ch02 - atomic bonding

Upload: maycon-fioreze

Post on 13-Apr-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Ch02 - Atomic Bonding

    1/35

    P A R TO N E

    CHAPTER 2Atomic Bonding

    The scanning tunneling microscope (Section

    4.7) allows the imaging of individual atoms

    bonded to a material surface. In this case, the

    microscope was also used to manipulate the

    atoms into a simple pattern. Four lead atoms

    are shown forming a rectangle on the surface

    of a coppercrystal. (FromG. Meyer andK. H.

    Rieder, MRS Bulletin 23 28 [1998].)

  • 7/26/2019 Ch02 - Atomic Bonding

    2/35

    Outer orbital(with foursp3hybrid

    bonding electrons)

    Nucleus (withsix protons andsix neutrons)

    Inner orbital(with two 1selectrons)

    Figure 2-1 Schematic of the planetary model of a12C atom.

  • 7/26/2019 Ch02 - Atomic Bonding

    3/35

    1

    H1.008

    3Li

    6.941

    4Be

    9.012

    I A

    II A III A IV A V

    VIII

    III B IV B V B VI B VII B I B

    11Na

    22.99

    12Mg

    24.31

    13Al

    26.98

    14Si

    28.09

    1P

    30

    5B

    10.81

    6C

    12.01

    7N

    14

    19K

    39.10

    20Ca

    40.08

    21Sc

    44.96

    22Ti

    47.90

    23V

    50.94

    24Cr

    52.00

    25Mn

    54.94

    26Fe

    55.85

    27Co

    58.93

    28Ni

    58.71

    29Cu

    63.55

    30Zn

    65.38

    31Ga

    69.72

    32Ge

    72.59

    3A

    74

    37Rb85.47

    38Sr87.62

    39Y88.91

    40Zr91.22

    41Nb92.91

    42Mo95.94

    43Tc98.91

    44Ru101.07

    45Rh102.91

    46Pd106.4

    47Ag107.87

    48Cd112.4

    49In114.82

    50Sn118.69

    5S121

    55Cs

    132.91

    56Ba

    137.33

    57La

    138.91

    87Fr

    (223)

    88Ra

    226.03

    89Ac

    (227)

    72Hf

    178.49

    73Ta

    180.95

    74W

    183.85

    75Re

    186.2

    76Os

    190.2

    77Ir

    192.22

    78Pt

    195.09

    79Au

    196.97

    80Hg

    200.59

    81Tl

    204.37

    82Pb

    207.2

    8B

    208

    58Ce

    140.12

    59Pr

    140.91

    60Nd

    144.24

    61Pm

    (145)

    62Sm

    150.4

    63Eu

    151.96

    64Gd

    157.25

    65Tb

    158.93

    66Dy

    162.50

    67Ho

    164.93

    68Er

    167.26

    69Tm

    168.93

    7Y

    17390Th

    232.04

    91Pa

    231.04

    92U

    238.03

    93Np

    237.05

    94Pu

    (244)

    95Am

    (243)

    96Cm

    (247)

    97Bk

    (247)

    98Cf

    (251)

    99Es

    (254)

    100Fm

    (257)

    101Md

    (258)

    10N

    (25

    II B

    Figure 2-2 Periodic table of the elements indicating atomic number and atomic mas

  • 7/26/2019 Ch02 - Atomic Bonding

    4/35

    Energy (eV)

    283.9

    6.5 2 (sp3)

    1s

    0

    Figure 2-3 Energy-level diagram for the orbital electrons in a12C atom.Notice the sign convention. An attractive energy is negative. The 1s elec-

    trons are closer to the nucleus (see Figure 21) and more strongly bound(binding energy = 283.9 eV). The outer orbital electrons have a bind-ing energy of only 6.5 eV. The zero level of binding energy correspondsto an electron completely removed from the attractive potential of thenucleus.

  • 7/26/2019 Ch02 - Atomic Bonding

    5/35

    Electron transfer

    Ionic bond

    Na Cl

    Na+ Cl

    Figure 2-4 Ionic bonding between sodium

    and chlorine atoms. Electron transfer fromNa to Cl creates a cation (Na+) and ananion (Cl). The ionic bond is due to thecoulombic attraction between the ions ofopposite charge.

  • 7/26/2019 Ch02 - Atomic Bonding

    6/35

    Cl

    Na+

    Figure 2-5 Regular stacking of Na+

    and Cl ions in solid NaCl. Thisis indicative of the nondirectionalnature of ionic bonding.

  • 7/26/2019 Ch02 - Atomic Bonding

    7/35

    0.70.60.50.40.3a(nm)

    Na+ Cl

    0.20.1

    a

    4

    3

    2

    1

    00

    Fc

    1

    09(N)

    Figure 2-6 Plot of the coulombic force (Equation 2.1) for a Na+Cl pair.

  • 7/26/2019 Ch02 - Atomic Bonding

    8/35

    0.7a(nm)

    0.60.50.40.3

    Na+

    Fc(coulombic force of attraction)

    FR(repulsive force)

    F(net bonding force)

    Cl

    0.20.1

    a0

    4

    3

    2

    1

    1

    2

    3

    4

    0

    Fc1

    09(N)

    Figure 2-7 Net bonding force curve for a Na+Cl pair showing an equi-librium bond length ofa0 = 0.28nm.

  • 7/26/2019 Ch02 - Atomic Bonding

    9/35

    +

    0

    Bondingforce

    Na+ Cl

    a

    +

    0

    a0

    Bondingenergy

    a

    Figure 2-8 Comparison of the bonding force curveand the bonding energy curve for a Na+Cl

    pair. SinceF = dE/da, the equilibrium bondlength (a0) occurs whereF = 0and E is a mini-mum (see Equation 2.5).

  • 7/26/2019 Ch02 - Atomic Bonding

    10/35

    (a)

    (b)

    (c)

    a0

    rClrNa+

    Figure 2-9 Comparison of (a) a plane-tary model of a Na+Cl pair with(b) a hard-sphere model and (c) a

    soft-sphere model.

  • 7/26/2019 Ch02 - Atomic Bonding

    11/35

    Na

    Na+

    Cl

    Cl

    Figure 2-10 Formation of an ionic bond between sodium and chlorine inwhich the effect of ionization on atomic radius is illustrated. The cation(Na+) becomes smaller than the neutral atom (Na), while the anion(Cl) becomes larger than the neutral atom (Cl).

  • 7/26/2019 Ch02 - Atomic Bonding

    12/35

    R= 1.0

    r= 0.2

    CN = 1 possible CN = 2 possible CN = 3 maximum

    Figure 2-11 The largest number of ions of radiusR that can coordinate an atom of raddius ratio,r/R = 0.2. (Note: The instability for CN = 4can be reduced butnotelthree-dimensional, rather than a coplanar, stacking of the larger ions.)

  • 7/26/2019 Ch02 - Atomic Bonding

    13/35

    30

    cos 30 = 0.866 = = 0.155R

    r + R

    r

    R

    Figure 2-12 The minimum radius ratio, r/R,that can produce threefold coordinationis 0.155.

  • 7/26/2019 Ch02 - Atomic Bonding

    14/35

    (a)

    (b)

    (d)

    (c)

    Cl Cl

    Cl Cl

    Figure 2-13 The covalent bond ina molecule of chlorine gas, Cl

    2,

    is illustrated with (a) a plane-tary model compared with (b)the actual electron density and(c) an electron-dot schematicand (d) a bond-line schematic.

  • 7/26/2019 Ch02 - Atomic Bonding

    15/35

    C C

    HH

    C C C C C

    HH

    H H

    H H

    H

    H

    H

    H

    H

    H

    C C C

    H

    H

    H

    H

    H

    H

    (a)

    (b)

    Ethylenemolecule

    Ethylenemer

    Polyethylenemolecule

    .. . .. . . .

    . . . .. . . .

    Figure 2-14 (a) An ethylene molecule (C2H4) is comparedwith (b) a polyethylene molecule ( C2H4) nthat re-

    sults from the conversion of the C=C double bond intotwo CC single bonds.

  • 7/26/2019 Ch02 - Atomic Bonding

    16/35

    C

    H

    H

    C

    H

    H

    C

    H

    H

    CH H

    CH

    HC

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    HC

    H

    HC H

    H

    C HH

    C

    H

    H

    C

    H

    H

    C

    H

    H C

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    HC

    H

    HC

    H

    H

    C

    H

    H

    CH

    H

    CH

    H

    CH H

    CH H

    CH H

    CH H

    CH H

    CH H

    CH H

    CH

    HCH

    HC

    H

    H

    CH

    H

    C

    H

    H

    C

    H

    HC

    H

    HC

    H

    H

    C

    H

    HC

    H

    H

    CH

    H

    C

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    H

    C

    H

    H

    CH H

    C

    H

    H

    CH

    H

    CH

    CH

    H

    CH

    H

    CH

    C

    H

    H

    C

    H

    H

    C

    H

    H.

    .

    .

    .

    .

    .

    .

    .

    . .. .

    ....

    ....

    ....

    Figure 2-15 Two-dimensional schematic representation of the spaghettilike solid polyethylene.

  • 7/26/2019 Ch02 - Atomic Bonding

    17/35

    C

    C C

    C C

    CC

    C

    C

    CC

    C

    C

    C

    C

    C

    Figure 2-16 Three-dimensional structure of bond-ing in the covalent solid, carbon (diamond).Each carbon atom (C) has four covalent bonds

    to four other carbon atoms. (This geometry canbe compared with the diamond cubic struc-ture of Figure 323.) In this illustration, the bond-line schematic of covalent bonding is givena perspective view to emphasize the spatial ar-rangement of bonded carbon atoms.

  • 7/26/2019 Ch02 - Atomic Bonding

    18/35

    O2

    Si4+

    Figure 2-17 The SiO44 tetrahedronrepresented as a cluster of ions. In

    fact, the SiO bond exhibits bothionic and covalent character.

  • 7/26/2019 Ch02 - Atomic Bonding

    19/35

    Bond energy

    0

    +

    E a

    Bond length

    Figure 2-18 The general shape of the bond energy curve as well asassociated terminology applies to covalent as well as ionic bond-ing. (The same is true of metallic and secondary bonding.)

  • 7/26/2019 Ch02 - Atomic Bonding

    20/35

    109.5

    C

    Figure 2-19 Tetrahedral configuration of covalentbonds with carbon. The bond angle is 109.5.

  • 7/26/2019 Ch02 - Atomic Bonding

    21/35

    C C

    ClH

    H H

  • 7/26/2019 Ch02 - Atomic Bonding

    22/35

    C C C C C

    HCl

    H H

    Cl

    H

    H

    H

    C C

    Cl

    H

    H

    H

    Cl

    H

    C C C

    H

    H

    Cl

    H

    H

    H

    mer

  • 7/26/2019 Ch02 - Atomic Bonding

    23/35

    CC CC

    CC C C

    54.75

    l109.5

  • 7/26/2019 Ch02 - Atomic Bonding

    24/35

    Cu2+ion core(cutaway view)

    Electron cloud from valence electrons

    Figure 2-20 Metallic bond consisting of an electron cloud, or gas. An imaginaryslice is shown through the front face of the crystal structure of copper, reveal-

    ing Cu2+ ion cores bonded by the delocalized valence electrons.

  • 7/26/2019 Ch02 - Atomic Bonding

    25/35

    1H2.1

    3Li1.0

    4Be1.5

    I A

    II A III A IV A V

    VIII

    III B IV B V B VI B VII B I B

    11Na0.9

    12Mg1.2

    13Al1.5

    14Si1.8

    5B

    2.0

    6C

    2.5

    19

    K0.8

    20

    Ca1.0

    21

    Sc1.3

    22

    Ti1.5

    23

    V1.6

    24

    Cr1.6

    25

    Mn1.5

    26

    Fe1.8

    27

    Co1.8

    28

    Ni1.8

    29

    Cu1.9

    30

    Zn1.6

    31

    Ga1.6

    32

    Ge1.8

    37Rb0.8

    38Sr1.0

    39Y1.2

    40Zr1.4

    41Nb1.6

    42Mo1.8

    43Tc1.9

    44Ru2.2

    45Rh2.2

    46Pd2.2

    47Ag1.9

    48Cd1.7

    49In1.7

    50Sn1.8

    55Cs0.7

    56Ba0.9

    57-71La-Lu1.1-1.2

    87Fr0.7

    88Ra0.9

    89-102Ac-No1.1-1.7

    72Hf1.3

    73Ta1.5

    74W1.7

    75Re1.9

    76Os2.2

    77Ir2.2

    78Pt2.2

    79Au2.4

    80Hg1.9

    81Tl1.8

    82Pb1.8

    II B

    Figure 2-21 The electronegativities of the elements. (After Linus Pauling, The Natureand the Structure of Molecules and Crystals; An Introduction to Modern StructuraCornell University Press, Ithaca, New York, 1960)

  • 7/26/2019 Ch02 - Atomic Bonding

    26/35

    +

    Magnitude ofdipole moment

    Secondarybond

    Isolated Ar atom

    +

    Center of negative(electron) charge

    Cecha

    Figure 2-22 Development of induced dipoles in adjacent argon atoms leading to a weak, sgree of charge distortion shown here is greatly exaggerated.

  • 7/26/2019 Ch02 - Atomic Bonding

    27/35

    Dipole

    HH

    O

    +

    =

    +

    Figure 2-23 Hydrogen bridge. This secondary bond is formedbetween two permanent dipoles in adjacent water molecules.(From W. G. Moffatt, G. W. Pearsall, and J. Wulff,TheStructure and Properties of Materials,Vol. 1: Structures,

    John Wiley & Sons, Inc., New York, 1964.)

  • 7/26/2019 Ch02 - Atomic Bonding

    28/35

    covalent

    Semiconductors

    Polymers

    metallic secondary

    Ceramics and glassMetals

    ionic

    Figure 2-24 Tetrahedron representing the relative contri-bution of different bond types to the four fundamentalcategories of engineering materials (the three structuraltypes plus semiconductors).

  • 7/26/2019 Ch02 - Atomic Bonding

    29/35

    a0

    Referenceion

    + + + + +

  • 7/26/2019 Ch02 - Atomic Bonding

    30/35

    C C

    H

    C

    H

    nn

    H H

    C

    CH3 H

    C C

    H

    C

    H

    H H

    C

    CH3 H

  • 7/26/2019 Ch02 - Atomic Bonding

    31/35

    nnOC

    H

    H

    CC

    H

    H

  • 7/26/2019 Ch02 - Atomic Bonding

    32/35

    C C

    FF

    F F

  • 7/26/2019 Ch02 - Atomic Bonding

    33/35

    C C

    HF

    F H

  • 7/26/2019 Ch02 - Atomic Bonding

    34/35

    C C

    F

    F F

    C FF

    F

  • 7/26/2019 Ch02 - Atomic Bonding

    35/35

    Na (solid) + Cl2(g)

    NaCl (solid) Na+ (g) + Cl (g)

    Na (g) + Cl (g)1

    2

    Hf