chapter 1 - vibrations harmonic motion/ circular motion simple harmonic oscillators –linear,...

36
Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators Linear, Mass-Spring Systems Initial Conditions Energy of Simple Harmonic Motion Damped Oscillations • Driven/Forced Oscillations

Upload: dennis-richards

Post on 05-Jan-2016

246 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Chapter 1 - Vibrations

• Harmonic Motion/ Circular Motion

• Simple Harmonic Oscillators– Linear, Mass-Spring Systems

– Initial Conditions

• Energy of Simple Harmonic Motion

• Damped Oscillations

• Driven/Forced Oscillations

Page 2: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Math Prereqs

dcos

d

dsin

d

cos

sin

2 2 2

0 0 0

cos d sin d sin cos d

0

2 22 2

0 0

1 1cos d sin d

2 2

1

2

Page 3: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Identities (see appendix A for more)

cos cos 2cos sin2 2

2 2sin cos 1

cos cos cos sin sin

2 1 1cos cos 2

2 2

ie cos jsin j j

j e eRe e cos

2

j jj e e

Im e sin2j

Page 4: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Why Study Harmonic Motion

http://www.kettering.edu/~drussell/Demos/waves/wavemotion.html

http://www.falstad.com/mathphysics.html

Page 5: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Relation to circular motion

x A cos A cos t

2

T

j j tx Ae Ae

Or

Page 6: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Math Prereqs

T

0

1f t f t dt

T

"Time Average"

2 2cos t

T

T T2

0 0

1 2 1 1 1 2 1cos t dt cos 2 t dt

T T T 2 2 T 2

Example:

Page 7: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Horizontal mass-spring

• Good model!– Force is linear– Mass is constant– Spring has negligible mass– No losses

f maHooke’s Law: sf sx

2

2

d xsx m

dt

2

2

d x sx 0

dt m

Frictionless(1D constraint)

Page 8: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Solutions to differential equations

• Guess a solution• Plug the guess into the differential equation

– You will have to take a derivative or two• Check to see if your solution works. • Determine if there are any restrictions (required

conditions).• If the guess works, your guess is a solution, but it

might not be the only one.• Look at your constants and evaluate them using

initial conditions or boundary conditions.

Page 9: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Our guess

1 ox A cos t

Page 10: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Check

1 ox A cos t 2

21 o o2

d xA cos t

dt

2

2

d x sx 0

dt m

21 o o 1 o

sA cos t A cos t 0

m

2o o

scos t 0

m

Page 11: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

The restriction on the solution

2o

s

m

oo

1 sf

2 2 m

o o

1 2 mT 2

f s

Page 12: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Any Other Solutions?

1 ox A cos t

2 ox A sin t

1 o 2 ox A cos t A sin t

A

A1

A2

o ox A cos cos t Asin sin t

ox A cos t

Or

Page 13: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Definitions

• Amplitude - (A) Maximum value of the displacement (radius of circular motion). Determined by initial displacement and velocity.

• Angular Frequency (Velocity) - Time rate of change

of the phase. Natural Angular Frequency

• Period - (T) Time for a particle/system to complete one cycle.

• Frequency - (fo) The number of cycles or oscillations completed

in a period of time. Natural Frequency

• Phase - t Time varying argument of the trigonometric function.

• Phase Constant - Initial value of the phase. Determined by initial displacement and velocity.

ox A cos t

Page 14: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

The constants – Phase Angle ox t 0 x u t 0 0 0

x t 0 0 0u t 0 u 2

o ox x cos t o o ou x sin t

o

2o oa x cos t

ox

ox

o ox

o ox

2o ox

2o ox

o

o

u

o

o

u

Case I:

Case II:

o

o

uA

Note phase relationshipbetween x, u, and a

Page 15: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

General Case

ox t 0 x 0u t 0 u

1 o 2 ox A cos t A sin t 1 oA x

1 o o 2 o ou A sin t A cos t o2

o

uA

A

A1

A2

2

2 oo

o

uA x

1 o

o o

utan

x

Page 16: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Energy in the SHO

2 2 2 2K P

1 1 1 1E E E mu sx sA mU

2 2 2 2

2 2su A x

m

Page 17: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Average Energy in the SHO

2 2 2 2P o

1 1 1E s x sA cos t sA

2 2 4

2 2 2 2 2 2 2K o o o

1 1 1 1E m u m A sin t m A sA

2 2 4 4

ox A cos t

o o

dxu A sin t

dt

K PE E

Page 18: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Example

• A mass of 200 grams is connected to a light spring that has a spring constant (s) of 5.0 N/m and is free to oscillate on a horizontal, frictionless surface. If the mass is displaced 5.0 cm from the rest position and released from rest find:

• a) the period of its motion, • b) the maximum speed and • c) the maximum acceleration of the mass.• d) the total energy• e) the average kinetic energy• f) the average potential energy

Page 19: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Complex Exponential Solution

• Check it – it works and is simpler. • Phase relationships are more obvious.• Implied solution is the real part• Are there enough arbitrary constants? What are they?

oj tx Ae

oj to ou j Ae j x

oj t2 2o oa Ae x

o

ot

Re

Im

jA a jb Ae

a

jb

oA cos t

Page 20: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Dashpot

r m

dxf R

dt

2

m2

d x dxm R sx 0

dt dt Equation of Motion:

Solution Guess:

Damped Oscillations

Dissipative forces

22mo2

Rd x dxx 0

dt m dt

tx Ae

Page 21: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Check2 t t 2 tm

o

RAe Ae Ae 0

m

2 2 tmo

RAe 0

m

2 2o

tx Ae

mR

2m

2 2d o dj

d d d d dj t j t j t j t j tt1 2 1 2x Ae A e A e e A e A e

d dj t j tt tdx A e e e Ae cos t

Page 22: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Damped frequency oscillation

2m

d 2

Rs

m 4m

2mR 4ms

B - Critical damping (=)C - Over damped (>)

mR

2m

tAe

Page 23: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Relaxation Time

• Decay modulus, decay time, time constant, characteristic time

• Time required for the oscillation to decrease to 1/e of its initial value

m

1 2m

R

Page 24: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Forced Vibrations

j tf t Fcos t or Fe

2

m2

d x dxm R sx f t

dt dt

f t

• Transient Solution – decays away with time constant, • Steady State Solution

Page 25: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Resonance0

s

m Natural frequencyj tx Ae

m

1 FA

sj R j m

2 j t j tmA m jA R As e Fe

sm 0

0

s

m

make small!!

2 2d o

Page 26: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Mechanical Input Impedance

• Think Ohm’s LawV

ZI

m

fZ

u

j t

j t

m

1 Fex Ae

sj R j m

j tf Fe

j t

m

Feu

sR j m

jm m m m m

sZ R j m R jX Z e

22

m m

sZ R m

1

m

sm

tanR

Page 27: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Significance of Mechanical Impedance• It is the ratio of the complex driving force to the

resulting complex speed at the point where the force is applied.

• Knowledge of the Mechanical Impedance is equivalent to solving the differential equation. In this case, a particular solution.

m

fu

Z

m

u fx

j j Z

Page 28: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

V

Electrical Analogs2

2

d q dq qL R V(t)

dt dt C

2

m2

d x dxm R sx f t

dt dt

m

s

Rm

Elec Zelec Mech

V f

I u

L jL m jm

R R Rm Rm

1/C 1/jC s s/jf

Page 29: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

How would you electrically model this?

m

s

Rm

f

u um

f 1/s

Rm

m

u um

Page 30: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Transient Responsej t

j t

m

1 Fex Ae

sj R j m

m

Fx sin t

Z

22

m m

sZ R m

1

m

sm

tanR

td

m

Fx Ae cos t sin t

Z

See front cover and figure 1.8.1 (pg 14)

Which is transient, which is steady state?

Page 31: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Instantaneous Power

• Think EE P VIi fu

j t

m

Feu

sR j m

m

Fu cos t

Z

2

im

Fcos t cos t

Z

f Fcos t j tf Fe

Page 32: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Average Power

T

i iT 0

1dt

T

2

T

0m

1 Fcos t cos t dt

T Z

22m

2m m

F RFcos

2Z 2Z

2T 2

0m

1 Fcos t cos cos t sin t sin dt

T Z

Page 33: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Quality (Q) value

• Q describes the sharpness of the resonance peak

• Low damping give a large Q• High damping gives a small Q• Q is inversely related to the

fraction width of the resonance peak at the half max amplitude point.

0 0 0

m

mQ

R 2 2

0 0

u l

Q

Page 34: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Tacoma Narrows Bridge

Page 35: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

Tacoma Narrows Bridge (short clip)

Page 36: Chapter 1 - Vibrations Harmonic Motion/ Circular Motion Simple Harmonic Oscillators –Linear, Mass-Spring Systems –Initial Conditions Energy of Simple Harmonic

tx Ae cos t

t tdxv Ae sin t A e cos t

dt

2

t 2 t t 2 t2

d xa Ae cos t A e sin t A e sin t A e cos t

dt

t 2 2Ae 2 sin t cos t

tAe sin t cos t

2

2

d x b dx kx 0

dt m dt m

t t2 2 tb kAe Ae Ae 0

m mcos t cos t cos2 sin tt sin t

t 2 2

b

2mb k

cAe 0b

2 s oin tm

s tm m

22k b

0m 2m

2k b

m 2m

b

2m