chapter 1 shallow foundation- ultimate bearing capacity

11

Click here to load reader

Upload: romeo-corneliez

Post on 22-Nov-2014

280 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

1. Shallow Foundation: Ultimate Bearing Capacity

1.1. Terzaghi’s Bearing Capacity Theory

Ultimate bearing capacity (qu) of general shear failure:

Continuous or strip foundation: γγBNqNNcq qcu 5.0' ++=

Square foundation: γγBNqNNcq qcu 4.0'3.1 ++=

Circular foundation: γγBNqNNcq qcu 3.0'3.1 ++=

)1('cot

2

'

4cos2

'cot2

'tan)2/'4/3(2

−=

+

=−

qc Ne

N φφπ

φφφπ

+

=−

2

'45cos2 2

'tan)2/'4/3(2

φ

φφπe

N q

'tan1'cos2

12

φφ

γ

γ

−=

pKN

Table 1: Terzaghi’s Bearing Capacity Factors

φ’ Nc Nq Nγ

0 5.70 1.00 0.00 5 7.34 1.64 0.14 10 9.61 2.69 0.56 15 12.86 4.45 1.52 20 17.69 7.44 3.64 25 25.13 12.72 8.34 30 37.16 22.46 19.13 35 57.75 41.44 45.41 40 95.66 81.27 115.31 45 172.28 173.28 325.34

50 347,50 415.14 1072.80

Page 2: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Figure 1. Terzaghi’s Bearing Capacity Factors

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40

Ultimate bearing capacity (qu) of local shear failure:

Continuous or strip foundation: γγ '5.0'''3

2BNqNNcq qcu ++=

Square foundation: γγ '4.0'''867.0 BNqNNcq qcu ++=

Circular foundation: γγ '3.0'''867.0 BNqNNcq qcu ++=

N’c, N’q, and N’γ, the modified bearing capacity factors, can be calculated by using the

bearing capacity factor equations (for Nc, Nq, and Nγ respestively)by replacing φ’ by

)'tan(tan'321 φφ −= .

φφφφ’ ( °°°° )

Nc

; N

q ;

Nγγ γγ

Nc

Nq

Page 3: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Factor of Safety (FS):

Based on gross allowable bearing capacity:

all

u

q

qFS =

Based on net ultimate bearing capacity:

)(netall

u

q

qqFS

−= ; fDq γ=

Water Table:

Case I: 0 ≤ D1 ≤ Df ; )(21 wsatDDq γγγ −+= ; wsat γγγ −=′

Case II: 0 ≤ d ≤ B ; fDq γ= ; )( γγγγ ′−+′=B

d

Case III: when water table is located that d ≥ B, the water will have no effect on the

ultimate bearing capacity.

1.2. The General Bearing Capacity

General bearing capacity equation: idsqiqdqsqcicdcscu FFFBNFFFqNFFFNcq γγγγγ21++′=

Bearing Capacity Factors:

φπφ ′′+= tan)

245(tan 2 eN q

φ ′−= cot)1( qc NN

φγ′+= tan)1(2 qNN

Page 4: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Table 2: Bearing Capacity Factors (General Bearing Capacity Equation)

φ’ Nc Nq Nγ

0 5.7 1 0

5 6.49 1.57 0.45

10 8.35 2.47 1.22

15 10.98 3.94 2.65

20 14.83 6.4 5.39

25 20.72 10.66 10.88

30 30.14 18.4 22.4

35 46.12 33.3 48.03

40 75.31 64.2 109.41

45 133.88 134.88 271.76

50 266.89 319.07 762.89

Figure 2. Bearing Capacity Factors (General Bearing Capacity Equation)

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40

Page 5: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Shape Factors:

L > B

+=

c

q

csN

N

L

BF 1

φ ′

+= tan1

L

BFqs

−=

L

BF s 4.01γ

Depth Factors:

For Df / B ≤≤≤≤ 1 For Df / B > 1

+=

B

DF

f

cd 4.01

B

DF

f

qd

2)sin1(tan21 φφ ′−′+=

1=dFγ

+= −

B

DF

f

cd

1tan)4.0(1

B

DF

f

qd

12 tan)sin1(tan21 −′−′+= φφ

1=dFγ

Inclination Factors:

β = inclination of the load on the foundation with respect to the vertical.

2

901

−==

o

oβqici FF

2

1

′−=

φ

βγiF

Page 6: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Problem:

A square foundation (B x B) has to be constructed as shown below. Assume that γ = 16.5

kN/m3, γsat = 18.5 kN/m

3, Df = 1.2 m, and D1 = 0.6 m. The gross allowable load, Qall,

with FS=3 is 675 kN. The standard penetration resistance, N60 values are as follows:

Depth (m) N60 (blow/m)

1.5

3.0

4.5

6.0

7.5

4

6

6

10

5

Determine the size of the footing!

Solution:

5.0

0

60601'

)(

=

σap

NN

20'

20

5.05.0

0

60 +

=′

σφ ap

N

pa (atmospheric pressure) ≈ 95 kN/m2. Now the following table can be prepared:

Depth (m) N60 σ’0 (kN/m2) φ’(deg)

1.5

3.0

4.5

6.0

7.5

4

6

6

10

5

0.6x16.5+0.9(18.5-9.8)=17.73

17.73+1.5(18.5-9.8)=30.78

30.78+1.5(18.5-9.8)=43.83

43.83+1.5(18.5-9.8)=56.88

56.88+1.5(18.5-9.8)=69.93

33.6

34.5

33.3

36.0

30.8

Average φ’=33.64°≈ 34°

Page 7: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Next we have

qall = Qall / B2 = 675 / B

2 kN/m

2

with c’ = 0, we obtain

qall = FS

qu = 3

1

+ dsqdqsq FFBNFFqN γγγγ '

2

1

For φ’=34° from table 3.3., Nq=29.44 and Nγ=41.06.

Hence,

Fqs = 1+L

Btan φ’ = 1+tan 34 = 1.67

Fγs = 1 – 0.4(L

B) = 1- 0.4 = 0.6

Fqd = 1 + 2 tan φ’(1-sinφ’)2

B

D f= 1 + 2 tan 34 (1-sin 34)

2

B

4= 1 +

B

05.1

Fγd = 1

And

q = (0.6)(16.5) + 0.6(18.5-9.8) = 15.12 kN/m2

so

qall = 3

1

+

+ )1)(6.0)(06.41)()(8.95.18(

2

105.11)67.1)(44.29)(12.15( B

B

= 247.79 + B

18.260+ 107.16B

Substitution,

675 / B2 = 247.79 +

B

18.260+ 107.16B

By trial and error, we find that B ≈ 1.025 m

Page 8: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

1.3. Eccentrically Loaded Foundation

Figure 3. Eccentrically Load

LB

M

BL

Qq

2max

6+= ;

LB

M

BL

Qq

2min

6−=

Q

Me =

For e<B/6:

+=

B

e

BL

Qq

61max ;

−=

B

e

BL

Qq

61min

For e>B/6:

)2(3

4max

eBL

Qq

−= ; negativeq =min

Page 9: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Ultimate Bearing Capacity under Eccentric Loading – Meyerhof’s Theory:

Step 1: Determine the effective dimension of the foundation:

B’ = effective width = B-2e

L’ = effective length = L

Step 2: Use general equation for ultimate bearing capacity:

idsqiqdqsqcicdcscu FFFBNFFFqNFFFNcq γγγγγ21++′=

Step 3: Determine the total ultimate load

'' AqQ uult =

A’= effective area = (B’)(L’)

Step 4: Determine factor of safety against bearing capacity failure

Q

QFS ult=

Step 5: Check the factor of safety against qmax;

max

'

q

qFS u=

Page 10: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Problem:

A continuous foundation is shown below. If the load eccentricity is 0.15 m, determine the

ultimate load, Qult, per unit length of the foundation. Use Meyerhof’s effective area.

Solution:

For c’=0,

idsqiqdqsqu FFFBNFFFqNq γγγγγ210 ++=

where,

q = (17.5)(1.8) = 31.5 kN/m2

For φ’ = 35°, from Table.1 Terzaghi’s Bearing Capacity Factors, Nq = 33.3 and Nγ =

48.03

And B’ = 2 – (2)(0.15) = 1.70 m

Because the foundation is a strip foundataion, B’ / L’ is zero.

Hence,

1==sqs FF γ

1==iqi FF γ

Fqd = 1 + 2 tan φ’(1-sinφ’)2

B

D f= 1 + 2 tan 35 (1-sin 35)

2

B

4

= 1 + 0.255

2

8.1

= 1.2295

Page 11: Chapter 1 Shallow Foundation- Ultimate Bearing Capacity

Fγd = 1

And

)1)(1)(1)(03.48)(70.1)(5.17()1)(2295.1)(1)(3.33)(5.31(021++=uq

= 2004.13 kN/m2

Thus,

Qult = (B’)(1)(qu’) = (1.70)(1)(2004.13) = 3407.021 kN/m = 340.7 ton/m