chap 4 3 2021 - tcs.nju.edu.cn

37
第四章: 中纬度的经向环流系统(III) - Ferrel cell, baroclinic eddies and the westerly jet 授课教师:张洋 2021. 11. 11

Upload: others

Post on 10-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

第四章:

中纬度的经向环流系统(III) - Ferrel cell, baroclinic eddies and the westerly jet

授课教师:张洋2021. 11. 11

@[✓]

@t+

@([v][✓])

@y+

@([!][✓])

@p= �@([✓⇤v⇤])

@y� @([✓⇤!⇤])

@p+

✓po

p

◆R/cp [Q]

cp

@[v]

@y+

@[!]

@p= 0

@

@y[u⇤v⇤] � @

@y([u][v])

@

@y[✓⇤v⇤] � @

@y([✓][v])

2授课教师:张洋

@[u]

@t+

@([u][v])

@y+

@([u][!])

@p= �@([u⇤v⇤])

@y� @([u⇤!⇤])

@p+ f [v] + [F

x

]

The Ferrel Cell eddy-zonal flow interaction (I)

n Start from the equations:

n Simplification:

n For midlatitude large scale flow, the eddy components of the meridional heat and momentum transports are dominant. (recall the observations)

@

@y[u⇤v⇤] � @

@p[u⇤!⇤]

n From the QG approximation,@!⇤

@p⇠ R

o

@v⇤

@y

@

@p([✓][!]) ⇡ [!]

@✓s@p

n Horizontal variation of the stratification is small:

Review

!@✓s@p

⇠ �@[✓⇤v⇤]

@y< 0 !

@✓s@p

⇠ �@[✓⇤v⇤]

@y> 0

fv ⇠ @[u⇤v⇤]

@y< 0

3

n The balance equations:

The Ferrel Cell

@[✓]

@t+ [!]

@✓s

@p= �@([✓⇤v⇤])

@y+

✓po

p

◆R/cp [Q]

cp

@[u]

@t= �@([u⇤v⇤])

@y+ f [v] + [F

x

]Ferrel Cell: eddy-driven, indirect cell

Review

4授课教师:张洋

Outline

n Observations

n The Ferrel Cell

n Baroclinic eddies n Review: baroclinic instability and baroclinic eddy life cycle

n Eddy-mean flow interaction, E-P flux

n Transformed Eulerian Mean equations

n Eddy-driven jet

n Energy cycle

Review

5授课教师:张洋

Baroclinic eddies - baroclinic instability

n Baroclinic Instability - “is an instability that arises in rotating,

stratified fluids that are subject to a horizontal temperature gradient”.

ii

ii

ii

ii

)

)

A

B

C

high density

low density

low temperature

high temperature

density increasing

density decreasing

Fig. 6.9 A steady basic state giving rise to baroclinic instability. Potential density de-creases upwards and equatorwards, and the associated horizontal pressure gradientis balanced by the Coriolis force. Parcel ‘A’ is heavier than ‘C’, and so statically sta-ble, but it is lighter than ‘B’. Hence, if ‘A’ and ‘B’ are interchanged there is a releaseof potential energy.

From Vallis (2006)

From Vallis (2006)

n Energetics: PE KE

n Mathematics:

n Linear Baroclinic Instability

n Linear baroclinic system n Eady’s model (1949) n Charney’s model (1947)

Review

d) The motion is on the f -plane, that is � = 0

6授课教师:张洋

Baroclinic eddies - linear baroclinic instability

n Eady’s model (1949) n Charney’s model (1947)

N2is a constant.

b) The fluid is uniformly stratified,

! = 0 at Z = 0 and H.

c) Two rigid lids at the top and bottom, flat horizontal surface, that is

The most distinguished difference with Eady’s model is that beta effect is considered.

a) The basic zonal flow has uniform vertical shear,

⇤ is a constantUo

(Z) = ⇤Z,

Review

u(x, t) = U(z) + u0(x, t)

u0(x, t) ⌧ U(z)

✓@

@t

+ U

@

@x

◆q

0 +@

@x

@q

@y

= 0

q

0 =@

2

0

@x

2+@

2

0

@y

2+

f

2o

s

@

@z

✓⇢

s

N

2

@

0

@z

q =@2

@y2+ �y +

f2o

⇢s

@

@z

✓⇢s

N2

@

@z

7授课教师:张洋

Baroclinic eddies - linear baroclinic instability

Linear baroclinic system: Eady model

Charney model

Small amplitude assumption ⼩小扰动

Normal mode assumption 标准波形

Obtain the solutions, e.g. instability conditions

growth rate most unstable mode

Variable = Basic state + Perturbation

Linearized PV equation (q=PV):

0(x, t) = Aei(k·x�!t)

标准波形法, 带⼊入⽅方程和边界条件:

Find the conditions for non-trivial solutions and Ci >0

Review

k�1

max

/ Ld

=

✓NH

fo

8授课教师:张洋

Baroclinic eddies - linear baroclinic instability

n Conclusions: Necessary condition for baroclinic instability: PV gradient changes sign in the interior or boundaries (Charney-stern theory), according to which the midlatitude atmosphere is baroclinic unstable. Different models. i.e. Eady and Charney models have more rigorous conditions.

� = kci

⇡ 0.3 ⇤fo

NGrowth rate: in both Eady and Charney models!

k�1

max

/ ⇤fo

�NMost unstable mode:

Eady Charney

k�1

max

/ Ld

=

✓NH

fo

9授课教师:张洋

Baroclinic eddies - linear baroclinic instability

n Conclusions:

n Discussion n Normal mode assumption

n Small amplitude assumption, linearization n Assumption: uniform vertical shear of the zonal flow

Necessary condition for baroclinic instability: PV gradient changes sign in the interior or boundaries (Charney-stern theory), according to which the midlatitude atmosphere is baroclinic unstable. Different models. i.e. Eady and Charney models have more rigorous conditions.

� = kci

⇡ 0.3 ⇤fo

NGrowth rate: in both Eady and Charney models!

k�1

max

/ ⇤fo

�NMost unstable mode:

Eady Charney

10授课教师:张洋

Baroclinic eddies - baroclinic eddy life cycle

Numerical simulations with idealized GCM:

Basic state at the initial moment: close to real atmosphere.

temperature

Jet (Thorncroft et al, 1993, Q.J.R.)

Results: Capture the synoptic feature of baroclinic eddies.

11授课教师:张洋

Baroclinic eddies - baroclinic eddy life cycle

n Eddies’ development

(Thorncroft et al, 1993, Q.J.R.)

Small amplitude perturbations

Finite amplitude perturbations

Wave breaking

12授课教师:张洋

Baroclinic eddies - baroclinic eddy life cycle

n Mean flow adjustment

at day 9

Numerical results from

Gutowski et al, 1989, JAS, where F and H indicate simulations with

friction, diabatic heating, respectively

Much more stable stratification in the lower

troposphere.

Weaker vertical shear mean reduced

temperature gradient.

13授课教师:张洋

Baroclinic eddies - baroclinic eddy life cycle

n Westerly jet and energy cycle:

Numerical results from Simmons and Hoskins,

1978, JAS

ii

ii

ii

ii

4

3

2

1

0

-3

-2

-1

Wm

-2

0 2 64 12 148 10

50

40

30

-1

0 3 6 9 12 15 (days)

C(AZ AE)

C(AE KE)

C(AZ KZ)

C(KZ KE)

time

u (m

s

)En

ergy

con

vers

ions

Fig. 9.9 Top: energy conversion and dissipation processes in a numerical simulationof an idealized atmospheric baroclinic lifecycle, simulated with a GCM. Bottom: evo-lution of the maximum zonal-mean velocity. AZ and AE are zonal and eddy availablepotential energies, and KZ and KE are the corresponding kinetic energies. Initiallybaroclinic processes dominate, with conversions from zonal to eddy kinetic energyand then eddy kinetic to eddy available potential energy, followed by the barotropicconversion of eddy kinetic to zonal kinetic energy. The latter process is reflected inthe increase of the maximum zonal-mean velocity at about day 10.6

From Vallis (2006)

From Vallis (2006)

Strengthen of westerly jet

14授课教师:张洋

Baroclinic eddies

n From linear to nonlinear

Basic flow or

Pre-existing flow (without zonal variation and baroclinic unstable)

Small perturbation

Perturbations grow with time

(finite amplitude pert.)Eddy-mean interactions

(Adjust the zonal flow)

Equilibrated states between the adjusted zonal flow and baroclinic eddies

Linear process

Nonlinear interactions

Reduce the zonal flow temperature gradient; stablize the lower level

stratification; enhance the westerly jet

0 100 200 300 400 500 60040

50

60

70

80

90

100Time series of KE for SD run

MK

E (×

105 J

/m2 )

0 100 200 300 400 500 6000

5

10

15

20

25

30

EK

E (×

105 J

/m2 )

0 100 200 300 400 500 600

200

400

day

Time series of PE for SD run

MPE

(× 1

05 J/m

2 )

0 100 200 300 400 500 6000

20

40

EPE

(× 1

05 J/m

2 )

Numerical results from a QG model (Zhang, 2009)

15授课教师:张洋

Baroclinic eddies

n From linear to nonlinear

Basic flow or

Pre-existing flow (without zonal variation and baroclinic unstable)

Small perturbation

Perturbations grow with time

(finite amplitude pert.)Eddy-mean interactions

(Adjust the zonal flow)

Equilibrated states between the adjusted zonal flow and baroclinic eddies

EquilibriumNonlinear adjustment

spinup of eddies

0 100 200 300 400 500 60040

50

60

70

80

90

100Time series of KE for SD run

MK

E (×

105 J

/m2 )

0 100 200 300 400 500 6000

5

10

15

20

25

30

EK

E (×

105 J

/m2 )

0 100 200 300 400 500 600

200

400

day

Time series of PE for SD run

MPE

(× 1

05 J/m

2 )

0 100 200 300 400 500 6000

20

40

EPE

(× 1

05 J/m

2 )

Numerical results from a QG model (Zhang, 2009)

16授课教师:张洋

Baroclinic eddies

n From linear to nonlinear

Basic flow or

Pre-existing flow (without zonal variation and baroclinic unstable)

Small perturbation

Perturbations grow with time

(finite amplitude pert.)Eddy-mean interactions

(Adjust the zonal flow)

Equilibrated states between the adjusted zonal flow and baroclinic eddies

EquilibriumNonlinear adjustment

spinup of eddies

E-P flux

17授课教师:张洋

Outline

n Observations

n The Ferrel Cell

n Baroclinic eddies n Review: baroclinic instability and baroclinic eddy life cycle

n Eddy-mean flow interaction, E-P flux

n Transformed Eulerian Mean equations

n Eddy-driven jet

n The energy cycle

18授课教师:张洋

n Start from the equations:

The Ferrel Cell eddy-zonal flow interaction (I)

A = [A] +A⇤Decompose into zonal mean and eddy components:

n Momentum equation:✓du

dt

p

� fv = �✓@�

@x

p

+ F

x

✓d ln ✓

dt

p

=Q

cpT

rp · v +@!

@p= 0n Continuity equation:

n Thermodynamic equation:

✓d

dt

p

=

✓@

@t

p

+ u

✓@

@x

p

+ v

✓@

@y

p

+ !

@

@p

@[v]

@y+

@[!]

@p= 0

Under the quasi-geostrophic approximation (Ro

⌧ 1)

@[u]

@t= �@([u⇤v⇤])

@y+ f [v] + [F

x

]

@[✓]

@t+ [!]

@✓s

@p= �@([✓⇤v⇤])

@y+

✓po

p

◆R/cp [Q]

cp

19授课教师:张洋

The Ferrel Cell eddy-zonal flow interaction (I)

✓d

dt

p

=

✓@

@t

p

+ u

✓@

@x

p

+ v

✓@

@y

p

+ !

@

@p

n Momentum equation:

n Continuity equation:

n Thermodynamic equation:

n The simplified equations:

20授课教师:张洋

Baroclinic eddies - E-P flux

@[v]

@y+

@[!]

@p= 0

@[u]

@t= �@([u⇤v⇤])

@y+ f [v] + [F

x

]

@[✓]

@t+ [!]

@✓s

@p= �@([✓⇤v⇤])

@y+

✓po

p

◆R/cp [Q]

cp

n Momentum equation:

n Continuity equation:

n Thermodynamic equation:

n In a steady, adiabatic and frictionless flow:

f [v]�@([u⇤v⇤])

@y= 0

[!]@✓s@p

+@([✓⇤v⇤])

@y= 0

[!] = � @

@y

✓[✓⇤v⇤]

@✓s/@p

[v] =1

f

@

@y([u⇤v⇤])

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

r · F = 0

21授课教师:张洋

Baroclinic eddies - E-P flux

@[v]

@y+

@[!]

@p= 0

n Momentum equation:

n Continuity equation:

n Thermodynamic equation:

n In a QG, steady, adiabatic and frictionless flow:

Define Eliassen-Palm flux:

[!] = � @

@y

✓[✓⇤v⇤]

@✓s/@p

◆[v] =

1

f

@

@y([u⇤v⇤])

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

r · F = 0

f [v]�@([u⇤v⇤])

@y+ [F

x

] = 0

[!]@✓

s

@p+

@([✓⇤v⇤])

@y�✓po

p

◆R/cp [Q]

cp

= 0

22授课教师:张洋

Baroclinic eddies - E-P flux

n In a QG, steady, adiabatic and frictionless flow:

n In a QG, steady flow:

The meridional overturning flow, in addition to the eddy forcing, has to balance the external forcing.

f [v]�@([u⇤v⇤])

@y+ [F

x

] = 0

[!]@✓

s

@p+

@([✓⇤v⇤])

@y�✓po

p

◆R/cp [Q]

cp

= 0

˜[!] = [!] +@

@y

✓[v⇤✓⇤]

@✓s/@p

˜[v] = [v]� @

@p

✓[v⇤✓⇤]

@✓s/@p

@ ˜[v]

@y+

@ ˜[!]

@p= 0

23授课教师:张洋

Baroclinic eddies - E-P flux

n In a QG, steady flow:

Define:

Residual mean meridional circulation

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

@[u]

@t= f ˜[v] +r · F + [F

x

]

@[✓]

@t= � ˜[!]

@✓s

@p+

✓po

p

◆R/cp [Q]

cp

0

0

@[✓]

@t= � ˜[!]

@✓s

@p+

✓po

p

◆R/cp [Q]

cp

@ ˜[v]

@y+

@ ˜[!]

@p= 0

24授课教师:张洋

Baroclinic eddies - E-P flux

n In a QG flow:

Define:

Residual mean meridional circulation

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

(Quasi-geostrophic) Transformed Eulerian mean equations

@[u]

@t= f ˜[v] +r · F + [F

x

]

0

0

˜[!] = [!] +@

@y

✓[v⇤✓⇤]

@✓s/@p

˜[v] = [v]� @

@p

✓[v⇤✓⇤]

@✓s/@p

f [v]�@([u⇤v⇤])

@y+ [F

x

] = 0

[!]@✓

s

@p+

@([✓⇤v⇤])

@y�✓po

p

◆R/cp [Q]

cp

= 0

( ˜[v], ˜[!]) =

�@ @p

,@

@y

!

= m +[v⇤✓⇤]

@✓s/@p

25授课教师:张洋

Baroclinic eddies - TEM

@[✓]

@t= � ˜[!]

@✓s

@p+

✓po

p

◆R/cp [Q]

cp

@[u]

@t= f ˜[v] +r · F + [F

x

]

@ ˜[v]

@y+

@ ˜[!]

@p= 0

˜[!] = [!] +@

@y

✓[v⇤✓⇤]

@✓s/@p

˜[v] = [v]� @

@p

✓[v⇤✓⇤]

@✓s/@p

Recall the streamfunction for the zonal mean flow:

Define a streamfunction for the residual mean circulation:

([v], [!]) =

✓�@ m

@p,@ m

@y

26授课教师:张洋

Baroclinic eddies - TEM

Case 1: The EADY model

ii

ii

ii

ii

(Eulerian)

0 0.25 0.5 0.75 10

0.5

1

(Residual)

Latitude (y/L)

Hei

ght

(z/D

)

0 0.25 0.5 0.75 10

0.5

1

Hei

ght

(z/D

)

ψE

ψ *

Fig. 7.3 The Eulerian streamfunction (top) and the residual streamfunction for theEady problem, calculated using (7.135) and (7.136), with L2/L2

d = 9.

From Vallis (2006)

From Vallis (2006)

= m +[v⇤✓⇤]

@✓s/@p

The residual mean circulation’s direction can be opposite to the Eulerian mean circulation.

(x, y, z) , (x, y, ✓)

D✓

Dt= ✓

D

Dt=

@

@t+ u ·r✓ +

D✓

Dt

@

@✓

=@

@t+ u ·r✓ + ✓

@

@✓

27授课教师:张洋

n In isentropic coordinate

The Ferrel Cell

zero for adiabatic flow

Isentrope: An isopleth of entropy. In meteorology it is usually identified with an isopleth of potential temperature.

Case 2: Observed circulation

28授课教师:张洋

The Ferrel Cell

(Fig.11.4, Vallis, 2006)

The direction of Ferrel cell is reversed in the isentropic coordinate.

n In isentropic coordinate

D

Dt=

@

@t+ u ·r✓ +

D✓

Dt

@

@✓

=@

@t+ u ·r✓ + ✓

@

@✓

29授课教师:张洋

Baroclinic eddies - TEM

Case 2: Observed circulation

The Ferrel cell in the isentropic coordinate is essentially reflect the

Residual Mean Circulation. (Fig.11.4, Vallis, 2006)

n In isentropic coordinate

D

Dt=

@

@t+ u ·r✓ +

D✓

Dt

@

@✓

=@

@t+ u ·r✓ + ✓

@

@✓

zero for adiabatic flow

= m +[v⇤✓⇤]

@✓s/@p

30授课教师:张洋

Baroclinic eddies

n From linear to nonlinear

Basic flow or

Pre-existing flow (without zonal variation and baroclinic unstable)

Small perturbation

Perturbations grow with time

(finite amplitude pert.)Eddy-mean interactions

(Adjust the zonal flow)

Equilibrated states between the adjusted zonal flow and baroclinic eddies

Linear process

Nonlinear interactions

E-P flux, residual mean circulation,

Transformed Eulerian mean equations.

v⇣ = v(@v

@x

� @u

@y

)

= � @

@y

uv +1

2

@

@x

(v2 � u

2)q

0 =@

2

0

@x

2+@

2

0

@y

2+ f

2o

@

@p

✓1

s

@

0

@p

q =@2

@y2+ �y + f2

o

@

@p

✓1

s

@

@p

◆v0q0 = v0⇣ 0 +

fo

@✓s

/@pv0@✓0

@p

v@✓

@p=

@

@pv✓ � ✓

@v

@p

(u, v) =

✓�@ @y

,

@

@x

◆✓ = �f

o

@

@p

=p

R

✓po

p

◆R/cp

s = � 1

@✓s@p

v

@✓

@p

=@

@p

v✓ +1

2fo

@

@x

2

31授课教师:张洋

Baroclinic eddies - E-P flux: a second view

n E-P flux and the Quasi-geostrophic potential vorticity

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

From the definition of QG potential vorticity:

⇣ 0 fo

@

@p

✓✓0

@✓s

/@p

PV flux:

thermal wind relation for

meridional wind

+✓

f

o

@✓

@x

Note: ‘ denotes small perturbation

v0q0 = v0⇣ 0 +fo

@✓s

/@pv0@✓0

@p

=1

2

@

@x

✓v

02 � u

02 +1

02

@✓

s

/@p

+@

@y

u

0v

0

+f

o

@

@p

v

0✓

0

@✓

s

/@p

32授课教师:张洋

n E-P flux and the Quasi-geostrophic potential vorticity

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

From the definition of QG potential vorticity:

v⇣ = v(@v

@x

� @u

@y

)

= � @

@y

uv +1

2

@

@x

(v2 � u

2)

v@✓

@p=

@

@pv✓ � ✓

@v

@p

+✓

f

o

@✓

@x

v

@✓

@p

=@

@p

v✓ +1

2fo

@

@x

2

thermal wind relation for

meridional wind

Baroclinic eddies - E-P flux: a second view

[v⇤q⇤] =@

@y[u⇤v⇤] + f

o

@

@p

[v⇤✓⇤]

@✓s

/@p

= r · F

33授课教师:张洋

n E-P flux and the Quasi-geostrophic potential vorticity

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

From the definition of QG potential vorticity:

v0q0 = v0⇣ 0 +fo

@✓s

/@pv0@✓0

@p

=1

2

@

@x

✓v

02 � u

02 +1

02

@✓

s

/@p

+@

@y

u

0v

0

+f

o

@

@p

v

0✓

0

@✓

s

/@p

Zonally averaged PV flux by eddies:

Baroclinic eddies - E-P flux: a second view

#1

✓@

@t

+ U

@

@x

◆q

0 +@

0

@x

@q

@y

= 0

1

2

@

@t[q02] + [v0q0]

@q

@y= 0

A =[q02]

2@q/@y

@A@t

+r · F = 0

34授课教师:张洋

n E-P flux and the Eliassen-Palm relation

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

Linearized PV equation (q=PV):

Multiplying by q’ and zonally average:

Define wave activity density:

Eliassen-Palm relation

Baroclinic eddies - E-P flux: a second view

#2

✓@

@t

+ U

@

@x

◆q

0 +@

0

@x

@q

@y

= 0

Assume U is fixed, and

@q

@y= �

✓@

@t

+ U

@

@x

◆r2

0 + f

2o

@

@p

✓1

s

@

0

@p

◆�+ �

@

0

@x

= 0

0 = Re ei(kx+ly+mp�!t)

! = Uk � �k

K2

K2 = k2 + l2 +m2f2o

/s

A0 = ReAei(kx+ly+mp�!t)

✓ = �Reimfo

, q = �ReK2

cgy =2�kl

K4cgp

=2�kmf2

o

/s

K4

u = �Reil , v = Reik

35授课教师:张洋

n E-P flux and the Rossby waves

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

Linearized PV equation (q=PV):

Exist solutions of the form

Dispersion relation of Rossby waves:

with group velocity

Baroclinic eddies - E-P flux: a second view

✓@

@t

+ U

@

@x

◆q

0 +@

0

@x

@q

@y

= 0

K2 = k2 + l2 +m2f2o

/s

✓ = �Reimfo

, q = �ReK2

A =[q02]

2�=

K4

4�| 2|

~F = ~cgA

�[u0v0] =1

2kl| 2| = cgyA

fo

[v0✓0]

@✓s

/@p=

f2o

2skm| 2| = c

gz

A

36授课教师:张洋

n E-P flux and the Rossby waves

F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

Linearized PV equation (q=PV):

with group velocity

Wave activity density:

Baroclinic eddies - E-P flux: a second view

#3

cgy =2�kl

K4cgp

=2�kmf2

o

/s

K4

u = �Reil , v = Reik

@A@t

+r · (A ~cg) = 0

37授课教师:张洋

E-P flux, TEM and Residual Circulation - Summary

n E-P flux: F ⌘ �[u⇤v⇤] j+ f[v⇤✓⇤]

@✓s/@pk

n TEM equations:

#1 [v⇤q⇤] =@

@y[u⇤v⇤] + f

o

@

@p

[v⇤✓⇤]

@✓s

/@p

= r · F

~F = ~cgA#3

n Residual mean circulations:

#2 @A@t

+r · F = 0

n In a steady, adiabatic and frictionless flow:

@[✓]

@t= � ˜[!]

@✓s

@p+

✓po

p

◆R/cp [Q]

cp

@[u]

@t= f ˜[v] +r · F + [F

x

] ,

˜[!] = [!] +@

@y

✓[v⇤✓⇤]

@✓s/@p

◆˜[v] = [v]� @

@p

✓[v⇤✓⇤]

@✓s/@p

,

r · F = 0[!] = � @

@y

✓[✓⇤v⇤]

@✓s/@p

◆[v] =

1

f

@

@y([u⇤v⇤])