ch. 8 solutions new calc book

Upload: dhruv1117

Post on 06-Apr-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    1/28

    350 Section 8.1

    51. =y xsec2 , so the area is 2 1 22

    0

    4

    tan sec , x x dx( ) + ( )which using NINT evaluates to 3 84. .

    52.x=1 1

    21

    11

    2 2yx

    y y yand so the area is =

    +

    ,

    2

    1

    2dy,

    which using NINT evaluates to 5.02.

    53. (a) The two curves intersect atx = 1.2237831. Store thisvalue asA.

    Area = ( sin sec ) . .2 1 3660

    + = x x dxA

    (b) Volume = ( sin ) (sec ) . .2 16 4042 20

    + ( ) = x x dxA

    (c) Volume = ( sin sec ) . .2 1 62920

    + = x x dxA

    54. (a) Average temp

    =

    1

    14 680 10

    1287

    6

    14cos .

    tdt F

    (b) F tt

    ( ) cos=

    80 1012

    78

    for

    5 2308694 18 766913. . . tStore these two values asA andB.

    (c) Cost =

    0 05 80 10 12 78 5 10. cos .t

    dtA

    B

    The cost was about $5.10.

    55. (a)15600

    24 1606004

    29

    17

    ( )t tdt

    + people.

    (b)

    1515600

    24 160

    1115600

    24 16

    29

    17

    2

    ( )

    (

    t t

    dt

    t t

    ++

    +

    00104 048

    17

    23

    ),dt

    dollars

    (c) = H E L( ) ( ) ( )17 17 17 380 people.H(17) is thenumber of people in the park at 5:00, and H ( )17 is therate at which the number of people in the park is

    changing at 5:00.

    (d) When = =H t E t L t ( ) ( ) ( ) ;0 that is, at t= 15.795

    Chapter 8

    Sequences, LHpitals Rule,

    and Improper Integrals

    Section 8.1 Sequences (pp. 435443)

    Quick Review 8.1

    1. f( )55

    5 3

    5

    8= =

    +

    2. f( ) =

    += 2

    2

    2 32

    3. + =2 3 1 1 5 1( )( . )

    4. + =7 5 1 3 5( )( )

    5. 1 5 2 124 1. ( ) =

    6. =

    2 1 5 4 53 1

    ( . ) .

    7. lim limx x

    x x

    x x

    x

    x

    +

    += =

    5 2

    3 16

    5

    30

    3 2

    4 2

    3

    4

    8. limsin ( )

    limx x

    x

    x

    x

    x = =

    0 0

    3 33

    9. lim sin limx x

    xx

    xx

    =

    =1 1

    1

    10. lim .x

    x x

    x

    x

    x

    ++

    = = 2

    1

    23 2 3Does not exist, or

    Section 8.1 Exercises

    1.1

    2

    2

    3

    3

    4

    4

    5

    5

    6

    6

    7

    50

    51, , , , , ;

    2. 25

    2

    8

    3

    11

    4

    14

    5

    17

    6

    149

    50, , , , , ;

    3. 29

    4

    64

    27

    625

    256

    7776

    31252 48832, , , , . ,

    117649

    466562 521626

    51

    502 691588

    50

    . , .

    4. 2 2 0 4 10 18 2350, , , , , ,

    5. 3 1 1 3 11, , , ;

    6. 2 1 0 1 5, , , ;

    7. 2 4 8 16 256, , , ;

    8. 10 11 12 1 13 31 19 487171 10 1 1 7, , . , . ; . ( . )

    9. 1 1 2 3 21, , , ;

    10. 3 2 1 1 2, , , ;

    11. (a) 3

    (b) a d+ = + =7 2 7 3 19( )

    (c) a an n

    = +1 3

    (d) a n nn = + = 2 1 3 3 5( )( )

    12. (a) 2

    (b) a d+ = + =7 15 7 2 1( )(c) a a

    n n= 1 2

    (d) a n nn

    = + = +15 1 2 2 17( )( )

    13. (a)1

    2

    (b) a d+ = +

    =7 1 71

    2

    9

    2

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    2/28

    Section 8.1 351

    13. Continued

    (c) a an n

    = +11

    2

    (d) a nn

    n = +

    =1 11

    2

    1

    2( )

    ( )+

    14. (a) 0.1

    (b) a d+ = + =7 3 7 0 1 3 7( . ) .

    (c) a an n= +1 0 1.

    (d) a n nn = + = +3 1 0 1 0 1 2 9( )( . ) . .

    15.(a)1

    2

    (b) 81

    20 03125

    8

    = .

    (c) a an n=

    1

    21

    (d) an

    n

    n=

    = 81

    22

    1

    4

    16. (a) 1 5.

    (b) ( )( . ) .1 1 5 25 62898

    (c) a an n

    = ( . )1 5 1

    (d) an

    n n= = ( )( . ) ( . )1 1 5 1 51 1

    17. (a) 3

    (b) ( ) ,

    = 3 19 6839

    (c) a an n= 3 1

    (d) ann n= = ( )( ) ( )3 3 31

    18. (a) 1

    (b) ( )( )5 1 58 =

    (c) a an n= 1

    (d) ann= 5 1 1( )

    19.7 2

    33

    =

    ( )

    a1 2 3 5= =

    a a nn n= + 1 3 2for all

    20.

    =3 5

    42

    a1 5 2 4 13= =( )( )

    a n nn = + = +13 1 2 2 15( )( )

    21. r =

    =3010000

    301010

    1 3/

    a1 33010

    103 01= = .

    a nnn= 3 01 10 11. ( ) ,

    22. r =

    =16

    1 22

    1 5

    /

    /

    a11 2

    21 4=

    =/

    /

    a nnn n= ( ) ( ) ,1 2 11 3

    23.

    [0, 20] by [0, 1]

    24.

    [0, 20] by [1, 1]

    25.

    [0, 20] by [5, 5]

    26.

    [0, 20] by [0, 10]

    27.

    [0, 10] by [25, 200]

    28.

    [0, 10] by [5, 30]

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    3/28

    352 Section 8.1

    29.

    [0, 20] by [1, 5]

    30.

    [0, 10] by [15, 10]

    31. lim lim ( ) limn n n

    n

    n n

    += +

    = =3 1

    31

    3 0 3

    converges, 3

    32. lim limn n

    n

    n

    n

    n += =

    2

    3

    22

    converges, 2

    33. lim limn n

    n n

    n n

    n

    n

    + +

    = =2 1

    5 2

    2

    5

    2

    5

    2

    2

    2

    2

    converges, 2 5/

    34. lim lim limn n n

    n

    n

    n

    n n += = =

    2 21

    10

    converges, 0

    35. n kn

    nn

    n= +

    =

    2 11

    31, l im ( )

    n kn

    nn

    n= +

    =

    2 1 11

    31, l im ( )

    diverges

    36. n kn

    n

    n

    nn

    n

    n

    n= ++

    = =

    2 11

    11 0

    2 2, lim ( ) lim ( )

    n kn

    n

    n

    nn

    n

    n

    n= ++

    = =

    2 1 11

    11

    2 2, lim ( ) lim ( ) 00

    converges, 0

    37. lim ( . )n

    n

    = 1 1

    diverges

    38. lim ( . )n

    n

    =0 9 0

    converges, 0

    39. lim sin limn n

    nn

    nn

    =

    =

    1 11

    converges, 1

    40. lim cosn

    n

    2

    12

    1cos ,n

    diverges

    41. limsin

    n

    n

    n

    1 1

    n

    n

    n n

    sin

    lim limn nn n

    =

    =1 1

    0

    42. limn n

    1

    2

    lim limn nn n

    =

    =1 1

    0

    Note:1

    2for

    n nn<

    11 .

    43. lim!n n

    1

    lim limn nn n

    =

    =1 1

    0

    Note:1

    !for

    n nn

    11

    44. limsin

    n n

    n

    2

    2

    lim limn nn n

    =

    =1 1

    0

    Note:1

    2for 1

    n nn<

    1

    45. Graph (b)

    46. Graph (c)

    47.Table (d)

    48. Table (a)

    49. False. Consider the sequence with nth term

    a nn = +5 2 1( ). Here

    a a a a= = = =5 3 1 12 3, , , .and 4

    50. True. aa

    ar1

    1

    0 02> = >, , and

    a a r nnn= >

    11 0 for all 2.

    51. C.5

    =( )1

    23

    + =1 3 5 14( )

    52. E.1 25

    2 5

    1

    2

    .

    .=

    2 5

    1 25

    .

    /=

    53. D. lim sinn

    nn

    3

    =

    =

    limn

    nn

    33

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    4/28

    Section 8.2 353

    54. E. n kn

    nn

    n=

    +

    =

    2 13 1

    21, lim ( )

    n kn

    nn

    n=

    +

    =

    2 1 13 1

    21, lim ( )

    55. (b)lim sinn

    nn

    2

    =

    =

    limn

    nn

    2 2

    56. (a) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

    (b)

    [0, 10] by [10, 60]

    57. a arn

    n= 1 implies that log a a n r n

    = + log ( ) log .1 Thus

    logan{ } is an arithmetic sequence with first term log a andcommon ratio log r.

    58. a a n d n = + ( )1 implies that

    10 10 10 101 1an a n d a d n= =+ ( ) ( ) . Thus 10an{ } is a geometric

    sequence with first term10a and common ratio10d.

    59. Given > 0 choose M =1

    . Then

    10

    nn M < > if .

    Section 8.2 LHpitals Rule (pp. 444452)

    Exploration 1 Exploring LHpitals Rule

    Graphically

    1. limsin

    limcos

    x x

    x

    x

    x

    = =

    0 0 11

    2. The two graphs suggest that lim lim .x x

    y

    y

    y

    y =

    01

    20

    1

    2

    3. yx x x

    x5 2

    =cos sin

    .

    The graphs ofy3 and y5 clearly show

    that lHpitals Rule does not say that limx

    y

    y01

    2

    is equal to

    lim .x

    y

    y

    01

    2

    Quick Review 8.2

    1.

    x 10 1

    +

    .

    x

    x

    1 1.1000

    10 1.1046

    100 1.1051

    1000 1.1052

    10,000 1.1052

    1,000,000 1.1052

    As xx

    x

    +

    ,.

    10 1

    approach 1.1052.

    2. x xx1/(ln )

    0.1 2.7183

    0.01 2.7183

    0.001 2.7183

    0.0001 2.71830.00001 2.7183

    As x x x +0 1, /(ln ) approaches 2.7183.

    3.

    x 11

    x

    x

    1 0.5

    0.1 0.78679

    0.01 0.95490

    0.001 0.99312

    0.0001 0.99908

    0.00001 0.99988

    0.000001 0.99999

    As xx

    x

    0 11

    , approaches 1.

    4.

    x 11

    +

    x

    x

    1.1 13.981

    1.01 105.77

    1.001 1007.9

    1.0001 10010

    As x

    x

    x

    +

    1 11

    , goes to .

    5.

    As tt

    t

    11

    1, approaches 2.

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    5/28

    354 Section 8.2

    6.

    As approaches 2.xx

    x +

    +,

    4 1

    1

    2

    7.

    As approaches .xx

    x 0

    33,

    sin

    8.

    As approaches1.

    +2 2,

    tan

    tan

    9. yh

    h=1

    sin

    10. y hh= +( ) /1 1

    Section 8.2 Exercises

    1. limx

    x

    x

    2 2

    2

    4

    appears to be about

    1

    4;

    [2, 4] by [1, 4]

    By LHpitals Rule:

    lim lim( )x x

    x

    x =

    = =

    2 2 2

    2

    4

    1

    2 2

    1

    4

    2. limsin ( )

    x

    x

    x

    =

    0

    5appears to be about 5;

    [2, 2] by [2, 6]

    By LHpitals Rule:

    limsin ( )

    limcos( ( ))

    x x

    x

    x

    =

    0 0

    5 5 5 0

    1 = 5

    3. limx

    x

    x

    +

    2

    2 2

    2appears to be about

    1

    4;

    [2, 4] by [1, 1]

    By LHpitals Rule:

    lim lim( )

    x x

    x

    x

    +

    =

    +

    2 2

    1 2

    2 2

    2

    1

    22 2

    1

    =1

    4

    4. limx

    xx

    1

    3

    11

    appears to be about 13

    ;

    [2, 2] by [1, 2]

    By LHpitals Rule:

    lim lim

    ( )

    x x

    x

    x

    =

    1

    3

    1

    2 3

    1

    2

    1

    31

    1

    =1

    3

    5. limcos

    limsin

    limx x

    x

    x

    x

    x

    =

    =0 2 0

    1

    2 xx

    =0

    0

    2

    1

    2

    cos( )

    6. limsin

    cos ( )lim

    cos

    / /

    +

    =

    2 2

    1

    1 2

    =

    2 2

    2

    4 22

    2

    sin( )

    limsin

    cos/

    =1

    4

    7. limcos

    limsin

    t t t t

    t

    e t

    t

    e

    =

    0 0

    1

    1 1

    =

    =

    limcos

    t e0 00

    1

    8. lim limx x

    x x

    x x

    x

    x

    + +

    =

    2

    2

    3 2 2

    4 4

    12 16

    2 4

    3 112

    2

    6 2

    1

    62

    =

    =

    lim( )x

    9. (a) limsin

    sinlim

    cos( ( ))

    cx x

    x

    x

    =0 0

    4

    2

    4 4 0

    2 oos( ( ))2 02

    =

    (b) limsin

    sinlim

    cos( ( ))

    cx x

    x

    x + +

    =0 0

    4

    2

    4 4 0

    2 oos( ( ))2 02

    =

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    6/28

    Section 8.2 355

    9. Continued

    (b)

    [2, 2] by [3, 3]

    10. (a) limtan

    limsec

    x x

    x

    x

    x

    =

    =

    0 0

    2

    11

    (b) limtan

    limsec

    x x

    x

    x

    x

    + +

    =

    =

    0 0

    2

    11

    [1.5, 1.5] by [2, 10]

    11. (a) limsin

    limcos( )

    ( )x xx

    =

    0 3 0 2

    0

    3 0

    x

    =

    (b) limsin

    limcos( )

    ( )x x

    x

    x + +

    =

    0 3 0 20

    3 0=

    [2, 2] by [2, 10]

    12. (a)lim

    tan

    lim

    sec ( )

    ( )x x

    x

    x

    =

    0 2 0

    2 0

    2 0 =

    (b) limtan

    limsec ( )

    ( )x x

    x

    x + +

    =+

    02

    0

    2 0

    2 0 =

    [1, 1] by [10, 10]

    13. Left:

    limcsc

    cotx

    x

    x

    +

    =

    1

    limcsc cot

    cscx

    x x

    x

    =

    2

    1

    Right:

    limcsc

    cotx

    x

    x + +

    = 1

    limcsc cot

    cscx

    x x

    x +

    =

    2

    1

    limit = 1

    [3/4, 5/4] by [5, 5]

    14. Left:

    limsec

    tan/x

    x

    x

    +

    = 2

    1

    limsec tan

    sec/x

    x x

    x

    =

    22

    1

    Right:

    limsec

    tan/x

    x

    x +

    +

    = 2

    1

    limsec tan

    sec/x

    x x

    x +

    =

    22

    1

    limit = 1

    [/4, 3/4] by [5, 5]

    15. limln( )

    logx

    x

    x

    +=

    1

    2

    lim

    ln

    lnx

    x

    x

    +

    =

    1

    1

    1

    2

    2

    [0, 100] by [1, 2]

    16. limx

    x x

    x

    +

    =

    5 3

    7 1

    2

    2

    limx

    x

    x

    =10 3

    14

    5

    7

    [0, 100] by [1, 2]

    17. l im ( ln )x

    x x +

    = 0

    0 i

    limln

    /lim

    /

    /l

    x x

    x

    x

    x

    x + +

    =

    =0 0

    21

    1

    1iim ( )

    x

    x +

    =0

    0

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    7/28

    356 Section 8.2

    18. lim tanx

    xx

    = 1

    0i

    lim tan ( ) limx hh

    hh

    h

    =

    =1 1

    1

    19. lim (csc co t cos )

    x

    x x x

    + + =

    0

    limcos cos sin

    sinlim

    sin

    x x

    x x x

    x + +

    +

    =0 0

    1 x x x x

    x

    +

    =

    sin cos

    cos

    2 2

    1

    20. lim (ln( ) ln( ))x

    x x

    + = 2 1

    limln( )

    ln( )ln( )

    x

    x

    x +

    =2

    12

    21. lim ( ) ( )/x

    x xe x

    + = + =0

    1 1 0 1

    limln( )

    limln

    lix

    x

    x

    e x

    x

    x x

    x

    +

    =+

    =0 0

    mmx

    x

    +

    =0

    11

    12

    lim l n ( )x

    f xe e

    =

    0

    2

    22. lim( )( )x

    xx

    =1

    1 1 1

    limln

    lim/

    x x

    x

    x

    x

    = =

    1 11

    1

    11

    lim l n ( )x

    f xe e e

    = =

    1

    1

    23. lim( ) ( ( ) )x

    xx x

    + = + =1

    2 1 2 1 1 02 1 1 2 1 1 0

    lim ln( )/

    lim /( )x x

    x xx

    xx

    + = =1

    2

    1 22 1

    1 1

    2

    11 1

    llim ( )x

    xx

    =

    1

    2

    2 11

    0

    lim l n ( )x

    f xe e

    = =

    1

    0 1

    24. lim (sin )x

    xx

    +=

    0

    00

    limln(sin )

    /lim tan

    /x x

    x

    xx

    x + +

    =

    0 0 2

    1

    1

    1

    =

    =

    +

    +

    limtan

    limsec

    x

    x

    x

    x

    x

    x

    0

    2

    02

    2

    = =

    0

    10

    lim l n ( )

    x

    f xe e

    += =

    0

    0 1

    25. lim ( )x

    x

    x ++

    = + = 0

    0 01

    11

    lim limln( )

    /lim

    x

    x

    x xx

    x

    x + + +

    =+

    =0 0

    11

    11

    1 00 2

    0

    2

    1

    1

    1

    1

    +

    +

    +

    =+

    x x

    x

    x

    x xx

    ( )

    /

    lim( )

    =+

    = +lim

    x

    x

    x0 10

    lim l n ( )

    x

    f xe e

    += =

    0

    0 1

    26. lim (ln ) /x

    xx

    = 1

    lim ln lim /x x

    xx

    x

    = =11

    0

    lim ln ( )x

    f xe e

    = =0 1

    27. (a)x 10 102 103 104 105

    f(x) 1.1513 0.2303 0.0345 0.00461 0.00058

    Estimate the limit to be 0.

    (b) limln

    limln

    lim/

    x x x

    x

    x

    x

    x

    x

    = = = =

    5 5 5

    1

    0

    10

    28. (a)x 100 10 1 10 2 10 3 10 4

    f(x) 0.1585 0.1666 0.1667 0.1667 0.1667

    Estimate the limit to be1

    6.

    (b) limsin

    limcos

    x x

    x x

    x

    x

    x + +

    =

    0

    30

    2

    1

    3

    =

    =

    =

    +

    +

    limsin

    limcos

    x

    x

    x

    xx

    0

    0

    6

    61

    6

    29. Let f( )sin

    sin

    .

    =3

    4

    100 10 1 10 2 10 3 10 4

    f( ) 0.1865 0.7589 0.7501 0.7500 0.7500

    Estimate the limit to be =3

    4.

    limsin

    limcos

    cos

    = =

    0 04

    3 3

    4 4

    3

    4

    sin3

    30. Let f tt

    t t

    t t( )

    sin

    sin= =

    1 1sin

    .t

    t 100 10 1 10 2 10 3

    f(t) 0.1884 0.0167 0.0017 0.00017

    Estimate the limit to be 0.

    limsin

    sin

    sin

    lim

    t t

    t

    t t

    t t

    t t

    =

    =

    0 0

    1 1lim

    +

    = + +

    0

    0

    1 cos

    cos sin

    limsin

    sin cos c

    t

    t t t

    t

    t t tt oos t=0

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    8/28

    Section 8.2 357

    31. Let f x x x( ) ( ) ./= +1 1

    x 10 102 103 104 105

    f(x) 1.2710 1.0472 1.0069 1.0009 1.0001

    Estimate the limit to be 1.

    l n ( )ln( )

    limln( )

    lim

    f xx

    x

    x

    x

    x

    x x

    =+

    +=

    +=

    1

    1

    1

    1

    1

    0

    110

    1 1

    =

    + = =

    lim ( ) lim ( ) lim / ln ( )x

    x

    x x

    f x x f x e == =e0 1

    32. Let f xx x

    x x( ) .=

    +2

    3 5

    2

    2

    x 10 102 103 104 105

    f(x) 0.5429 0.6525 0.6652 0.6665 0.6667

    Estimate the limit to be 2

    3.

    lim lim lim x x x

    x x

    x x

    x

    x

    +

    =

    += =

    2

    3 5

    1 4

    6 5

    4

    6

    2

    2

    2

    3.

    33. limsin

    limcos

    ( )( )cos( )

    = = =

    0

    2

    0

    222

    12 0 0 0

    34. limln sin

    lim

    cost t

    t

    t t

    tt

    =1 1

    1 1

    1

    =

    1

    1 1( )

    = +

    1

    1

    35. limlog

    log ( )lim

    ln

    ( ) ln

    x x

    x

    x

    x

    x

    +=

    +

    2

    3 3

    1

    2

    1

    3 3

    =+

    lim

    ( ) ln

    lnx

    x

    x

    3 3

    2

    =+

    lim

    ln ln

    lnx

    x

    x

    3 3 3

    2

    =

    limln

    lnx

    3

    2

    = lnln

    3

    2

    36. limln( )

    lnlim

    y y

    y y

    y

    y

    y y

    y

    + +

    +=

    ++

    0

    2

    0

    22

    2 2

    2

    1

    =+

    +

    =+

    +

    +

    +

    lim( )

    lim( )

    y

    y

    y y

    y y

    y y

    y y

    02

    0

    2

    2

    2 2

    2

    2 2

    2

    =++

    +lim

    y

    y

    y0

    4 2

    2 2

    =++

    = =4 0 2

    2 0 2

    2

    21

    ( )

    ( )

    37. lim tan lim

    si

    / /y yy y

    y

    =

    2 22

    2 nn

    cos

    y

    y

    =

    +

    lim

    cos ( ) sin

    sin/y

    y y y

    y

    2

    21

    =

    +

    2 2 21

    2

    2

    cos ( ) sin

    sin

    =

    =( )( )

    ( )

    1 1

    11

    38. lim ( sin ) limsinx x

    x xx

    x + + =

    0 0

    1 1 1n n n

    Let f xx

    x( )

    sin.=

    limsin

    lim

    limx x

    x

    x

    x x

    + += =

    0 0

    11

    cosTherefore,

    00 0

    1 1 0+ +

    = = =

    (ln sin ) lim ln ( ) x x f xx

    n ln

    39. lim limx xx x

    xx + +

    = = 0 0

    1 1 1

    40. The limit leads to the indeterminate form 0.

    Let f xx

    x

    ( ) .=

    12

    ln ln

    ln1 1

    1

    12 2

    2

    xx

    x

    x

    x

    x

    =

    =

    lim

    ln

    lim

    /

    /

    /li

    x x

    x

    x

    x

    x

    x

    =

    =0

    2

    0

    3

    2

    2

    1

    1

    2

    1

    1mm

    xx

    =02 0

    lim lim l n ( )x

    x

    x

    f x

    xe e

    = = =0 2 0

    01

    1

    41. lim limx x

    x

    x x x

    +

    =

    =3 5

    2 2

    3

    4 10

    2

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    9/28

    358 Section 8.2

    42. limsin

    tanlim

    cos

    secx x

    x

    x

    x

    x = =

    0 0 2

    7

    11

    7 7

    11 11

    7

    11

    43. The limit leads to the indeterminate form 0.

    Let f x x x( ) ( ) . /( ln )= +1 2 1 2

    ln( )

    ( )

    ln

    /( ln )

    1 2

    1 2

    2

    1 2

    + =

    +x

    x

    x

    x ln

    limln( )

    lnlim lim

    x x x

    x

    x

    x

    x

    x

    +=

    +=

    +1 2

    2

    2

    1 2

    2 1 2xx x= =

    lim

    1

    2

    1

    2

    lim ( ) lim /( ln ) ln ( ) / x

    x

    x

    f x x e e e

    + = = =1 2 1 2 1 2

    44. The limit leads to the indeterminate form 00.

    Let f x x x( ) (cos ) .cos=

    ln (cos ) (cos ) ln (cos )ln(cos )

    sec

    cos x x xx

    x

    x = =

    limln(cos )

    seclim

    sincos

    sec/ /x x

    x

    x

    xx

    =

    2 2 xx xtan

    =

    lim

    tan

    sec tan/x

    x

    x x 2

    = = lim cos

    /x

    x 2

    0

    lim (cos ) limcos ln ( )

    x

    x

    x

    f x x e e

    = = = = =

    2 2

    0 1

    45. The limit leads to the indeterminate form1.

    Let f x x x( ) ( ) ./= +1 1

    ln 1+ln 1+

    1+

    ( )( )

    limln( )

    lim

    1

    /x

    x

    x

    x

    x

    x x

    1

    0 0

    =

    = + +

    x

    11

    11

    0

    1

    0

    1

    +=

    = = = + +

    x

    x e e ex

    x

    x

    f xlim ( ) lim / ( )1+ ln

    46. The limit leads to the indeterminate form

    Let f x xx( ) (sin ) tan=

    ln sin ln sinln sin

    cot( ) tan ( )

    ( )

    lim

    tan x x xx

    x

    x

    x

    = =

    00 0 2+ += = ln sin

    cot

    ( )lim

    cossin

    csclim

    x

    x

    xx

    xx x 00

    0 0

    0+

    + +

    ==

    ( sin cos )

    lim (sin ) limtan l

    x x

    x ex

    x

    x

    nn ( )f x e= =0 1

    47. The limit leads to the indeterminate form1.

    Let f x x x( ) . /( )= 1 1

    lnln /( )x

    x

    x

    x1 1

    1

    =

    limln

    limx x

    x

    x

    x

    + +=

    =

    1 11

    1

    11

    lim lim /( ) ln ( )

    x

    x

    x

    f x x e ee

    + +

    = = =1

    1 1

    1

    1 1

    48. dtt

    t x x xxx

    x

    x

    x

    = = = ln ln ln ln22

    2 2

    lim lim ln lim ln lnx xx

    x

    x

    dt

    t

    x

    x = = =

    2 22 2

    49. lim lim / x x

    x

    x x

    x

    x

    =

    =1

    3

    3 1

    2

    2

    1

    4 3

    3

    12 13 11

    50. lim lim lim x x x

    x x

    x x

    x

    x

    ++ +

    =++

    =2 3

    1

    4 3

    3 1

    4

    6

    2

    3 2 xx= 0

    51. lim

    cos

    limsin sin

    limx

    x

    x

    t dt

    x

    x

    x

    =

    =1

    1

    2 1 21

    1

    1 xx

    x

    x=

    1 2

    1

    2

    cos cos

    52. lim limln ln

    lim/

    x

    x

    x x

    dt

    t

    x

    x

    x

    =

    =1

    1

    3 1 3 11

    1

    1

    1 xx

    x31 3

    2= /

    53. (a) LHpitals Rule does not help because applying

    LHpitals Rule to this quotient essentially inverts

    the problem by interchanging the numerator and

    denominator (see below). It is still essentially the same

    problem and one is no closer to a solution. Applying

    LHpitals Rule a second time returns to the original

    problem.

    lim lim( / )( )

    ( / ) (

    /

    x x

    x

    x

    x

    x

    +

    +=

    ++

    9 1

    1

    9 2 9 1

    1 2

    1 2

    11

    9 1

    9 11 2

    )lim

    / =

    +

    +xx

    x

    (b)

    The limit appears to be 3.

    (c) lim limx x

    x

    x

    x

    x

    +

    +=

    +

    += =

    9 1

    1

    91

    11

    9

    13

    54. (a) LHpitals Rule does not help because applying

    LHpitals Rule to this quotient essentially inverts theproblem by interchanging the numerator and denominator

    (see below). It is still essentially the same problem and

    one is no closer to a solution. Applying LHpitals Rule

    a second time returns to the original problem.

    limsec

    tanlim

    sec tan

    seclim

    / / x x x

    x

    x

    x x

    x = =

    2 2 2 /

    tan

    sec2

    x

    x

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    10/28

    Section 8.2 359

    54. Continued

    (b)

    The limit appears to be 1.

    (c) limsec

    tanlim

    cos

    sin

    cos

    lim/ / x x x

    x

    x

    x

    x

    x

    = =

    2 2

    1

    =

    / sin2

    11

    x

    55. Find c such that lim ( ) .x

    f x c

    =0

    lim ( ) limsin

    x xf x

    x x

    x =

    0 0 3

    9 3 3

    5

    =

    lim

    cos

    x

    x

    x0 29 9 3

    15

    = limsin

    x

    x

    x0

    27 3

    30

    = = =

    limcos

    x

    x

    0

    81 3

    30

    81

    30

    27

    10

    Thus, c =27

    10. This works since lim ( ) ( ),

    x f x c f

    = =

    00 so f is

    continuous.

    56. f x( ) is defined at xx

    00

    .lim f x( ) leads to the indeterminate

    form 00.

    ln lnln

    ln

    x x xx

    x

    x

    x

    x

    x

    x

    x x

    = =

    =

    =

    1

    1

    1

    10 02

    lim lim limxx

    x

    x

    x

    x

    x

    x e e

    =

    = = =

    0

    0 0

    0

    0

    1lim limln x

    Thus, f has a removable discontinuity atx = 0. Extend thedefinition ofby letting (0) = 1.

    57. (a) The limit leads to the indeterminate form 1.

    Let (k) = 1+

    r

    k

    kt

    .

    ln ln 1

    ln 1

    1 f k kt r

    k

    tr

    k

    k

    ( ) = =

    +

    lim limk k

    tr

    k

    k

    tr

    k

    r

    k

    +

    =

    +ln 1

    1

    12

    1

    2

    1

    k

    =+

    = =

    limk

    r t

    r

    k

    r trt

    11

    lim limk

    k t

    k

    kt

    Ar

    kA

    r

    k +

    = +

    0 0

    1 1

    = A ekf k

    0 lim

    ( )ln

    = A ert0

    (b) Part (a) shows that as the number of compoundings per

    year increases toward infinity, the limit of interest

    compounded ktimes per year is interest compounded

    continuously.

    58. (a) For xf x

    g x

    = =01

    11,

    ( )

    ( ).

    lim( )

    ( )x

    f x

    g x

    =0

    1

    lim( )

    ( )x

    f x

    g x

    = =0

    2

    1

    2

    (b) This does not contradict LHpitals Rule since

    lim ( )x

    f x

    =0

    2 and limx0

    g(x) = 1.

    59. (a) A t e dx e ext x

    tt( ) = =

    = +

    0 0 1

    lim ( ) lim( ) limt t t t

    A t ee

    = + = +

    1 11

    1= 1

    (b) V t e dxxt( ) ( )= 20

    = e dxxt 2

    0

    =

    1

    2

    2

    0

    e xt

    = +

    1

    2

    1

    2

    2e

    t

    = +( )2

    12e t

    lim( )

    ( )lim

    ( ) (

    t t

    t

    t

    V t

    A t

    e

    e

    = +

    +=

    21

    1

    212 ))

    1 2=

    (c) lim( )

    ( )

    lim( )

    t t

    t

    t

    V t

    A t

    e

    e

    + +=

    +

    +0 0

    2

    21

    1

    =

    +lim

    ( )

    t

    t

    t

    e

    e0

    2

    22

    = =

    2

    2

    1

    ( )

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    11/28

    360 Section 8.2

    60. (a) x (x)

    0.1 0.04542

    0.01 0.00495

    0.00 0.00050

    0.0001 0.00005

    The limit appears to be 0.

    (b) limsin

    x

    x

    x += =

    0 1 2

    0

    10

    LHpitals Rule is not applied here because the limit is

    not of the form0

    0or

    , since the denominator has

    limit 1.

    61. (a) f x ex x( ) ( )= ln 1+1/

    11

    0+ >x

    when x x< >1 0or

    Domain: ( , ) ( , ) 1 0

    (b) The form is 0 1 , so lim ( )x

    f x

    = 1

    (c) limx

    x

    ln 11

    11

    1+

    =+

    x

    x

    x

    xlim

    =

    +

    limx

    x x

    x

    11

    1

    1

    2

    1

    2

    =

    +

    =lim

    x

    x

    1

    1

    11

    lim ( ) lim ( / )x x

    x x f x e e

    = =ln 1+1

    62. False. Need g (a) 0. Consider f x x( ) sin= 2 and g(x) = x2

    with a = 0. Here lim ( ) lim ( ) .x x

    f x g x

    = =0 0

    0

    63. False. The limit is 1.

    64. C. limtan secx

    x

    x x= = =

    0 2

    1 1

    11

    65. D. lim lim lim /

    x x x

    x

    x

    x

    x

    x

    x

    = = =1

    21

    2

    31

    3

    2

    11

    1 1

    1

    2 2

    1 22

    66. B. limlog

    loglim ln

    ln

    ln

    lnx x

    x

    x

    x

    x

    = =2

    3

    1

    21

    3

    3

    2

    67. E. lim limln

    /x

    x

    xxx

    x

    +

    = +

    1

    1 11

    1 3

    3

    = +

    lim

    ( )

    /x

    x x

    x

    1

    1

    1 3 2

    =+

    = =

    lim( )

    limx x

    x

    x x

    3

    1

    3

    13

    2

    lim l n ( )x

    f xe e

    = 3

    68. Possible answers:

    (a) f x x g x x( ) ( ); ( )= = 7 3 3

    lim( )

    ( )lim

    ( )lim

    x x x

    f x

    g x

    x

    x =

    =3 3 3

    7 3

    3

    7

    17

    (b) f x x g x x( ) ( ) ; ( )= = 3 32

    lim( )

    ( )lim

    ( )lim

    ( )

    x x x

    f x

    g x

    x

    x

    x

    =

    3 3

    2

    3

    3

    3

    2 2 3

    110=

    (c) f x x g x x( ) ; ( ) ( )= = 3 3 3

    lim ( )( )

    lim( )

    lim( x x x

    f xg x

    xx x

    =

    =3 3 3 3

    33

    13 3))2

    =

    69. Answers may vary.

    (a) f x x g x x( ) ; ( )= + =3 1

    lim( )

    ( )lim lim

    x x x

    f x

    g x

    x

    x =

    += =

    3 1 3

    13

    (b) f x x g x x( ) ; ( )= + =1 2

    lim( )

    ( )lim lim

    x x x

    f x

    g x

    x

    x x =

    += =

    1 1

    20

    2

    (c) f x x g x x( ) ; ( )= = +2 1

    lim( )

    ( )lim lim

    x x x

    f x

    g x

    x

    x

    x

    =

    += =

    2

    1

    2

    1

    70. (a) Because the difference in the numerator is so small

    compared to the values being subtracted, any calculator

    or computer with limited precision will give the

    incorrect result that1 6 cosx is 0 for even moderatelysmall values ofx. For example,

    at x x= 0 1 0 99999999999956. , cos . (13 places), so on

    a 10-place calculator, cosx6 1= and1 06 =cos .x

    (b) Same reason as in part (a) applies.

    (c) limcos

    limsin

    x x

    x

    x

    x x

    x =

    0

    6

    12 0

    5 6

    11

    1 6

    12

    =

    limsin

    x

    x

    x0

    6

    62

    =

    limcos

    x

    x x

    x0

    5 6

    5

    6

    12

    = =

    limcos

    x

    x

    0

    6

    2

    1

    2

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    12/28

    Section 8.3 361

    70. Continued

    (d) The graph and/or table on a grapher show the value of

    the function to be 0 forx-values moderately close to 0,

    but the limit is 1/2. The calculator is giving unreliable

    information because there is significant round-off error

    in computing values of this function on a limited

    precision device.

    71. (a) = = f x x g x x( ) , ( )3 2 12

    f f g g

    c

    c

    c

    ( ) ( ) , ( ) ( )1 1 2 1 1 2

    3

    2 1

    2

    2

    3 2

    2

    2

    = =

    =

    = cc

    c c

    c c

    ++ =

    + =

    1

    3 2 1 0

    3 1 1 0

    2

    ( )( )

    c c= = 1

    31or

    The value ofc that satisfies the property is c=1

    3.

    (b) f x x g x x = =( ) sin , ( ) cos

    f f g g

    20 1

    20 1

    =

    =( ) , ( )

    =

    sincos

    c

    c

    1

    1

    tan c = 1

    c = =tan 114

    on 0

    2,

    72. (a) ln f x g x f xg x( ) ( ) ( )( ) = ln

    lim ( ( ) ( )) lim ( ) lim ( ) x c x c x c

    g x f x g x f x

    =

    ( )ln ln

    (( )= = ( )lim ( ) lim( ) ( )

    ( )

    x c

    g x

    x c

    f xg x

    f x e e

    = = =ln 0

    (b) lim ( ) ( ) lim ( ) lim ( ) x c x c x c

    g x f x g x f x

    ( ) = ( )ln ln(( )= = ( )( )

    lim ( ) lim( ) ( )( )

    x c

    g x

    x c

    f x g x f x e e

    = = = ln

    Quick Quiz Sections 8.1 and 8.2

    1. C. lim ( ) ( / )/

    xx x

    x+

    0

    4 3

    21 4 3 1

    =+

    lim

    / ( ) ( / )/

    x

    x

    x0

    1 34 3 1 4 3

    2

    =+

    lim/ ( ) /

    x

    x

    0

    2 34 9 1

    2

    =2

    9

    2. D. lim ( )x

    xx

    +0

    23

    = +lim

    ln

    /x

    x

    x0 1 2

    = = +lim

    /

    /x

    x

    x02

    1

    1 20

    lim l n ( )x

    f xe e = =0

    03 3 3

    3. B. limsin

    x

    xt dt

    x

    2

    2

    2 4

    =

    limcos cos

    x

    x

    x2 22

    4

    = =

    limsin sin

    x

    x

    x2 2

    2

    4

    4. (a)1 2

    4

    1

    2

    1 3/

    /

    =

    =4

    1 28

    /

    (b) 1

    2

    (c) an

    n

    n n=

    = 81

    21 21 4( ) ( )

    (d) a an n=

    1

    2 1

    Section 8.3 Relative Rates of Growth

    (pp. 453458)

    Exploration 1 Comparing Rates of Growth

    as x

    1. lim lim(ln )( )

    lim(ln )

    x

    x

    x

    x

    x

    xa

    x

    a a

    x

    a a

    = =

    2

    2

    2 22= , so ax grows

    faster than x2 as x .

    2. lim lim .x

    x

    x x

    x

    = =

    3

    21 5

    3. lim limx

    x

    x x

    xa

    b

    a

    b =

    = becausea

    b> 1.

    Quick Review 8.3

    1. limln

    limx x x

    x

    x

    x

    e e = =

    1

    0

    2. lim lim lim limx

    x

    x

    x

    x

    x

    x

    xe

    x

    e

    x

    e

    x

    e

    = = =

    3 23 6 6==

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    13/28

    362 Section 8.3

    3. limx x

    x

    e=

    2

    2

    4. lim lim limx x x x x x

    x

    e

    x

    e e = = =

    2

    2 2 2

    2

    2

    2

    40

    5. 3 4x

    6.2

    23

    2x

    xx=

    7. lim( )

    ( )lim

    lnlim

    x x x

    f x

    g x

    x x

    x

    x

    =

    +=

    +=

    11

    11

    8. lim( )

    ( )lim lim

    x x x

    f x

    g x

    x x

    x x =

    += + =

    4 5

    21

    5

    41

    2

    9. (a) f xe x

    e

    x

    e

    x

    x x( ) =

    += +

    2 2

    1

    =

    =

    f x

    xe x e

    e

    x x

    e

    x x

    x x( )

    2 22

    2

    2

    20

    2x x

    ex

    =

    x x( )2 0 =x x

    f x x x

    = = < < >

    0 2

    0 0 2

    or

    for or( )

    The graph decreases, increases, and then decreases.

    f fe

    ( ) ; ( ) .0 1 2 14

    1 5412

    = = +

    fhas a local maximum at (2, 1.541) and has a localminimum at (0, 1).

    (b)fis increasing on [0, 2](c)fis decreasing on (, 0] and [2, ).

    10. f xx x

    x

    x

    xx( )

    sin sin,=

    += + 1 0

    Observe thatsin

    .x

    xx x< < 1 0since sin forx

    lim ( ) limsin

    x xf x

    x

    x = + = + =

    0 01 1 1 2

    Thus the values offget close to 2 as x gets close to 0, sof

    doesnt have an absolute maximum value.fis not defined

    at 0.

    Section 8.3 Exercises

    1. lim lim lim lix

    x

    x

    x

    x

    x

    x

    e

    x x

    e

    x

    e

    +=

    = =

    3 23 1 3 3 6

    mmx

    xe

    =

    6

    2. lim lim!x

    x

    x

    xe

    x

    e

    = =

    20 20

    3. lim limsin

    , cos ,cos cosx

    x

    x x

    x

    x

    e

    e

    e

    x ex

    =

    1 1

    llimsinx

    x

    y

    e

    x e =

    cos

    4. lim( / ) !( / )x

    x

    x

    xe e

    x = = 5 2 5 2

    5. limln

    lnlim

    /

    /lim

    x x x

    x

    x x

    x

    x x x =

    =

    =

    1

    1

    1

    10

    2

    6. limln

    lim/

    / ( ) ( )/ /x x

    x

    x

    x

    x x x = = =

    1

    1 2

    1

    1 21 2 1 200

    7. limln

    lim/

    / ( )lim

    / (/ x x x

    x

    x

    x

    x

    = =3 2 3

    1

    1 3

    1

    1 3 xx x) /=

    2 30

    8. limln

    lim/

    lim x x x

    x

    x

    x

    x x = = =

    3 2 3

    1

    3

    1

    30

    9. lim lim lim x x x

    x xx

    xx

    + = + = =2

    24 2 4

    222

    1

    10. lim lim lim x x x

    x x

    x

    x x

    x

    x

    x

    +=

    += =

    4

    2

    4

    4

    2

    2

    5 5 12

    1211

    11. lim( )

    lim lim/

    x x x

    x x

    x

    x x

    x

    x

    +=

    +=

    6 2 1 3

    2

    6 2

    6

    120 33

    31201

    x=

    12. limsin

    limcos

    , cos , lx x

    x x

    x

    x x

    xx

    +=

    +

    2

    2

    2

    21 1 iim

    x

    x

    x=

    2

    21

    13. lim logln

    ln

    / lnxx

    x

    x

    x = =

    1

    1

    2

    10

    11

    2 10

    14. limx

    x

    x

    e

    ee

    +

    =1

    15. First observe that 1 4+x grows at the same rate as x2.

    lim lim lim x x x

    x

    x

    x

    x x

    += =

    += + =

    1 1 11 1

    4

    2

    4

    4 4

    Next compare x2 with ex .

    lim lim limx x x x x x

    x

    e

    x

    e e = = =

    2 2 20

    x e x xx2 41grows slower than as so +,

    grows slower than ase xx .

    16. lim lim .x

    x

    x x

    x

    e e e =

    = >4 4 4

    1since

    4x grows faster than ex asx .

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    14/28

    Section 8.3 363

    17. limln

    lim

    ln

    x x x x

    x x x

    e

    xx

    x

    e

    =

    + 1

    1

    =lim

    ln

    x x

    x

    e

    = =lim/

    x x

    x

    e

    1

    0

    x lnx x grows slower than ex asx .

    18. lim limx

    x

    x x

    xe

    ex

    = =

    xex grows faster than ex asx .

    19. limx x

    x

    e=

    1000

    0 Repeatedapplicationof L'Hpitaal's

    Rulegets

    =

    lim!

    .x xe

    10000

    x1000 grows slower than ex asx .

    20. lim( ) /

    limx

    x x

    x x x

    e e

    e e

    += +

    =2 1

    2

    1

    2

    1

    22

    e ex x+

    2grows at the same rate as e xx as .

    21. lim limx x

    x

    xx

    x

    += +

    = 3

    2 2

    3 3

    x3 + 3 grows faster than x2 asx .

    22. lim limx x

    x

    x x x

    += +

    =15 3 15 3

    02 2

    15x + 3 grows slower than x2

    asx .

    23. limln

    lim/

    lim x x x

    x

    x

    x

    x x = = =

    2 2

    1

    2

    1

    20

    lnx grows slower than x2 asx .

    24. lim lim(ln )

    lim(ln )

    x

    x

    x

    x

    x

    x

    x x = = =

    2 2 2

    2

    2 2

    22

    2

    .

    2x grows faster than x2 asx .

    25. limlog

    lnlim

    log

    lnlim

    (ln

    x x x

    x

    x

    x

    x

    x

    = =2

    222 2 )) / ( ln )

    ln ln

    2 2

    2x=

    log22x grows at the same rate as lnx asx .

    26. lim/

    lnlim

    lnx x

    x

    x x x = =

    1 10

    1

    xx xgrows slower than asln .

    27. limln

    limlnx

    x

    x x

    e

    x e x

    = =

    10

    e x xx grows slower than asln .

    28. limln

    lnx

    x

    x=

    55

    5lnx grows at the same rate as ln ,x xas

    29. Compare e xx xto .

    lim limx

    x

    x x

    xe

    x

    e

    x =

    = 0

    ex grows slower than xx.

    Compare ex to (ln ) .x x

    lim(ln )

    limlnx

    x

    x x

    xe

    x

    e

    x =

    = 0

    e

    x

    grows slower than (ln ) .x

    x

    Compare x ex to ex/ .2

    lim lim/

    /

    x

    x

    x x

    xe

    ee

    = =

    2

    2

    e ex xgrows faster than / .2

    Compare xx to (ln ) .x x

    lim(ln )

    limlnx

    x

    x x

    x

    x

    x

    x

    x

    x =

    = since lim

    = = x

    x

    x

    xxln /.lim

    1

    xx grows faster than (ln ) .x x

    Thus, in order from slowest-growing to fastest-growing, we

    get ex/2 , ex , (ln ) ,x x xx .

    30. Compare 2x to x2

    lim lim(ln )

    lim(ln )

    x

    x

    x

    x

    x

    x

    x x = = =

    2 2 2

    2

    2 2

    22

    2

    2 2x xgrowsfaster than .

    Compare to (ln2)2x x .

    lim(ln )

    limlnx

    x

    x x

    x

    =

    = 2

    2

    2

    2since

    2

    ln 221> .

    2x grows faster than (ln )2 x

    Compare 2x to ex .

    lim lim .x

    x

    x x

    x

    e e e =

    = 1, is (ln ) .a an x We can

    apply L Hpitals Rule n times to find lim .x

    x

    n

    a

    x

    lim lim(ln )

    !x

    x

    n x

    n xa

    x

    a a

    n = = =

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    16/28

    Section 8.3 365

    39. Continued

    (b) Thus ax grows faster than x n asx for any positiveinteger n.

    40. (a) Apply LHpitals Rule n times to find

    lim .

    x

    x

    n

    n

    n

    n

    e

    a x a x a x a

    + + + +11

    1 0

    lim lim!x

    x

    nn

    nn x

    x

    n

    e

    a x a x a x a

    e

    a n + + + +

    =1

    11 0

    ==

    Thus ex grows faster than

    a x a x a x an

    nn

    n+ + + +

    11

    1 0 as x .

    (b) Apply LHpitals Rule n times to find

    lim .x

    x

    nn

    nn

    a

    a x a x a x a + + + +

    11

    1 0

    limx

    x

    n

    n

    n

    n

    a

    a x a x a x a

    + + + +=

    1

    1

    1 0

    = =

    lim(ln )

    !x

    n x

    n

    a a

    a n

    Thus ax

    grows faster than

    a x a x a x an

    nn

    n+ + + +

    11

    1 0 asx .

    41. (a) limln

    lim lim/

    ( / )/x n x n x

    x

    x

    x

    nx

    n

    x = =

    11 1

    1

    1

    1 nn= 0

    Thus lnx grows slower than x n1/ asx for anypositive integer n.

    (b) limln

    lim limx a x a x a

    x

    x

    x

    ax ax

    = = =

    11

    01

    Thus lnx grows slower than x a asx for anynumber a > 0.

    42. limln

    xn

    nn

    n

    x

    a x a x a x a + + + +

    11

    1 0

    =+ + +

    =

    lim( )

    lim

    xn

    nn

    n

    x

    x

    na x n a x a

    1

    1

    1

    11

    21

    nna x n a x a xnn

    n

    n

    + + +

    =

    ( )1

    0

    1

    1

    1

    Thus lnx grows than any nonconstant polynomial as to

    x .

    43. Compare n n nlog23 2to as n .

    limlog

    limlog

    lim

    (ln )

    /n n

    n

    n n

    n

    n

    nn

    =

    =

    2

    3 2

    2

    1 2

    ((ln )

    limln

    lim(ln

    /

    /

    /

    2

    1

    2

    1

    22

    1 2

    1 2

    1 2

    n

    n

    n

    n

    n

    n

    =

    =

    220

    )=

    Thus n nlog2 grows slower than n3 2 as n .

    Compare n nlog2 to n n( log )22

    limlog

    (log )lim

    logn n

    n n

    n n n = =2

    22

    2

    10

    Thus n nlog2 grows slower than n n(log )22 as n .

    The algorithm of order ofn nlog2 is likely the most efficientbecause of the three functions, it grows the most slowly as

    n .

    44. (a) It might take 1,000,000 searches if it is the last item in

    the search.

    (b) log , , . ;2 1 000 000 19 9 it might take 20 binary searches.

    45. (a) The limit will be the ratio of the leading coefficients of

    the polynomials since the polynomials must have the

    same degree.

    (b) By the same reason as in (a), the limit will be the ratio

    of the leading coefficients of the polynomial.

    46. True. because limlog

    /n

    n n

    n =2

    3 2 0

    47. False. They grow at the same rate.

    48. E. lim lim!

    !x x

    x

    x x

    x

    ++ +

    = = 6

    5 2

    1

    1

    6

    5

    49. A. limlog

    x x x

    x

    e

    x

    e =

    =3

    1 130

    ln

    50. C. limx

    x

    x

    e

    ee

    +

    =2

    2

    51. D. lim lim lim x x x

    x x

    x

    x x

    x

    x

    +=

    +=

    8 4

    4

    8 4

    8

    36720

    672001

    3x=

    52. (a) lim limx x

    x

    xx

    = =

    5

    2

    3

    x5 grows faster thanx2.

    (b) lim limx x

    x

    x = =

    5

    2

    5

    2

    5

    2

    3

    3

    5 3x and2 3x have the same rate of growth.

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    17/28

    366 Section 8.4

    52. Continued

    (c) m > n since lim lim .x

    m

    n x

    m nx

    xx

    = =

    (d) m = n since lim limx

    m

    n x

    m nx

    xx

    = is nonzero and finite.

    (e) Degree ofg > degree off(m > n) since lim ( )

    ( ).

    x

    g x

    f x=

    (f ) Degree ofg = degree off(m = n) since lim( )

    ( )x

    g x

    f xis

    nonzero and finite.

    53. (a) lim( )

    ( )lim

    ( )

    ( )lim

    ( )

    x x x

    f x

    g x

    f x

    g x

    f x

    g =

    =(( )x

    =

    Thus f grows faster than g asx by definition.

    (b) lim( )

    ( )lim

    ( )

    ( )lim

    ( )

    x x x

    f x

    g x

    f x

    g x

    f x

    g =

    =(( )x

    L=

    Thus f grows at the same rate as g asx by

    definition.

    54. (a) lim( )

    ( )lim

    ( )

    ( )x x

    f x

    g x

    f x

    g x

    = =

    Thus f x( ) grows faster than g x( ) by definition.

    (b) lim( )

    ( )lim

    ( )

    ( )x x

    f x

    g x

    f x

    g xL

    = =

    Thus f x( ) grows at the same rate as g x( ) bydefinition.

    Section 8.4 Improper Integrals

    (pp. 459470)

    Exploration 1 Investigatingdx

    xp0

    1

    1. Because1

    xp

    has an infinite discontinuity atx = 0.

    2.dx

    x

    dx

    xx

    c cc c

    c

    = = = + +

    lim lim ln lim0 0

    1

    0

    1 1

    00 + = ( l n )c

    3. Ifp>1, then

    dx

    x

    dx

    xp

    cpc

    = +

    lim0

    1

    0

    1

    = +

    +

    +limc

    p

    c

    x

    p0

    1

    1

    1

    = +

    =

    +

    +

    limc

    pc

    p0

    11

    1because (p + 1) < 0.

    4. If0 1< 0 for 3 0 forx > 1

    The domain is (1, ).

    7. 1 cosx 1, socosx 1.cos cosx

    x

    x

    x x2 22

    1=

    8. x2 1 x2 so x x x2 21 = forx >1

    1

    1

    1

    2x x

    9. lim( )

    ( )lim lim

    x x

    x

    x x

    xf x

    g x

    e

    e

    e

    e =

    +

    =4 5

    3 7

    4

    3xx x

    = =lim

    4

    3

    4

    3

    Thusfand g grow at the same rate asx .

    10. lim( )

    ( )lim

    x x

    f x

    g x

    x

    x =

    +

    2 1

    3

    =

    +limxx

    x

    2 1

    3

    =

    +=

    lim

    x

    x

    x

    21

    13

    2

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    18/28

    Section 8.4 367

    Section 8.4 Exercises

    1. (a)2

    1

    2

    12 200

    x

    xdx

    x

    xdx

    b

    b

    +=

    +

    lim

    (b) lim lim ln( )b

    b

    b

    bx

    xdx x

    += +( ) =

    2

    11

    20

    2

    0

    diverges

    2. (a)dx

    x

    dx

    xb

    b

    1 3 1 311=

    lim

    (b) lim limb b

    bb dx

    xx

    =

    = 1 3 2 31

    1

    3

    2

    diverges

    3. (a) 2

    1

    2

    12 2 2 2

    0x

    xdx

    x

    xdx

    b b

    b

    ( )lim

    ( )

    lim

    +=

    ++

    +2

    12 20

    x

    xdx

    b

    ( )

    (b) lim( )

    lim( )b b b

    bxx

    dx xx

    dx +

    ++

    21

    212 2

    02 20

    =

    +

    +

    +

    lim limb

    bb

    b

    x x

    1

    1

    1

    12

    0

    2

    0

    == 0

    converges

    4. (a)dx

    x

    dx

    xb

    b=

    lim 11

    (b) lim lim ( )b b

    bb dx

    xx

    = = 2

    11

    diverges

    5.dx

    x

    dx

    x xb b

    bb

    4 4 31

    11

    1

    3

    1

    3= =

    =

    lim lim

    6.2 2 2

    21

    3 3 21

    11

    dx

    x

    dx

    x xb b

    bb

    = =

    = lim lim

    7.dx

    x

    dx

    xx

    b b

    bb

    3 3

    2 3

    111

    3

    2= =

    lim lim ( ) ==

    diverges

    8.dx

    x

    dx

    xx

    b b

    bb

    4 4

    3 4

    111

    4

    3= =

    = lim lim ( )

    diverges

    9.dx

    x

    dx

    x xb bb

    b2 2

    11 1

    1= =

    =

    lim lim

    1

    10.dx

    x

    dx

    x xb b( )lim

    ( )lim

    ( )=

    =

    2 21

    2 23 3 2

    =

    bb

    000

    1 8/

    11.2

    1

    2

    1

    1

    12 2dx

    x

    dx

    x

    x

    xb b=

    =

    +

    lim lim ln

    =

    b

    b

    222

    3ln

    12.3 3

    31

    2 3

    dx

    x x

    dx

    x x

    x

    xb b=

    =

    lim lim ln

    =

    222

    3 2

    bb

    ln

    13.dx

    x x

    dx

    x x

    x

    xb b2 25 6 5 6

    3

    2+ +=

    + +=

    ++

    lim lim ln

    =

    1

    11

    2

    bb

    ln

    14. 2

    4 3

    2

    4 32 2

    00 dx

    x x

    dx

    x xb b +=

    + lim

    =

    =

    lim ln ln

    b

    b

    x

    x

    1

    33

    0

    15.5 6

    2

    5 6

    22 211

    x

    x xdx

    x

    x xdx

    b

    b++

    =+

    +

    lim

    = +( ) =

    lim ln (( ) ( ) )b

    b

    x x2 2 3

    1

    diverges

    16.2

    2

    2

    222 22

    dx

    x x

    dx

    x xb

    b

    b

    =

    =

    lim

    lim lnxx

    x

    b

    =

    22

    2

    ln

    17. x e dx x e dx xxb

    xb

    b

    = = 21 21 2 14lim lim = e ex2 23

    4

    18. x e dx x e dx

    x x

    x

    b

    x

    b

    b

    2 200

    2

    2 2

    =

    =

    lim

    lim11

    422

    0

    =

    e

    x

    b

    19. x x dx x x dxx x

    b bln lim ln lim ln= =

    2 2

    12

    24

    bbb

    11

    =

    diverges

    20. ( ) lim ( )

    lim (

    x e dx x e dx

    x

    x

    b

    xb

    b

    + = +

    =

    1 1

    0 0

    ( ) =2 20

    )e xb

    21. e dx e dx e dxx

    b

    x

    b

    xb

    b

    = + =1 1 1 1 1 100

    2lim lim

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    19/28

    368 Section 8.4

    22. 2 2 22 2 2

    0 x e dx x e dx x e dx

    x

    b

    x

    b

    xb

    b

    = + =lim lim00

    lim limb

    x

    b b

    xb

    e e

    ( ) + ( ) =2 2

    0

    0

    0

    23.dx

    e e

    dx

    e e

    dx

    e ex x b x x b x x

    b

    +=

    ++

    + lim lim 0bb0

    lim tan ( ) lim tan ( )b

    x

    b b

    xb

    e e

    ( ) + ( ) =10

    1

    0 2

    24. e dx e dx e dxx

    b

    x

    b

    xb

    b

    2 2 2

    0

    0= +

    lim lim

    =

    +

    =

    lim lim

    b

    x

    bb

    xb

    e e2

    02

    02 2

    divverges

    25. (a) The integral has an infinite discontinuity at the interior

    pointx = 1.

    (b)dx

    x

    dx

    x

    dx

    xb b b

    b

    1 1 12

    12

    12

    2

    00

    2

    =

    +

    + lim lim

    =+

    +

    +lim ln lim l

    b

    b

    b

    x

    x10

    1

    1

    2

    1

    1

    1

    2nn

    x

    xb

    +

    =

    1

    1

    2

    diverges

    26. (a) The integral has an infinite discontinuity at the endpoint

    x = 1.

    (b)dx

    x

    dx

    xx

    b b

    bb

    1 1 22 1 2 1

    1

    00=

    = ( ) =

    lim lim sin ( )

    01

    27. (a) The integral has an infinite discontinuity at the endpoint

    x = 0.

    (b)x

    x xdx

    x

    x xdx

    x

    b b

    b

    ++

    = ++

    = +

    12

    1

    22 0 2

    1

    0

    1

    0

    2

    lim

    lim 22 31

    xb

    ( ) =

    28. (a) The integral has an infinite discontinuity at the endpoint

    x = 0.

    (b)e

    xdx

    e

    xdx e e

    x

    b

    x

    b

    x

    bb

    = = ( ) = lim lim0 0

    42

    2 2 244

    0

    4

    29. (a) The integral has an infinite discontinuity at the endpoint

    x = 0.

    (b) x x dx x x dx

    xx

    b b

    b

    ln ( ) lim ln( )

    lim ln

    =

    =

    01

    0

    1

    0

    2

    2

    xx

    b

    21

    41 4

    = /

    30. (a) The integral has an infinite discontinuity at the interior

    pointx = 0.

    (b)dx

    x

    dx

    x

    dx

    xb b b

    b

    1 1 1 1 1 10 0

    4

    11

    4= +

    =

    + lim lim

    llim ( )

    lim ( )

    b

    b

    b b

    x x

    x x

    +

    ( ) +

    ( )

    0 1

    0

    4

    2

    2

    sign

    sign == 6

    31. 01

    1

    11

    1

    1

    + )

    e e edx

    x x xon convergesbecause, ,

    converges.

    32. 01

    1

    11

    13 3 31

    +

    )

    x x xdxon convergesbecause, ,

    converges.

    33. 01 2 1

    +

    )

    xx

    x xdx

    cos, ,on divergesbecause

    diverges.

    34.dx

    x

    dx

    x

    dx

    x

    dx

    x4 40 4 400

    1

    12

    12

    12

    1+=

    +=

    ++

    +

    aand on01

    1

    11

    4 2

    + )

    x x,

    converges because121 x

    dx converges.

    35. y e dy y e dy ey

    b b

    y

    b

    x

    b

    = = ( )2 1

    0

    22 1

    0

    1lim limln lnnln 2

    0

    2

    =

    diverges

    36.dr

    r

    dr

    rr

    b b

    bb

    4 42 4 4

    4 4 000

    4

    =

    = ( ) =

    lim lim

    37.ds

    s s

    ds

    s s

    s

    b b b( )

    lim

    ( )

    lim tan

    1 1

    2

    0 0

    1

    +

    =

    +

    = ( ) =

    bb

    0

    38.du

    u u

    du

    u ux

    b b b2 1 2

    2

    1

    2

    1

    1 2

    1 11

    =

    =

    lim lim tan(( ) =b

    2

    3

    39.16

    1

    16

    1

    1

    2

    1

    200

    tanlim

    tanl

    +=

    +=

    v

    vdv

    v

    vdv

    b

    biim (tan )

    b

    b

    v

    ( )=

    8

    2

    1 2

    0

    2

    40.

    e d e d x eb b b

    x= = ( ) lim lim ( )

    00

    0

    1bb

    = 1

    41.dt

    t

    dt

    t

    dt

    tb

    b

    b b1 1 11 00

    2

    1

    2

    =

    +

    =

    + lim lim limm ln( )

    lim ln( )

    b

    b

    b b

    x

    x

    +

    ( )

    + ( ) =

    1 0

    1

    2

    1

    1

    divverges

    42. ln(| |) lim ln(| |) lim lw dw w dwb

    b

    b

    = + +

    0 11

    1

    0

    nn(| |)w dwb

    1

    = ( ) + ( )

    +lim ln(| |) lim ln(| |)

    b

    b

    b

    w w w w w w0 1 0 bb

    1

    2=

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    20/28

    Section 8.4 369

    43. For x y 0 0, on [1,).

    Area = =

    lnx

    xdx

    x

    xdx

    b

    b

    2 211lim

    ln

    Integratelnx

    xdx

    2 by parts.

    u x dv

    dx

    x

    dux

    dx vx

    = =

    = =

    ln 2

    1 1

    ln ln lnx

    x

    x

    x

    dx

    x

    x

    x xC

    2 2

    1= + = +

    Area =

    = +

    lim

    lnlim

    ln

    b

    b

    b

    x

    x x

    b

    b b

    1 11

    1

    = 1

    Notethat limln

    lim/

    .b b

    b

    b

    b

    = =

    1

    10

    44. Forx 0 ,y 0 on [1, ).

    Area = =

    ln lim lnxx dx xx dxbb

    1 1

    Integrate by letting soln

    .x

    xdx u du

    dx

    x= =

    lnx

    xdx u du u C x C = = + = +

    1

    2

    1

    2

    2 2(ln )

    Area =

    = =

    lim (ln ) lim (ln )b

    b

    bx b

    1

    2

    1

    2

    2

    1

    2

    45. (a) Since f is even, f x f x( ) ( ). = Let u = x, du = dx.

    f x dx f x dx f x dx( ) ( ) ( )

    = + 00

    = +

    f u du f x dx( )( ) ( )1

    0

    0

    = +

    f x du f x dx( ) ( )00=

    2 0 f x dx( )

    (b) Since f is odd, f x( ). = f x( ). Let u = x,du = dx

    f x dx f x dx f x dx( ) ( ) ( )

    = +0

    0

    = +

    f u du f x dx0

    01( )( ) ( )

    = + =

    f u du f x dx( ) ( )00 0

    46. (a) 2

    1

    2

    12 200xdx

    x

    xdx

    xb

    b

    +=

    + lim

    = +

    = + =

    lim ln( )

    lim ln ( )

    b

    b

    b

    x

    b

    2

    02

    1

    1

    Thus the integral diverges.

    (b) Both2

    1

    2

    12 2

    0

    0

    xdx

    x

    xdx

    x+ +

    and must converge in order

    for2

    12xdx

    x +

    to converge.

    (c) lim lim ln( )b b b

    b

    b

    b x dx

    x

    x

    += +

    2

    1

    12

    2

    = + +

    = =

    lim ln( ) ln( )

    lim .b

    b

    b b2 21 1

    0 0

    Note that2

    12x

    x +is an odd function so

    2

    10

    2

    xdx

    xb

    b

    +=

    .

    (d) Because the determination of convergence is not made

    using the method in part (c). In order for the integral to

    converge, there must be finite areas both directions

    (toward and toward ). In this case, there areinfinite areas in both directions, but when one computes

    the intergral over an interval [b, b], there is

    cancellation which gives 0 as the result.47. By symmetry, find the perimeter of one side, say for

    0 1 0 x y, .

    y x2 3 2 31=

    y x= ( )1 2 3 3 2

    dy

    dx x x x x=

    = 3

    21

    2

    312 3 1 2 1 3 1 3 2 3 1( ) ( ) 22

    dy

    dx x x x

    = = 2

    2 3 2 3 2 31 1( ) ( )

    12

    2 3 1 3+

    = = dy

    dxx x

    x dx x dxb b

    = +1 3

    0

    1

    0

    1 31

    lim

    =

    =

    +

    +

    lim

    lim

    b b

    b

    x

    b

    0

    2 3

    1

    0

    2 3

    3

    2

    3

    2

    3

    2==

    3

    2

    Thus, the perimeter is 43

    26

    = .

    48. False. See Theorem 6.

    49. True. See Theorem 6.

    50. C.dx

    x

    dx

    x xb

    b

    b1 011 1 011 0 01

    100. . .

    lim lim

    = =

    =1

    100

    b

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    21/28

    370 Section 8.4

    51. B.dx

    x

    dx

    xx

    b b b b0 50

    1

    0 0 5

    1

    0

    1

    2 2. .

    lim lim = = ( ) =

    52. E.dx

    x

    dx

    xx

    b

    b

    b

    b

    =

    = ( ) 1 1 10

    1

    1 0 1 0

    lim lim ln(| |) ==

    53. C.dx

    x

    dx

    xx

    b

    b

    b

    b

    20 201

    01 1+ = + = ( ) =

    lim lim tan

    2

    54. (a)dx

    x

    dx

    xx

    b

    b

    b

    b

    0 51 0 51 1

    2. .

    lim lim ,

    = = ( ) = or it diverges.

    (b)dx

    x

    dx

    xx

    b

    b

    b

    b

    1 1 1

    = = ( ) = lim lim ln , or it diverges.

    (c)dx

    x

    dx

    x xb

    b

    b

    b

    1 51 1 511

    2. .

    lim lim

    = =

    == 2

    (d)dx

    x

    dx

    xp b p

    b

    1 1

    = lim

    =

    =

    lim

    lim

    b p

    b

    b p

    p x

    p b p

    1

    1

    1

    1

    1

    1 1

    1

    1

    1

    =

    1

    1

    1

    1

    1

    11

    1

    1

    p

    b pp blim

    (e)dx

    xp

    p11

    >,

    =

    limb pp b p

    1

    1

    1 1

    11

    =

    11

    1 11p p

    =1

    1p

    dx

    xp

    p11

    1 large enough. Also we can

    make f x d xb

    ( )

    and f x d xb

    ( )

    as small as we want bychoosing b large enough. This is because

    0 12< < > f x e xx( ) .(/ for Likewise,

    0 12< <

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    22/28

    Section 8.4 371

    57. (a) For x x x e ex x 6 62 6, ,so2

    e dx e dxx x

    2

    6

    6

    6

    =

    limb

    xbe dx6

    6

    = lim

    bx

    b

    e16

    6

    6

    = +

    limb

    be e

    1

    6

    1

    6

    6 36

    = < 1

    64 10

    36 17e

    (b) e dx e dx e dx x x x = +

    2

    1

    2

    1

    6 2

    6

    + e dxx2

    1

    6 174 10

    Thus, from part (a) we have shown that the error is

    bounded by 4 10 17 .

    (c) e dx xx x

    2

    11 6 0 1394027926NINT(e

    2, , . ) .

    (This agrees with Figure 8.16.)

    (d) e dx e dx e dx x x x = +

    2

    0

    2

    0

    3 2

    3

    +

    e dx e dxx x2

    0

    3 3

    3

    since for >3. x x x2 3

    e dx e dxx

    b

    xb

    =333

    3lim

    =

    limb

    x

    b

    e1

    3

    3

    3

    = +

    limb

    be e

    1

    3

    1

    3

    3 9

    = a,

    f x g x dxa

    b

    a

    b( ) ( ) .

    If the infinite integral ofg converges, then taking the

    limit in the above inequality as b shows that theinfinite integral offis bounded above by the infinite

    integral integral ofg. Therefore, the infinite integral off

    must be finite and it converges. If the infinite integral off

    diverges, it must grow to infinity. So taking the limit in the

    above inequality as b shows that the infinite integralofg must also diverage to infinity.

    59. (a) For n = 0:

    e dx e dxx

    b

    xb

    =0 0lim

    =

    limb

    xb

    e0

    = + =

    lim [ ]b

    be 1 1

    For n = 1:

    u x dv e dx

    du dx v e

    x

    x

    = == =

    xe dx xe dxx

    b

    xb

    = lim 00=

    +

    limb

    xb

    xb xe e dx

    0 0

    =

    +

    lim limb b b

    xbb

    ee dx

    0

    =

    + =

    limb be

    11 1

    For n = 2;u x dv e dx

    du x dx v e

    x

    x

    = == =

    2

    2

    x e dx x e dxx

    b

    xb2 2

    00

    = lim

    = +

    limb

    xb

    xb x e x e dx2

    0 02

    =

    +

    lim limb b b

    xbb

    e xe d x

    2

    02

    =

    +

    lim ( )b b

    b

    e

    22 1

    =

    + =

    limb b

    b

    e

    2 2 2

    (b) Evaluate x e dxn x using integration by parts

    u x dv e dx

    du nx v e

    n x

    n x

    = == =

    1

    x e dx x e nx e dxn x n x n x = + 1

    f n x e dxn x( )+ =

    1 0=

    +

    limb

    n xb

    n x x e nx e dx

    0

    1

    0

    =

    +

    limb

    n

    b

    n xb

    en x e dx1

    0

    = nf n( )

    Note: apply L'Hpital's Rule times to shon ww that

    lim .b

    n

    b

    b

    e

    =

    0

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    23/28

    372 Chapter 8 Review

    59. Continued

    (c) Since f n nf n( ) ( ),+ =1

    f n n n f n( ) ( ) ( ) !;+ = =1 1 1 thus

    x e dxn x0 converges for all integers n 0.

    60. (a) On a grapher, plot NINT sin , , ,xx

    x x0 or create a table

    of values. For large values ofx f x, ( ) appears to approach

    approximately 1.57.

    (b) Yes, the integral appears to converge.

    61. (a)dx

    x

    dx

    xb b1 12 2

    11

    +=

    + lim

    =

    =

    lim tan

    lim (tan tan )

    b b

    b

    x

    b

    11

    1 11

    == + =

    +=

    +

    4 2

    3

    4

    1 121 21

    dx

    x

    dx

    xx

    blim

    =

    =

    =

    lim tan

    lim[tan tan ]

    b

    b

    b

    x

    b

    1

    1

    1 11

    22 4 4

    1

    3

    4 42

    =

    += + =

    dx

    x

    (b) f x dx f x dx f x dxc c

    ( ) ( ) ( ) = + 0

    0

    f x dx f x dx f x dxc c( ) ( ) ( )

    = +0

    0

    Thus,

    f x dx f x dxc

    c( ) ( )

    +

    = + +

    + f x dx f x dx f x dx

    f x d

    c

    c( ) ( ) ( )

    ( )

    0 0

    0

    xx0

    = +

    f x dx f x dx( ) ( ) ,00

    because

    f x dx f x dx f x dx f x dxc

    c c c

    c( ) ( ) ( ) ( ) . + = =0 0

    00

    Quick Quiz Sections 8.3 and 8.4

    1. E. lim.

    lim.

    lim.

    . x x x

    x

    x

    x

    x

    x

    = = =

    0 1 0 3

    2

    0 6

    2

    3

    2

    2

    2. C. Sincedx

    x pp1

    1

    1

    = for p > 1, p > 0.

    3. B.dx

    xC

    p+ =101

    when p < 0.

    4. (a)2

    21

    ln( )x

    xdx

    b

    (b) limln

    b

    x

    x

    dx

    2

    21

    (c) Note that2

    2

    lnx

    xdx can be found by parts.

    Let u x= 2ln and dv x dx= 2 .Then

    22 2

    2

    1 1 1lnln ( ) ( )

    x

    xdx x x x x dx =

    = +

    = +

    =

    2 2

    2 2

    2

    2

    2

    ln

    ln

    limln

    x

    x xdx

    x

    x xC

    x

    xbArea 11

    1

    2 2

    2

    b

    b

    b

    b

    dx

    x

    x x

    b

    b

    =

    =

    limln

    limln

    + +

    =2

    0 2 2b

    Chapter 8 Review Exercises (pp. 470471)

    1. 1 2 3 5 2 3 5 7, , ,

    a40

    401

    40 1

    40 341 43=

    ++

    =( ) /

    2. 3 6 12 24, , ,a40

    393 2= ( )

    3. (a) 1 2 1 3 2 =( ) /

    (b) + =1 9 3 2 25 2( ) /

    (c) a nn

    n= + =

    1 1 3 2

    3 5

    2( ) /

    4. (a)

    = 2

    1 24

    (b)1

    24 20486( ) =

    (c) ann n=

    ( ) ( )1 41

    2

    1

    = ( ) ( )1 21 2 3n n

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    24/28

    Chapte 8 Review 373

    5.

    [0, 20] by [2, 4]

    6.

    [0, 20] by [2, 2]

    7. an

    n

    n

    nn n n n=

    +

    = = =

    lim lim lim ,3 1

    2 1

    6

    4

    3

    2

    3

    2

    2

    2iit converges.

    8. an

    nn k

    n

    nn

    n

    n

    n=

    +=

    +

    >

    ( ) , , lim ( ) .13 1

    22 1

    3 1

    20

    an

    nn k

    n

    nn

    n

    n

    n=

    +=

    +

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    25/28

    374 Chapter 8 Review

    19. The limit leads to the indeterminate from 00. .

    f

    f

    ( ) (tan )

    ln ( ) ln (tan )ln(tan )

    /

    =

    = =1

    limln(tan )

    / lim

    sec

    tan

    lim

    x x + +=

    =

    0 0

    2

    2

    1 1

    xx

    x

    +

    +

    =

    +=

    0

    2

    02 2

    200

    sin cos

    limsin cos

    lim (tan ) lim l n ( )

    x x

    fe e

    + += = =

    0 0

    0 1

    20. lim sin limsin

    limco

    + +

    = =20

    20

    1

    t t

    t

    t

    ss t

    t2=

    21. lim lim lim x x x

    x xx x

    x xx

    ++

    = +

    =3 2

    2

    2

    3 12 3

    3 64 1

    = 6 64

    x

    22. lim lim lim x x x

    x x

    x x

    x

    x x

    + +

    =

    =

    3 1

    2

    6 1

    4 3

    2

    4 3 3 2 =

    6

    12 60

    2x x.

    23. lim( )

    ( )lim

    x x

    f x

    g x

    x

    x = =

    5

    1

    5

    fgrows at the same rate as g.

    24. lim( )

    ( )lim

    log

    loglim

    (ln )

    x x x

    f x

    g x

    x

    x

    x

    = =2

    3

    / /(ln )

    (ln ) /(ln )

    ln

    ln

    2

    3

    3

    2x=

    fgrows at the same rate as g.

    25. lim( )

    ( )lim lim

    x x x

    f x

    g x

    x

    x x x =

    +=

    =

    1

    1

    1 11

    2

    fgrows at the same rate as g.

    26. lim( )

    ( )lim

    /lim

    x x x x

    xf x

    g x

    x

    xe

    e

    = = =

    100

    100

    fgrows faster than g.

    27. lim( )

    ( )lim

    tanx x

    f x

    g x

    x

    x = = 1 since

    lim tan limx x

    x x

    = = 1

    2

    and

    fgrows faster than g.

    28. lim( )

    ( )lim

    csc

    /x x

    f x

    g x

    x

    x

    =1

    1

    =

    =

    =

    lim

    lim

    lim

    x

    x

    x

    x x

    xx

    x

    x

    x

    1

    1

    1

    1

    1

    2

    2

    2

    2

    2

    ==

    =

    lim/x x

    1

    1 11

    2

    fgrows at the same rate as g.

    29. lim( )

    ( )lim

    ln

    logx x

    x

    x

    f x

    g x

    x

    x =

    2

    =

    ==

    lim

    lim

    lim

    ln log

    ln (ln ) /ln

    x

    x x

    xx x

    x

    x

    x

    2

    2

    =

    x

    x

    x

    x

    x

    (ln )( / ln )

    (ln )( /ln

    lim

    1 1 2

    11

    22 1

    0

    =)

    Note that 11

    2

    ln< 0 since ln 2 < 1.

    fgrows slower than g.

    30. lim( )

    ( )lim lim lim

    x x

    x

    x x

    x

    x x

    f x

    g x

    = = =

    3

    2

    2

    3

    2

    3

    x

    =

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    26/28

    Chapte 8 Review 375

    33. lim( )

    ( )lim

    tan ( )

    x x

    f x

    g x

    x

    x

    =1 1

    1

    =+

    lim( )

    ( )

    x

    xx

    x

    1

    1 1 22

    2

    =+

    =

    lim( )x x1

    1 11

    2

    fgrows at the same rate as g.

    34. lim( )

    ( )lim

    sin ( )

    ( )x x

    f x

    g x

    x

    x

    =1

    2

    1

    1

    =

    lim( )

    ( )

    x

    xx

    x

    1

    1 1

    2

    2

    2

    3

    =

    =

    lim( )x

    x

    x2 1 1 2

    fgrows faster than g.

    35. (a) lim ( ) limsin

    x x

    x

    xf x

    e =

    0 0

    2 1

    1

    = =

    lim(ln ) (cos )

    lnsin

    x

    x

    x

    x

    e0

    2 22

    (b) Define f( ) ln .0 2=

    36. (a) lim ( ) lim lnx x

    f x x x + +

    =0 0

    = +lim

    ln

    x

    x

    x0 1

    = +lim

    x

    xx0

    211

    = = +lim ( )

    x

    x0

    0

    (b) Define f( ) .0 0=

    37.dx

    x

    dx

    x xb

    b

    b

    b

    3 2 3 211 1

    2/ /

    lim lim= =

    == 2

    38.dx

    x x21 7 12+ +

    =+ +

    = ++

    lim

    lim ln

    b

    b

    b

    dx

    x x

    x

    x

    21 7 12

    4

    3

    =

    1

    5

    4

    b

    ln

    39.3

    3 2

    1 dx

    x x

    =

    =

    lim

    lim ln

    b b

    b

    dx

    x x

    x

    x

    3

    3

    3

    2

    1

    =

    b

    1

    2 2ln( )

    40.dx

    x

    dx

    x

    x

    b b9 9 32 3 20

    3

    3

    1

    0=

    =

    lim lim sinbb

    0

    3

    2 =

    41. ln( ) lim ln( ) lim ( ln ) x dx x dx x x xb b b

    b

    = = 0

    1

    0

    1

    0

    1

    = 1

    42.dy

    y

    dy

    y

    dy

    yb

    b

    b b2 3

    02 31 0

    2 3

    1

    1 / / /lim lim= + +

    11

    =

    +

    =

    +lim lim

    b

    b

    bb

    y y01

    0

    1

    1

    2 26

    43.d

    ( ) /+ 1 3 520

    =+

    ++ +lim ( ) lim ( )/ /b

    b

    b b

    d d

    13 52 1

    3 51 1

    00

    = +

    +

    +

    lim ( ) lim (b

    b

    b

    x x1

    2

    5

    21

    1

    5

    21

    5

    2++

    =1 02

    5

    0

    )

    b

    44.2

    2

    2

    22 233

    dx

    x x

    dx

    x xb

    b

    =

    lim

    =

    =

    limb

    bx

    xIn In 3

    2

    3

    45. x e dx x e dxx

    b

    xb2 2

    00

    = lim

    = =

    lim (( ) )

    b

    xb

    x x e20

    2 2 2

    46. xe dxx30

    = =

    lim limb

    x

    b b

    x xe dx

    xe

    30 3

    3

    1

    9 =

    b

    01

    9

    47.dx

    e e

    dx

    e e

    dx

    ex x b x xb b x+

    =+

    ++

    lim lim0

    eex

    b

    0

    =

    lim (tan )b

    xb

    e1

    0

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    27/28

    376 Chapter 8 Review

    47. Continued

    +

    l im (tan ( ))

    b

    xb

    e1

    0

    =

    2

    48.4

    16

    4

    16

    42 2

    0

    2

    dx

    x

    dx

    x

    dx

    xb b b+=

    ++

    lim lim ++ 160

    b

    =

    lim tan

    bb

    x10

    4

    +

    lim tanb

    b

    x1

    04

    =

    49. 011

    ln

    lnz

    zdz z dz

    ln lim ln lim ( ln ) z dz z dz z z zb

    b

    b

    b

    = = =

    1 11lnz

    zdz

    1

    diverges

    50. 011

    e

    tdt e dt

    tt

    e dt e dt e et

    b

    tb

    b

    tb

    = = = +1 11

    0lim lim ( ) == e 1

    e

    tdt

    t

    1 converges

    51. (a)

    =

    3 8

    3 1 2

    1 3/

    /

    /

    = 31

    1 26

    /

    (b)1

    2

    (c) an

    n

    =

    61

    2

    ann= 3 22( )

    52. (a)5 5 11 5

    4

    1 5. .

    .

    =

    11 5 1 5 13. ( . ) =

    (b) 1 5.

    (c) a nn = + 13 1 1 5( )( . )

    an

    = +1 5 14 5. .

    53. (a) e dx e dx e dxx

    b

    x

    b b

    xb

    = +2 20

    2

    0lim lim

    (b) lim limb

    x

    b b

    xb

    e dx e dx

    +20 2

    0

    =

    +

    =

    lim lim

    b

    x

    b b

    xb

    e e20

    2

    02 2

    0++ + + =1

    2

    01

    2

    1

    54. For x y 0 0, on (0,1].

    Volume = ( l n ) x dx201

    = (ln ) x dx201

    = +

    lim (ln )b

    b x dx

    0

    21

    Evaluate (ln ) x dx2 by integration by parts.u x= (ln )2 dv dx=

    dux

    x

    dx=2(ln )

    v x=

    (ln ) (ln ) ln x dx x x x dx2 2

    2 = Evaluate 2lnxdx using integration by parts.

    dv dx=u x= 2ln

    dux

    dx=2

    v x=

    2 2 2 2 2ln ln ln x dx x x dx x x x C = = +(ln ) (ln ) ln x dx x x x x x C

    2 22 2 = + +

    Area = +

    + lim (ln ) ln

    b b

    x x x x x

    0

    21

    2 2

    = + +

    lim (ln ) lnb

    b b b b b0

    22 2 2

    = + + +

    21

    210

    2

    0

    lim(ln )

    limln

    b b

    b

    b

    b

    b

    =

    + + +

    22 1

    12

    10 2 0 2

    lim

    (ln )( )lim

    b b

    b b

    b

    b

    b

    =

    + + +

    22

    12

    0 0

    lim(ln )

    lim ( )b b

    b

    bb

    = = + +

    22

    12 2

    02

    0

    lim limb b

    b

    bb

    55. For x y )0 0 0, , .on

    Area0

    = =

    xe dx xe dxxb

    xblim0

    Evaluate xe dxx by using integration by parts.

    u x dv e dx

    du dx v e

    x

    x

    = == =

  • 8/2/2019 Ch. 8 Solutions New Calc Book

    28/28

    Section 9.1 377

    55. Continued

    xe dx xe e dx xe e C x x x x x = + = +

    Area =

    = +

    lim

    lim

    b

    x xb

    b

    b b

    xe e

    be e

    0

    11

    1

    11 1

    = +

    = + =

    lim

    lim

    b b

    b b

    be

    e

    56. (a) xe dxx 20

    (b) limb

    xb xe dx

    20

    (c) Note that xe dxx 2 can be found by parts: xe dx x e e dx x x x = 2 2 22 2( ) ( )

    = + 2 42 2 xe e C x x .

    Area =

    lim limb

    xb

    b

    x xb

    xe dx xe e

    = 2

    0

    2 2

    02 4

    = +( ) =

    lim .b

    b bbe e2 4 0 4 42 2

    57. (a) x dydy

    y

    2

    200 1=

    +

    ( )

    (b) lim( )b

    b dy

    y + 1 20

    (c) Volume

    = + = +

    lim

    ( )lim ( )

    b b

    bb dy

    yy

    11

    2

    1

    00

    = +

    +

    =

    limb b

    1

    11

    58. Note that xe dxx can be found by parts:

    xe dx x e e dx xe e C x x x x x = = + ( ) ( ) .So

    xe dx xe dx xe ex

    k

    x

    k

    x xkk

    = = lim lim 00

    0

    = +

    limk k k

    k

    e e

    11

    By LHopitals rule, lim lim .k k k k

    k

    e e

    =

    =1 0

    Therefore, xe dxk

    e e

    x

    k k k

    = +

    lim

    11

    0

    = + =0 0 1 1The integral converges to 1.

    Chapter 9

    Infinite Series

    Section 9.1Power Series (pp. 473 483)

    Exploration 1 Finding Power Series for

    Other Functions1. 1 2 3 + + + + x x x x n ( ) .

    2. x x x x xn n + + + ++2 3 4 11 ( ) .

    3. 1 2 4 8 22 3+ + + + + + x x x x n ( ) .

    4. 1 1 1 1 1 12 3 + + + +( ) ( ) ( ) ( ) ( ) . x x x xn n This geometric series converges for 1