chapter 12 linear kinetics of human movement basic biomechanics, 7 th edition by susan j. hall,...

36
Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin

Upload: tamsin-bailey

Post on 19-Dec-2015

227 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

Chapter 12

Linear Kinetics of Human Movement

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

© 2014 The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin

Page 2: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-2

Newton’s Laws

What is the law of inertia?

A body will maintain a state of rest or constant velocity unless acted on by an external force that changes the state.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 3: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-3

Newton’s Laws

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

For example, a skater has a tendency to continue gliding with constant speed and direction because of inertia.

Page 4: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-4

Newton’s Laws

What is the law of acceleration?

A force applied to a body causes acceleration of that body

• of a magnitude proportional to the force

• in the direction of the force• and inversely proportional to the body’s mass

F = ma

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 5: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-5

Newton’s Laws

What is the law of reaction?

• For every action, there is an equal and opposite reaction.

• When one body exerts a force on a second, the second body exerts a reaction force that is equal in magnitude and opposite in

direction on the first body.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 6: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-6

Newton’s Laws

wt

R

In accordance with the law of reaction, the weight of a box sitting on a table generates a reaction force by the table that is equal

in magnitude and opposite in direction to the

weight.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 7: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-7

Newton’s Laws

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

In accordance with Newton’s third law of motion, ground reaction forces are sustained with every footfall during running.

Page 8: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-8

Newton’s Laws

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Better sprinters are able to generate a forward-directed horizontal component (FH) of the total ground reaction force (F).

FH

FV

F

Page 9: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-9

Newton’s Laws

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Typical ground reaction force patterns for rearfoot-strikers and others. Runners may be classified as rearfoot-, midfoot-, or forefoot-strikers according to the portion of the shoe that usually contacts the ground first.

Page 10: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-10

Newton’s Laws

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

The vertical ground reaction force (GRFv) for a classic countermovement vertical jump illustrates peak force during the propulsive/pushoff phase (~1.4s) and peak force during the landing phase (~2.0s). The horizontal dashed line represents the magnitude of one body weight (~725N). The shaded area represents the impulse generated against the floor during takeoff. Graph courtesy of Dr. Todd Royer, University of Delaware.

Page 11: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-11

Mechanical Behavior of Bodies in Contact

What is friction?A force acting over the area of contact

between two surfaces • Direction is opposite of motion or motion tendency• Magnitude is the product of the

coefficient of friction () and the normal reaction force (R)

F = R

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 12: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-12

Mechanical Behavior of Bodies in Contact

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

1

2

3

4

Page 13: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-13

Mechanical Behavior of Bodies in Contact

StaticFm = sR

DynamicFk = kR

Applied external force

Fric

tion

For static (motionless) bodies, friction is

equal to the applied force. For dynamic bodies (in motion), friction is constant

and less than maximum static

friction.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

(motion occurring)(no motion)

Page 14: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-14

Mechanical Behavior of Bodies in Contact

Is it easier to push or pull

a desk across a room?

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Pushing a desk

Pulling a desk

R = wt + Pv

R = wt - Pv

wt

wt

P P

P P

Pv

Pv

PH

PH

Page 15: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-15

Mechanical Behavior of Bodies in Contact

The coefficient of friction between a dancer’s shoes and the floor must be small enough to allow freedom of motion but large enough to prevent slippage.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 16: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-16

Mechanical Behavior of Bodies in Contact

What is momentum?

• Quantity of motion possessed by a body

• Measured as the product of a body’s mass and its velocity;

M = mv

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 17: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-17

Mechanical Behavior of Bodies in Contact

What is the principle of conservation of momentum?

In the absence of external forces, the total momentum of a given system remains constant.

M1 = M2

(mv)1 = (mv)2

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 18: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-18

Mechanical Behavior of Bodies in Contact

What causes momentum?

Impulse: the product of a force and the time interval over which the force acts

Ft

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 19: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-19

Mechanical Behavior of Bodies in Contact

What is the relationship between impulse and momentum?

Ft = M

Ft = (mv)2 - (mv)1

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 20: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-20

Mechanical Behavior of Bodies in Contact

Force-time graphs from a force platform for high (A) and low (B) vertical jumps by the same performer.

For

ce (

Bod

y W

eigh

t) 3

2

1

Time (ms)50 100 150 200 250

A

Time (ms)

3

2

1

50 100 150 200 250

B

What does the area under the curve represent?

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 21: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-21

Mechanical Behavior of Bodies in Contact

What is impact?

A collision characterized by:

• The exchange of a large force during a small time interval

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 22: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-22

Mechanical Behavior of Bodies in Contact

What happens following an impact?

This depends on:

• The momentum present in the system

• The nature of the impact

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 23: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-23

Mechanical Behavior of Bodies in Contact

What happens during impact?

This is described by the coefficient of restitution, a number that serves as an index of elasticity for colliding bodies; represented as e.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 24: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-24

Mechanical Behavior of Bodies in Contact

What does the coefficient of restitution (e) describe?

relative velocity after impact -e = relative velocity before impact

v1 - v2

-e = u1 - u2

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 25: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-25

Mechanical Behavior of Bodies in Contact

Ball velocities before impact

Ball velocities after impact

u1 u2

v1 v2

v1 - v2 = -e ( u1 - u2)

The differences in two balls’ velocities

before impact is proportional to the difference in their

velocities after impact. The factor of proportionality is the

coefficient of restitution.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 26: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-26

Mechanical Behavior of Bodies in Contact

In a “break” in billiards, the cue ball is struck to impart high velocity since the numbered balls are motionless, the idea being to disperse the numbered balls.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 27: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-27

Mechanical Behavior of Bodies in Contact

What kinds of impact are there?• Perfectly elastic impact - in which the

velocity of the system is conserved; (e = 1)(superball bounce is close…)

• Perfectly plastic impact - in which there is a total loss of system velocity; (e = 0)(spaghetti hits a wall)

• (Most impacts fall in between perfectly elastic and perfectly plastic.)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 28: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-28

Bounce heights of a basketball, golf ball, racquetball, and baseball dropped from a height of 1 m on two different surfaces. Note that the basketball bounces higher on the wood floor but the other balls bounce higher on concrete.

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Mechanical Behavior of Bodies in Contact

Page 29: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-29

Work, Power, and Energy Relationships

What is mechanical work?

• The product of a force applied against a resistance and the displacement of the resistance in the direction of the force

W = Fd• Units of work are Joules (J)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 30: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-30

Work, Power, and Energy Relationships

What is mechanical power?

• The rate of work production• Calculated as work divided by the time

over which the work was done W

P = t• Units of work are Watts (W)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 31: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-31

Work, Power, and Energy Relationships

What is mechanical energy?

• The capacity to do work• Units of energy are Joules (J)• There are three forms energy:

• Kinetic energy• Potential energy• Thermal energy

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 32: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-32

Work, Power, and Energy Relationships

What is kinetic energy?

• Energy of motionKE = ½mv2

What is potential energy?

• Energy by virtue of a body’s position or configuration

PE = (wt)(ht)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 33: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-33

Work, Power, and Energy Relationships

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

During the pole vault, the bent pole stores potential energy for subsequent release as kinetic energy and thermal energy.

Page 34: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-34

Work, Power, and Energy Relationships

What is the law of conservation of mechanical energy?

When gravity is the only acting external force, a body’s mechanical energy remains constant.

KE + PE = C(where C is a constant - a number that remains unchanged)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 35: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-35

Work, Power, and Energy Relationships

29.4

24.5

19.7

14.7

9.8

0

3.1

4.4

5.4

7.3

0

4.9

9.8

14.7

19.7

3.0

2.5

2.0

1.5

1.0

Ht(m) PE(J) V(m/s) KE(J)

Time

Height, velocity, potential

energy, and kinetic energy changes for a tossed ball.

Note: PE + KE = C

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.

Page 36: Chapter 12 Linear Kinetics of Human Movement Basic Biomechanics, 7 th edition By Susan J. Hall, Ph.D. © 2014 The McGraw-Hill Companies, Inc. All rights

12-36

Work, Power, and Energy Relationships

What is the principle of work and energy?

The work of a force is equal to the change in energy that it produces in the object acted upon.

W = KE + PE + TE(where TE is thermal energy)

Basic Biomechanics, 7th editionBy Susan J. Hall, Ph.D.