chang t., zhang h., guo z., guo x. gao huajian 2014.04.22

17
Chang T., Zhang H., Guo Z., Guo X. Chang T., Zhang H., Guo Z., Guo X. Gao Huajian Gao Huajian 2014.04.22 2014.04.22

Upload: magdalene-griffith

Post on 18-Dec-2015

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Chang T., Zhang H., Guo Z., Guo X. Chang T., Zhang H., Guo Z., Guo X.

Gao HuajianGao Huajian

2014.04.222014.04.22

Page 2: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

All pics from internet

Page 3: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Provides the most straightforward way for actuation and energy conversion.

Page 4: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Generally induced by an external source of energy.

Lack of intrinsic mechanism similar to downhill flow of water.

Barreiro et al., Science 320, 775 (2008) Fennimore et al., Nature 424, 408 (2003)

Kudernac et al., Nature 479, 208 (2011)

Thermal Electronic

Page 5: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22
Page 6: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

vdW 0 vV V Tk

B vdWν zo 2 za 2

0

1 1

2 ( , ) ( , ) l ml m l m

k kk dq dq

m q q q q

0.0 0.5 1.0 1.5 2.03

4

5

6

7

8

ki

v

ke

v

Pot

entia

l coe

ffici

ents

(e

V/a

tom

/K)

Stiffness coefficient (kvdW

)

Guo Z, Chang T, Guo, X, Gao H, J Mech Phys Solids 60, 1676 (2012).

kvdW

kvdW0.5kvdW

Page 7: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

B

C

D

Soft Hard

Page 8: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

A

0.0 2.5 5.0 7.5 10.0

-30

-15

0

15

30 C

Vel

ocity

(nm

/ns)

Time (ns)

-25

0

25

50

kc = 0.48/4.8/7.7/9.6/12.0/14.4/14.4 nN/nm

k = 0.0096/0.096/0.144/0.192/0.24/0.288/0.096 nN/nm2

Dis

plac

emen

t (nm

)

B

A larger driving force can be generated by a larger stiffness gradient or a smaller local stiffness.

Page 9: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

0.0 0.2 0.4 0.60

2

4

6

8

10

12A

0.801/2.403 300K 2.403/4.005 300K 0.801/4.005 300K 0.801/4.005 500K

Dis

plac

emen

t (nm

)

Time (ns)

0.0 0.2 0.4 0.60

6

12

18

24

30

36B

Vel

ocity

(nm

/ns)

Time (ns)

0 2 4 6 8

-30

-15

0

15

30

Vel

ocity

(nm

/ns)

Time(ns)

-12

-6

0

6

12C

Dis

plac

emen

t(nm

)

SuperpositionTemperature

Accel – Stable – DeaccelShuttles like a pendulum

Soft Hard

Page 10: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Durotaxis was first observed in living cells.

Active sensing

Lo et al., Biophys J 79, 144 (2000)

Water droplets undergo reverse durotaxis.

Wetting

Discher et al, Science 310, 1139 (2005)

Style et al., Proc. Natl. Acad. Sci. U.S.A. (2013)

Nanodurotaxis:Nanodurotaxis:

Neither Neither active sensing active sensing nornor wettingwetting

Page 11: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Stiffness gradient induces a bias van der Waals potential

0 3 6 9 12 15-48.51

-48.48

-48.45

-48.42

Inte

rlaye

r P

oten

tial (

meV

/ato

m)

Stiffness (nN/nm)

A

Page 12: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

21.23

-6.79

-3.04

-0.20 -0.81 -0.30

2.37

5.99

-12.97

13.19

-5.49

-1.72

0.63

-0.34 -0.66

1.91

5.43

-12.02

-15

-10

-5

0

5

10

15

20

1st/2nd/3rd/4th rings (52 atoms each)on harder side

Inner region

1st/2nd/3rd/4th rings (52 atoms each)on softer side

Inte

rlaye

r F

orce

(pN

) Stiffness jump Stiffness gradient

B

Driving force comes mainly from the unbalance edge force

1st/2nd/3rd/4th ring at the rear end

4th/3rd/2nd/1st ring at the front end

Inner part

Unbalanced edge force/Net driving force6.29 pN/5.48 pN1.27 pN/0.93 pN

Page 13: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Partly (less) from thermal atomic vibration, as shown by Guo et al, JMPS (2012).

Partly (more) from out-of-plane deformation of substrate.

Contributions to edge force from substrate atoms at different position.

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

4.005 nN/nm Soft Hard

Su

bst

rate

De

form

atio

n (

nm

)

Longitudinal position

Contact area

0.801 nN/nm

Page 14: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

Functional graded material

Marerial interface

Nanoporous array

Page 15: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22
Page 16: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22
Page 17: Chang T., Zhang H., Guo Z., Guo X. Gao Huajian 2014.04.22

*Chang T., Zhang H., Guo Z., Guo X. Chang T., Zhang H., Guo Z., Guo X.

*Gao HuajianGao Huajian

*2014.04.222014.04.22