ch03 rigid bodies equivalent systems of forces

76
© 2007 The McGraw-Hill Companies, Inc. All rights reserve. Vector Mechanics for Engineers: Statics E i      g h  t   h 3 - 1 CE 102 Statics  hapter 3 Rigid Bodies: Equivalent Systems of Forces

Upload: beverly-paman

Post on 01-Jun-2018

247 views

Category:

Documents


0 download

TRANSCRIPT

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 1/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsE i      gh  t   h 

3 - 1

CE 102 Statics

  hapter 3

Rigid Bodies:

Equivalent Systems of Forces

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 2/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsE i      gh  t   h 

3 - 2

Contents

Introduction

External and Internal Forces

Principle of Transmissibility: Equivalent

Forces

Vector Products of Two Vectors

Moment of a Force About a PointVarion!s T"eorem

#ectanular $omponents of t"e Moment

of a Force

%ample Problem &'(

%calar Product of Two Vectors

%calar Product of Two Vectors:

Applications

Mixed Triple Product of T"ree Vectors

Moment of a Force About a )iven Axis

%ample Problem &'*

Moment of a $ouple

Addition of $ouples

$ouples $an +e #epresented +y Vectors

#esolution of a Force Into a Force at O and a$ouple

%ample Problem &'&

%ystem of Forces: #eduction to a Force and a

$ouple

Furt"er #eduction of a %ystem of Forces

%ample Problem &',

%ample Problem &'-

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 3/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsE i      gh  t   h 

3 - 3

Introduction. Treatment of a body as a sinle particle is not always possible' In

eneral/ t"e si0e of t"e body and t"e specific points of application of t"eforces must be considered'

. Most bodies in elementary mec"anics are assumed to be riid/ i'e'/ t"e

actual deformations are small and do not affect t"e conditions of

equilibrium or motion of t"e body'

. $urrent c"apter describes t"e effect of forces exerted on a riid body and

"ow to replace a iven system of forces wit" a simpler equivalent system'

. moment of a force about a point

. moment of a force about an axis

. moment due to a couple

. Any system of forces actin on a riid body can be replaced by an

equivalent system consistin of one force actin at a iven point and one

couple'

 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 4/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 4

External and Internal Forces

. Forces actin on riid bodies are

divided into two roups:1 External forces

1 Internal forces

. External forces are s"own in a

free1body diaram'

. If unopposed/ eac" external

force can impart a motion of

translation or rotation/ or bot"'

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 5/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 5

Principle of Transmissibility: Equivalent Forces

.  Principle of Transmissibility 1

$onditions of equilibrium or motionare not affected by transmitting  a force

alon its line of action'

 23TE: F and F! are equivalent forces'

. Movin t"e point of application of

t"e force F to t"e rear bumper

does not affect t"e motion or t"e

ot"er forces actin on t"e truc4'

. Principle of transmissibility may

not always apply in determinin

internal forces and deformations'

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 6/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 6

Vector Product of Two Vectors

. $oncept of t"e moment of a force about a point is

more easily understood t"rou" applications oft"e vector product or  cross product '

. Vector product of two vectors  P  and Q is defined

as t"e vector V  w"ic" satisfies t"e followin

conditions:

(' 5ine of action of V  is perpendicular to plane

containin  P  and Q'

*' Manitude of V  is

&' 6irection of V  is obtained from t"e ri"t1"and

rule'

θ sinQ P V   =

. Vector products:

1 are not commutative/

1 are distributive/

1 are not associative/

( )Q P  P Q   ×−=×

( ) *(*(   Q P Q P QQ P    ×+×=+×

( ) ( ) S Q P  S Q P    ××≠××

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 7/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 7

Vector Products: Rectanular Components

. Vector products of $artesian unit vectors/

7

7

7

=×=×−=×

−=×=×=×

=×−=×=×

k k ik  j jk i

i jk  j jk  ji

 jik k i jii

. Vector products in terms of rectanularcoordinates

k Q jQiQk  P  j P i P V   z  y x z  y x   ++×++=

( )

( )k Q P Q P 

 jQ P Q P iQ P Q P 

 x y y x

 z  x x z  y z  z  y

−+

−+−=

 z  y x

 z  y x

QQQ

 P  P  P 

k  ji

=

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 8/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 8

!oment of a Force "bout a Point. A force vector is defined by its manitude and

direction' Its effect on t"e riid body also dependson it point of application'

. T"e moment  of F  about O is defined as

F r  M O   ×=

. T"e moment vector  M O is perpendicular to t"e plane containin O and t"e force F '

. Any force F’  t"at "as t"e same manitude and

direction as F / is equivalent  if it also "as t"e same line

of action and t"erefore/ produces t"e same moment'

. Manitude of  M O measures t"e tendency of t"e force

to cause rotation of t"e body about an axis alon

 M O'

T"e sense of t"e moment may be determined by t"e

ri"t1"and rule'

 Fd rF   O   ==   θ sin

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 9/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 9

!oment of a Force "bout a Point

. T!o"dimensional structures "ave lent" and breadt" but

neliible dept" and are sub8ected to forces contained int"e plane of t"e structure'

. T"e plane of t"e structure contains t"e point O and t"e

force F '  M O/ t"e moment of t"e force about O is

 perpendicular to t"e plane'

. If t"e force tends to rotate t"e structure cloc4wise/ t"e

sense of t"e moment vector is out of t"e plane of t"e

structure and t"e manitude of t"e moment is positive'

. If t"e force tends to rotate t"e structure countercloc4wise/

t"e sense of t"e moment vector is into t"e plane of t"e

structure and t"e manitude of t"e moment is neative'

f SE 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 10/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 10

Varinon#s T$eorem

. T"e moment about a ive point O of t"eresultant of several concurrent forces is equal

to t"e sum of t"e moments of t"e various

moments about t"e same point O'

. Varion!s T"eorem ma4es it possible to

replace t"e direct determination of t"e

moment of a force F  by t"e moments of two

or more component forces of F '

( )     +×+×=++× *(*(  F r  F r  F  F r 

V t M h i f E i St tiE 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 11/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 11

Rectanular Components of t$e !oment of a Force

( )   ( )   ( ) k  yF  xF  j xF  zF i zF  yF 

 F  F  F 

 z  y x

k  ji

k    j  i    

 x y z  x y z 

 z  y x

 z  y xO

−+−+−=

=

++=

T"e moment of F  about O/

k  F  j F i F  F 

k  z  j yi xr  F r   

 z  y x

O

++=

++=×= /

V t M h i f E i St tiE 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 12/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 12

Rectanular Components of t$e !oment of a Force

T"e moment of F  about #/

 F r     # $ #   ×= 9

( ) ( ) ( )k  F  j F i F  F 

k  z  z  j y yi x x

r r r 

 z  y x

 # $ # $ # $

 # $ # $

++=−+−+−=

−=9

( ) ( ) ( ) z  y x

 # $ # $ # $ #

 F  F  F  z  z  y y x x

k  ji

     −−−=

V t M h i f E i St tiE 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 13/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 13

Rectanular Components of t$e !oment of a Force

For two1dimensional structures/

( )

 x y

 % O

 x yO

 yF  xF 

    

k  yF  xF   

−=

=

−=

( ) ( )[ ]

( ) ( )  x # $ y # $

 %  #

 x # $ y # $ #

 F  y y F  x x

    

k  F  y y F  x x  

−−−=

=

−−−=

V t M h i f E i St tiE 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 14/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi      gh  t   h 

3 - 14

%ample Problem &'(

A (771lb vertical force is applied to t"e end of a

lever w"ic" is attac"ed to a s"aft at O'

6etermine:

a moment about O&

 b "ori0ontal force at $ w"ic" creates t"e samemoment/

c smallest force at A w"ic" produces t"e same

moment/

d location for a *,71lb vertical force to produce

t"e same moment/

e w"et"er any of t"e forces from b/ c/ and d is

equivalent to t"e oriinal force'

V t M h i f E i St tiE     

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 15/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi  gh  t   h 

3 - 15

%ample Problem &'(

a Moment about O is equal to t"e product of t"e

force and t"e perpendicular distance between t"eline of action of t"e force and O' %ince t"e force

tends to rotate t"e lever cloc4wise/ t"e moment

vector is into t"e plane of t"e paper'

( )

( ) ( )in'(*lb(77

in'(*;7cosin'*,

=

=°==

O

O

  

d  Fd   

inlb(*77   ⋅=O  

V t M h i f E i St tiE i    

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 16/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi  gh  t   h 

3 - 16

%ample Problem &'(

 b <ori0ontal force at $ t"at produces t"e same

moment/

( )

( )

in'='*7in'lb(*77

in'='*7in'lb(*77

in'='*7;7sinin'*,

⋅=

=⋅

=

=°=

 F 

 F 

 Fd   

O

lb>'->= F 

V t M h i f E i St tiE i    

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 17/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: StaticsEi  gh  t   h 

3 - 17

%ample Problem &'(

c T"e smallest force $ to produce t"e same moment

occurs w"en t"e perpendicular distance is amaximum or w"en F  is perpendicular to O$'

( )

in',*

in'lb(*77

in',*in'lb(*77

⋅=

=⋅

=

 F 

 F 

 Fd   O

lb-7= F 

V t M h i f E i St tiE i    

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 18/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsi  gh  t   h 

3 - 18

%ample Problem &'(

d To determine t"e point of application of a *,7 lb

force to produce t"e same moment/

( )

in'-cos;7

in'-lb,7*

in'lb(*77

lb*,7in'lb(*77

=⋅

=

=⋅

=

O#

 Fd   O

in'(7=O#

Vector Mechanics for Engineers StaticsE i    

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 19/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Statics  gh  t   h 

3 - 19

%ample Problem &'(

e Alt"ou" eac" of t"e forces in parts b/ c/ and d produces t"e same moment as t"e (77 lb force/ none

are of t"e same manitude and sense/ or on t"e same

line of action' 2one of t"e forces is equivalent to t"e

(77 lb force'

Vector Mechanics for Engineers: StaticsE i      

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 20/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 20

%ample Problem &')

T"e rectanular plate is supported by

t"e brac4ets at $ and # and by a wire

()' ?nowin t"at t"e tension in t"e

wire is *77 2/ determine t"e moment

about $ of t"e force exerted by t"e

wire at ( '

%35@TI32:

T"e moment   $ of t"e force F  exerted

 by t"e wire is obtained by evaluatin

t"e vector product/

 F r     $(  $   ×=

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 21/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 21

%ample Problem &')%35@TI32:

(*=;(*7

7=77&7

 

= ''

k  ji

 F  F  F 

 z  z  y y x x

k  ji

  

 z  y x

 $(  $(  $(  $

( ) ( ) ( )k  ji   $ m 2='=*m 2='=*m 2;='>   ⋅+⋅+⋅−=

 F r     $(  $   ×=

( )

( )  ( ) ( ) ( )

( ) ( ) ( )k  ji

k  jir 

r  F  F 

 )( 

 )( 

 2(*= 2; 2(*7

m-'7

m&*'7m7'*,m&'7 2*77

 2*77

−+−=

−+−=

==   λ 

 

  k 'i'r r r   $(  $(  m7=7m&7

 B7'&/ 7/ 7',

 B7/7/7'&*

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 22/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 22

%calar Product of Two Vectors

. T"e scalar product  or dot product  between

two vectors  P  and Q is defined as( )resultscalar cosθ  PQQ P    =•

. %calar products:

1 are commutative/

1 are distributive/1 are not associative/

 P QQ P    •=•

( ) *(*( Q P Q P QQ P    •+•=+•( ) undefined=•• * Q P 

. %calar products wit" $artesian unit components/

777(((   =•=•=•=•=•=• ik k  j jik k  j jii

( ( k Q jQiQk  P  j P i P Q P   z  y x z  y x   ++•++=•

****  P  P  P  P  P  P 

Q P Q P Q P Q P 

 z  y x

 z  z  y y x x

=++=•

++=•

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 23/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 23

%calar Product of Two Vectors: "pplications

. Anle between two vectors:

 PQ

Q P Q P Q P 

Q P Q P Q P  PQQ P 

 z  z  y y x x

 z  z  y y x x

++=

++==•

θ 

θ 

cos

cos

. Pro8ection of a vector on a iven axis:

O+

O+

 P  P Q

Q P 

 PQQ P 

O+ P  P  P 

==•

=•

==

θ 

θ 

θ 

cos

cos

 alonof  pro8ectioncos

 z  z  y y x x

O+

 P  P  P 

 P  P 

θ θ θ 

λ 

coscoscos   ++=

•=

. For an axis defined by a unit vector:

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 24/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 24

!ixed Triple Product of T$ree Vectors

. Mixed triple product of t"ree vectors/

( ) resultscalar=ו Q P * 

. T"e six mixed triple products formed from  S /  P / and

Q "ave equal manitudes but not t"e same sin/

( ) ( ) ( )*  P QQ*  P  P Q* 

 P * Q* Q P Q P * 

ו−=ו−=ו−=

ו=ו=ו

( )   ( )

( )

 z  y x

 z  y x

 z  y x

 x y y x z 

 z  x x z  y y z  z  y x

QQQ

 P  P  P 

* * * 

Q P Q P * 

Q P Q P * Q P Q P * Q P * 

=

−+

−+−=ו

. Evaluatin t"e mixed triple product/

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 25/76© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 25

!oment of a Force "bout a *iven "xis

. Moment  M O of a force F  applied at t"e point  A 

about a point O/ F r   O   ×=

. %calar moment  O+ about an axis OL is t"e

 pro8ection of t"e moment vector  M O onto t"e

axis/( ) F r      OO+   ו=•=   λ λ 

. Moments of F  about t"e coordinate axes/

 x y z 

 z  x y

 y z  x

 yF  xF   

 xF  zF    zF  yF   

−=

−=−=

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 26/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 26

!oment of a Force "bout a *iven "xis

. Moment of a force about an arbitrary axis/

( )

 # $ # $

 # $

 # #+

r r r 

 F r 

    

−=

ו=

•=

λ 

λ 

. T"e result is independent of t"e point # 

alon t"e iven axis'

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 27/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 27

%ample Problem &'&

a about $

 b about t"e ede $# and

c about t"e diaonal $, of t"e cube'd 6etermine t"e perpendicular distance

 between $, and F( '

A cube is acted on by a force  P  as

s"own' 6etermine t"e moment of  P 

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 28/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 28

%ample Problem &'&

. Moment of  P  about $/

( )

( ) ( )( )   ( )k  j P  jia  

k  j P k  j P  P 

 jia jaiar 

 P r   

 $

 $ F 

 $ F  $

−×−=

−=−=

−=−=

×=

*9

*9*9(*9(

( )( )k  jiaP    $   ++= *9

. Moment of  P  about $#&

( )( )k  jiaP i

  i    $ $#

++•=

•=

*9

*9aP    $#  =

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 29/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsgh  t   h 

3 - 29

%ample Problem &'&

. Moment of  P  about t"e diaonal $,/

( )

( )

( ) ( )

( )(((;

*&

(*

&

(

&

−−=

++•−−=

++=

−−=−−

==

•=

aP 

k  jiaP 

k  ji  

k  jiaP 

  

k  jia

k a jaia

    

 $,

 $

, $

, $

 $ $,

λ 

λ 

;

aP    $,   −=

Vector Mechanics for Engineers: StaticsE i      g

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 30/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh  t   h 

3 - 30

%ample Problem &'&

. Perpendicular distance between $, and F(&

( ) ( )   ( )

7

((7;&

(

*

=

+−=−−•−=• P 

k  jik  j P 

 P 

λ 

T"erefore/ P  is perpendicular to $,'

 Pd aP 

   $,   ==;

;

ad  =

Vector Mechanics for Engineers: StaticsE i      g 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 31/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 31

!oment of a Couple

. Two forces F  and 1F   "avin t"e same manitude/

 parallel lines of action/ and opposite sense aresaid to form a couple'

. Moment of t"e couple/

( )

 Fd rF   

 F r 

 F r r 

 F r  F r   

 # $

 # $

==

×=

×−=

−×+×=

θ sin

. T"e moment vector of t"e couple isindependent of t"e c"oice of t"e oriin of t"e

coordinate axes/ i'e'/ it is a free vector  t"at

can be applied at any point wit" t"e same

effect'

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 32/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 32

!oment of a Couple

Two couples will "ave equal moments if 

.  **(( d  F d  F    =

. t"e two couples lie in parallel planes/ and

. t"e two couples "ave t"e same sense ort"e tendency to cause rotation in t"e same

direction'

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 33/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 33

 "ddition of Couples

. $onsider two intersectin planes P ( and

 P * wit" eac" containin a couple

***

(((

  planein

 planein

 P  F r   

 P  F r   

×=

×=

. #esultants of t"e vectors also form a

couple

( )*(  F  F r  -r      +×=×=

. +y Varion!s t"eorem

*(

*(

     F r  F r   

+=×+×=

. %um of two couples is also a couple t"at is

equal to t"e vector sum of t"e two couples

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 34/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 34

Couples Can +e Represented by Vectors

. A couple can be represented by a vector wit" manitudeand direction equal to t"e moment of t"e couple'

. (ouple vectors obey t"e law of addition of vectors'

. $ouple vectors are free vectors/ i'e'/ t"e point of applicationis not sinificant'

. $ouple vectors may be resolved into component vectors'

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 35/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 35

Resolution of a Force Into a Force at O and a Couple

. Force vector F  can not be simply moved to O wit"out modifyin its

action on t"e body'

. Attac"in equal and opposite force vectors at O produces no net

effect on t"e body'

. T"e t"ree forces may be replaced by an equivalent force vector and

couple vector/ i'e/ a force"couple system'

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 36/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 36

Resolution of a Force Into a Force at O and a Couple

. Movin F  from $ to a different point O.  requires t"e

addition of a different couple vector  M O’ 

 F r   O   ×′=C

. T"e moments of F  about 3 and O.  are related/

( )

 F  s  

 F  s F r  F  sr  F r   

O

O

×+=

×+×=×+=×= CC

. Movin t"e force1couple system from O to O.  requires t"e

addition of t"e moment of t"e force at O about O. '

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 37/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 37

%ample Problem &',

6etermine t"e components of t"esinle couple equivalent to t"e

couples s"own'

%35@TI32:

. Attac" equal and opposite *7 lb forces int"e D x direction at $/ t"ereby producin &

couples for w"ic" t"e moment components

are easily computed'

. Alternatively/ compute t"e sum of t"e

moments of t"e four forces about an

arbitrary sinle point' T"e point ) is a

ood c"oice as only two of t"e forces will

 produce non10ero moment contributions''

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 38/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 38

%ample Problem &',

. Attac" equal and opposite *7 lb forces

in t"e D x direction at $

. T"e t"ree couples may be represented by

t"ree couple vectors/

( ) ( )

( ) ( )

( ) ( ) in'lb(=7in'lb*7

in'lb*,7in'(*lb*7

in'lb-,7in'(=lb&7

⋅+=+=

⋅+=+=

⋅−=−=

 z 

 y

 x

  

  

  

( ) ( )

( )k 

 ji  

in'lb(=7

in'lb*,7in'lb-,7

⋅+

⋅+⋅−=

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 39/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh t   h 

3 - 39

%ample Problem &',

. Alternatively/ compute t"e sum of t"e

moments of t"e four forces about )'

. 3nly t"e forces at (  and /  contribute to

t"e moment about )'

( ) ( )

( ) ( )[ ]   ( ) ik  j

k  j      )

lb*7in'(*in'

lb&7in'(=

−×−+

−×==

( ) ( )

( )k 

 ji  

in'lb(=7

in'lb*,7in'lb-,7

⋅+

⋅+⋅−=

Vector Mechanics for Engineers: StaticsE i      gh 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 40/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Statics t   h 

3 - 40

%ystem of Forces: Reduction to a Force and Couple

. A system of forces may be replaced by a collection of

force1couple systems actin a iven point O

. T"e force and couple vectors may be combined into a

resultant force vector and a resultant couple vector/

( )∑∑   ×==  F r    F  -  -

O

. T"e force1couple system at O may be moved to O.  wit" t"e addition of t"e moment of  R about O.  /

 - s      -

O

 -

O   ×+=C

. Two systems of forces are equivalent if t"ey can be

reduced to t"e same force1couple system'

Vector Mechanics for Engineers: StaticsE i      gh      

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 41/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 41

Furt$er Reduction of a %ystem of Forces

. If t"e resultant force and couple at O are mutually

 perpendicular/ t"ey can be replaced by a sinle force actinalon a new line of action'

. T"e resultant force1couple system for a system of forces

will be mutually perpendicular if:

( t"e forces are concurrent/

* t"e forces are coplanar/ or& t"e forces are parallel'

Vector Mechanics for Engineers: StaticsE i      gh  t   

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 42/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 42

Furt$er Reduction of a %ystem of Forces

. %ystem of coplanar forces is reduced to a

force1couple system t"at ismutually perpendicular'

 -O   -  and

. %ystem can be reduced to a sinle force

 by movin t"e line of action of until

its moment about O becomes -

O  

 -

. In terms of rectanular coordinates/ -

O x y    y- x-   =−

Vector Mechanics for Engineers: StaticsE i      gh  t   

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 43/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 43

%ample Problem &'-

For t"e beam/ reduce t"e system of

forces s"own to Ba an equivalent

force1couple system at $/ Bb an

equivalent force couple system at #/

and Bc a sinle force or resultant'

 2ote: %ince t"e support reactions are

not included/ t"e iven system will

not maintain t"e beam in equilibrium'

%35@TI32:

a $ompute t"e resultant force for t"e

forces s"own and t"e resultant

couple for t"e moments of t"e

forces about $'

 b Find an equivalent force1couple

system at # based on t"e force1

couple system at $'

c 6etermine t"e point of application

for t"e resultant force suc" t"at itsmoment about $ is equal to t"e

resultant couple at $'

Vector Mechanics for Engineers: StaticsE i      gh  t   

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 44/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 44

%ample Problem &'-

%35@TI32:

a $ompute t"e resultant force and t"eresultant couple at $'

( ) ( ) ( ) ( ) j j j j

 F  -

 2*-7 2(77 2;77 2(-7   −+−=

=∑

( ) j -  2;77−=

( )( ) ( ) ( ) ( )

( ) ( ) ji

 ji ji

 F r    - $

*-7=',

(77='*;77;'(

−×+

×+−×=

×=∑

( )k    - $ m 2(==7   ⋅−=

Vector Mechanics for Engineers: StaticsE i      gh  t   

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 45/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 45

%ample Problem &'-

 b Find an equivalent force1couple system at # 

 based on t"e force1couple system at $'T"e force is unc"aned by t"e movement of t"e

force1couple system from $ to #'

( ) j -  2;77−=

T"e couple at # is equal to t"e moment about # 

of t"e force1couple system found at $'

( ) ( ) ( )( ) ( )k k 

 jik 

 -r       $ #

 -

 $

 -

 #

m 2*==7m 2(==7

 2;77m=',m 2(==7

⋅+⋅−=

−×−+⋅−=

×+=

( )k    - # m 2(777   ⋅+=

Vector Mechanics for Engineers: StaticsE i      gh  t   

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 46/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsth 

3 - 46

%ample Problem &'.

T"ree cables are attac"ed to t"e brac4et as s"own' #eplace t"e

forces wit" an equivalent force1

couple system at $'

%35@TI32:

. 6etermine t"e relative position vectors

for t"e points of application of t"e

cable forces wit" respect to $'

. #esolve t"e forces into rectanular

components'

. $ompute t"e equivalent force/

∑=  F  -

. $ompute t"e equivalent couple/

( )∑   ×=  F r    - $

Vector Mechanics for Engineers: StaticsE i      gh  t    

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 47/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

Vector Mechanics for Engineers: Staticsh

3 - 47

%ample Problem &'.

%35@TI32:

. 6etermine t"e relative position

vectors wit" respect to $'( )

( )

( )m(77'7(77'7

m7-7'77>-'7

m7-7'77>-'7

 jir 

k ir 

k ir 

 $ )

 $( 

 $ #

−=

−=

+=

. #esolve t"e forces into rectanular

components'( )

( ) 2 *77;77&77

*='7=->'7,*'7

(>-

-7(-7>-

 2>77

k  ji F 

k  ji

k  ji

 F 

 #

 # / 

 # / 

 #

+−=+−=

+−==

=

λ 

λ 

( ) ( )

( ) 2 (7&;77

&7cos;7cos 2(*77

 ji

 ji F  )

+=

+=

( ) ( )

( ) 2 >7>>7>

,-cos,-cos 2(777

 ji

 ji F ( 

−=

−=

Vector Mechanics for Engineers: StaticsE i      gh  t   h 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 48/76

© 2007 The McGraw-Hill Companies, Inc. All rights reserve.

ecto ec a cs o g ee s Stat csh

3 - 48

%ample Problem &'.. $ompute t"e equivalent force/

( )

( )

( )k 

 j

i

 F  -

>7>*77

(7&;77

;77>7>&77

−+

+−+

++=

=∑

( ) 2 -7>,&(;7> k  ji -   −+=

. $ompute t"e equivalent couple/

( )

k  ji

 F r 

 j

k  ji

 F r 

k i

k  ji

 F r 

 F r   

 ) $ )

c $( 

 # $ #

 -

 $

'(;&

7(7&;77

7(77'7(77'7

;='(>

>7>7>7>

7-7'777>-'7

,-&7

*77;77&77

7-7'777>-'7

=−=×

=

−=×

−=

×=∑

k  ji   - $ '((=;='(>&7   ++=

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 49/76

,/

Problem &'0

T$e (-1ft boom $# $as a fixed

end $' " steel cable is stretc$ed

from t$e free end # of t$e boom

to a point (  located on t$e

vertical wall' If t$e tension in t$e

cable is -02 lb3 determine t$e

moment about $ of t$e force

exerted by t$e cable at #'

 #

 $

 x

 y

 z 

(- ft

; ft(7 ft

( y Problem &'0

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 50/76

-2

(' Determine the rectangular components of a force defined by 

its magnitude and direction.  If t$e direction of t$e force isdefined by two points located on its line of action3 t$e force can

be expressed by:

 

F  F λ  Bd  x i D d  y  j D d  z  k  F 

 #

 $

 x

y

 z 

(- ft

; ft(7 ft %olvin Problems on 4our 5wn

T$e (-1ft boom $# $as a fixed

end $' " steel cable is stretc$edfrom t$e free end # of t$e boom

to a point (  located on t$e

vertical wall' If t$e tension in t$e

cable is -02 lb3 determine t$e

moment about $ of t$e forceexerted by t$e cable at #'

( y Problem &'0

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 51/76

-(

)' Compute the moment of a force in three dimensions.  If r is a

position vector and F is t$e force t$e moment M is iven by:

 

M  r x F

 #

 $

 x

 z 

(- ft

; ft(7 ft %olvin Problems on 4our 5wn

T$e (-1ft boom $# $as a fixed

end $' " steel cable is stretc$edfrom t$e free end # of t$e boom

to a point (  located on t$e

vertical wall' If t$e tension in t$e

cable is -02 lb3 determine t$e

moment about $ of t$e forceexerted by t$e cable at #'

Problem &'0 %olution(

 y

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 52/76

-)

Determine the rectangular 

components of a force defined 

by its magnitude and direction.

First note:

d  #(   B  (-* D B; * D B  (7 *

d  #(   ( ft

T$en:

T #(   B  (- i D ; j    (7 k     B,-7 lb i D B(=7 lb j    B&77 lbk ->7 lb

(

->7 2

 #

 $

 x

 z 

(- ft

; ft(7 ft

Problem &'0 %olution(

 y

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 53/76

-&

Compute the moment of a

force in three dimensions.

6ave:

M $  r #0$ x T #( 

7$ere:  r #0$  B(- ft i

T$en:

M $  (- i x B  ,-7 i D (=7 j    &77 k 

M $

  B,-77 lb'ft j D B*>77 lb'ft k 

->7 2

 #

 $

 x

 z 

(- ft

; ft(7 ft

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 54/76

-,

Problem &'8

9nowin t$at t$e tension in

cable $(  is ().2 3 ;etermine

<a= t$e anle between cable $( and t$e boom $# 3 <b= t$e

pro>ection on $# of t$e force

exerted by cable $(  at point $'

 y

& m

*', m

('* m

*'; m

*', m z 

 x

 $ #

 )

('= mP

Problem &'8 y

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 55/76

--

(' Calculate the angle formed by two vectors. Express t$e vectors

in terms of t$eir components' T$e cosine of t$e desired anle is

obtained by dividin t$e scalar product of t$e two vectors by t$e

product of t$eir manitudes'

%olvin Problems on 4our 5wn

9nowin t$at t$e tension in

cable $(  is ().2 3 ;etermine<a= t$e anle between cable $( 

and t$e boom $# 3 <b= t$e

pro>ection on $# of t$e force

exerted by cable $(  at point $'

& m

*', m

('* m

*'; m

*', m z 

 x

 $ #

 )

('= mP

Problem &'8 y

* ,

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 56/76

-.

)' Compute the projection of a vector P on a given line O+.Express t$e vector P and t$e unit vector

λ

 in t$e direction of t$e

line in component form' T$e required pro>ection is equal to t$e

scalar product Pλ' If t$e anle θ formed by P and λ is ?nown3 t$e

pro>ection is also iven by P  cos θ.

%olvin Problems on 4our 5wn

9nowin t$at t$e tension in

cable $(  is ().2 3 ;etermine<a= t$e anle between cable $( 

and t$e boom $# 3 <b= t$e

pro>ection on $# of t$e force

exerted by cable $(  at point $'

& m

*', m

('* m

*'; m

*', m z 

 x

 $ #

 )

('= mP

Problem &'8 %olution y* ,

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 57/76

-0

Calculate the angle formed by 

two vectors.

<a= First note:

 $(   B  *',* D B7'=* D B('**

*'= m

 $#  B  *',* D B  ('=* D B 7 *

&'7 m

 $(      B*', m i D B7'= m j D B('* m k 

 $#     B*', m i    B('= m j

and

& m

*', m

('* m

*'; m

*', m z 

 x

 $ #

 )

('= mP

Problem &'8 %olution y* ,

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 58/76

-8

+y definition:

 $(   $#  B $(  B $# cos θ

B   *', i D 7'= j D ('* k   B   *', i    ('= j B*'=B&'7 cos θ

B   *',B   *', D B7'=B   ('= D B('*B7 =', cos θ

cos θ  7'-(,* θ  -'(o

& m

*', m

('* m

*'; m

*', m z 

 x

 $ #

 )

('= mP

Problem &'8 %olution y* ,

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 59/76

-/

& m

*', m

('* m

*', m z 

 $ #

 )Compute the projection of a

vector on a given line.

<b=

BT  $(  $#  T $(    λ

 $#

  T  $(   cos θ

  B(*;7 2 B7'-(,*

BT  $(  $#  ;,= 2

T $( 

λ

 $#

*'; m

 x

('= mP

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 60/76

.2

Problem &'/

T$e frame $() is $ined at $

and ) and is supported by a

cable w$ic$ passes t$rou$ a

rin at # and is attac$ed to

$oo?s at , and 1 ' 9nowin

t$at t$e tension in t$e cable is

,-2 3 determine t$e moment

about t$e diaonal $) of t$e

force exerted on t$e frame byportion #1  of t$e cable'

 y

 z 

 x

7'=>- m

7'>- m

7  '-   m 

7  '-   m 

7'&- m

7'*- m

 $

 #

O

(   )

P

 1 

,

7'>- m

 y7'&- m

Problem &'/

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 61/76

.(

(' Determine the moment MO+ of a force about a given axis O+.

MO+ is defined as

 MO+  λ

  MO λ

  B r x F 

w$ereλ

 is t$e unit vector alon O+ and r is a position vector from

 z  x

7'=>- m

7'>- m

7  '-   m 

7  '-   m 

7'*- m

 $

 #

O

(   )

P

 1 

,

7'>- m

%olvin Problems on 4our 5wn

T$e frame $() is $ined at $

and ) and is supported by acable w$ic$ passes t$rou$ a

rin at # and is attac$ed to

$oo?s at , and 1 ' 9nowin

t$at t$e tension in t$e cable is

,-2 3 determine t$e momentabout t$e diaonal $) of t$e

force exerted on t$e frame by

portion #1  of t$e cable'

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 62/76

Problem &'/ %olution y7'&- m

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 63/76

.&

   $)  λ $)  B r #0$ x T #1  

   $) 2

(

-

  , 7  &

 7'- 7 7(-7 &77

  &77

GB  &B7'-B&77H

(

-

   $) 2    7 2m

Finally:

   $)

 z 

7'=>- m

7'>- m

7  '-   m 7  '-   m 

7'*- m

 $

 #

O

(   )

P

 1 

,

T #1  $)

r #0$  x

7'>- m

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 64/76

.,

Problem &'(2

T$e force P $as a manitude

of )-2 and is applied at t$e

end (  of a -22 mm rod $( 

attac$ed to a brac?et at $ and

 #' "ssumin α @ &2o and

β @ .2o3 replace P wit$ <a= an

equivalent force1couple

system at # 3 <b= an equivalent

system formed by two parallelforces applied at $ and #'

α

β

P

 #

 $*77 mm

&77 mm

Problem &'(2

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 65/76

.-

%olvin Problems on 4our 5wn

T$e force P $as a manitude

of )-2 and is applied at t$eend (  of a -22 mm rod $( 

attac$ed to a brac?et at $ and

 #' "ssumin α @ &2o and

β @ .2o3 replace P wit$ <a= an

equivalent force1couplesystem at # 3 <b= an equivalent

system formed by two parallel

forces applied at $ and #'

(' Replace a force with an equivalent force-couple system at aspecified point. T$e force of t$e force1couple system is equal to

t$e oriinal force3 w$ile t$e required couple vector is equal to t$e

moment of t$e oriinal force about t$e iven point'

α

β

P

 #

 $

*77 mm

&77 mm

Problem &'(2 %olution( 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 66/76

..

α

β

P

 #

 $*77 mm

&77 mm

Replace a force with an equivalent 

force-couple system at a specified 

 point.

<a= Equivalence requires:

Σ F : F  P  or   F  *-7 2 ;7o

Σ M # : M    B7'& mB*-7 2   >- 2

T$e equivalent force couple system at # is:

F  *-7 2 ;7o/ M  >- 2  m

Problem &'(2 %olution( 

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 67/76

.0

<b= Require: T$e two force systems are equivalent'

α

β

P

 #

 $*77 mm

&77 mm

 #

 $

;7o

*-7 2&7o

Φ

Φ

 #

 $ F+

FA

 x y

Problem &'(2 %olution

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 68/76

.8

 #

 $

;7o

*-7 2&7o

Φ

Φ

 #

 $ F+

FA

 x y

Equivalence t$en requires:

Σ  F  x : 7  F  $ cos Φ D F  # cos Φ

  F  $      F  #  or cos Φ  7

Σ  F  y :  *-7   F  $ sin Φ     F  # sin Φ

  If    F  $   F  # t$en    *-7 7 re>ect

o

Problem &'(2 %olution

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 69/76

./

 #

 $

;7o

*-7 2&7o

Φ

Φ

 #

 $ F+

FA

 x y

 "lso:Σ    # :    B7'& mB *-7 2 B7'* m F  $

  or    F  $   &>- 2

  and   F  #  D ;>- 2

F $  &>- 2 ;7o/ F #  ;*- 2 ;7o 

D

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 70/76

02

Problem &'((

M $  #

(* in

= in

;7o

,- lb

&7 lb(7 lb  " couple of manitude

   @ -, lbin' and t$e t$ree

forces s$own are applied to

an anle brac?et' <a= Find t$e

resultant of t$is system of 

forces' <b= Aocate t$e points

w$ere t$e line of action of t$e

resultant intersects line $# and line #( '

%olvin Problems on 4our 5wn

Problem &'((

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 71/76

0(

M $  #

(* in

= in

;7o

,- lb

&7 lb(7 lb

(' Determine the resultant of two or more forces. ;etermine t$erectanular components of eac$ force' "ddin t$ese components

will yield t$e components of t$e resultant'

%olvin Problems on 4our 5wn

 " couple of manitude

   @ -, lb

in' and t$e t$reeforces s$own are applied to

an anle brac?et' <a= Find t$e

resultant of t$is system of 

forces' <b= Aocate t$e points

w$ere t$e line of action of t$e

resultant intersects line $# 

and line #( '

%olvin Problems on 4our 5wn

Problem &'((

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 72/76

0)

M $  #

(* in

= in

;7o

,- lb

&7 lb(7 lb

)' Reduce a force system to a force and a couple at a given point.

T$e force is t$e resultant R  of t$e system obtained by addin t$e

various forces' T$e couple is t$e moment resultant of t$e system

M3 obtained by addin t$e moments about t$e point of t$e various

forces'

  R   Σ F M  Σ B r x F 

%olvin Problems on 4our 5wn

 " couple of manitude

   @ -, lb

in' and t$e t$reeforces s$own are applied to

an anle brac?et' <a= Find t$e

resultant of t$is system of 

forces' <b= Aocate t$e points

w$ere t$e line of action of t$e

resultant intersects line $# 

and line #( '

%olvin Problems on 4our 5wn

Problem &'((

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 73/76

0&

M $  #

(* in

= in

;7o

,- lb

&7 lb(7 lb

&' Reduce a force and a couple at a given point to a single force.

T$e sinle force is obtained by movin t$e force until its momentabout t$e point < $= is equal to t$e couple vector M $' " position

vector r from t$e point3 to any point on t$e line of action of t$e

sinle force R must satisfy t$e equation

  r x R   M $

 -

 -

%olvin Problems on 4our 5wn

 " couple of manitude

   @ -, lb

in' and t$e t$reeforces s$own are applied to

an anle brac?et' <a= Find t$e

resultant of t$is system of 

forces' <b= Aocate t$e points

w$ere t$e line of action of t$e

resultant intersects line $# 

and line #( '

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 74/76

Problem &'(( %olution

(* in&7 lb

(7 lb

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 75/76

0-

M  $  #

(* in

= in

;7o

,- lb

Reduce a force system to

a force and a couple at agiven point.

<b= First reduce t$e iven forces and couple to an equivalent

force1couple system <R / M #= at #'

Σ    # :    #  B -, lbin D B (* in B(7 lb    B = in B ,- lb

   (=; lbin

D

Problem &'(( %olutiona

8/9/2019 Ch03 Rigid Bodies Equivalent Systems of Forces

http://slidepdf.com/reader/full/ch03-rigid-bodies-equivalent-systems-of-forces 76/76

Reduce a force and a couple

at a given point to a single force.

 $  #

c

 )

 / 

7it$ R  at ):

Σ    #  :    (=; lbin    a B (-'=7= lb or   a  ((';, in

and wit$ R  at  / 

Σ    #  :    (=; lbin c B &7 lb or   c  ;'*7 inT$e line of action of R  intersects line $# (('., in' to t$e left of #

d i t t li #( . )2 i b l #

D

D