleadstolargervalueofAandafasterrate(wegenerallydonotreportvaluesofAforreactions,buttheydomatter)

    isthefractionofcollisionsexceedingtheactivationenergy asEaincreases, decreasesandtherateisslower asTincreases, increasesandtherateisfaster thefractionEa/Tcontrolsrate:thesmallerthisfraction,thefastertherate

    UsingtheArrheniusEquation

    ThetwopointversionoftheArrheniusequationis

    2

    1 2 1

    1 1ln a

    Ek

    k R T T

    =

    andismostoftenusedintwoways:

    1. predictingtherateofreactionatadifferenttemperatureifyouknowEaandtherateatanothertemperature

    2. determiningtheactivationenergy

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    27/41

    Example12.FindingkataNewTemperature

    Theactivationenergyforthegasphasedecompositionoftbutyl

    propionateis164kJ.

    C2H5COOC(CH3)3 (CH3)2C=CH2+C2H5COOH

    Therateconstantat528Kis3.80x104/s.Whatwillthe

    rateconstantbeat569K?

    Solution:

    Inthiscase,weknow:

    T1=528K

    T2=569K

    k1=3.80x104/s

    k2=?

    Ea=164kJ/molandR=8.314x103

    kJ/Kmol

    WeinserttheseintotheArrheniusequation,

    2

    3

    1 2 1

    2

    4

    2.692

    4

    1 1 164 / 1 1ln

    8.314 10 / 569 528

    ln 2.693.80 10 / s

    14.83.80 10 / s

    aEk kJ mol

    k R T T kJ K mol K K

    k

    ke

    = =

    =

    = =

    i

    k2=5.61x103/s

    Whatofthiscanwecontrol?

    Althoughwediscusshowchangesin

    Eawillaffectreactionrate,the

    activationenergyisinherenttoany

    reaction.Wecancontrolthe

    temperature,butnotEa.Forsome

    reactions,Eacanbeloweredthrough

    useofacatalyst,butnotina

    controlledway.Ifyouwanttochange

    reactionrate,youchangeeither

    concentrationortemperature.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    28/41

    Example13.FindingEa

    Forthegasphasedecompositionofethylchloroformate,

    ClCOOC2H5 C2H5Cl+CO2

    therateconstantat470Kis1.05x103/sandtherateconstantat508Kis1.11x102/s.Whatis

    theactivationenergyforthisreaction?

    Solution:

    Inthiscase,weknow:

    T1=470K

    T2=508K

    k1=1.05x103/s

    k2=1.11x102/s

    Ea=?

    R=8.314x103kJ/Kmol

    WeinserttheseintotheArrheniusequation,

    2

    3 3

    4

    3

    1.11 10 / s 1 1ln

    1.05 10 / s 8.314 10 / 508 470

    2.36 1.59 10 / 8.314 10 /

    a

    a

    E

    kJ K mol K K

    EK

    kJ K mol

    =

    =

    i

    i

    Ea=123kJ/mol

    GraphicalDeterminationofEa

    TheArrheniusequationcanbewrittenintheformofastraightlineequation.

    1ln lna

    Ek A

    R T= +

    y = m x + b

    Inastraightlineplot,y=lnk,x=1/T,andtheslope=Ea/R.TodetermineEa,werunthereactionata

    seriesoftemperaturesandmeasuretherateconstantateach.Thenweplotlnkvs.1/T.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    29/41

    Example14.

    Solution:

    Thefirststepistocreateaplotofthenaturallogofthemeasuredrateconstantsvs.theinverse

    temperature.ThiscanbedoneinExceloranothergraphingprogram.Findtheslopeusingleast

    squaresanalysis(inExcelthisiscalledatrendline).

    Theactivationenergyisgivenby,

    Ea= Rxslope= (8.314x103kJ/Kmol)(1.22x104)=102kJ/mol

    V.ReactionMechanisms

    Chemicalreactionsinvolverearrangingatoms.Atomsononemoleculeenduponanother;some

    moleculesfallapart;othermoleculesform.Areactionmechanismisadetaileddescriptionofthebond

    breakingandformingstepsinvolvedinthepathwayfromreactanttoproducts.Anoverallreactionis

    composedofaseriesofindividualsteps.Eachofthesediscretestepsiscalledanelementarystep.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    30/41

    Reactionmechanismscannotbecalculatedorpredictedwithassuredness.Instead,allreaction

    mechanismsmustbedeterminedexperimentally.InsectionsVfandVgwereviewsomeofthemethods

    usedtoelucidatemechanisms.

    Va.TypesofMechanismSteps

    Molecularity

    Chemicaleventscanbecategorizedsimplybythenumberofreactingspeciesinanelementarystep.

    Almostalleventsareunimolecular,involvingasinglereactant,orbimolecular,involvingtworeactants.

    Ofthemillionsofchemicaleventsobserved,onlyahandfulinvolvetermolecularsteps,inwhichthree

    speciesreacttogetheratthesameinstant.Therefore,wewilldealwithunimolecularandbimolecular

    steps,butnottermolecularsteps.

    Fromamorechemicalperspective,anyreactionweobserveisthesumofaseriesofeventsthatoccurin

    sequence.Therearethreekindsofchemicalevents:

    bondbreaking bondforming concertedbondbreakingandforming

    Abondbreakingstepinvolvesasingleentitybreakingupintotwopieces.Intheexamplebelow,aCO

    bondbreaks.Asinglereactantformstwoproducts.Becauseonlyonereactantmoleculeisinvolved,this

    stepisalsotermedunimolecular.

    Abondforming

    stepinvolvesbringingtwomolecularfragmentstogethertoformasingleproduct.In

    theexamplebelow,aCObondisformed.Tworeactantsformasingleproduct.Becausetworeactant

    moleculesareinvolved,thisstepisalsotermedbimolecular.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    31/41

    Aconcertedbondbreakingandformingstepinvolvesonebondbreakingwhileanotherisforming.In

    theexamplebelowaCFbondisformedwhileaCClbondbreaks.Tworeactantsformtwoproducts.

    Thisstepisalsobimolecularbecausetworeactantmoleculesareinvolved.

    Vb.ExamplesofSingleStepReactions

    Manychemicalreactionsaresimpleeventsthatoccurinasinglestep.Manyoftheseyouhaveseen

    before.Acidbasereactionsmostlyoccurinasinglestep.Theprotonationofammoniabyhydroniumion

    involvesthetransferofanH+ionfromH3O

    +toNH3.Thissinglestepisaconcertedbondbreakingand

    formingprocess.

    H3O+(aq)+NH3(aq)H2O(aq)+NH4

    +(aq)

    ThedecompositionofN2O4isasinglebondbreakingstep.

    Vc.MultistepReactions,IntermediatesandCatalysts

    Mostchemicalprocessesthatweobserveoccurinaseriesofelementarysteps.Herearesomerules:

    1.Theoverallreactionisthesumofthereactionsteps.

    2.Aspeciesthatisformedinonestepandthenusedupinalaterstepisanintermediate.

    3.Aspeciesthatisusedinonestepandthenreformedinalaterstepisacatalyst.

    4.Neitherintermediatesnorcatalystsareseenintheoverallreactionequation.

    5.Acatalystwillnormallybeseeninthereactionsratelaw,butanintermediateisnot.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    32/41

    Thedecompositionofozonetakesplaceintwosteps.

    Step1. O3(g)O2(g)+O(g) unimolecular,bondbreaking

    Step2. O3(g)+O(g)2O2(g) bimolecular,concertedbondformingandbreaking

    WhenstudyingHesssLawinChapter5weintroducedtheideaofaddingaseriesofreactionstogivea

    netreaction.Thesametechniqueisusedheretodeterminetheoverallreactionthattakesplaceina

    seriesofsteps.Thisisperformedbyaddingallthereactantstotheleftofthereactionarrowandallthe

    oftheproductstotherightofthereactionarrow,andcancellinglikeitemsthatarepresentonboth

    sides.Inthiscase,theO(g)ispresentonbothsides.

    Step1. O3(g)O2(g)+O(g)

    Step2. O3(g)+O(g)2O2(g)

    2O3(g)+O(g)3O2(g)+O(g)

    Overallreaction: 2O3(g)3O2(g)

    LetsnotjustyetcompletelywriteoffthatO(g)atom.Sure,itdoesntappearintheoverallreaction

    equation,butthatdoesntmeanitdoesnotexistatleastforalittlewhile.Achemicalspeciesthatis

    formedinonestepofamechanismandthenusedinalaterstepiscalledanintermediate.

    Intermediatesneverappearintheoverallreactionequation.Sometimestheycanbeobservedwhilethe

    reactionprogresses,butothertimestheyareformedandusedupsoquicklytheyarenotseen,nor

    heard.

    Thedecompositionofhydrogenperoxideinthepresenceofiodideionoccursintwosteps.

    Step1. H2O2(aq)+I(aq)IO

    (aq)+H2O(l) bimolecular,concerted

    Step2. IO(aq)+H2O2(aq)I

    (aq)+H2O(l)+O2(g) bimolecular,concerted

    overallreaction 2H2O2(aq)2H2O(l)+O2(g)

    Inthiscase,theIOionisformedinthefirststepandthenconsumedinthesecondstep.IO

    isan

    intermediateinthisreaction.Conversely,Iionisusedinthefirststepandthenreformedinthesecond

    step.

    I

    is

    a

    catalyst.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    33/41

    Example15.

    Chlorofluorocarbonsbreakdownintheupperatmospheretogivechlorineatoms.Theseare

    involvedinthebreakdownofozoneviathefollowingmechanism.

    Step1. Cl(g)+O3(g)ClO(g)+O2(g)

    Step2. ClO(g)+ O3(g)Cl(g)+O2(g)

    a.Whatisthemolecularityofeachstep?

    b.Whatistheoverallreactionequation?

    c.Identifyanyintemediatesand/orcatalysts.

    Solution:

    a.Bothstepsinvovletworeactants.Theyarebothbimolecular.

    b.Theoverallreactionisfoundbeaddingthetwostepsandcancellinglikespeciespresenton

    bothsides.Inthiscase,bothClOandClarecancelled.

    Step1. Cl(g)+O3(g)ClO(g)+O2(g)

    Step2. ClO(g)+ O3(g)Cl(g)+O2(g)

    OverallReactionbeforecancelling: Cl(g)+ClO(g)+2O3(g)Cl(g)+ClO(g)+2O3(g)

    OverallReactionaftercancelling: 2O3(g)3O2(g)

    c.Cl(g)isareactantintheStep1,butisregeneratedinStep2.Clisthereforeacatalyst.ClOis

    generatedinStep1,butisconsumedinStep2.ClOisthereforeanintermediate.

    ReactionCoordinateDiagramsandMechanisms

    Reactioncoordinatediagramsareusedtorelatetheprogressofareactiontotheenergyofthesystem

    atanyparticularstep.Figure14.8showsreactioncoordinatediagramsfora1stepanda2step

    reaction.

    Figure14.8ReactionCoordinatediagramsfor1step(RP)and2step(RInP)reactions.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    34/41

    Intheonestepreaction,theenergyofthereactants(R)mustincreasetothatofthetransitionstate

    beforeprocedingtoformproducts(P).Inthetwostepreaction,atransitionstatemustfirstbereached

    toallowthereactants(R)toundergoesthefirststeptoformtheintermediate(In).Theintermediatelies

    inanenergywell.Asecondactivationbarriermustbeovercomefortheintermediatetoreactfurtherto

    formthefinalproducts(P).Anyreactionsoverallactivationenergyistheenergydifferencebetweenthe

    reactantsandthetransitionstateofhighestenergy.

    Vd.ComplexReactionMechanismsandConcentrationTimeCurves

    Consideratwostepreaction.

    Step1. AB

    Step2. BC

    OverallReaction: AC

    HowwilltheconcentrationsofA,B,andofCchangeovertime.Clearlytheconcentrationofthereactant

    Awilldecreaseasthereactionproceeds,andtheconcentrationoftheproductCwillincrease.Butwhat

    abouttheconcentrationoftheintermediate,B?Itisformedinonestepandconsumedinanother.Its

    concentrationmustbezeroatthestartofthereaction,andmustbezerowhenthereactioniscomplete,

    butnonzeroinbetween.Thisisbestobservedbyexaminingconcentrationtimecurves.Figure14.9

    showsconcentrationtimecurvesforA(red),B(yellow),andC(blue)forthreecases.

    a. b. c.

    Figure14.9a.Step1fasterthanStep2.b.Step2alittlefasterthanStep1.c.Step2mustfasterthan

    Step1.

    In(a)thefirststepissomewhatfasterthanthesecondstep.Initially,asABoccurs,therateof

    formationofBisgreaterthanitsrateofconsumptioninStep2.So,theconcentrationofBincreases

    overtime.Then,asreactantAisdepletedandtheconcentrationofBincreases,therateofformationof

    Bdecreasesanditsrateofconsumptionincreases.Atthispoint,theconcentrationofBstartsto

    decrease.EventuallytheconcenrationsofbothAandBdroptonearzeroasthereactionnears

    completion.

    Part(b)showsacasewhereStep2issomewhatfasterthanStep1.Inthiscase,Bisconsumedmore

    quicklyanditsconcentrationdoesnotbuildupasmuchasinPart(a).

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    35/41

    Part(c)showsacasewhereStep2ismuchfasterthanStep1.Inthiscase,Bisconsumedalmost

    instantlyasitisformed.TheconcentrationofBneverrisestoanappreciablelevelandBmayneverbe

    concentratedenoughtoobserveinanexperiment.

    Youmightwonder,ifacaselikePart(c)occurs,howwouldweeverknowtheintermediateeverexisted?

    Insomecasesweneverdo.Inothercases,wedesignexperimentstoshowthattheintermediatewaspresent,evenifnotdirectlyobserved.Oneprimemethodforthisisatrappingexperiment.Ifwe

    suspectedsuchanintermediatewaspresent,weaddanotherreagentthatwepredictwillreactwiththe

    intermediate.Ifweseetheproductofthatexpectedreaction,thenwehaveevidencethatthe

    intermediatewaspresent.Inoursimpleexample,

    AB

    B+DE

    weaddreagentD,whichinterceptsintermediateBbeforeiscanformproductC.Itinsteadforms

    productE,whichwecanobserveasitbuildsupinsolution.

    Ve.ReactionsTooComplextoDescribeWithMechanisms

    Reactionsthatinvolvemorethanonephaseareinherentntlycomplexandaregenerallynotwrittenas

    mechanisms.Takeforexampletheformationofsolidesilverchloridethatformswhensolutionsofsilver

    nitrateandsodiumchloridearemixed.Theoverallreactionandnetionicequationsarebothsimple:

    AgNO3(aq)+NaCl(aq)AgCl(s)+NaNO3(aq)

    Ag+(aq)+Cl(aq)AgCl(s)

    Thisreactionseemsprettysimple.Twoionscometogetherandformasolid.Butitisthesolidthat

    makesitcomplex.Thesolidthatformsishugeonthemolecularscale,containingbillionsofions.Each

    crystalformsbyaddingmoreandmoreAg+andClions.

    Intheimagehere,thecrystalgrowsbyafewaddedions.Thereisnoclearwaytowriteamechanismfor

    thisprocess.Itinvolvesbillionsofstepsandalthoughthegeneralprocessisalwaysthesame,the

    intemediatecrystalsinvolvedaredifferenteachtimethereactionisrun.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    36/41

    Vf.RelatingMechanismstoaReactionsRateLaw

    Thepathareactiontakeshasaneffectonhowrapidlythereactiontakesplace.Therateofanoverall

    reactionisequaltotherateofthatreactionssloweststep,whichiscalledtheratedeterminingstep(or

    sometimestheratelimitingstep).Acommonmisperceptionisthattheratelawisdirectlyderivedfrom

    thereactionequation.Thisisnottrue removethatthoughtfromyourmind.Theratelawisinstead

    deriveddirectlyfromthechemicalequationoftheratedeterminingstep.Thereareonlythreetypesof

    steps:

    unimolecular AD Rate=k[A]

    bimolecular,onereactant 2AD Rate=k[A]2

    bimolecular,tworeactants A+BD Rate=k[A][B]

    Theexperimentallydeterminedratelawisoneofthemostusefultoolsintryingtodeterminea

    mechanism.Theprocessinvolvesthreesteps:

    1.Proposeamechanism,includingwhichstepwillberatedetermining.

    2.Predicttheratelawusingtheratelawoftheslowstep.

    3.Measureandcomparetheexperimentalratelawtothatpredictedforthemechanism.Ifthey

    donotmatch,thentheproposedmechanismiswrong.Iftheydomatch,thentheproposed

    mechanismmightbecorrect.Butitmightnotbecausemultiplemechanismscanleadtothesamepredictedratelaw.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    37/41

    Example16.

    AnoxygenatomtransferreactionoccursbetweenNO2andCO.

    NO2(g)+CO(g)NO(g)+CO2(g)

    Therearetwoproposedmechanisms:

    MechanismA.

    Step1. NO2(g)+CO(g)NO(g)+CO2(g) ratedeterminingslowstep

    MechanismB.

    Step1. 2NO2(g)NO3(g)+NO(g) ratedeterminingslowstep

    Step2. NO3(g)+CO(g)NO2(g)+CO2(g) fastsecondstep

    Theexperimentallydeterminedratelawisrate=k[NO2]2.

    Whichofthesetwomechanismsissuppportedbytheexperimentalevidence?

    Solution

    TheratelawpredictedforMechanismAisthatforthesinglestep.Becausethatstephasboth

    NO2andCOasreactants,thepredictedratelawforthatstepandtheoverallreactionis:

    rate=k[NO2][CO]

    Thisdoesnotmatchtheexperimentalratelaw,sothismechanismiswrong.

    TheratelawpredictedforMechanismBisthatfortheslow,firststep.Thisstepinvolvestwo

    moleculesofNO2,sothepredictedratelawforthatstepandtheoverallreactionis:

    rate=k[NO2]2

    Thisdoesagreewiththeexperimentalratelaw,sothismechanismissupportedbutnotproved

    correct.

    MechanismswithReversibleSteps

    Somereactionstepscanreactinboththeforwardandreversedirections.Thatis,reactantscangotoformproducts,butthoseproductscanbackreacttoreformthereactants.Ifbothstepsarefast,they

    quicklyformanequilibriumstate,wheretheratesoftheforwardandreversereactionsproceedatthe

    samerate.

    Bromineandhydrogenreacttoformhydrogenbromide.Theoverallreactionis

    Br2(g)+H2(g)2HBr(g).

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    38/41

    Theproposedmechanismis:

    1

    1

    2

    3

    2

    2

    2

    Step 1. Br (g) 2 Br(g) fast in both directions

    Step 2. Br(g) + H (g) HBr(g) + H(g) slow

    Step 3. H(g) + Br (g) HBr(g) + Br(g)

    k

    k

    k

    k

    fast

    Inthismechanismdepiction,wewritetherateconstantforeachstepalongwithitsreactionarrow.The

    stepnumberiswrittenasasubscriptforeachstep.Thereversiblefirststepiswrittenwithadouble

    arrow,withtherateconstantforthereversestepbeingdenotedwithaminissign.Notethatk1isnot

    equaltok1.The 1justmeansitstherateconstantforthereverseofstep1.

    Theratelawfortheoverallreactionistheratelawfortheslowstep:

    Rate=k2[Br][H2]

    However,Brisnotareactantandweneverknowitsconcentration.InordertoobtainthepredictedratelawfortheoverallreactionweneedtoexpresstheconcentrationofBrintermsofspecieswedo

    know.TodothiswesolvetheratelawforStep1for[Br].ThekeytothisisthatthereversibleStep1is

    atequilibrium,astatewheretheforwardandreversereactionratesareequal(nottherate

    constants).So,

    2

    1 2 1

    1/2

    1/21 2 12

    1 1

    [Br ] [Br]

    [Br ][Br] [Br ]

    k k

    k k

    k k

    =

    = =

    Wetheninsertthissolutionfor[Br]intotherateequationfortheslowstep2.

    1/2

    1/212 2 2

    1

    Rate [Br ] [H ]k

    kk

    =

    Experimentally,wecouldnotdifferentiatebetweenthecollectionofkvaluesandtheywouldcollapse

    intoasingle,measuredrateconstant.

    Rate=k[Br2]1/2

    [H2]

    Theoverallreactionorderis3/2.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    39/41

    Vg.AdvancedMethodsforDeterminingMechanisms

    Alargepartofthechemistsworkisdeterminingthepathwaybywhichareactionoccurs.Ifyoure

    lucky andyoureusuallynot someeasyexperimentscanhelpdetermineamechanism.Ifnot,more

    advancedmethodsareemployed.Somecommonmethodsaredescribedbelow.

    1.Reactiontotheexperimentalratelaw.Thiswasdescribedintheprevioussection.

    2.Detectionofanintermediate.ThiswasdescribedinSectionVd.Detectionisusuallydone

    spectroscopically,byobservingabsorptionofradiationintheUV,VIS,orIRregions.SometimesNMR

    spectroscopyisused.Themainobstructiontodetectingintermediatesisthattheyareunstableand

    tendtoreactquickly.Thatswhytheyareintermediates.But,sometimestheystickaroundawhileand

    youcanseethem.

    3.Trappingexperiments.Theseexperimentsareusedtochemicallydetectintermediatesbyhavingthe

    intermediatereactwithasecondaryreagenttoproduceanidentifyableproduct.Thatis,youdesignan

    experimenttohighjackanintermediateandcutofftherestofthemechanismunderstudy.

    Inthereactiondiagramsabove,theproposedmechanisminvolvesthreesteps,withformationoftwo

    intermediates,Band

    C.

    In

    the

    trapped

    mechanism,

    areagent

    Risadded

    to

    siphon

    off

    intermediate

    C.

    If

    additionofRleadstoformationofEandoflessD,thatsupportstheproposedmechanism.IfnoEis

    observedandDisstillformed,thatmeanstheproposedmechanismiswrong.Thisallassumesyouare

    surethetrappingreaction(C+RE)bothoccursandoccursfasterthanconversionofCD.Butyou

    canknowthatwithreasonablecertainty,soitsok.

    4.Isotopiclabeling.Inthistypeofexperiment,oneofthereactantsissynthesizedcontainingaparticular

    minorisotopeofoneofthereactingatoms.Youcanthentrackwherethatisotopicallylabeledatom

    endsupintheproducts.Inoxidationreactionsinvolvingmetaloxides,itisunclearwhethertheoxygen

    thatisaddedtothespeciesoxidizedcomesfromthemetaloxide,orjustfromwaterinsolution.

    Todeterminethis,themetaloxidecanbesynthesizedusingtherareisotope18O,inasolutionwherethe

    watercontainsalmostall16O.Iftheproductcontains

    18O,youknowitcomesfromthemetaloxide.Ifit

    contains16O,youknowitcomesfromthewater.Tobesurethisexperimentisvalid,youneedtomake

    surethemetaloxideandwaterdonotexchangeOatoms.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    40/41

    Vh.Catalysis

    Catalysisisthetechniqueofusingacatalysttoinfluencetherateofareaction.Catalystsserveoneof

    twofuncitons:makingreactionsfasterormakingthemmoreselective.Ineithercase,thecatalyst

    providesanalternativemechanisticpathwayforthereaction,whichchangestheactivationenergyand

    changestherate.

    IncreasingReactionRate.

    Earlier,wesawthemechanismoftheI ioncatalyzeddecompositionofH2O2.Thereactioncanbe

    observedtooccuroverashortperiodonceaniodideisadded.However,H2O2canalsodecomposeall

    onitsown,thankyouverymuch.Ifyouhaveanunopenedbottleofhydrogenperoxidethathasbeenon

    theshelfforafewmonths,payattentionwhenyoufirstopenittherewilloftenbeaswooshofair

    escaping.ThisisduetothebuildupofO2gasthathasformedinthedecompositionovertime.

    Figure14.10showsareactioncoordinatediagramforthisreaction,bothwithacatalystpresent,and

    withoutone.Theloweractivationenergyinthecatalyzedcaseleadestoafasterreaction.

    Figure14.10

    Reaction

    Coordinate

    diagrams

    for

    the

    uncatalyzed

    and

    thecatalyzeddecompositionofhydrogenperoxide.

    IncreasingSelectivity

    Welietoyou.Youvesuspectedit.Wetendtowritechemicalreactionsasiftheywilloccuraswritten

    andgoallthewaytocompletion.Oftentimes,though,reactionsaremessy.Oneformofthemessinessis

    thatasetofreactantscanoftenundergodifferentreactionstoformdifferentsetsofproducts.Thats

    bad.Youalwayswantonesetofproductsbecauseitisdifficultandexpensivetopurifytheproductsofa

    mixedreaction.Thesemultiplereactionsoccurwhenbothmechanisticpathwayshavesimilaractivation

    energies.Selectivityisameasureofhowmuchthereactioncreatesonesetofproductsoveranother.(Uptillnowwehavebeenassumingallreactionsareperfectlyselective.)

    Acatalystcanincreaseselectivitybychangingthepathwayofonereactionpathandnottheother.

    Whenthishappens,thereactiontoformonesetofproductswillincreasewhiletheotherstaysslow.

    Thereactionprefersthefasterformedproductsandismoreselective.Figure14.11showsreaction

    coordinatediagramsrepresentinghowthisworks.

  • 7/30/2019 Chapter 14 Kinetics 2 7 BV

    41/41

    Figure14.11ReactionCoordinatediagramsshowingtheprogressfortwosimultaneousreactionsthat

    occurfromasinglesetofreactants.Thetwosetsofproducts(AandB)areshowntoeithersideofthe

    reactants,whichareinthecenterofthediagram.

    Intheuncatalyzedcase,thetworeactions havesimilaractivationenergiesandproceedatclosetothe

    samerate,formingsignificantquanitiesofproductsforbothcases.Additionofthecatalystdecreases

    theactivationenergyforformationofproductsetB,butnotproductsetA.Inthiscase,formationofBis

    muchfasterthanformationofA,sothereactionisselectiveforformationofB.

    TypesofCatalysts

    Catalystsaregenerallyhomogeneousorheterogeneous.Homeogeneouscatalystsaresoluble

    compoundsthatareaddedtosolutionsalongwiththereactants.Thesehavetheadvantageofbeing

    chemicallymodifiedtoagreatdegree.Chemistsareverygoodatsynthesizingsmallmoleculesandcan

    generallycreatesmall,solublecompoundsthatactinveryspecificways.Homogeneouscatalystsare

    goodatmodifyingreactionsinahighlyselectiveway.Themaindisadvantageofhomogeneouscatalysts

    isthattheymustberemovedfromsolutionwhenthereactioniscomplete.Thatis,oncetheproducts

    areformed,theyarestillmixedwiththecatalystandthetwomustbeseparated.Thisisoften

    expensive.

    Heterogeneous

    catalysts

    are

    solids

    that

    serve

    as

    a

    reactive

    surface

    upon

    which

    reactants

    in

    either

    the

    gasorsolutionphasecanreact.Thesehaveadvantagesanddisadvantagesthatareoppositefrom

    homogeneouscatalysts.Theyareeasytoseparatefromthereactionproducts:justfilteroffthesolid.

    Theyare,however,muchmoredifficulttomodify.Becauseofthesedifferences,homogeneouscatalysts

    aremoreoftenusedforreactionsinwhichgreatselectivityisneeded;heterogeneouscatalystsare

    neededwhereselectivityisnotanissue.