chap 5. identical particles

57
Chap 5. Identical Particles 1. Two-Particle Systems 2. Atoms 3. Solids 4. Quantum Statistical Mechanics

Upload: tatyana-diaz

Post on 03-Jan-2016

51 views

Category:

Documents


4 download

DESCRIPTION

Chap 5. Identical Particles. Two-Particle Systems Atoms Solids Quantum Statistical Mechanics. Two particles having the same physical attributes are equivalent . They behave the same way if subjected to the same treatment. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chap 5.   Identical Particles

Chap 5. Identical Particles

1. Two-Particle Systems

2. Atoms

3. Solids

4. Quantum Statistical Mechanics

Page 2: Chap 5.   Identical Particles

Two particles having the same physical attributes are equivalent.

They behave the same way if subjected to the same treatment.

CM: Equivalent particles are distinguishable since one can

keep track of each particle all the time.

QM: Equivalent particles are indistinguishable since one cannot keep

track of each particle all the time due to the uncertainty principle.

Indistinguishable particle are called identical.

Page 3: Chap 5.   Identical Particles

5.1. Two-Particle Systems

2-particle state :

i H

t

1 2, , tr r

2 2

2 21 2 1 2

1 2

, ,2 2

H V tm m

r r

Schrodinger eq.:

2 3 31 2 1 2, , t d dr r r r Probability of finding particle 1 & 2 within

d 3 r1 & d 3 r2 around r1 & r2 , resp.

Normalization : 23 31 2 1 2, , 1 d d tr r r r

1 2,V V r r

1 2 1 2, , H Er r r r

1 2 1 2, , , exp

it E tr r r r

Read Prob 5.1,Do Prob 5.3.

Page 4: Chap 5.   Identical Particles

5.1.1. Bosons & Fermions

1 & 2 indistinguishable (identical) :

1 2 1 2, a br r r rDistinguishable particles 1 & 2 in states a & b, resp. :

1 2 1 2 1 2, a b b aAr r r r r rbosonsfermions

Spin statistics theorem :Integer spin bosons

Half-integer spin fermions

No two fermions can occupy the same state.

1 2 1 2 1 2, 0 a a a aAr r r r r r

Pauli exclusion principle

Total :Symmetric

Anti-symm

Page 5: Chap 5.   Identical Particles

Exchange Operator

Exchange operator : 1 2 2 1, ,P f fr r r r

21 2 2 1, ,P f P fr r r r 1 2, f r r f 2 1P

Let g be the eigenfunction of P with eigenvalue : P g g

2 P g P g 2 g g

1

For 2 identical particles, 1 2 1 2 2 1 2 1, , , , P H Hr r r r r r r r 1 2 1 2, ,H Pr r r r

P H H P or , 0P H

H & P can, & MUST, share the same eigenstates.

i.e.

1 2 2 1, , r r r r forbosonsfermions

Symmetrization requirement

Page 6: Chap 5.   Identical Particles

Example 5.1. Infinite Square Well

Consider 2 noninteracting particles, both of the same mass m, inside an infinite square well of width a.

1-particles states are 2sin

n

nx x

a afor

222

2

nE n

m a2n K

Distinguishable particles :

1 2 1 21 2 1 2, n n n nx x x x

1 2

2 21 2 n nE n n K

E.g., Ground state: 11 1 2 1 2

2, sin sin

x x x xa a a

11 2E K

1st excited state : 12 1 2 1 2

2 2, sin sin

x x x xa a a

21 1 2 1 2

2 2, sin sin

x x x xa a a

12 5E K

21 5E K

Doubly degenerate.

Page 7: Chap 5.   Identical Particles

Bosons :

2sin

n

nx x

a a2nE n K

Ground state: 0 1 2 1 2

2, sin sin

x x x xa a a

0 2E K

1st excited state :

1 1 2 1 2 1 2

2 2 2, sin sin sin sin

x x x x x x

a a a a a1 5E K

Fermions :

Ground state:

0 1 2 1 2 1 2

2 2 2, sin sin sin sin

x x x x x x

a a a a a0 5E K

Nondegenerate

Page 8: Chap 5.   Identical Particles

5.1.2. Exchange Forces

Particles distinguishable : 1 2 1 2, a bx x x x

Consider 2 particles, one in state a, the other in state b.

( p’cle 1 in a, 2 in b. )

Bosons : 1 2 1 2 1 2

1,

2 a b b ax x x x x x

Fermions : 1 2 1 2 1 2

1,

2 a b b ax x x x x x

We’ll calculate for each case the standard deviation of particle separation

2 2 21 2 1 2 1 22 x x x x x x

( All states are normalized )

Page 9: Chap 5.   Identical Particles

Distinguishable Particles

2 * 21 1 2 1 2 1 1 2, , D

x d x d x x x x x x

1 2 1 2, D a bx x x x 2 2 21 2 1 2 1 22 x x x x x x

2a

x * 2 *1 1 1 1 2 2 2 a a b bd x x x x d x x x

(, a , b normalized )

Similarly,2 22

D bx x

*1 2 1 2 1 2 1 2 1 2, , D

x x d x d x x x x x x x

* *1 1 1 1 2 2 2 2 a a b bd x x x x d x x x x

a bx x

2 2 21 2 2

a ba bDx x x x x x

Page 10: Chap 5.   Identical Particles

Identical Particles

1 2 1 2 1 2

1,

2 a b b ax x x x x x 2 2 2

1 2 1 2 1 22 x x x x x x

2 2 2 2 2

1 2 1 2 1 2

* * * *1 1 2 2 1 1 2 2

1,

21

2

a b b a

a b b a b a a b

x x x x x x

x x x x x x x x

22 21 1 2 1 2 1,

x d x d x x x x 2 21

2 a b

x x a ,b orthonormal

Similarly,2 2 22

1

2 b a

x x x

2

1 2 1 2 1 2 1 2, x x d x d x x x x x

1 1

2 2 a b b a ab ba ba ab

x x x x x x x x a b ab ba

x x x x

* a babx d x x x x

Page 11: Chap 5.   Identical Particles

2 2 21 2 1 2 1 22 x x x x x x2 2 2 2

1 2

1

2 b a

x x x x

1 2

a b ab bax x x x x x

2 2 21 2 2 2

a b ab baa bx x x x x x x x

2

1 2 2 ab baD

x x x x

or 22 22

abDx x x

Bosons are closer & fermions are further apart than the distinguishable case.

2 2

Dx xNote : if particles are far apart so a ,b don’t overlap.

effectiveattractiverepulsive exchange force for

bosonsfermions

Page 12: Chap 5.   Identical Particles

Simplified Derivation

A A

2 2 2a ba b

x x x x

2 2 21 2 1 2 1 22 x x x x x x

D a b 1 2 1 2, D a bx x x x ~

2 2 21 2 1 2 1 22

Dx x ab x ab ab x ab ab x x ab

1 2 1 2 1 2

1,

2a b b ax x x x x x 1

2a b b a ~

1

2A ab A ab ba A ba ab A ba ba A ab

2 2 2 2 21 1 1 1 1

1

2x ab x ab ba x ba ab x ba ba x ab

2 2 2 21

2 a b ab bax x x b a x a b

2 21

2 a bx x if 0a b

abA a A b

Page 13: Chap 5.   Identical Particles

Similarly,

2 2 22

1

2 a bx x x

1 2

1

2 a b b a ab ba ba abx x x x x x x x x x

a b ab ba

x x x x

2 2 21 2 2 2

a b ab baa bx x x x x x x x

2

1 2 2ab baD

x x x x

2 2 21

1

2 a bx x x

or 22 22

abDx x x

Bosons are closer & fermions are further apart than the distinguishable case.

2 2

Dx xNote : if particles are far apart so a ,b don’t overlap.

effectiveattractiverepulsive exchange force for

bosonsfermions

Page 14: Chap 5.   Identical Particles

H2

If e’s were bosons, form bond. e’s are fermions, H2 dissociates

Let the electrons be spinless & in the same state :

In actual ground state of H2 :Spins of the e’s are anti-parallel so the spatial part is symmetric.

Do Prob 5.7

Page 15: Chap 5.   Identical Particles

5.2. Atoms

Atom with atomic number Z ( Z protons & Z electrons ) :

2 2 22

1

1

2 2

Z Z

jj j kj j k

Z e eH k k

m r r r

1-e plan of attack :

1.Replace e-e interaction term with single particle potential.

2.Solve the 1-e eigen-problem.

3.Contruct totally anti-symmetric Z-e wave function, including spins.

4.Total energy is just the sum of the 1-e energies.

Nucleonic DoF dropped.See footnote, p.211.

0

1SI unit

4

1 Gaussian

k

Page 16: Chap 5.   Identical Particles

Non-Interaction e Model

2 22

1 2

Z

jj j

Z eH k

m rDrop all e-e terms :

1

Z

jj

h r

where 2 2

2

2

Z eh k

m rr ( Hydrogenic hamiltonian )

where nlm and En are obtained from the hydrogen case by setting e2 Ze2 .

nl m n nl mh Er r rThus

In particular : 2

213.6 n

ZE eV

n0

aa

Zand

(Unsymmetrized) solutions to H E are 11

, ,

j j j

Z

Z n l m jj

r r r

with1

j

n

nj

E E

a0 = Bohr radius

Page 17: Chap 5.   Identical Particles

5.2.1. Helium

2 2 2 2 22 21 2

1 2 1 2

2 2

2 2

e e e

H k k km r m r r r

1 2 H h h Er rNon-interacting e model :

1 2 1 2, nl m n l mr r r r n nE E E

2

213.6 n

ZE eV

n

Ground state :

0 1 2 100 1 100 2, r r r r 1 230 0

8 2exp

r ra a

3/2 /10 2 r aR a e

00

1

4Y

0a

aZ

20 13.6 2 1 1 E eV 13.6 8 eV 109 eV

Anti-symmetrized total wave function :0 gives only symmetric spatial part spin part must be antisymm (singlet).

Experiment : Total spin is a singlet. E0 79 eV.

Page 18: Chap 5.   Identical Particles

Excited States

Long-living excited states :

1 2 1 100 2, nl mr r r r

( both e in excited states quickly turns into an ion + free e. )

Singlet Triplet

Spatial part of parahelium is symmetric

higher e-e interaction

higher energy than orthohelium counterpart

Do Prob 5.10

Page 19: Chap 5.   Identical Particles

5.2.2. The Periodic Table

n \ l 0 s 1 p 2 d 3 f 4 g

1

2

3

4

5

6

72(2l+1) 2 6 10 14 18

Filling order of the periodic table.

l – degeneracy lifted by e-e interaction (screening).

Page 20: Chap 5.   Identical Particles

Ground State Electron Configuration

Spectral Term :2 1S

JL

Ground state spectral terms are determined by

Hund’s rules (see Prob 5.13 ) :

1.Highest S.

2.Highest L.

3.No more than half filled : J = | L S |.

More than half-filled : J = L+S .

See R.Eisberg,R.Resnick, “Quantum Physics”, 2nd ed., §10-

3.E.g. , C = (2p)2 .

m 1 0 1

sz

30P S = 1, L = 1, J = 0

Do Prob 5.14

Page 21: Chap 5.   Identical Particles

5.3. Solids

1. The Free Electron Gas

2. Band Structure

Page 22: Chap 5.   Identical Particles

5.3.1. The Free Electron Gas

Solid modelled as a rectangular infinite well with dimensions { li , i = 1, 2, 3 }.

0 0

i ix lV

otherwiser

22

2

E

m

2 2

22

ii i

i

d XE X

m d x

i ii

X xr

ii

E E

Let2

ii

mEk

22

2i

i ii

d Xk X

d x

0 i ix lfor

sin cos i i i i i i iX A k x B k x

2 2

2

1

2 i

i i i

d XE

m X d x

Set

Set

i =1, 2, 3 unless stated otherwise

2 2

2 i

i

kE

m

Page 23: Chap 5.   Identical Particles

Boundary Conditions2

ii

mEk

0 0iX 0iB

0iX l

sin cos i i i i i i iX A k x B k x

i i ik l n 1, 2, 3, in

sini i i iX A k x

22 2

0 0

sin i il l

i i i i i id x X A d x k xNormalization :2

2 i

i

lA 2 sin 2

sin2 4

x x

d x x

2i

i

Al

2sin

i

i ii i

nX x

l l

1 2 3

2sin

in n n i

i i i

nx

l lr 1 2 3

1 2 31 2 3 1 2 3

8sin sin sin

n n nx x x

l l l l l l

sin

ii i i

i

nX A x

l

1 2 3

2 2

2 i

n n ni

kE

m

22

2

i

i i

n

m l

22

2

m

k 1 2 3, , k k kk

Page 24: Chap 5.   Identical Particles

k-Space Density

1, 2, 3, in

i

ii

nk

l

i i

i

k nl

Volume occupied by one allowed (stationary) state in the 1st quadrant of the k-space is

k ii

k

i il

3

V

= Volume of solid ii

V l

31

8

k

d k

k

33

2

Vd k

k is over allowed k in 1st quadrant of k-space. d 3 k is over all k-space.By symmetry, all 8 quadrants are equivalent.

= k-space density = density of allowed states 32V

with ni 1.

Page 25: Chap 5.   Identical Particles

Fermi Energy

Consider a solid of N atoms, each contributing q free electrons.In the ground state, these qN electrons will occupy the lowest qN states.

Since2

2

2

E

mn kthese states occupy a sphere centered at the origin of the k-space.

Let the radius of this sphere be kF .

3

3

42

32

F

Vk qN ( Factor 2 comes from spin degeneracy. )

1/323

F

qNk

V 1/323

qN

V= free electron density

22

2

F FE k

m

22/323

2

m

Fermi energy

Page 26: Chap 5.   Identical Particles

Total Energy

Total energy of the ground state :

totsmallest

E Enn

2 23

3222

Fk k

V kd k

m

2 22

30

2 422

Fk

V kk d k

m

25

210

F

Vk

m

1/323 Fk 5/32

22

310

tot

V qNE

m V

25/32 2/3

23

10

qN V

m

Compressing the solid increases its engergy.

Work need be done to compress it.

Electrons exerts outward pressure on the solid boundary.

totd EP

dV

2

3 tot

tot

Ed E dV

V

2

3 totE

V

25

2

2

3 10

Fk

m

2/32 2

5/33

5

mdegeneracy pressure

( Caused by Pauli exclusion )

Page 27: Chap 5.   Identical Particles

Miscellaneous

25

210tot F

VE k

m

3 2 2

25 2F FV k k

m

1/323 e

F

Nk

V

2 2

2F

F

kE

m

3

5tot

Fe

EE

N Energy per e.

2

3 totPV EIdeal gas :

BN k T

2

3 totPV E2

5 e FN E

2

5F

eB

ET

k

5

16

2

8.617 10 /

6.582 10

0.511 /

B

e

k eV K

eV s

m MeV c

e gas :

Do Prob 5.16and for Al

Page 28: Chap 5.   Identical Particles

5.3.2. Band Structure

1-D crystal with periodic potential V x a V x a = lattice constant

2 2

22

d

H V x Em d x

Simplest model : 1-D Dirac comb

For a finite solid with N atoms, strict mathematical periodicity can be achieved by imposing the periodic boundary condition V x Na V x

Page 29: Chap 5.   Identical Particles

Bloch’s Theorem

V x a V xBloch’s theorem : i K ax a e x K = const

Proof : Let D be the displacement operator : D f x f x a

d x d x a

Dd x d x a

d x a

d x

dD x

d x

D V x x V x a x a V x D x

2 2

2 2

d d

D Dd x d x

D H H D i.e.

DH HD , 0D Hor

, 0D H D & H can share the same eigenstates.

Let D x x x a x

Since 0, setting i K ae completes the proof.

Page 30: Chap 5.   Identical Particles

Periodic Boundary Condition

V x a V x i K ax a e x

For a 1-D solid with N atoms, imposing the periodic BC x Na x

gives 1i K N ae

2

n

KN a

0, 1, 2, n

K is real 2 2 x a x As expected

Page 31: Chap 5.   Identical Particles

Dirac Comb

1-D Dirac comb :

1

0

N

j

V x x ja

For x ja :2 2

22

d

Em d x

22

2

d

kd x

2

mE

k

sin cos x A k x B k x

Page 32: Chap 5.   Identical Particles

Periodic BC

sin cos x A k x B k x

Impose periodic BC : x Na x

Bloch’s theorem i K ax a e x2

n

KN a

0, 1, 2, n

Let

i K ax e x a

sin cos x A k x B k x

x ja

continuous at x = 0 sin cos i K aB e A ka B ka

0 < x < a

a < x < 0 sin cos i K ae A k x a B k x a

2

20

d d m

d x d x 2

2cos sin

i K a mA k e k A ka k B ka B

Page 33: Chap 5.   Identical Particles

sin cos i K aB e A ka B ka 2

2cos sin

i K a mA k e k A ka k B ka B

sin cos 1 0 i K a i K ae ka A e ka B

2

21 cos sin 0

i K a i K a mk e ka A ke ka B

Condition for consistency is

2

sin cos 102

1 cos sin

i K a i K a

i K a i K a

e ka e ka

mk e ka ke ka

2

2sin sin 1 cos cos 1 0

i K a i K a i K a i K amke ka e ka k e ka e ka

2 2 2 22

2sin sin 1 2 cos cos 0

i K a i K a i K a i K amke ka e ka k e ka e ka

22

2sin 1 2 cos 0

i K a i K a i K ame ka k e ka e

Page 34: Chap 5.   Identical Particles

22

2sin 1 2 cos 0

i K a i K a i K ame ka k e ka e

2

2sin 2cos 0

i K a i K amka k e ka e

2

2sin 2 cos cos 0

m

ka k Ka ka

2cos cos sin

m

Ka ka kak

Let z ka 2

m a

sincos cos

zKa z f z

z

Since cos 1Ka there’s no solution for | f (z) | > 1 ( band gaps ).

Page 35: Chap 5.   Identical Particles

2 2 2 2

22 2

k zE

m ma

10

Do Prob 5.19with 20

Page 36: Chap 5.   Identical Particles

5.4. Quantum Statistical Mechanics

1. An Example

2. The General Case

3. The Most Probable Configuration

4. Physical Significance of and

5. The Blackbody Spectrum

Fundamental assumption of statistical mechanics :In thermal equilibrium, each distinct system configuration of the same E is equally likely to occur.

( Can also be stated in terms of ensemble. )

Page 37: Chap 5.   Identical Particles

5.4.1. An Example

Consider 3 non-interacting particles ( all of mass m ) in an 1-D infinite square well.

A B CE E E E22

2 2 2( )2

A B Cn n n

m a

Let 2 2 2 363 A B Cn n n

There’re 13 combinations of (nA , nB , nC ) that can satisfy the condition :

(11, 11, 11),

(13, 13, 5), (13, 5, 13), (5, 13, 13),

(1, 1, 19), (1, 19, 1), (19, 1, 1),

(5, 7, 17), (5, 17, 7), (7, 5, 17), (7, 17, 5), (17, 5, 7), (17, 7, 5).

Page 38: Chap 5.   Identical Particles

Occupation Number

Specification of system configuration:

(nA , nB , nC ) occupation number

(11, 11, 11) ( 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,... ) N11 = 3

(13, 13, 5), (13, 5, 13), (5, 13, 13) ( 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,... ) N5 = 1N13 = 2

(1, 1, 19), (1, 19, 1), (19, 1, 1), ( 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,... ) N1 = 2N19 = 1

(5, 7, 17), (5, 17, 7), (7, 5, 17), (7, 17, 5), (17, 5, 7), (17, 7, 5).

( 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,... ) N5 = 1N7 = 1N17 = 1

Page 39: Chap 5.   Identical Particles

Pn : Particles Distinguishable

Pn = Probability of finding a particle with energy En .

P1 (3/13) (2/3) = 2/13

P5 (9/13) (1/3) = 3/13

P7 (6/13) (1/3) = 2/13

P11 (1/13) (3/3) = 1/13

P13 (3/13) (2/3) = 2/13

P17 (6/13) (1/3) = 2/13

P19 (3/13) (1/3) = 1/13

Sum = 1

Particles are distinguishable each configurations is distinct.

Each is equally likely when system is in equilibrium.

(nA , nB , nC )

(11, 11, 11)

(13, 13, 5), (13, 5, 13), (5, 13, 13)

(1, 1, 19), (1, 19, 1), (19, 1, 1),

(5, 7, 17), (5, 17, 7), (7, 5, 17), (7, 17, 5), (17, 5, 7), (17, 7, 5).

Total = 13 distinct configurations

Page 40: Chap 5.   Identical Particles

Pn : Fermions

Pn = Probability of finding a particle with energy En .

P1 0

P5 (1/1) (1/3) = 1/3

P7 (1/1) (1/3) = 1/3

P11 0

P13 0

P17 (1/1) (1/3) = 1/3

P19 0

Sum = 1

No state can be doubly occupied.Allowed distinct configurations are :

( 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,... ) N5 = 1, N7 = 1, N17 = 1

occupation number

( 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,... ) N11 = 3

( 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,... ) N5 = 1N13 = 2

( 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,... ) N1 = 2N19 = 1

( 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,... ) N5 = 1N7 = 1N17 = 1

Total = 1 distinct configurations

Page 41: Chap 5.   Identical Particles

Pn : Bosons

Pn = Probability of finding a particle with energy En .

P1 (1/4) (2/3) = 1/6

P5 (1/4) (1/3) + (1/4) (1/3) = 1/6

P7 (1/4) (1/3) = 1/12

P11 (1/4) (3/3) = 1/4

P13 (1/4) (2/3) = 1/6

P17 (1/4) (1/3) = 1/12

P19 (1/4) (1/3) = 1/12

Sum = 1

Allowed distinct configurations are :

( 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,... ) N11 = 3( 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,... ) N5 = 1, N13 = 2( 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,... ) N1 = 2, N19 = 1( 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,... ) N5 = 1, N7 = 1, N17 = 1

occupation number

( 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,... ) N11 = 3

( 0,0,0,0,1,0,0,0,0,0,0,0,2,0,0,0,0,0,0,... ) N5 = 1N13 = 2

( 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,... ) N1 = 2N19 = 1

( 0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,... ) N5 = 1N7 = 1N17 = 1

Total = 4 distinct configurations

Page 42: Chap 5.   Identical Particles

5.4.2. The General Case

Consider a system whose 1-particle energies are Ei with degeneracy di , i = 1,2,3,...

Now, N particles are put into the system such that Ni particles have energy Ei .

Question :

For a given configuration (N1 , N2 , N3 ,... ), what is the number, Q(N1 , N2 , N3 ,... ),

of distinct states allowed?

Page 43: Chap 5.   Identical Particles

Distinguishable Particles

Each energy level Ei corresponds to a bin with di compartments.

The problem is equivalent to finding the number of distinct ways to put N particles,

with Ni of them going into the di compartments of the ith bin.

Ans.: 1. There’re 1

1 1

!

! !N

N

NC

N N N

ways, without regard of picking order, to choose N1 particles from the whole N particles.

2. When putting a particle into the 1st bin, there’re d1 choices of compartments.

the number of ways to put N1 particles into the 1st bin is 1

1

1 1

!

! !

NN d

N N N

321

1 2 1 2 311 2 3

1 1 2 1 2 3 1 2 3

! !!, , ,

! ! ! ! ! !

NNN N N d N N N dN dQ N N N

N N N N N N N N N N N N

3. For the 2nd bin, one starts with N N1 particles so one gets

2

1 2

2 1 2

!

! !

NN N d

N N N N

31 21 2 3

1 2 3

!

! ! !

NN NN d d d

N N N 1

!!

iN

i

i i

dN

N

Page 44: Chap 5.   Identical Particles

Fermions

1. Fermions are indistinguishable, so it doesn’t matter which ones are going to which

bin.

2. Each bin compartment can accept atmost one fermion.

So the number of way to place Ni fermions into the ith bin is

!

! !i

i i i

d

N d Nif i id N

1 2 31

!, , ,

! !

i

i i i i

dQ N N N

N d N

Page 45: Chap 5.   Identical Particles

Bosons

1. Bosons are indistinguishable, so it doesn’t matter which ones are going to which bin.

2. Each bin compartment can accept any number of bosons.

Consider placing Ni bosons into the di compartments of the ith bin.

Let the bosons be represented by Ni dots on a line.

By inserting di 1 partitions, the dots are “placed” into di compartments.

If the dots & partitions are all distinct, the number of all possible arrangement is 1 ! i iN d

However, the dots & partitions are indistinguishable among themselves. Hence

1 2 3

1

1 !, , ,

1 ! !

i i

i i i

N dQ N N N

d N

Page 46: Chap 5.   Identical Particles

5.4.3. The Most Probable Configuration

An isolated system in thermal equilibrium has a fixed total energy E,

and fixed number of particle N , i.e.,

1

ii

N N1

i ii

N E E

Since each possible way to share E among N particles has the same probability to exist,

the most probable configuration (N1 , N2 , N3 ,... )

is the one with the maximum Q(N1 , N2 , N3 ,... ).

Since Q(N1 , N2 , N3 ,... ) involves a lot of factorials, it’s easier to work with lnQ.

Page 47: Chap 5.   Identical Particles

Lagrange Multipliers

Problem is to maximize ln Q, subject to constraints1

i ii

N E E1

ii

N Nand

Using Lagrange’s multiplier method, we maximize, without constraint,

1 1

ln

i i ii i

G Q N N E N E

i.e., we set 0

i

G

N

Note : 0

G 0

Gare just the original constraints.

Page 48: Chap 5.   Identical Particles

Distinguishable Particles

1

!!

iN

i

i i

dQ N

N

1

ln ln ! ln ln !

i i ii

Q N N d N

Stirling’s approximation : ln ! ln z z z z for z >>1

1

ln ln ln ln

i i i i ii

Q N N N N d N N N

1 1

ln

i i ii i

G Q N N E N E

1 1 1

ln ln ln

i i i i i i i ii i i

G N N N N d N N N N N E N E

ln ln

i i ii

Gd N E

N0

exp i i iN d E

Page 49: Chap 5.   Identical Particles

Fermions 1 1

ln

i i ii i

G Q N N E N E

1

!

! !

i

i i i i

dQ

N d N 1

ln ln ! ln ! ln !

i i i ii

Q d N d N

di , Ni >>1 : 1

ln ln ln ln

i i i i i i i ii

Q d d N N d N d N

1 1 1

ln ln ln

i i i i i i i i i i ii i i

G d d N N d N d N N N E N E

ln ln

i i i ii

GN d N E

N0

1 exp ii

i

dE

N

exp 1

i

ii

dN

E

Page 50: Chap 5.   Identical Particles

Bosons 1 1

ln

i i ii i

G Q N N E N E

1

ln ln 1 ! ln 1 ! ln !

i i i ii

Q N d d N

di , Ni >>1 :

1 1 1

1 ln 1 1 ln 1 ln

i i i i i i i i i i ii i i

G N d N d d d N N N N E N E

ln 1 ln

i i i ii

GN d N E

N0

11 exp

ii

i

dE

N

exp 1

i

ii

dN

E

1

1 !

1 ! !

i i

i i i

N dQ

d N

1

ln 1 ln 1 1 ln 1 ln

i i i i i i i ii

Q N d N d d d N N

di 1 di

Do Prob 5.26, 5.27

Page 51: Chap 5.   Identical Particles

5.4.4. Physical Significance of and

Ideal gas in 3-D infinite square well.

2 2

2

k

kE

m, ,

yx z

x y z

nn n

l l lk

3

32

V

d kk

Taking the “bin” as the spherical shell between k and k+dk, the degeneracy dk isjust the number of states in the shell :

2

3 42

k

Vd k d k 2

22

Vk d k

Page 52: Chap 5.   Identical Particles

Distinguishable Particles

exp i i iN d E

222

k

Vd k dk

1

ii

N N 22

0

exp2

k

VN dk k E

22 2

20

exp2 2

V

e dk k km

3/2

22

mV e

2

10

1 1 1

2 2

n x

n

ndx x e

1

2

3/2

2 2

2

2 4

V me

3/222

Ne

V m

1

i ii

N E E2 2

4 22

0

exp2 2 2

V

E e dk k km m

5/22

2 2

3 2

4 4

V me

m3/2

2

3

2 2

V mE e

3

2

N

cf. kinetic theory result : 3

2 BE N k T

1 Bk T universal

Page 53: Chap 5.   Identical Particles

Distributions

Setexp

exp 1

exp 1

ii i

B

ii

i

B

ii

i

B

EN d

k T

dN

Ek T

dN

Ek T

Bk T

D

F

B

exp

1

exp 1

1

exp 1

B

B

B

nk T

n

k T

n

k T

ii

i

Nn

d

Maxwell – Boltzmann

Fermi – Dirac

Bose - Einstein

Chemical potential

n() Most probable number of particles in a state with energy . occupation number

Page 54: Chap 5.   Identical Particles

Fermi-Dirac as T 0 1

exp 1

B

n

k TT 0 :

0 0exp

0

Bk T

1 0

0 0

n (0) EF

T 0

T > 0

Page 55: Chap 5.   Identical Particles

Ideal Gas

Distinguishable particles 3

2 BE N k T

3/222

Ne

V m

3/222ln

B

B

Nk T

V mk T

23 2ln ln

2

B

B

Nk T

V mk T

Indistinguishable particles :

3

32

k

VN d k n

2

2 2 202 1

exp 12

B

V kdk

kk T m

22

02

k

Vdk k n F

B

3

32

k k

VE d k n

2 4

2 2 202 2 1

exp 12

B

V kdk

m kk T m

FB

fixes

gives

EC

TRead Prob. 5.29 Do Prob 5.28

Page 56: Chap 5.   Identical Particles

5.4.5. The Blackbody Spectrum

Photon quantum of EM field

spin 1, massless boson with v c.

Only m 1 occurs.

Number not conserved 0.

E h

2

kc

exp 1

B

dN

k T/

k k cd d 2

2 32

2

Vd

c

N

dV

Energy density in range d

3

2 3

1

exp 1

B

c

k T

Black body spectrum

Page 57: Chap 5.   Identical Particles

Blackbody Spectrum

6000 K

4000 K

2000 K

Visible region

Do Prob 5.31Read Prob 5.30