ch 3 simple arbitrage relationships for options

46
Ch 3 Simple Arbitrage Relationships for Options Learning objective : 1. What are option’s prices (premiums) bounds when market is N-A-O ? 2. Are there any pri ce relationships between put and call ? 一、 price bounds for call price bounds for put put – call parity dividend’s effect

Upload: hayden-gordon

Post on 03-Jan-2016

47 views

Category:

Documents


0 download

DESCRIPTION

Ch 3 Simple Arbitrage Relationships for Options. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ch 3  Simple  Arbitrage  Relationships  for  Options

Ch 3 Simple Arbitrage Relationships for Options

Learning objective : 1. What are option’s prices (premiums) bounds when market is N-A-O ? 2. Are there any price relationships

between put and call ?

一、 price bounds for call

二、 price bounds for put

三、 put – call parity

四、 dividend’s effect

Page 2: Ch 3  Simple  Arbitrage  Relationships  for  Options

Notations :

S(t); 標的 ( 以下均設股票 ) 在 t 時點之股價

C(t); 美式買權 (AC) 在 t 時點之價格 ( 權利金 )

c(t); 歐式買權 (EC) 在 t 時點之價格 ( 權利金 )

P(t); 美式賣權 (AP) 在 t 時點之價格 ( 權利金 )

p(t); 歐式賣權 (EP) 在 t 時點之價格 ( 權利金 )

K ; 履約價格

B(t,T); T 時點確定 1 元之 t 點現值 , 也是將 T 確定貨幣轉換 為 t 點貨幣之無限貼現因子。只要 t →T間之無險 利率 > 0 ,則 0 < B(t,T) <1

Page 3: Ch 3  Simple  Arbitrage  Relationships  for  Options

CF(t); t 時點之 cash flow ( inflow )

T ; 各種 options 契約之到期日

Assumptions

1. 除第四節外,假設現股無任何股利發放。

2. 全文之 AC , EC , AP , EP 契約除特別提及,否則均

設標的股票、履約價、到期日等條件都相同,只區分

買權或賣權,可期前履約(美式)或否(歐式)。

Page 4: Ch 3  Simple  Arbitrage  Relationships  for  Options

Notions :

履約價 權利價 主研究課題 )T,t(B )T,0(F)T,t(F)t(V Fd F(t,T)

名目 =S(T)=F (T,T) 實質 =S(T)+ 進場後保 證金總收入

= 進場期貨價格

= F (t,T)

Ft

在考慮保證金帳戶淨收入後始終為 0

1.F (t,T) 的決定因素 , 和 S(t) 的關係

2.F (t,T) 和 F ( t,T) 或 options prices 的關係

1.F(t,T) 如何參考 S(t) 決定?

2. V(t)? ( less important ! why? )

opt.

K ( 在集中交易市場是契約制式化規定 )

premiums各種 premium 如何決定?和 S(t) 或其他影響因素關係?

Page 5: Ch 3  Simple  Arbitrage  Relationships  for  Options

一、 price bounds of calls

〈 Result-C-1 〉 relationship of C(t) and c(t)

C(t) c(t)≧

proof : [t,T] 之間,任何 EC 持有人可行為者, AC 持有人皆可行為,且後者權力更廣。

〈 Result-C-2 〉 C(t) , c(t) are nonnegative

c(t) 0≧

proof : 1. opt. 持有人是 limited liability. 其未來給付最 差是 0 ,不可能還須支出,故任何opt. 權力 價值≧ 0 。

另證→ 2. if C(t)<0 , long EC now , CF(t)= -c(t) > 0

Page 6: Ch 3  Simple  Arbitrage  Relationships  for  Options

At T , ifS(T)>K , exercise call , CF(T)= S(T) - K > 0

S(T) K , EC is worthless , CF(T) = 0 ≦

if N-A-O , then c(t) 0≧

Note : 1.〈 R-C-1 〉&〈 R-C-2 〉 C(t) ≧0

2.〈 R-C-1 〉&〈 R-C-2 〉 still hold even CF occurs during (t,T)

Page 7: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-C-3 〉 upper bound of C(t) & c(t)

C(t) S(t)≦

proof : if C(t) > S(t)

現在 (t) ,買股賣 AC , CF(t)= C(t) – S(t) > 0 ,

在 [t,T] 間任一時點 ,若 AC 被執行,則交付

持股,取得 K>0 。若 AC 未被執行,則抱股

CF = 0 ,此為 A-0

if N-A-O , C(t) S(t)≦

t~

t~

Page 8: Ch 3  Simple  Arbitrage  Relationships  for  Options

1. 由〈 R-C-1 〉和〈 R-C-3 〉 c(t) S(t)≦

2. 訂金 ( 如房屋買賣時 ) 制度,雷同買權的交

易。房價是?訂金是? T ? EC or AC ?和

call 的交易差別在?係可以想像 C(t) > S(t)

的房地產交易嗎?

你可以作何 study? 承包工程保證金

Note :

Page 9: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-C-4〉 lower bound of C(t) & c(t)

c(t) max { 0,s(t)-K B(t,T) }≧ ‧

proof :

c(t) T)KB(t,-S(t)

T)KB(t,-S(t)0,max then , 0T)KB(t,-S(t) if 2.

c(t) 0T)KB(t,-S(t)0,max then , T)KB(t, -S(t) 0 if .1

< R-C- 2 >

證明於下

Page 10: Ch 3  Simple  Arbitrage  Relationships  for  Options

T)KB(t,-S(t)c(t) if

date t strategy 空現股 無險投資 (T 到期 )KB(t,T) 買Call

CF(t) S(t) -KB(t,T) -c(t) > 0

date T strategy 還卷 回收無險投資

CF(T) -S(T) K

if S(T)>K, 則執行 EC CF(t)=S(T)-K

S(T) K , EC is worthless CF(T)=0 ≦

T)KB(t, - S(t) , 0max c(t) 2 & 1

T)KB(t, - S(t) c(t) , O-A-N if

O - A

Page 11: Ch 3  Simple  Arbitrage  Relationships  for  Options

另證

portfolio A : 持有 EC ,無險投資 KB(t,T)

portfolio B : 持股

就 portfolio A 而言,在 T

if S(t) > K , 則以無險投資之本息 K 交付執行 EC ,取得現貨 此時 value of portfolio A at T =S(T)=max{ S(T),K }

if S(T) K≦ ,則 EC 無價值 此時 value of portfolio A at T = K =max{ S(T),K }

就 portfolio B 而言,在 T

value of portfolio B = S(T) max{ S(T),K } = ≦ value of portfolio A at T

→ present value of portfolio A present value of portfolio B≧

i.e. c(t) + KB(t,T) S(t) ≧ or c(t) S(t) – KB(t,T) ≧ but c(t) 0 ≧

→c(t) max{0,S(t) - KB(t,T)}≧

Page 12: Ch 3  Simple  Arbitrage  Relationships  for  Options

Note : 1. by 〈 R-C-1 〉 & 〈 R-C-4 〉

→ C(t) max { 0,S(t) – KB(t,T)}≧

2. 此一下限規範在現股 (t,T) 兼有股利發放 ( 即 CF ) 時,需加 以修訂。

例:元大 35 ,標的股:微星科技 K = 111.75 元 執行比例 1 :1

4/8( 一 ) 收盤價 C = 37.6 S = 134 T 今年 11 月 4 日半年

rf ( =央行發行之 180 元 NCD) = 2.5 %

B( 0,180 天 ) = (1+0.025×1/2)-1 0.9877≒

S – KB( 0,180 天 ) = 134 元 – 111.75 元 × 0.9877

= 134 – 110.37 = 23.63

例: 台指權 K = 6200 T = 4 月 18 日

4/8 收盤價 c=60 S=6190.83

Page 13: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-C-5 〉歐式、美式買權等價

if (1) underlying stock has no dividend during (t,T)

(2) riskless interest rate > 0 ( i.e B(t,T) < 1 )

AC will not be exercised befor maturity , which implies C(t) = c(t)

c(t) C(t)

Tt,t K - S(t) C(t)

1 T)B(t, since K - S(t)

T)KB(t, - S(t)

T)KB(t, - S(t)0, max C(t)

2CR&1CR

proof :

代表 AC 之執行價值

持有 AC ,其價值始終優於執行價值 故 AC 始終不會被期前執行,契約等同EC

Tt,t

Page 14: Ch 3  Simple  Arbitrage  Relationships  for  Options

Note : 1. 此一結果只適用現股不發放股利,若現股有股

利,則前述 C(t) S(t) – KB(t,T)≧ 未必成立,故最

後結論未必成立。

2. 縱然現股無股利,就 P(t) 和 p(t) 而言,沒有此相同

價值之結果

結論: 1. 許多研究發現:台灣卷商發行的認購權證訂價偏

高。市場 ( 主要是卷商 ) 的一種看法是:台灣權證

多屬於美式,投資人可隨時要求履約,故價應訂

高。對於這種論調,你有何見解?

Page 15: Ch 3  Simple  Arbitrage  Relationships  for  Options

2. 如果現在 call 在價內( i.e. S(t) > K ),且預期未來股價

很可能跌至 K 以下( i.e. call 成價外),難道還不執行?

Ans :是的 若執行

當然執行 AC 後,可以選擇馬上出脫持股兌現執行

利得 S(t) – K > 0 ,但不執行,將 AC 出售是更好策

略,後者得 C(t) 。依下限定理 C(t) > S(t) – K ,賣 AC

優於執行 AC 。

3. 美式 options 訂價比歐式難,但就 call 而言,比一定理

implies某些狀況 ( 現股無股利 )AC 和 EC 訂價完全相同。  

抱股 , 承擔股價可能降至 K 以下的風險,又無股利 付 K, 損失資金的利息收入

Page 16: Ch 3  Simple  Arbitrage  Relationships  for  Options

45° 45°0 KB(t,T)

C(t),c(t)

S(t)

S(t)=C(t) c(t)=S(t)-B(t,T) × K

OB

有 A-O

OB

有 A-O

〈 R-C-4〉

〈 R-C-2〉

〈 R-C-3〉

PRICE BOUND

of AC & EC

Page 17: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈補充〉買權價格的其他性質Ct(‧) , ct(‧) 在 t 時,買權之價格

value ) exercise , parity ( intrinsic

K - S(T) , 0 max)K(c)K(C

KKK KK

TTT TT

TT

123i1i

123i1i

, 3 , 2 , 1i 令 例

〈性質一〉

0 T)KB(t,-S(t) , 0 max)K(c t at

0 K-S(t) , 0 max)K(C call of value time

t

t

§.

Page 18: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈性質二〉

T,T

)T(C

)T,KB(T-)S(T , 0 max K-)S(T , 0 max )(TC

Tat

)T(C )T(C

) AC(Tofright ) AC(Tofright

21

2T1

21111T1

1

1t2t

21

intuition 1 :

intuition 2 :

)T(c )T(c & )T(C )T(C 1t2t1t2t

時點

間呢?

就歐式買權而言,前述 intuition 1解釋適用? intuition 2 ?

在 S 極高 ( call is deep-in ) or S 極低 ( call is deep-out )

Ct(T2) 可能等於 Ct(T1) , EC亦同

Page 19: Ch 3  Simple  Arbitrage  Relationships  for  Options

S K if 0 S

value) time(

>

<><

〈性質三〉

說明:中(主隊) - 日(客隊)棒賽

得分 S 得分 K

option’s time value 是投資人為期待好 or 更好 結果之付出 觀眾為期待獲勝所付出之關

心或 時間 。

0

ct or Ct

S(t)KB(t,T)

time value

max{ 0,S(t) – KB(t,T) }

就 AC 言, K = S 時, AC 之 time value 最大;就 EC 言, KB(t,T)=S 時, EC 之 time value 最大。

Page 20: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈性質四〉 , maturitytimeor 0maturity

value time

time value 愈小。( time value decay )

§. Exercise Prices & Call prices

〈性質五〉 )K(C )K(C )( )K(c )K(C )一( 1t2t1t2t 二

( proof ) ( 一 ) 之證明

portfolio A : long EC(K1) , short EC(K2)

portfolio B : 面額 X2 – X1 之 riskless asset , matures at T

Page 21: Ch 3  Simple  Arbitrage  Relationships  for  Options

Portfolio S(T)<K1<K2 K1 S(T)<K≦ 2 K1<K2 S(T)≦

A 0 S(T) – K1 0≧ ( S(T)-K1 ) + ( K2

-S(t) ) = K2-K1 > 0

B X2 - X1> 0 X2 - X1> 0 X2 - X1> 0

payoff at T

Page 22: Ch 3  Simple  Arbitrage  Relationships  for  Options

A 在到期日,無論 S(T) 為何,其 payoff 0≧

price of A now = ct(K1) – ct(K2) 0 Q.E.D≧

( 一 ) 之另證

if ct(K2) > ct(K1) ,則買入 EC(K1) ,賣出 EC(K2)

CF (t=now) = ct(K2) – ct(K1) > 0

at T.

if S(T) < K1 , EC(K1) 不執行, EC(K2) 不會被執行 CF(T) = 0

K1 S(T)<K≦ 2 , EC(K1) 執行 EC(K1) , EC(K2) …CF(T) = S(T) - K1 0≧

S(T) K≦ 2 ,執行 EC(K1) , EC(K2) 也會被執行 CF(T) = S(T) - K1+K2 - S(T)

i.e. A-O存在,故 N-A-O , ct(K2) c≦ t(K1)

Page 23: Ch 3  Simple  Arbitrage  Relationships  for  Options

(二)之證明

前面之 portfolio A ,改成 long AC(K1) , short AC(K2)

相同推論 at T , payoff of portfolio A 0 in any c≧ase .

0 )K(C)K(C i.e.

0 t now Aportfolio of payoff

0 Tt,point time anyat Aportfolio of payoff

0KK

)t~

(SKK-)t~

S(t~

at payoff)AC(K

K-K )t~

(S ) AC(Kif , Tt, t~

any for

2t1t

12

211

122

被執行則執行

此時

Page 24: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈性質六〉122t1t

12122t1t

KK )K(C)K(C )二(

KK )T,t(B)K(K )K(C)K(C )一(

( proof )

( 一 ) 之證明

由前頁 portfolio A , B 之未來 (T) 之 payoff 比較知

payoff of portf. B payoff of portf. A S(T) …(1)≧

price of B price of A t T …(2)≧ ≦

i.e. (X2-X1) B(t,T) c≧ t(K1)-ct(K2) t T Q.E.D≦

Page 25: Ch 3  Simple  Arbitrage  Relationships  for  Options

( 二 ) 之證明

就 AC 而言可隨時執行,若某一

AC(K2) 被執行,同時執行 AC(K1) ,則在 得 K2 - K1 ,再投資無險資產,期末 (T) 得 (K2 – K1)B-1(t,T) K≧ 2 – K1 ,前面 ( 一 ) 之證明不適用。

將 B改成面額是 (K2 -K1)B-1(t,T) ,則 ( 一 ) 之推論 (1)(2)適用

KK )t~

S( if , T,tt~

12

)(KC-)(KC K-K

)(KC-)(KC T)(t,)BK-(K

2t1t12

2t1t

-1

12

N-A-O 證明

t~

Page 26: Ch 3  Simple  Arbitrage  Relationships  for  Options

補充: Early exercising of American Options

一、 call

執行買權,則

pay striking K : later exercising can save interest than earlier exercising . late early…

(1)

stock price rises after, early and late exercising. can earn the same capital gain .

late early …(2)

stock price goes down after, early exercising burden capital loss, but delay your option of exercising decision can choose not

exercising and protect yourself from loss .late early. …(3)

get stock :

Page 27: Ch 3  Simple  Arbitrage  Relationships  for  Options

dividend : early exercising ( before holder-of-record date = ex-dividend date ) can get dividend but not for later exercising ( after-ex-divi. date )

date early….(4)

exercising decision criterion at t .

〈性質一〉

value(t) timeT)B(t,-1K )t~

,t(B)t~

(d (1)(4) (3)

><

早執行股利之現值 早執行所付 K之利息損失現值

早執行損失之等待價值

則 at t

exercising not exercising股利愈大或 riskless interest rate愈小,愈可能提早執

Page 28: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈引理一〉 if there is no dividend , never exercising at T,tt

0 ex-dividend maturity

timeTt

~

〈引理二〉有股利之 AC ,唯一可能提早執行之時點是每一 ex-dividend date 之前一瞬間

〈引理三〉 for but , dividend-nonfor TC Tc 2t1t

Page 29: Ch 3  Simple  Arbitrage  Relationships  for  Options

二、 put

執行 put

receive striking K : early exercising can earn interest

than late . early late…(1)

if stock price goes down, early and late exercising can escape form downside loss .

early late …(2)

if stock price goes up , early exercising looses capital gain, but delay your option of exercising decision can choose not exercising and selling at spot price

late early. …(3)

give up stock :

Page 30: Ch 3  Simple  Arbitrage  Relationships  for  Options

dividend : early exercising (ex : before dividend date ) will lose dividend , but not for later exercising ( after- ex - dividend date ) late early….(4)

exercising decision criterion at t .

〈性質二〉

value(t) time )t~

,t(B)t~

(d T)B(t,-1K ><

早執行利息收入之現值

早執行股利損失之價值

at texercising not exercisingthe larger the interest rate or the smaller the

dividend . the better for early exercising AP

〈引理一〉 if there is no-dividend , it is still possible for exercising of AP . when K(1-B) > time value(t)

Page 31: Ch 3  Simple  Arbitrage  Relationships  for  Options

二、 price bounds of puts

〈 Result-P-1 〉 relationship of P(t) and p(t) P(t) p(t)≧

〈 Result-P-2 〉 P(t) and p(t) are nonnegative

proof : 同〈 R-C-2 〉 proof 之 1

另證:參考〈 R-C-2 〉 proof 之 2 ,證明 p(t) 0 ≧ (考慮 if p(t) < 0 ,可如何進行套利?)

Note :前述兩結果在 underlying 有 CF 仍成立

〈 Result-P-3 〉 upper bound of P(t) P(t) K≦

proof :賣權是現貨空頭的保險工具,股價愈低,此保險工 具愈有價值,最小股價是 0 ,此時賣權可實現其最 大價值,即 K.

Page 32: Ch 3  Simple  Arbitrage  Relationships  for  Options

另證: if P(t) > K ,則賣 AP ,並無險投資 K

CF(t) = P(t) – K > 0

K P(t) , O-A-N if

0)t~

CF(

investment an own , exercised benot willput , K )t~

S( if

0 K-)t~

KB(t,)t~

CF(

stock hold and investmentformer from

price striking finance , exercised be willput , K)t~

S( if

Tt, t~ any For

-1

Page 33: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-P-4 〉 upper bound of p(t)

p(t) KB(t,T)≦

proof : if p(t) > KB(t,T)

現在 (t) ,賣 EP ,無險投資 KB(t,T)

CF(t) = p(t) – KB(t,T) > 0

T 日,回收無險投資得 K

EP 被執行 CF(T) = S(T) – K + K 0≧

EP 未被執行 CF(T) = K > 0

if N-A-O , p(t) KB(t,T)≦

if

Page 34: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-P-5 〉 lower bound of P(t)

P(t) max { 0 , K – S(t) }≧

proof : 只須考慮當 K – S(t) > 0 , P(t) K – S(t)≧ 即可

if P(t) < K – S(t)

買 AP ,馬上執行 CF(t) = K – S(t) > 0

That all !

if N-A-O , P(t) K – S(t) , ≧ 而 P(t) 0≧

P(t) max { 0 , KB(t,T) – S(T) } ≧

Page 35: Ch 3  Simple  Arbitrage  Relationships  for  Options

〈 Result-P-6 〉 lower bound of p(t) p(t) max { 0 , KB(t,T) – S(t) }≧ proof : 只須證, if KB(t,T) – S(t) > 0 , then p(t) KB(t,T) – S(t)≧ if p(t) < KB(t,T) – S(t) then ,現在買入 EP ,無險借入 KB(t,T) , 同時買入股票。 CF(t) = - P(t) + KB(t,T) – S(t) > 0

T 日,有 K負債,手中持股且擁有 EP S(T) K≧ ,不執行 EP ,賣股償債 .CF(T) = S(T) - K

0≧ S(T)<K ,執行 EP ,交股取履約價償債 . CF(T) = 0 if N-A-O , p(t) KB(t,T) – S(t)≧ ,又 p(t) 0≧ p(t) max { 0 , KB(t,T) – S(t) } ≧

if

Page 36: Ch 3  Simple  Arbitrage  Relationships  for  Options

Note : 1 . 只要無險利率為 E ,則 p(t) 下限 ≦ P(t) 下限 2. 若標的期中有 CF ,前兩下界結論須加以修訂

p(t) , P(t)

K

KB(t,T)

0 KB(t,T) KS(t)

bounds of AP

bounds of EP

〈 R-P-3〉

〈 R-P-4〉

〈 R-P-6〉〈 R-P-5〉

〈 R-P-2〉

Page 37: Ch 3  Simple  Arbitrage  Relationships  for  Options

三、 put – call parity

( 一 ) price relationship among EP 、 EC , underlying and

riskfree asset

〈 Result 12 〉 put – call parity — European Options

p(t) = c(t) – S(t) + KB(t,T)

proof : 考慮以下 portfolio ,持有 EC ,空現股,無險

投資 KB(t,T) ,其現在價值(所須成本)

c(t) – S(t) + KB(t,T)

Page 38: Ch 3  Simple  Arbitrage  Relationships  for  Options

S(T) K S(T) – K – S(T) + K = 0 = CF(T)≧

S(T)<K 0 – S(T) + K = K – S(T) = CF(T)

前述投資組合在 (0,T) 間無 cash flow ,而在 T 日之

payoff = max { 0 , K – S(T) } ,此 portfolio 之 CF

完全和 EP 相同

c(t) – S(t) + KB(t,T) = p(t)

T 日, if 執行 EC 還卷 投資回收

EC 無價值

Page 39: Ch 3  Simple  Arbitrage  Relationships  for  Options

另證: A portfolio — 買入 EC ,無險投資 KB(t,T)

payoff of A at T = max { 0 , S(T) – K } + K

= max { S(T) , K }

B portfolio — 買入 EP ,買入股票

payoff of B at T = max { 0 , K – S(T) } + S(T)

= max { S(T) , K }

而 A 、 B兩投資組合,期前無現金流出入

兩投資組合之現在價值須相等

i.e. c(t) + KB(t,T) = p(t) + S(t)

Page 40: Ch 3  Simple  Arbitrage  Relationships  for  Options

0

S(T)

p(T)

p(T) + S(T) = c(T) + K K≧

portfolio insurance ( why ? )

S(T)

Page 41: Ch 3  Simple  Arbitrage  Relationships  for  Options

implications and discussions of European

put – call parity — c(t) – p(t) – S(t) + KB(t,T) = 0

1. price discovery among EC 、 EP , underlying and risk -free asset .

2. mutually duplicate among EC 、 EP , underlying and risk - free asset . ( by linerar pricing principle 2 →1

)3.

0T)KB(t, - S(t) p(t) - c(t)

T)KB(t, - S(t) p(t) - c(t)

underlying of return of volatility ; 0 p(t)

)t(c

independent of σ

Page 42: Ch 3  Simple  Arbitrage  Relationships  for  Options

4. 價平時( S = K ), c(t) > p(t)

∵ c(t) – p(t) = S(t) – KB(t,T)

= K – KB(t,T) > 0

E . put – call parity

EC EP

risk-free assetunderlying

Page 43: Ch 3  Simple  Arbitrage  Relationships  for  Options

(二) price relationship among AP 、 AC , underlying and

riskfree asset

〈 Result 13 〉 put – call parity — American Options

P(t) + S(t) – KB(t,T) C(t) P(t) + S(t) – K≧ ≧

proof : 1. first in inequality : P(t) + S(t) – KB(t,T) C≧(t) by 〈 R 12 〉

p(t) = c(t) – S(t) + KB(t,T)

but P(t) p(t)≧ (〈 R-P-1 〉) and C(t)=c(t) (〈 R-C-5 〉)

p(t) C(t) – S(t) + KB(t,T)≧

Page 44: Ch 3  Simple  Arbitrage  Relationships  for  Options

2. 2nd inequality : C(t) P(t) + S(t) – K≧

if p(t) + S(t) – K > C(t) , 則

賣 AP ,空現股,無險投資 K 金額,買入 AC

CF(t) = P(t) + S(t) – K – C(t) > 0

for any ,若 AP 被執行,則 Tt, t~

K - S(t) p(t) C(t) O-A-N if

T t~

with (1)CF(T) K S(T) if

0 0T)KB(t,S(T)-K-S(T)CF(T) KS(T) if

(1) 0 )t~

KB(t,)t~

S(-K -)t~

S( )t~

(CF

-1

-1

T日

AP 被執行損失

還卷 賣出無險資產

還卷執行 AC

Page 45: Ch 3  Simple  Arbitrage  Relationships  for  Options

Summary of Price Bound and Put – Call parity when underlying has no dividends

Upper bound Lower bound

Call AC

〈 R-C-3〉C(t) S(t)≦

〈 R-C-4〉C(t) max{0 , S(t)-KB(t,T)}≧

EC

〈 R-C-3〉c(t) S(t)≦

〈 R-C-4〉c(t) max{0 , S(t)-KB(t,T)}≧

Put AP

〈 R-P-3〉P(t) K≦

〈 R-P-5〉P(t) max{0 , K-S(t)}≧

EP

〈 R-P-4〉p(t) KB(t,T)≦

〈 R-P-6〉p(t) max{0 , KB(t,T)-S(t)}≧

Put – call

parity

美式

〈 R-13〉P(t)+S(t)-KB(t,T) C(t) P(t)+S(t)-K≧ ≧

歐式

〈 R-12〉p(t)+S(t)-KB(t,T)-c(t)=0

Page 46: Ch 3  Simple  Arbitrage  Relationships  for  Options

Options are limited liability

premium 0 for all options≧

More optional in American type than in European type

C(t) c(t) , P(t) p(t)≧ ≧

Intuitions of above results !