chapter 1 - noise

21
RF IC Technology - Noise 1 RF IC Technology - Noise 2 Introduction Definition of Noise Sources of High Frequency Noise Thermal Noise Shot Noise Flicker Noise Propagation of Noise Through a System Noise Through a Linear Filter Systems With Several Noise Sources Frequency Transformation of Noise Noise Representations Noise Figure Noise Temperature Equivalent Input Noise Cascade of Noisy Networks Measurement of Noise Contents RF IC Technology - Noise 3 References for Noise Selected Papers, Provided by Lecturer Design of Analog CMOS Integrated Circuits, Behzad Razavi, Chapter 7, pp.201 -245 Analysis and Design of Analog Integrated Circuits, Gray and Meyer, 4 th Ed., Chapter 11, pp. 748 – 807 Design with Operational Amplifiers and Analog Integrated Circuits, Franco, Third Ed., Chapter 7, pp. 311 - 346 Analog Integrated Circuit Design, David Johns, Chapter 4, pp. 181 – 220, Ed. 1997 RF IC Technology - Noise 4 Types of Noise External Noise – May be of random or regular nature from outside sources – Interaction between the circuit and the outside world – Interaction between different parts of circuit Internal Noise – Random signals due to the natural phenomenon

Upload: chau-phan-giang

Post on 08-Apr-2016

31 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 1 - Noise

RF IC Technology - Noise1

RF IC Technology - Noise2

IntroductionDefinition of NoiseSources of High Frequency Noise

Thermal NoiseShot NoiseFlicker Noise

Propagation of Noise Through a SystemNoise Through a Linear FilterSystems With Several Noise SourcesFrequency Transformation of Noise

Noise RepresentationsNoise FigureNoise Temperature

Equivalent Input NoiseCascade of Noisy NetworksMeasurement of Noise

Contents

RF IC Technology - Noise3

References for Noise

• Selected Papers, Provided by Lecturer

• Design of Analog CMOS Integrated Circuits, Behzad Razavi,Chapter 7, pp.201 -245

• Analysis and Design of Analog Integrated Circuits, Gray andMeyer, 4th Ed., Chapter 11, pp. 748 – 807

• Design with Operational Amplifiers and Analog Integrated Circuits, Franco, Third Ed., Chapter 7, pp. 311 - 346

• Analog Integrated Circuit Design, David Johns, Chapter 4, pp. 181 – 220, Ed. 1997

RF IC Technology - Noise4

Types of Noise

• External Noise– May be of random or regular nature from outside

sources– Interaction between the circuit and the outside

world– Interaction between different parts of circuit

• Internal Noise– Random signals due to the natural phenomenon

Page 2: Chapter 1 - Noise

RF IC Technology - Noise5

Intrinsic Noise

• Thermal Noise • Shot Noise• Flicker Noise (1/f)• Burst or Popcorn Noise

RF IC Technology - Noise6

RF Signal Along With Noise

RF f

RF f

RX

Good

RX

Bad

RF f

SSnn(f(f))

RF IC Technology - Noise7

Definition of Noise

• Noise is a RANDOM PROCESS

• The value of noise can not be predicted at any time

• The average power for most types of noise is predictable by observing noise over a long time

RF IC Technology - Noise8

Quantitative Definition of NoiseStatistical Models

Probability Density Function (PDF): p(n)

1)( =∫+∞

∞−

dnnp

p(n) dn = probability of n1 < n < n1 + dn

∫2

1

)(n

n

dnnp = P( n1 < n < n2 )

Page 3: Chapter 1 - Noise

RF IC Technology - Noise9

Distribution of PDFGaussian Model

Distribution of Probability Density Function (PDF): p(n)

−= 2

2

21exp

21)(

nn

nnpσσπ

)(np

n

2σn

+ σn- σn

68.0)( =∫+

dnnpn

n

σ

σ

P( - σn < n < + σn ) = 0.68

RF IC Technology - Noise10

Average Noise Power

dtRtv

TP

T

T Lav ∫

+

=2/

2/

2 )(1

dtRtx

TP

T

T LTav ∫

+

−∞→=

2/

2/

2 )(1 lim

dttxT

PT

TTav ∫

+

−∞→=

2/

2/

2 )(1 lim

dttnT

tnT

TT ∫

+

−∞→=

2/

2/

22 )(1 lim)(

For a periodic (T) voltage signal v(t) across a load RL :

RF IC Technology - Noise11

Noise in Time Domain

Noise is expressed as a Fourier Series over a period T :

∑+∞=

−∞=

=

K

KK t

TKjXtn 2 exp)( π

0 2 exp)( XtTKjXtn

K

KK =

= ∑

+∞=

−∞=

π

∑+∞=

=

∗+=K

KKK XXXtn

1

20

2 2)(

RF IC Technology - Noise12

Noise in the Frequency Domain

)(1 tnf)(tn

)(21 tnfBPF

f1

1 Hz

( )2

)( 1fSnNoise average power in a 1 Hz bandwidth around a frequency f1 :

Page 4: Chapter 1 - Noise

RF IC Technology - Noise13

Power Spectral Density (PSD) of Noise

∫=2

1

)()(2f

fn dffStn

The Amount of mean-squared noise over a finite bandwidth ∆ f = f1 - f2

ftnfS

ffStn

n

n

∆=

∆=

)()(

)()(2

2

fVfS n

n ∆=

2

)(

RF IC Technology - Noise14

Sources of Noise

• Thermal Noise, Johnson’s Noise• Shot Noise• Flicker Noise (1/f)• Burst or Popcorn Noise

RF IC Technology - Noise15

Thermal Noise• A thermally (thermal energy) generated noise due to

random motion of the charge carriers; electrons• The average noise power is proportional to:

– Temperature– Frequency bandwidth (spectrum) of the thermal noise

fKTBKTPn ∆==

KTfPS n

n =∆

=Power Spectrum Density : (Watt/Hz)

K = 1.38 x 10 -23 J/oK

(Watt)

RF IC Technology - Noise16

Thermal Noise

Power Spectrum Density (W/Hz)

Frequency (Hz)

KT

0

Time

Instantaneous Noise Voltage

Page 5: Chapter 1 - Noise

RF IC Technology - Noise17

Resistor Thermal Noise

KTBRVP n

n ==4

2

RKTBVn 42 =

GKTBIn 42 =

R

Noisy Resistor

R

)(tvn

R

2nV

Noiseless Resistor

≡ ≡

RF IC Technology - Noise18

Root-Mean-Square Value of Noise

RKTBVn 4=

GKTBIn 4=

THz 2.6=<<hKTfValid up to very high frequencies of 10 GHz,

R

nV

Noiseless Resistor

Planck’s constant, h = 6.67 x 10 -34 J.S

RF IC Technology - Noise19

Thermal Current Noise

GKTBIn 4=

R ni

NoiselessResistor

GKTBIn 42 =

RF IC Technology - Noise20

PSD of Thermal Noise

SSVV(f)(f) (V2/Hz)

f (Hz)

4RKT

0

RKTBVP nav 42 ==

fVfS n

n ∆=

2

)(

KTRfSn 4)( =

(V2)

(V2/Hz)

Page 6: Chapter 1 - Noise

RF IC Technology - Noise21

Thermal Noise of Series Resistors

KTBRV Sn 42 =

KTBRRVn )(4 212 +=

22

21

2nnn VVV +=

22

21 nnn VVV +=

KTBRVi

in 42 ∑=

21 nnnT XXX +=

221

2 )( nnnT XXX +=

2122

21

2 2 nnnnnT XXXXX ++=

RF IC Technology - Noise22

Thermal Noise of Parallel Resistors

KTBGI TnT 42 =

KTBGGInT )(4 212 +=

22

21

2nnnT III +=

22

21 nnnT III +=

KTBGIi

inT 42 ∑=

RF IC Technology - Noise23

Effective Bandwidth

2)(11|)(|RC

ω+

=

2|)(|)()( ωHfSfS nino =

2)(11)(RC

KTfSno ω+=

effnono KTBRCKTdffSP === ∫

4 )(

0

Parallel Resistor and Capacitor:

R

2niV

C noV

+

-

)()(

)(sVsVsH

ni

no=

RF IC Technology - Noise24

Effective Bandwidth

2)(11|)(|RC

ω+

=

2)(11)(RC

KTfSno ω+=

effno KTBRCKTP ==

4

R

2niV

C noV

+

-

Power Spectrum Density (W/Hz)

f (Hz)

KT

0RC

Beff 41

=

noS~

Page 7: Chapter 1 - Noise

RF IC Technology - Noise25

Noise Voltage at the Output

RCKT

RVP n

no 44

2

==

R

2niV

C noV

+

-

)()(

)(sVsVsH

ni

no=

CKTVn =2

CKTV rmsn =,

RF IC Technology - Noise26

MOSFET’s Channel Thermal Noise

The most significant source of the thermal noise generatedin the channel is called Drain NoiseDrain Noise or Channel NoiseChannel Noise;

For long channel devices operating in the saturation region

Long channel: γ = 2/3 Submicron : γ = 2.5 for 0.25 micron technologyγ : is bias-dependent parameter

fgKTI mn ∆= 42 γ

Ref.: Y. TsividisfgKTI dn ∆= 0

2 4 γ

RF IC Technology - Noise27

Induced Gate Noise

+_

DS

GVGS VD

ndingi

fCg

fgKTigsm

dong ∆

=

2

2

))(/5(24

απδ

dogKTγ4

f

fing∆

2

Slope=20 dB/decade

αtf5

Fluctuating channel potential couples capacitively into the gate terminal, causing a noise gate current

- δ is gate noise coefficient Typically assumed to be 2γ- Correlated to drain

+_

RF IC Technology - Noise28

Induced Gate Noise

fCKTi gsng ∆= 222

1516 ω

WLCC oxgs 32

=

“Analysis and Design of Analog Integrated Circuits,” Gray andMeyer, 4th Ed., Chapter 11, pp. 748 – 807

Page 8: Chapter 1 - Noise

RF IC Technology - Noise29

Noise Parameter As a Function of Vd

Drain Voltage VDrain Voltage VDSDS

RF IC Technology - Noise30

Correlation factor between the induced gate noise and the channel drain noise

22

*

dg

dg

ii

iijCB =+

RF IC Technology - Noise31

Thermal Noise in MOSFETs (Cont.)

The ohmic sections also contribute thermal noise. In a relatively wide transistor:

G

D

S

RG1 RG2RGn

RG1+ RG2+ … + RGn= RG

RF IC Technology - Noise32

Thermal Noise in MOSFETs (Cont.)

In which R1 =RG /3

We will hereafter neglect the thermal noise due to the

ohmic sections of MOS devices

_+

_+

_+

RD

RS

R1

2, 1Rn

V

2,RSnV

2,RDnV

Page 9: Chapter 1 - Noise

RF IC Technology - Noise33

Noise Sources in a CMOS Amplifier

RF IC Technology - Noise34

Thermal Noise in MOSFETs (Cont.)

In which R1 =RG /3

While the thermal noise caused in channel is controlled by gm, the thermal noise caused by RGcan be reduced in a folded device, and the thermal noise caused by RS and RD are negligibledue to small resistor values.

We will hereafter neglect the thermal noise due to the

ohmic sections of MOS devices⇒

_+

_+

_+

RD

RS

R1

2, 1Rn

V

2,RSnV

2,RDnV

RF IC Technology - Noise35

Shot Noise

• Associated with discrete packets of charge emission, or the charge carriers crossing a boundary; potential barrier region,

• Depends directly on the direct component of the current

p n# of Holes # of Electrons

j

t

iJ ID

RF IC Technology - Noise36

Shot Noise

fqIi DCn ∆= 22

DCn

i qIfifS 2)(

2

=∆

=Power Spectrum Density :

∫ −=−= ∞→

T

DTDn dtIiT

Iii0

222 )(1lim)(

It is valid for the fmax (less than or) comparable to 1/τ , where τ is the junction transit time

(A2)

(A2 /Hz)

Page 10: Chapter 1 - Noise

RF IC Technology - Noise37

Shot Noise

−= 2

2

21exp

21)(

σσπiip

fqIDC∆= 22σ

fqIDC∆= 2σ

)( nIp

In

2 σI

+σI-σI IDCurrent amplitude lies betweenID ± σI for 68 percent of the time

RF IC Technology - Noise38

Flicker Noise

• Flicker noise or Contact noise occur due to the imperfect contact“Contamination” between two conducting materials that causes the conductivity to fluctuate in the presence of a dc current.

• mean-square flicker noise current in 1 Hz frequency band: where Kf is the flicker noise coefficient, I is the dc current, m is the flicker noise exponent, and n~1.

• Flicker noise is modeled by a noise current source in parallel with the device.

One-over-f-noise/ low frequency noise/ pink noise

n

mf

f fIK

i =2

(A2 /Hz)

RF IC Technology - Noise39

Flicker Noise, (1/f) Noise• Associated with the fluctuation in carrier density due to trapped

electrons “Crystal defects”, for example, the dangling bonds existing in the MOS oxide-substrate interface.

ffIKI fn ∆= β

α2

1/f GenerationDevicermsnI ,

Kf : constant for a particular deviceα : constant in the range 0.5 to 2β : constant of about unity

ffIKI frmsn ∆= β

α

,

(A2)

RF IC Technology - Noise40

Flicker Noise PSD

fIK

fIfS fn

i

α

=∆

=2

)(

Si(f)

fLog scale

Log

scal

e

• In devices exhibiting high flicker noise levels, this noise source may dominate the device noise at frequencies well into mega hertz

• In general, Kf is an unknown constant• May varies by orders of magnitude from one device type to the next• Vary widely for different transistors or integrated circuits from the

same process wafer

(A2 /Hz)

Page 11: Chapter 1 - Noise

RF IC Technology - Noise41

Flicker Noise in MOSFETsThe flicker noise in MOSFETs can be easily modeled as a voltagesource in series with the gate and roughly given by:

K is a process-dependent constantK = 10-25 (V2 F), ∆f = 1Hz(Behzad Razavi)

Flicker noise spectrum:

• Devices with areas of several thousands square microns in low noise applications

• PMOS devices exhibit less 1/f noise than NMOS transistors.

fWLCKVox

n12 = (V2)

RF IC Technology - Noise42

Flicker Noise in MOSFETs (Cont.)

SO WHAT HAPPENS TO TOTAL FLICKER NOISE IF THE LOWEREND OF THE BAND APPROACHES ZERO?

1. Signals in most applications do not contain significant low frequency components.

2. The logarithmic dependence of the flicker noise power upon fLallows some margin for error in selecting fL

RF IC Technology - Noise43

Flicker Noise in MOSFETs (Cont.)

KTg

WLCKfg

fWLCKgKT m

oxm

coxm c 8

31)32(4

'2

'

=⇒=

Weak dependence for a given L and thus relatively constant “corner frequency”, leads to fc falling in the vicinity of 500KHz to 1MHz for submicron transistors.

RF IC Technology - Noise44

Propagation of Noise Througha System

For a linear and noiseless system:

2|)2(|)()( fHfSfS io π=

)(ωH)( fSi )( fSo

R

C

|)(| ωHRC

1 ω

Page 12: Chapter 1 - Noise

RF IC Technology - Noise45

Propagation of Noise Througha System

R

C

vni(t) vno(t)

SSnini (f)(f) (V2/Hz)

f (Hz)

4RKT

0 f (Hz)

SSnionio(f(f)) (V2/Hz)

4RKT

0RC41

RF IC Technology - Noise46

= ∑

−∞=

tTkj

kki Xn π2exp

= ∑

−∞=

tTkj

TkH

kko Xn ππ 2exp2

2

2*

)]2()[(

)]2(][ lim2[)(

fHfSfHTXXfS

i

KKTo

π

π

=

= ∞→

RF IC Technology - Noise47

2H1H

22

21 |)2(||)2(|)()( fHfHfSfS io ππ=

221 ||)()( HHfSfS io =

)( fSi )( fSo

RF IC Technology - Noise48

Example

+ Ainv

v n1 v n 2

( )Avvvv nninout 21 ++=+

++

= VVAVAV nn

mout

2

2

2

1

22

22

2

Signal Noise

) cos( tVv min ω=

Page 13: Chapter 1 - Noise

RF IC Technology - Noise49

Example

Vout

v n1 v n 2

( )fA π2vin + +

NoiseSignal

22

221

20

22 |)2(| |)2(|)(

2 nnm

out VfAVfAffVV ++−= ππδ

RF IC Technology - Noise50

Example

+ +

2nv1nv

inv outv)2( fA π

)2( fB π

RF IC Technology - Noise51

( )fAvvV n

neq π22

1+=

( ) ( ) ( )( ){ }vv

fBfAvfffAVV

nn

no

out

fAB 2

2

2

2

222

10

22

2

2Re2

2 222π

δ πππ++

++

−=

( ) ( )

+=fA

fBvV neq ππ

2122

RF IC Technology - Noise52

Systems with Several Noise Sources

~

n 1

n 2

n j... +

-

~

~

~

outout nV +LZinV

Page 14: Chapter 1 - Noise

RF IC Technology - Noise53

~

n 1

n 2

n j... +

-

~

~

~

LZ

01

=n

02

=n

0=nj... +

-

Effective Input Noise

Noiseless Network

~

~

~~

~ LZ

Noisy Network

inV

inV

inn

outout nV +

outout nV +

RF IC Technology - Noise54

Procedure for Output Noise• Turn off all noise sources, then determine the

output• Turn off the input voltage (current) source and all

noise sources except one. – If the noise source set on is correlated to other noise

sources in the system, turn these sources on as well– Analyze the system for mean-squared noise output

• Repeat the above step until all the noise sources exhausted

∑=

=N

iioutTotalout VV

1

22 )(

RF IC Technology - Noise55

Example

)(21 2

321

222nno VVAAv ++=

A

++

+

A

)(1 tv vn2)(2 tvvn3

vn1

dv ov+-))()(()( 12 tvtvAtvd −=

)(21 2

22

122 VVAvds +=

( ) )(21 2

22

122

32

222 VVAvvAv nnd +++=

( )23

22

22nndn vvAv +=

RF IC Technology - Noise56

Frequency Transformation of Noise

f f

Power Power

⇔Function ofRF System

RF

Page 15: Chapter 1 - Noise

RF IC Technology - Noise57

×( )tvV n+1

( )( )tVVVV nout +=12

V 2

Mixer

( )tVVVVV nout 212+=

Wanted Noise

( ) [ ]eeV tjtjcc

tA ωω −+=21

[ ] [ ]{ }∑∞

=

−++=1

02 expexp2k

kkk tjtjaaV ωω( ){ }

( ) ( ) ( ){ }( ) ( ) ( ){ }∑

∑∞

=

+−−

=

−−+

++

+++

++=

1

1

021

4

4

2

k

tjtjk

k

tjtjk

tjtj

eeaeeaeeaVV

ckck

ckck

cc

tA

tA

tA

ωωωω

ωωωω

ωω

RF IC Technology - Noise58

[ ]∑∞

−∞=

=l

lln tjXV ωexp

Tl

l

πω 2=

( )( )

∑+

−∞=+

−∞==

−∞=

=−

l ll

k bytranslated

bytranslated

kk

XXa

XXXXaatvV l

lll

lln

kk

*2

0

1

*

2**

42ωω

( )

+

++

−= ∑

=fSaffSffSaaS nknkn

k

kkout f 2

01

*

4

RF IC Technology - Noise59

• Noise Figure; Noise Factor• Noise Temperature

Noise Measures

RF IC Technology - Noise60

Noise Figure

oo

ii

NSNSF

//

=

o

i

NSNSF

)/()/(

=NoSo

NiSi

PPPPF

//

=

i

o

o

i

NN

SSF =

Noise Factor:

FF log10(dB) =Noise Figure:

Page 16: Chapter 1 - Noise

RF IC Technology - Noise61

Noise Figure

oo

ii

NSNSF

//

=

sR

sV

NoisyNetwork

LR

nPAG

NiPNoP

+

-

NoiselessNetwork

neP AG

NiP

nNiA

No

PPGP

+=

RF IC Technology - Noise62

Noise Figure

i

o

o

i

oo

ii

NN

SS

NSNSF ==

//

eAa NGN =

iA

o

iA

iAa

NGN

NGNGNF =

+=

i

e

NNF += 1

Ni

Ne

PPF += 1

RF IC Technology - Noise63

Noise Temperature

BKTR

VP s

rmsnN ==

4

2,

Maximum available noise power from a noisy resistor at temperature Ts:

NoisyNetwork aP

KBPT a

e =Noise Temperature:

LR BKTP ea =

RF IC Technology - Noise64

Noise Temperature

Ni

Ne

NoSo

NiSi

PP

PPPPF +== 1

//

BKTP eNe =

BKTP sNi =

s

e

TTF += 1

A

a

A

nNe G

NGPP ==Where:

Page 17: Chapter 1 - Noise

RF IC Technology - Noise65

Characterization of Two-Port Noisy Network

Using z-parameters

NoisyNetwork1v 2v

1i 2i

NoiselessNetwork1v 2v

2i1i 1nv 2nv

12121111 nvizizv ++=

22221212 nvizizv ++=

01121 ==

=iin vv

02221 ==

=iin vv

RF IC Technology - Noise66

Example

2v

1i 1nv 2nv1R

3R

2R 2i

1v

Noiseless

NoisyNetwork

1R

3R

2R 1R 2R1i 1ne 2ne

3ne

3R

2i

1v 2v

Q:Verify correlation

between vn1 and vn2

RF IC Technology - Noise67

Characterization of Tow-Port Noisy Network

Using y-parameters

NoisyNetwork1v 2v

1i 2i

NoiselessNetwork1v 2v

1i 2i

1ni 2ni

12121111 nivyvyi ++=

22221212 nivyvyi ++=

01121 ==

=vvn ii

02221 ==

=vvn ii

Q:Derive in1 and in2

in terms of vn1 and vn2

RF IC Technology - Noise68

Characterization of Tow-Port Noisy Network

211

121

2

212

122

1

nnn

nnn

vzvzi

vzvzi

∆−

+∆

=

∆+

∆−

=

Derive in1 and in2in terms of vn1 and vn2

nn

nn

n

n

YVIVZIVVZI

VZIV

−=−=

−=

+=

1

1 )(

2221212

2121111

nnn

nnn

vyvyivyvyi

−−=−−=

Page 18: Chapter 1 - Noise

RF IC Technology - Noise69

Characterization of Tow-Port Noisy Network

Derive vn1 and vn2 in terms of in1 and in2

nn

nn

n

n

ZIVIYVIIYV

IYVI

−=−=

−=

+=

1

1 )(

211

121

2

212

122

1

nnn

nnn

izizv

iyiyv

∆−

+∆

=

∆+

∆−

=

RF IC Technology - Noise70

Characterization of Two-Port Noisy Network

Using (ABCD)-parameters

NoisyNetwork1v 2v

1i 2i

NoiselessNetwork1v 2v

2i

ni

1i nv

nviBAvv +−+= )( 221

niiDCvi +−+= )( 221

Q:Derive in and vn

in terms of vn1 and vn2

RF IC Technology - Noise71

Derive in and vnin terms of vn1 and vn2

NoiselessNetwork1v 2v

2i

ni

1i nv

221

111 nnn v

zzvv −=

221

1nn v

zi −

=

By characterizing the network in terms of z parameters:

RF IC Technology - Noise72

Derive in and vnin terms of in1 and in2

NoiselessNetwork1v 2v

2i

ni

1i nv

221

111 nnn i

yyii −=

221

1nn i

yv −

=

By characterizing the network in terms of y parameters:

Page 19: Chapter 1 - Noise

RF IC Technology - Noise73

Minimum Noise Figure

• Find Noise Figure: F = f(is,Ys,vn,in)• if in=inu+inc derive Fmin

Hint: assume

• Express optimum value of Ys, called Yopt ,for Fmin

NoiselessNetworksi 2v

2i

ni

nv1i

sY

sss jBGY +=ncnc vYi = ccc jBGY +=

RF IC Technology - Noise74

Input Noise in Terms of Noise Figure “F”

NoiselessNetwork

neP AG

NiP

nNiA

No

PPGP

+=

Ni

ne

PPF += 1

Ni

totalNi

PP

F ,=

)(, BKTFFPP oNitotalNi ==

))(1(, BKTFPPP oNitotalNine −=−=

))(1( BKTFGPGP oAneAn −==

RF IC Technology - Noise75

Networks in Cascade

sR

sVLR

NiP NoisyNetwork

1nP1AG

1NoP+

-

NoisyNetwork

2nP2AG

2NoP

1F 2F

))(1()( 211,2 BKTFBKTFGP ooAtotalNi −+=

112

112

2

GFF

PGGPF

NiAA

No −+==

NiAA

No

PGGPF

12

2=

totalNiANo PGP ,222 =

21,2 neNototalNi PPP +=

)( 011,111 BKTFGPGP AtotalNiANo ==

RF IC Technology - Noise76

Networks in Cascade

sR

sVLR

NiP NoisyNetwork

1nP1AG

1NoP+

-

NoisyNetwork

2nP2AG

2NoPNoisy

Network

3nP3AG

NoP

1F 2F 3F

11

11

2

321 GG

FGFFF −

+−

+=

iAAA

o

NGGGNF

321

=

Page 20: Chapter 1 - Noise

RF IC Technology - Noise77

Minimum Noise Figure

• Find Noise Figure: F = f(is,Ys,vn,in)• if in=inu+inc derive Fmin

Hint: assume

• Express optimum value of Ys, called Yopt ,for Fmin

NoiselessNetworksi 2v

2i

ni

nv1i

sY

sss jBGY +=ncnc vYi = ccc jBGY +=

+

_

RF IC Technology - Noise78

Minimum Noise Figure

2

2

s

sc

iiF =

snnssc YViii ++−=

)(2)()( 2222snnssnnssnnssc YViiYViiYViii +−++=++−=

0)( =+ snns YVii

222 )( snnssc YViii ++= 2

2)(1s

snn

iYViF +

+=

RF IC Technology - Noise79

ncnun iii +=

ncnc VYi =

ncnun VYii +=

2*ncnn VYVi =

2

*

n

nnc

ViVY =

2

2))((1s

nscnu

iVYYiF ++

+=

BGkTi ss 02 4=

BRkTV nn 02 4=

BGkTi unu 02 4=

BGkTBRkTjBGjBGBGkT

Fs

nccssu

0

02

0

444

1++++

+=

[ ]22 )()(1 cscss

n

s

u BBGGGR

GG

+++++=

RF IC Technology - Noise80

cs BB −=

2)(1 css

n

s

uBB GG

GR

GGF

cs+++=−=

0=−=

s

BB

dGdF

cs

0)()(22

2

2 =

+−++−=−=

s

cscssn

s

u

s

BB

GGGGGGR

GG

dGdF

cs

)( 22coptnu GGRG −=

n

ucopts RGGGG +== 2

Page 21: Chapter 1 - Noise

RF IC Technology - Noise81

cn

ucoptoptopt jBRGGjBGY −+=+= 2

2min )(1 copt

opt

n

opt

uYY GG

GR

GGFF

opts+++== =

)2()(1 222

min ccoptoptopt

n

opt

coptn GGGG

GR

GGGRF +++−+=

)(21 coptn GGR ++=

RF IC Technology - Noise82

[ ]22min )()()(2 optscs

s

n

s

uoptcn BBGG

GR

GGGGRFF −+++++−=

[ ]22min )()( optsopts

s

n BBGGGRFF −+−+=

2

min optss

n yygrFF −+=

sssss

s jbgYjBG

YYy +=

+==

00

optoptoptoptopt

opt jbgYjBG

YY

y +=+

==00

2

min optss

n YYGRFF −+=

RF IC Technology - Noise83

Minimum Noise Figure

• Find Noise Figure: F = f(vs,Zs,vn,in)• if vn=vnu+vnc derive Fmin

Hint: assume

• Express optimum value of Zs, called Zopt ,for Fmin

NoiselessNetworksv

2v

2i

ni

nv1isZ

sss jXRZ +=ncnc iZv = ccc jXRZ +=

+

_

+-