ch2 lecture may 19 2009 - information management ...chem2/bioenergetics 5-19-09.pdfch/aph2...

59
Ch/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics of biological energy production. Kinetic aspects of bioenergetic processes. Energy transfer Electron transfer The molecular and cellular organization of bioenergetic systems. Membrane transport Ion Channels, transporters Photosynthesis Respiration and ATP synthesis Haber-Bosch process and biological nitrogen fixation

Upload: dokhanh

Post on 28-Mar-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Ch/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics of biological energy production. Kinetic aspects of bioenergetic processes. Energy transfer Electron transfer The molecular and cellular organization of bioenergetic systems. Membrane transport Ion Channels, transporters Photosynthesis Respiration and ATP synthesis Haber-Bosch process and biological nitrogen fixation

Page 2: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Kinetics of Bioenergetics

light energy transfer

electron transfer

diffusion

distance, time and driving force dependences

Dutton et al. Adv. Prot. Chem. 63 (2003)

Page 3: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Photon absorption and de-excitation

phosphorescence

time scale ~sec

fluorescence

time scale ~ ns

radiationless transfer

time scale ~ ns

Page 4: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

absorption and fluorescence of bacteriochlorophyll

Qy

Qx

Page 5: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

light (resonance) energy transfer

Donor absorbs at higher energy (shorter ) than Acceptor.

rate of transfer ~ (R0/R)6

R0 depends on spectral overlap and quantum yields; typically ~ 10 - 50+ Å

basis of “spectroscopic ruler”

Page 6: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

acceptor donor

Fluorescence resonance energy transfer (FRET)

measure fluorescence yield of the donor in the absence and presence of the acceptor:

efficiency = Ro6/(Ro

6 + R6)

R0 ~ 34Å

Page 7: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

energy transfer in bacterial RC/LHC complexes

Sundstrom et al. JPC B103, 2327 (1999)

(RC absorbs ~ 870 nm)

Page 8: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

photosynthetic systems have a common core structure

bacterial

plants: PSI and PSII

Dutton et al. Adv. Prot. Chem. 63, 71 (2003)

Page 9: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

bacterial photosynthetic reaction center (RC)

three subunits: L, M and H

A

BCD

E

A’

B’

C’

D’

E’

PDB IDs 2PRC; 1AIJ

view down membrane normalview in plane of membrane

Page 10: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

organization of cofactors in the RC

Bchl2

BchlChl

BphBph

Bchl2

QBQA

B branchA branch

carotenoid

Page 11: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

photosynthesis - the reaction center

membrane

Bchl2

QA QB

Bchl

Bph

h

Bchl -chlorophyll

Bph - bacteriopheophytin

Q - quinone

Fe

Page 12: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

QuickTime™ and aQuickDraw decompressor

are needed to see this picture.

(Bchl)2

Bph

Bchl

QAQBFe

5 Å

10 Å

5 Å

13 Å10 Å

5 Å

5 Å

why is the B branch so much slower than the A branch?

why is the back reaction (to (Bchl)2+) so unfavorable?

Bph

Bchl

Page 13: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Incident solar radiation ~1 photon/RC/sec

Cycling time for the RC is ~ 10-3 sec;

Use light harvesting/antennae complexes to transfer light energy to RC

Page 14: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Mechanism of light energy transfer is not quantitatively understood:

After absorption of a photon, the excited state likely becomes delocalized around the electronically coupled chromophores.

http://www.chem.gla.ac.uk/protein/LH2/migrate.html

h

Page 15: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics
Page 16: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Electron Transfer Kinetics: classical Marcus theory

(Marcus and Sutin, BBA 811, 265 (1985))www.nobel.se/chemistry/laureates/1992/marcus-lecture.html

activation energy for exchange reaction (ET rate)

kET = A e-(∆G*/RT)

Page 17: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

http://iriaxp.iri.tudelft.nl/~scwww/candeias/bio-et/kinetic.html

calculation of activation energy - classical model

∆G* = (1+∆G˚/ )2/4

kET = Ae-(∆G*/RT)

max. rate when ∆G˚= -

Gray & Winkler Ann. Rev. Biochem. 65, 537 (1996)

= energy to distort reactant into product geometry

Page 18: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

the inverted region

Page 19: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

distance dependence of electron transfer kinetics

kET = A(r) e-(∆G*)/RT

Page 20: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Tunneling timetable for ET in Ru-modified proteins (open symbols), water (light blue, = 1.61-1.75 Å1), and vacuum (dark blue, = 3.0-4.0 Å1) (adapted from ref. 36). Most coupling-limited electron tunneling times in proteins [cyt c (); azurin (); cyt b562 (); myoglobin (); and high-potential iron-sulfur protein ()] fall in the 1.0- to 1.2-Å1 wedge (pale blue solid lines; pale blue dashed line is the average of 1.1 Å1). Colored circles (*Zn-cyt c Fe(III)-cyt c, green and Fe(II)-cytc Zn-cyt c+, red) are interprotein time constants.

Tezcan et al. PNAS 98, 5002 (2001)

distance dependence of electron transfer A(r) ~ 1013 e-r s-1

= 1.1 Å-1

Page 21: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Page et al. Nature 402, 47 (1999)hopping vs jumping…

Using ~ 1.1 Å-1, ket for electron transfer over 10 Å, 15 Å, 20 Å, 25 Å, and 30 Å, are calculatedto be approximately 8.8 x 109, 3.6x107, 1.5x105, 6.0x102, 2.5 sec-1, respectively. From thesevalues, the time required for electron transfer over 30 Å by either hopping in three 10 Å steps, orby tunneling directly, are calculated to be:

t1 / 2 , hopping ~ 18.8109 ln 2 (31) 3.11010 sec

t1/ 2, tunneling ~1

2.5ln 2 (11) 0.28 sec

kET = 1013 e-r e-(∆G*)/RT s-1

Page 22: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics
Page 23: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Kinetic aspects of getting a molecule or ion across a membrane

Thermodynamic driving forces:concentration gradientsmembrane potential (charged species)

Pore geometry (radius, length, electrostatics)

Page 24: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

kinetics are governed by fundamental empirical laws that relate fluxes (flows) to driving forces

Ohm’s law relates forces (V) and flows (I) of electrical current

I = (1/R) V

Fick’s laws of diffusion relate forces and flows of particles

In general, the flux is proportional to the driving force

J = L F

J L

Page 25: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

and J = L F

L F = c v

F = (c/L) v f v f = frictional coefficient

ie at steady state, F ~ velocity, not acceleration!

J = particles/unit area/unit time = molecules cm-2 sec-1

= concentration x velocity = c v

total current = J x Area

Page 26: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Basic equations of microscopic diffusion: Fick’s First Law

The basic diffusion equation may be derived from random walk considerations

area = AN(x) N(x+)

Consider how many particles will move across from point x to point x+ per unitarea per unit time - ie, what is the net flux J in the x direction?

For a random walk, where N(x) is the number of particles at x,during the next step

(1/2)N(x) will move from x to x+(1/2)N(x+) will move from x+ to x(1/2)[N(x)-N(x+)] will be the net movement from x to x+

= -(1/2)[N(x+)-N(x)]

Page 27: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

cellular and molecular architecture of bioenergetic systems

(sub)cellular organization

Buchanan, Gruissem, JonesBiochemistry and Molecular Biology of Plants

Page 28: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

organization of phospholipid membranes

Page 29: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

S.J. Singer’s fluid mosaic model Science 175, 720 (1972)

phospholipids assemble into a bilayer through the “hydrophobic effect”; the apolar interior of the membrane is largely impermeable to water, ions and other polar molecules. Membrane proteins are required for transport of these species into and out of cells

Page 30: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Chandler, Nature 417, 491 (2002)

Page 31: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

• Mitochondria: respiratory organelle, generates ~body weight of ATP daily

• Contains an outer membrane and a highly convoluted inner membrane with respiratory complexes

• Total surface area of inner membranes in humans is estimated to be 14,000 m2. (Rich, Nature 421, 583 (2003)

Page 32: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

E. coli has two cell membranes

Page 33: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

membrane spanning

polypeptide conformations

Page 34: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Looking at Macromolecular Structures

Viewer

SwissPDB

Rasmol

iMol

PyMOL

etc….

Coordinates

PDB - the Protein Data Bank - operated by the Research Collaboratory for Structural Bioinformatics

http://www.rcsb.org/pdb

Page 35: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Rich, Nature 421, 583 (2003)

Abeles, Nature 420, 27 (2002)

Page 36: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

If N(x) N(x ) , then there will be a net flux through an area elementperpendicular to x between x and x+ that is given by Fick’s first law.

J D dcdx

; if dcdx

constant, J = constant

Cb

ba

Ca

there is a next flux from right to left, simply because there are more particles onthe right than on the left.

This flux depends only on the gradient, and not the value of c. This drive towardsequalizing the concentrations (chemical potential) will tend to flatten allconcentration gradients, and is principally entropic in origin.

Just as Newton’s laws give forces are derivatives of energy, the force from aconcentration gradient can be expressed as a derivative of the chemicalpotential.

Page 37: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics
Page 38: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Looking at Macromolecular Structures

Viewer

SwissPDB

PyMOL

etc….

Coordinates

PDB - the Protein Data Bank - operated by the Research Collaboratory for Structural Bioinformatics

http://www.rcsb.org/pdb

Page 39: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

membrane spanning

polypeptide conformations

Page 40: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

electron transfer complexestransporterschannels

matter, energy, information

inside

outside

Membrane proteins are the basic circuit elements of bioenergetic processes

Page 41: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

∆µ

Page 42: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

KcsA potassium channel

Doyle et al. Science 280, 69 (1998)

PDB ID: 1BL8

tetramer

Page 43: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

K+ ion coordination. Zhou et al. Nature 414, 43 (2000).

PDB ID 1K4C

potassium permeation pathway

Page 44: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Morais-Cabral et al. Nature 414, 317 (2001)

mechanism of K+ permeation: conduction state diagram

Page 45: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

MthK channel

Ca+2 mediated gating through a K+ channel

Jiang et al.Nature 417, 505 (2002)

PDB ID 1LNQ

Page 46: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Voltage gating in Kv potassium channels

opening and closing the channel in response to changes in membrane potential: the charged S4 helix

“voltage sensor paddles operate somewhat like hydrophobic cations attached to levers, enabling the membrane electric field to open and close the pore”

Jiang et al. Nature 423, 33; 42 (2003)

closed open

Page 47: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

mechanosensitive channel of small conductance MscS

3.9 Å resolutionBass et al. Science 298, 1582 (2002)

membrane spanning domain

cytoplasmic domain

L105L109

N-terminal

C-terminal

TM1

TM2

TM3

middle

C-terminaldomain

Page 48: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

MscS gating mechanismmechanosensitivity - open state has larger cross-sectional area

voltage sensitivity - open state has (+) charges moving away from cytoplasm

TM1 and TM2 likely serve as coupled tension and voltage sensorsTM3 forms the pore

R46

R74

R88

Page 49: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

conformational variability in TM region of MscS

coloring by B factor (low to high)

Page 50: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

How are concentration gradients generated in the first place?

Alberts et al. Essential Cell Biology

Na+,K+ ATPase

Page 51: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Two gate mechanism of pumps

Page 52: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

ABC transporters andthe ATP-binding cassette:

importers and exporters of a diverseset of substrates

contain two copies each ofconserved ABC domainsmembrane spanning domains (diverse)

Page 53: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

The Escherichia coli B12 uptake system Btu

Page 54: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Experimentalelectron density

3.5 Å resolutioncontour level=1

Page 55: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

BtuCD architecture

cytoplasm

BtuC BtuC

BtuD BtuD3.2 Å resolutionLocher et al. Science 296, 1091 (2002)

periplasm

Page 56: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

exit pathway

gate

translocation pathway

membrane spanning BtuC subunits

BtuCD structural organization

mechanistic issues• consequences of ATP binding and hydrolysis? • coupling of ABC and TM domains?• role of binding protein BtuF?

Page 57: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

ATP-binding cassettes (BtuD subunits)

ABC signature motif

Walker-B

P-loops (Walker-A)

Page 58: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Proposed B12 transport mechanism

BtuF-B12

BtuCD

“alternating access” or “airlock” model

Page 59: CH2 lecture May 19 2009 - Information Management ...chem2/Bioenergetics 5-19-09.pdfCh/APh2 Bioenergetics Section Lecture of May 19, 2009 Introduction to bioenergetics. The thermodynamics

Channels and Transporters - summary

channels and transporters have common architectural features, namely:

translocation pathwayclosed with either one gate (channels) or two (transporters)

specificity elements (eg selectivity filter/binding proteins)

gating sensors