challenges and innovations in nano‐cmos transistor...

50
1 Challenges and Innovations in NanoCMOS Transistor Scaling Tahir Ghani Intel Fellow Logic Technology Development October, 2009 Nikkei Presentation

Upload: others

Post on 05-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

1

Challenges and Innovations in Nano‐CMOS Transistor Scaling

Tahir GhaniIntel Fellow   

Logic Technology Development

October, 2009

Nikkei Presentation

Page 2: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

• Traditional‐Scaling‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response 

• Post “Traditional‐Scaling” Innovations‐ Mobility Booster: Uniaxial Strain- Poly Depletion Elimination: Metal Gate- Gate Leakage Reduction: HiK

• Future Challenges and Options- Power Limitation - Potential New Transistor Structures and Materials

Outline

Page 3: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

40+ Years of Moore’s Law at INTEL:From Few to Billions of Transistors

2X transistors every 2 years

Transistor Count has Doubled Every Two Years

Page 4: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

40+ Years of Moore’s Law at INTEL:From Few to Billions of Transistors

END OF TRADITIONAL SCALING ERA ~ 2003Lasted ~40 YEARS

2X transistors every 2 years

Traditional Scaling Era

Page 5: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Top “Traditional-Scaling” Enablers

1990’s: Golden Era of Scaling Vcc, Tox & Lg scaling & increasing Idsat

• Gate Oxide Thickness Scaling- Key enabler for Lgate scaling

• Junction Scaling- Another enabler for Lgate scaling - Improved abruptness (REXT reduction)

• Vcc Scaling- Reduce XDEP (improve SCE)- However, did not follow const E field

R. Dennard et.al.IEEE JSSC, 1974

Page 6: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Year 2000: INTEL 90nm CMOS PathfindingEnd of “Traditional-Scaling” Era

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.5 1.0 1.5 2.0 2.5

TOX Physical [nm]

J OX

[A/c

m2 ]

180nmNitrided SiO2

SiO2

[Lo et. al, EDL97]

130nm

Jox limit

• Gate Oxide Leakage direct tunneling limited

Gate oxide running out of atoms

• Universal Mobility Model• Ionized impurity scattering

Mobility degrades with scaling

VLSI Symp. 2000

Mob

ility

(cm

2 /(V.s

)100

150

200

250

300

0 0.5 1 1.5E EFF [MV/cm]

NA=3x1017

1.3x1018

1.8x1018

2.5x1018

3.3x1018

Universal Mobility

T. Ghani et. al. VLSI Symposium 2000T. Ghani et. al. VLSI Symposium 2000

Page 7: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

• Traditional‐Scaling‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response

• Post “Traditional‐Scaling” Innovations‐ Mobility Booster: Uniaxial Strain- Poly Depletion Elimination: Metal Gate- Gate Leakage Reduction: HiK

• Future Challenges and Options- Power Limitation - Potential New Transistor Structures and Materials

Outline

Page 8: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Innovations Pioneered by Intel to Overcome “Traditional-Scaling” Limiters

• Mobility enhancement through uniaxial strained silicon technology innovation introduced at 90nm node

- Epitaxial SiGe S/D- SiN Capping Layers

• HiK gate insulator introduced at 45nm CMOS node toreduce gate leakage

• Metal Gate introduced at 45nm CMOS node toeliminate poly depletion

Page 9: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Uniaxial Strain Silicon TransistorsIntel: IEDM 2003

PMOS NMOS

SiGeSiGe

These transistor structures introduced first at Intel’s 90nm CMOS node. These structures have now become

industry standard for strain implementation

T. Ghani et. al. IEDM, 2003

SiN stress layer

Page 10: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Strained SiGe S/D PMOS Transistor

SiGeSiGe

• SiGe film embeddedinto source/drain

• SiGe film deposited by selective epitaxy

• Induces large uniaxialcompressive strain in channel

• This strain leads todramatic hole mobility enhancement

Page 11: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

How Strain Impacts Mobility?Strain impacts mobility through: • Energy/subband spacing which affects scattering (τ)• Valley repopulation which changes transport mass (meff)• Band warpage which changes transport mass (meff)

channeldirection

ΔE

kx (2p/a)k y

(2p/

a)

Compression

Tension

Valence band

1

M. Stettler, 2006 SINANO Device Modeling School

2 3

1

2

3

effmτqμ ><

=

Page 12: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Performance Gains with Uniaxial Strain

00

IdlinIdlin

2nd Gen PMOS: 65nm

2020

4040

6060

8080

Dri

ve G

ain

(%

)D

rive G

ain

(%

)

IdsatIdsat

Ref: Unstrained Silicon

2.2x Mobility

Significant headroom left to increase PMOS mobility in future (> 5x)

0

1

2

3

4

5

6

0 1000 2000 3000

Channel Stress (Mpa)

Mob

ility

Enh

ance

men

t Rat

io

PMOS

NMOS

Source: Intel(100)/<110>

Channel=Si

EEFF=1MV/cm

65nnm90nnm

45nnm

Page 13: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Innovations Pioneered by Intel to Overcome Traditional Scaling Limiters

• Mobility enhancement through uniaxial strained silicon technology innovation introduced at 90nm node

‐ Epitaxial SiGe S/D

‐ SiN Capping Layers

• HiK gate insulator introduced at 45nm CMOS node toreduce gate leakage  

• Metal Gate introduced at 45nm CMOS node to

eliminate poly depletion

Page 14: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Year 2003: INTEL 65nm CMOS PathfindingGate Oxide Runs out of steam

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.5 1.0 1.5 2.0 2.5

TOX Physical [nm]

J OX

[A/c

m2 ]

180nmNitrided SiO2

SiO2

[Lo et. al, EDL97]

130nm

Jox limit

• Gate Oxide Leakage direct tunneling limited

Gate oxide running out of atoms

VLSI Symp. 2000

T. Ghani .et. al. VLSI Symp. 2000

Silicon Silicon substratesubstrate

1.1nm SiO1.1nm SiO22

Gate electrodeGate electrode

Intel 65nm production: 2005• Gate Oxide only 3-4 atomic layers thick.• Gate depletion also a limiter

Page 15: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

High-k + Metal Gate Benefits

• High‐k gate dielectric– Reduced gate leakage

– TOX(e) scaling

• Metal gates– Eliminate polysilicon depletion

– Resolves VT pinning and poor mobility for high‐k dielectrics  

Page 16: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

High-k + Metal Gate Challenges

• High‐k gate dielectric– Poor mobility    

– Poor reliability

• Metal gates– Dual band edge work functions

– Thermal stability

– Integration scheme

Page 17: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Transistor Process Flow

• Key considerations– Integrate hafnium-based high-k dielectric, dual metal

gate electrodes, strained silicon– Thermal stability of metal gate electrodes

• High-k First, Metal Gate Last– Metal gate deposition after high temperature anneals– Integrated with strained silicon process

Page 18: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

45nm High-k + Metal Gate Transistors65 nm Transistor 45 nm HK + MG

Hafnium-based high-k + metal gate transistors are the biggest advancement in transistor technology

since the late 1960s

TEM TEM

Page 19: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

45 nm High-k + Metal Gate Transistors

Benefits compared to 65nm node

>25x lower gate oxide leakage

>30% lower switching power

~30% higher drive current, or>5x lower source-drain leakage

Intel is only company with high-k + metal gate transistors in production, starting in Nov. ‘07

Page 20: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

0.40.50.60.70.80.9

11.1

180nm 130nm 90nm 65nm 45nm

Nor

mal

ized

C2

to 1

80nm

Minimal oxide scale HiK+MG

Tox scaling

)1(2

12

4 244 3

⎟⎟⎠

⎞⎜⎜⎝

⋅=⎟⎟

⎞⎜⎜⎝

⋅⋅⋅

⎟⎟

⎜⎜

⎛=

ZeffLeffc

ZeffLeffNTq

Vox

oxBsiTran ε

φεσ

Scaling of Vt Variation

HK+MG reduces random Vt variationCritical to SRAM Vmin

Page 21: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

NMOS PMOS

P+SiGe

P+SiGeN+N+

Polysilicon Gate (sacrificial)

Silicon Substrate

High-k Dielectric(ALD)

Standard transistor process through source-drain formation,but including atomic layer deposition high-k dielectric

Replacement Metal Gate Flow

Page 22: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

P+SiGe

P+SiGeN+N+

NMOS PMOS

Silicon Substrate

Deposit and planarize oxide layer

Replacement Metal Gate Flow

Page 23: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

P+SiGe

P+SiGeN+N+

NMOS PMOS

Silicon Substrate

Etch out sacrificial polysilicon gate

Replacement Metal Gate Flow

Page 24: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

P+SiGe

P+SiGeN+N+

NMOS PMOS

Silicon Substrate

Replacement Metal Gate Flow

Deposit separate NMOS and PMOS WF metal layers

Page 25: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

P+SiGe

P+SiGeN+N+

NMOS PMOS

Silicon Substrate

Deposit Al fill metal, planarize surface

Replacement Metal Gate Flow

Page 26: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

RMG PMOS Strain Benefit

Before gate removal After gate removal

RMG process provides significant additional PMOS performance gain by increasing channel strain

Page 27: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

45 nm Microprocessor Products

Single Core

6 Core

Dual Core

8 Core

Quad Core

>200 million 45 nm CPUs shipped to date

Page 28: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Intel Logic Technology Roadmap

45 nm 32 nm 22 nm

Process Name: P1266 P1268 P1270

Products: CPU CPU CPU

1st Production: 2007 2009 2011

Intel 32nm: 2nd generation high-k + metal gate transistors

Page 29: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Transistor Density

100

1000

1995 2000 2005 2010

Gate Pitch (nm) 0.7x every

2 years

32nm

65nm

45nm

112.5 nm

PitchPitchPitch

Intel 32 nm transistors provide the tightest gate pitch of any reported 32 nm or 28 nm technology

Page 30: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Transistor Performance

1001000Gate Pitch (nm)

Drive Current (mA/um)

0.0

0.5

1.0

1.5

2.01.0 V, 100 nA IOFF

45nm

32nm

65nm90nm

NMOS

PMOS

130nm

Intel 32 nm transistors provide the highest drive currents of any reported 32 nm or 28 nm technology

Page 31: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

SRAM Cell Size Scaling

0.1

1

10

1995 2000 2005 2010

Cel

l Are

a (u

m 2 )

0.5x every 2 years

32 nm, 0.171 um2

45 nm, 0.346 um2

65 nm, 0.570 um2

Transistor density continues to double every 2 years

Page 32: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

32 nm Defect Density Trend90 nm 65 nm 45 nm 32 nm

2002 2003 2004 2005 2006 2007 2008 2009 2010

Defect Density(log scale) <2 year

HigherYield

Intel’s 32 nm process is certified and CPU wafers are moving through the factory in support of planned Q4 revenue production

Page 33: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

• Traditional‐Scaling‐ Traditional Scaling Limiters, Device Implications ‐ Intel’s Response

• Post “Traditional‐Scaling” Innovations‐ Mobility Booster: Uniaxial Strain- Poly Depletion Elimination: Metal Gate- Gate Leakage Reduction: HiK

• Future Challenges and Options- Power Limitation - Potential New Transistor Structures and Materials

Outline

Page 34: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

CPU Transistor Count & Power Trend

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1970 1980 1990 2000 20101.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

4004

8080

286

486TM

Pentium® II CPU

Pentium® 4 CPU

Itanium® 2 CPU

2x increase every

2 years

PenrynQC

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

CPU Power (W)

10

100

1000

1990 1995 2000 2005 2010 2015

Power Dissipation Limited to ~100WBUT increased transistor count needed BUT increased transistor count needed

in Multiin Multi--Core CPU Era !!!Core CPU Era !!!

Page 35: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Multi‐Core CPU Power Limited EraP = Switching Power + Leakage Power + ..

~ (fCgateVCC2 ) * N α

Rel

ativ

e V

Rel

ativ

e V C

CCC

Relative Transistor CountRelative Transistor Count1x1x 1.5x1.5x 2x2x

Fixed PowerFixed Power1x1x

• VCC scaling required for continued increase in transistor count in power limited world

Constant

Future Transistors will need to continue to achieve Higher Performance while Scaling Power Supply Voltage

Page 36: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Possible Future Transistor Options

• Advanced Channel Materials- III-V and Ge channel materials

• Multi-Gate Fin Transistors - Non planar architecture

• Tunnel Transistors- New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

Page 37: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Ultimate Channel Materials: Ballistic Transport

Quantum Capacitance very important at thin TOX

2-D2

*2

~h

mqC DOS

INV π

z

0

VVGG

TTOXOX

NNINVINV z

0

VVGG

TTOXOX

NNINVINV

CG

COX

CINV

VG

1. Need low mt* in channel direction toachieve high υinj and maximize IDSAT

Ec (x)

Eco

Position (x)

Ene

rgy

~t*

1

minjυ

Ultimate Ballistic Regime:IDSAT ~ Qinv*υinj

2. Need high m*DOS to achieve high CGATE and Qinv to maximize IDSAT

Page 38: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

III‐V Materials for NMOS Channel? 

+ Low m* Γ valley ⇒ High υinj

- Low m* Γ valley ⇒ Low mDOS

⇒ Low QINV

- 2-D Quantization:⇒ Charge transfer from low mass

Γ to high mass X & L valleys ⇒ Lowers υinj

- Low Eg ⇒ Large Ioff (junction)

- High ε ⇒ Poor SCE

Projecting III-V NMOS performance based on simplistic models could lead to erroneous performance assessment. K. Saraswat et.al., IEDM 2006

*

Page 39: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

• InGaAs Quantum Well channel• InAlAs insulator (poor Jox)• Ti/Pt/Au gate• Non-self aligned contacts

The Grand Challenges for III‐V CMOS

J. Del AlamoIEDM 2007

Energy Band Diagram

?

Page 40: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Ge Transistor‐ Back to the Future?

Advantages:+ Best hole mobility (unlike III-V)

+ Si(Ge) already used in logic tech

+ Col-IV: Non-Polar

Challenges:- Reference device is highly strained silicon

- Poor HiK interface: * Need better understanding * Buried strained QW Ge

- Higher dielectric constant * Poorer SCE

- Worse parasitic resistance * Worse dopant activation

K. Saraswat et.al., IEDM 2006.

Buried Strained Ge Quantum Well

Page 41: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Possible Future Transistor Options

• Advanced Channel Materials- III-V and Ge channel materials

• Multi-Gate Fin Transistors - Non planar architecture

• Tunnel Transistors- New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

Page 42: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Multi‐Gate Transistor ArchitectureV=0

V=0

V=1V=0 WsiDrain

Lgate

Gate

Gate

Source

Wsi=20nm

Wsi= 10nm

Si

AqNyx ε

=∂Φ∂

+∂Φ∂

2

2

2

2

Multi-Gate Transistors have better SCE: – Gates reduce spread of Vdrain

Enables lower threshold voltage ( ID)– Enable lower channel doping ( μ)

Multi-Gate Transistors have lower EEFF:– Optimum gate work function is

away from band-edge leadingto lower Eeff ( μ)

Page 43: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Multi‐Gate Transistors Implementation  

Multi-Gate Fin Transistor: ++ Self Aligned structure for S/D-- Non-Planar structure

Multi-Gate Fin Transistor

Page 44: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Top Challenges for Multi‐Gate Fin Transistors

J. Kavalieros et. al.VLSI Symp 2006

A. Dixit, K. Anil et al., Solid State

Electronics, 2006

Implement High Strain in Fins?Planar Ref= Highly strained4-5x p-mobility enhancement

High level of fin strain NOT published to date

High Parasitics in Fin TransistorsNarrow fins lead to high RextFin architecture may also lead tohigher fringe capacitance

Manufacturing worthy PatterningFin, Gate and Spacer patterning will be extremely challenging in a manufacturing environment

Design Device Z increments quantized

• Best published drive currents for Multi-Gate Fin Transistors aresignificantly lower than best published planar transistors to date

• Many significant challenges remain to be resolved for Fin Transistors

Page 45: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Possible Future Transistor Options

• Advanced Channel Materials- III-V and Ge channel materials

• Multi-Gate Fin Transistors - Non planar architecture

• Tunnel Transistors- New transport mechanism

Each transistor structure has many significant challenges which will have to be successfully addressed if it is to become a serious contender to silicon MOSFET

Page 46: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Why we Need to Beat Sub‐Threshold Slope of 60mV/decade?

ID ~ (VCC-VTH)

At very low Vcc we need small VTH for reasonable drive

BUT

Sub-threshold slope islimited by thermal kT/q limit

Ioff increases exponentiallywith VTH scaling.

HOW TO BEAT kT/q limit?

Page 47: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Ultimate Frontier: Overcoming Thermal kT/q Limit

Ec

Ev

COX

VG

Source Channel Drain

Electrons go over a potential barrier. Leakage current is determined by the Boltzmann  distribution or 60 mV/decade, limiting  MOSFET, bipolar,  grapheneMOSFET…How to overcome the limit:Let electrons go through the energy barrier, not over it  Tunneling

C. Hu, STEEP Program

Page 48: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Leo EsakiNobel Prize for Physics 1973

Semiconductor Band‐to‐Band Tunneling

WL

WV WF

WL

WVWF

i) ii)

WF

WL

WV

iii) WL

WVWF

v)WL

WV WF

iv)

• Esaki demonstrated this experimentally in 1958

• Can lead to negative resistance- Esaki diode

• Transistor: Tunneling can be controlled by gate!!

Page 49: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

EC

OFF state

electron

EV

Tunneling is not allowed.

ECON state

electron

EV

Tunneling is allowed.

TEOSGate

P+ Source

LG toxSOI

N+ Drain

BOX

Structure:

Energy-bandDiagrams:

P+ SourceN+ Drain i‐Si

Gate

• Device behaves like reverse biaspin diode

• Positive Vgs induces electron electron channel

• Band bending allows tunneling at source channel interface Gate controlled band tunneling

• BTBT Transistor suffer fromextremely poor drive current

Need materials with moreefficient tunneling

Tunnel Transistor Concept and ChallengesBasic BTBTstructure

W. Y. Choi et al.  IEEE‐EDL vol. 28, pp. 743‐745, 2007

Page 50: Challenges and Innovations in Nano‐CMOS Transistor Scalingmniemier/.../03_Neikei_Presentation... · •Traditional‐Scaling ‐Traditional Scaling Limiters, Device Implications

Key Messages / Summary• Intel’s Response to end of “traditional-scaling”:

– Uniaxial Strain (90nm and beyond): 32nm is 4th generation of uniaxial strain at Intel– HiK + Metal Gate (45nm and beyond at Intel)

Future Novel Transistors:– New Channel Materials:

Integrate Ge & III-V on top of Silicon. Many device and material challenges remain– Multi-Gate Fin Transistors:

Scaling benefits BUT need to demonstrate effective strain implementation, matched parasitic resistance to planar and overcome patterning challenges

– BTBT (Tunnel) Transistors:Ultimate transistors may need tunnel injection at ultra-low Vcc. Would neednew materials with more efficient tunneling and atomic scale fabrication control

Many exciting materials, physics and integration challenges left to continue CMOS scaling

These innovations have enabled Intel to maintain historical performance gains on recent nodes