ch 14 biyoenerjetikler ve metabolizma yonca duman

Upload: sezer-kurtuldu

Post on 07-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    1/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    2/105

    METABOLZMA

    oklu enzim sistemlerinin (metabolik yollar)bulunduu yksek oranda dzenli hcresel aktivite.

    1.Gne enerjisinden ya da evredeki enerjice zengin

    besinleri paralayarak kimyasal enerji elde etmek,

    2.Besin molekllerini, makromolekllerin nclleride (precursors) dahil olmak zere hcrenin kendi

    karakteristik molekllerine dntrmek,

    3.Momomerik ncl bileiklerin makromolekllerepolimerizasyonuyla proteinler, nkleik asitlerve

    polisakkaritleri oluturmak,

    4.zel hcresel ilevler iin membran lipidleri, hcreii haberciler (intracellular messengers), pigmentler

    gibi biyomolekllerin sentezini ve ykmnsalamak.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    3/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    4/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    5/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    6/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    7/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    8/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    9/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    10/105

    Metabolic pathways are irreversible,

    Catabolic and anabolic pathwaysmust differ,

    Every metabolic pathway has a first

    committed step,

    All metabolic pathways are regulated,

    Metabolic pathways in eukaryoticcells occurs in cellular locations.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    11/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    12/105

    Metabolizma

    Kimyasal dnmlerin herbiri (metabolik yollar)

    organizma iin ne yapar?

    Herbir metabolik yol nasl alr?

    Metabolik ollarn herbiri di er metabolik ollarla

    hcrenin bymesi ve btnln muhafaza etmekzere gerekli enerji ve rnleri retmek iin nasl

    ilikiye geer?

    Yaamdaki dinamik yatkn durumunun (steady-state)

    salanmas, metabolik enerji retimi ve tketiminin

    dengelenmesi nasl ok katmanl birok reglasyon

    mekanizmasyla gerekleir?

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    13/105

    Canl hcrelerdeki metabolik yollarda 5 genel

    kimyasal reaksiyon tipi grlr:

    Oksidasyon-Redksiyon reaksiyonlar,

    C-C balarn oluturan ya da kran reaksiyonlar,

    Molekl ii dzenlemeler, izomerizasyonlar veeliminasyonlar,

    Grup transferi reaksiyonlar,

    Serbest radikal reaksiyonlar.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    14/105

    Metabolik reaksiyonlarn oluumunda

    iki temel unsur gz nnde tutulmal:

    Kovalent ba oluumu ya da krlmas,

    Birok biyokimyasal reaksiyondankleofil(elektronca zengin fonksiyonel

    grup) ve elektrofil(elektronca fakir

    fonksiyonel grup) gruplar arasndakietkileimler.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    15/105

    Models of CH bond breaking.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    16/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    17/105

    Biologically important nucleophilic and electrophilic groups.

    (a) Nucleophiles.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    18/105

    Biologically important nucleophilic and electrophilic groups.

    (b) Electrophiles.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    19/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    20/105

    1. Oxidation-reduction Reactions

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    21/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    22/105

    Farkl metabolik yollarda yer alan

    ayn tip reaksiyonlar ayn genel

    mekanizma ile ve ayn koenzimlerikullanarak gerekleirler.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    23/105

    2. Group-transfer reactions

    (a) Acyl group transfer

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    24/105

    2. Group-transfer reactions

    (b) Phosphoryl group transfer

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    25/105

    The phosphoryl-transfer reaction catalyzed by hexokinase.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    26/105

    2. Group-transfer reactions

    (c) Glycosyl group transfer

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    27/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    28/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    29/105

    3. Reactions that make or break carbon-carbon bonds

    Examples of CC bond formation and cleavage reactions.

    (a) Aldol condensation.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    30/105

    3. Reactions that make or break carbon-carbon bonds

    Examples of CC bond formation and cleavage reactions.

    (b) Claisen condensation ester.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    31/105

    3. Reactions that make or break carbon-carbon bonds

    Examples of CC bond formation and cleavage reactions.

    (c) Decarboxylation of a -keto acid.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    32/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    33/105

    Carbanion Stabilisation

    (a) Carbanions adjacent to carbonyl groups are stabilized

    by the formation of enolates.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    34/105

    Carbanion Stabilisation

    (b) Carbanions adjacent to carbonyl groups hydrogen

    bonded to general acids are stabilized electrostatically or by

    charge neutralization.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    35/105

    Carbanion Stabilisation

    (c) Carbanions adjacent to protonated imines (Schiff

    bases) are stabilized by the formation of enamines.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    36/105

    Carbanion Stabilisation

    (d) Metal ions stabilize carbanions adjacent to carbonyl

    groups by the electrostatic stabilization of the enolate.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    37/105

    4. Eliminations, Isomerisations, and Rearrangements

    Possible elimination reaction mechanisms using

    dehydration as an example.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    38/105

    4. Eliminations, Isomerisations, and Rearrangements

    Possible elimination reaction mechanisms using

    dehydration as an example.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    39/105

    4. Eliminations, Isomerisations, and Rearrangements

    Mechanism of aldoseketose isomerization.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    40/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    41/105

    4. Eliminations, Isomerisations, and Rearrangements

    Rearrangements produce altered carbon skeletons

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    42/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    43/105

    Bioenergetics is the

    quantitative study of the

    energy transductions that

    occur in living cells and of

    the nature and function ofthe chemical processes

    underlying these

    transductions.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    44/105

    G = H - T S

    G G0 Reaction endergonic

    G=0 Reaction in equilibrium

    H H0 Reaction endothermic

    S

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    45/105

    The second law of thermodynamicsstates that the entropy of the universe

    increases during all chemical andphysical processes, but it does notrequire that the entropy increase takeplace in the reacting system itself.

    Living Cells

    The order produced within cells They create disorder in their

    as they grow and divide is more surroundings in the coursethan compensated for by the of growth and division.disorder.

    In short, living organisms Returning to their surroundingspreserve their internal order an equal amount of energyby taking from the surroundings as heat and entropy.free energy in the form ofnutrients o r sunlight.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    46/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    47/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    48/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    49/105

    Kimyada Standart Koullar298 K = 25C

    [A] = [B] = [C] = [D] = 1 M

    G =G

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    50/105

    [H+] = 1 M pH = 0

    Hcre ii pH 7

    Biyokimyada Standart Koullar

    [H+] = 10-7 M

    [H2O] = 55.5 M[Mg+2] = 1 mM

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    51/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    52/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    53/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    54/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    55/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    56/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    57/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    58/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    59/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    60/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    61/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    62/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    63/105

    nsan eritrositlerinde [ATP] = 2.25 mM, [ADP] = 0.25 mM,[Pi] = 1.65 mM, pH = 7 ve Scaklk = 25C olan koullarda

    ATP hidrolizinin gerek serbest enerji deiimi:

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    64/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    65/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    66/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    67/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    68/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    69/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    70/105

    Byk negatif G deerleri olan hidroliz reaksiyonlarnda rnler

    reaktantlardan daha stabildir. Bunun nedenleri:

    1. Reaktantlarda elektrostatik etkileimlerden kaynaklanan ba gerilmeleriyk ayrlmasyla rahatlar (ATP de olduu gibi),

    2. rnler iyonize olarak stabilize olur (ATP, ail fosfatlar ve tiyoesterlerdeo u u g ,

    3. rnler izomerizasyon (tautomerizasyon) ile stabilize olur(fosfoenolpirvatta olduu gibi),

    4. rnler rezonansla stabilize olur (fosfokreatinden kreatin kmas,ailfosfatlar ve tiyoesterlerden karboksilat iyonu kmas, anhidrit ve esterbalarndan Pi kmas)

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    71/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    72/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    73/105

    G (kJ/mol)(1) PEP + H2O Pyruvate + Pi 61.9

    i 2 .

    Sum: PEP + ADP Pyruvate + ATP 31.4

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    74/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    75/105

    ATP ADP + Pi (- hidrolizi) G= 30.5 kJ/mo

    - .inorganic pyrophosphatase

    i iPP 2P G

    = 19.2 kJ/mo

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    76/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    77/105

    G (kJ/mol)Palmitate + ATP Palmitoyl-adenylate + PPi 45.6

    PPi 2Pi 19.2

    a m toy -a eny ate + o a m toy - o + + .

    Palmitate + ATP + CoASH Palmitoyl- CoA + AMP + 2Pi 33.4

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    78/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    79/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    80/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    81/105

    +2

    Nucleoside diphosphatekinase

    MgATP + NDP (or dNDP) ADP + NTP (or dNTP) G 0

    High [ATP]/[ADP] ratio in the cells normally drives reaction to the right with

    the net formation of NTPs or dNTPs.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    82/105

    Transphosphorylations between nucleotidesoccur in all cell types

    Ping-Pong mechanism of nucleoside diphosphate kinase

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    83/105

    Vigorously contarcted muscle consumes ATP produce ADP. Atp requirement of

    muscle replenished by the following reactions:

    +2

    Adenylate kinase

    Mg2ADP ATP + AMP G 0

    ATPcontracted

    +2

    rea ne nase

    MgPCr + ADP Cr + ATP G 12.5 kJ/mol

    When a sudden demand for energy depletes ATP, the PCr reservoir is used to

    replenish ATP at a rate considerably faster than ATP can be synthesized by

    catabolic pathways.

    At pH 7 and 2 mM Mg+2, ATP exists in the forms

    -4 -3 -2 -

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    84/105

    ATP , HATP , H2ATP , MgHATP , and Mg2ATP

    In thinking about the biological role of ATP, we write its hydrolysis as the biochemicalequation

    ATP + H20 ADP + Pi [ ][ ]

    [ ]o ieq

    ADP PK = ATP

    The corresponding apparent equilibrium constant depends on the pH and the concentration o

    O

    free Mg+ . Note that H+ and Mg+ do not appear in the biochemical equation because they areheld constant. Thus a biochemical equation does not balance.

    At a pH above 8.5 in the absence of Mg+2 the chemical reaction is represented by

    ATP

    -4

    + H20

    ADP

    -3

    +

    -2

    4HPO + H

    +

    -3 -2 +

    4o

    eq -4

    ADP HPO H

    K = ATP

    The corresponding equilibrium constant depends only on temperature, pressure, and ionicstrength.

    O

    Biological

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    85/105

    Oxidation-Reduction

    Reactions

    Theflow of electronscan dobiological workin living systems.

    +2 +2 +3 +

    Oxidations-reductions can be described as half-reactions

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    86/105

    +2 +3

    +2 +

    Fe + Cu Fe + Cu(1) Fe Fe + e

    (2) Cu + e Cu

    Electron-donating molecule Reducing agent or Reductant

    -

    -

    Electron-accepting molecule Oxidizing agent or Oxid

    +2 +3

    +

    ant

    Electron donor e + Electron acceptor

    Fe Fe Conjugate reductant-oxidant pair ( redox pair)

    Proton donor H + Proton acceptor

    Proton donor / Proton acceptor Co

    -

    /

    njugate acid-base pair

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    87/105

    +22 2

    2

    R-CHO + 4OH + 2Cu R-COOH + Cu + 2H(1) R-CHO + 2OH R-COOH + 2e + H

    -

    - -O O

    O

    Oxidation of a reducing sugar (adehyde or ketone) by cupric ion

    +2 2

    +2

    (2) 2Cu + 2e + 2OH Cu + H

    Reducing agent: R-CHO

    Oxidizing agent: Cu

    - - O O

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    88/105

    Electrons are transferred from one molecule (electron donor) to another (electron

    acceptor) in one of four different ways:

    1. Directly as electrons. For example, the Fe+2/Fe+3 redox pair can transfer an electron toh C +/C +2 d i

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    89/105

    the Cu+/Cu+2 redox pair:

    Fe+2 + Cu+2 Fe+3 +Cu+

    2. As hydrogen atoms. Recall that a hydrogen atom consists of a proton (H+) and a singleelectron (e-). In this case we can write the general equation:

    AH2A+ 2e-+ 2H+

    where AH2 is the hydrogen/electron donor. AH2 and A together constitute a conjugate, ,

    transfer of hydrogen atoms:

    AH2 + B A+BH2

    3. As a hydride ion (:H-), which has two electrons. This occurs in the case of NAD-linked dehydrogenases.

    4.

    Through direct combination with oxygen. In this case, oxygen combines with anorganic reductant and is covalently incorporated in the product, as in the oxidation of ahydrocarbon to an alcohol:

    R-CH3 + O2 R-CH2-OH

    The hydrocarbon is the electron donor and the oxygen atom is the electron acceptor.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    90/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    91/105

    [ ]l t tlRTE E +

    Nernst Equation for Reduction Potential

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    92/105

    [ ][ ]electron acceptor

    electron donor

    Reduction potential (V)

    Standard reduction potential (V)

    Gas constant (8.315 J/mol K)

    ln

    :

    :

    :

    RTE EnF

    E

    E

    R

    = +

    Absolute temperature (K)

    Faraday constant (96480 J/V mol)

    T

    :

    :

    :

    T

    F

    n

    [ ]

    [ ]

    he number of electrons transferred per molecule

    298K (25 C)

    electron acceptor0.026V

    electron donorln

    T

    E En

    =

    = +

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    93/105

    The energy made available by a spontaneous electron flow

    (the free-energy change for the oxidation-reduction reaction) is proportional to E:

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    94/105

    (the free-energy change for the oxidation-reduction reaction) is proportional to E:

    G = -nFE or G' = -nF E'

    CH3CHO + NADH+

    + H+ CH3CH2OH + NAD

    +

    (1) CH3CHO + 2H+

    + 2e- CH3CH2OH E' = -0.197 V

    2 NAD+

    + 2H+

    + 2e- NADH + H+

    E' = -0.320 V

    E' = E'(Acceptor) - E'(Donor)

    E' = -0.197 (-0.320) = 0.123 V

    n = 2

    G' = -2(96.5 kJ/Vmol)(0.123 V) = -23.7 kJ/mol

    pH:7.0 & [Acetaldehyde] = [Ethanol] = [NAD+] = [NADH] = 1 M

    [ ]AcetaldehydeRT

    [Acetaldehyde]=[NADH]=1 M , [Ethanol]=[NADH]=0.1 M

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    95/105

    [ ]

    [ ]acetaldehyde

    acetaldehyde

    +

    NADH

    AcetaldehydeEthanol

    0.026 V 1.00.197 + = 0.167 V

    2 0.1NAD

    ln

    ln

    ln

    RTE E

    nF

    E

    RTE E

    = +

    =

    = +

    NADH

    0.026 V 0.10.320 0.350 V2 1.0

    0.167 V ( 0.350 V) 0.183 V

    2

    lnE

    E

    G nF E

    G

    = + =

    = =

    =

    = 96.5 kJ/mol 0.183 V

    35.3 kJ/molG

    =

    G = nFE

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    96/105

    The complete oxidation of glucose:

    6 12 6 + 2 2 + 2 = - , mo2

    Universal electron carriers

    NAD+ Water soluble coenzymes that undergo reversible

    NADP+ oxidation and reduction in many of the electron-FMN

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    97/105

    NADP oxidation and reduction in many of the electron FMNtransfer reactions of metabolism

    FAD

    NAD+

    move readily from one enzyme to anotherNADP+

    ,FAD flavoproteins for which they serve as prosthetic

    groups

    Ubiquinone electron carriers and proton donors in thePlastoquinone nonaqueous environment of membranes

    Fe-S proteins tightly bound prosthetic groups that undergoCytochromes reversible oxidation and reduction, also serve as

    electron carriers in many oxidation-reductionreactions

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    98/105

    NAD+ + 2e- + 2H+ NADH + H+

    NADP+ + 2e- + 2H+ NADPH + H+

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    99/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    100/105

    In most tissues [NAD+

    + NADH] 10-5

    M

    [NADP+

    + NADPH] 10-6

    M

    In many cells and tissues [NAD+

    ]/[NADH] is high, favoring hydride (:H-

    )transfer from asubstrate to NAD

    +to form NADH

    [NADPH]/[NADP+] is high favoring hydride transfer from

    NADPH to a substrate.

    NAD+ generally functions in oxidations-usually as part

    of a catabolic reaction,

    NADPH is the usual coenzyme in reductions-nearly

    always as part of an anabolic reaction.

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    101/105

    More than 200 enzymes are known to catalyze reactions in which NAD + (or NADP+) acceptsa hydride ion from a reduced substrate, or NADPH (or NADH) donates a hydride ion to anoxidized substrate.

    The general reactions are

    AH2 + NAD+ A + NADH + H+

    + + 2 +

    where AH2 is the reduced substrate and A the oxidized substrate.

    The general name for an enzyme of this type is oxidoreductase; they are also commonlycalled dehydrogenases.

    Alcohol dehydrogenase+ +3 2 3CH CH OH + NAD CH CHO + NADH + H

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    102/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    103/105

    The association between a dehydrogenase enzymes and NAD or NADP is relatively loose;

    the coenzyme readily diffuses from one enzyme to another

    Glyceraldehyde-3-P dehydrogenase+ +(1) Glyceraldehyde-3-P + NAD 3-P-Glycerate + NADH + H

    Alcohol dehydrogenase+ +(2) Acetaldehyde + NADH + H Ethanol + NAD

    (T) Glyceraldehyde-3-P

    + Acetaldehyde 3-P-Glycerate + Ethanol

    In the overall reaction there is no net production or consumption of NAD+ or NADHNo net change in the [NAD+ + NADH]

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    104/105

  • 8/3/2019 Ch 14 Biyoenerjetikler Ve Metabolizma Yonca Duman

    105/105

    FAD + 2e- + 2H+ FADH2FMN + 2e- + 2H+ FMNH2