cfd simulation of mono disperse droplet generation by means of jet break-up

Upload: zesnex

Post on 05-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    1/20

    CFD simulation of monodisperse droplet

    generation by means of jet break-up

    Prof. Dr. Stefan Turek

    Angewandte Mathematik und Numerik, LS IIITechnische Universitt Dortmund

    [email protected]

    Dr. Otto Mierka

    Angewandte Mathematik und Numerik, LS IIITechnische Universitt Dortmund

    [email protected]

    DFGSPP 1423 Prozess-Spray

    http://www.featflow.de

    http://www.mathematik.tu-dortmund.de/LS3

    Otto Mierka | TU Dortmund

    http://www.featflow.de/http://www.mathematik.tu-dortmund.de/LS3http://www.mathematik.tu-dortmund.de/LS3http://www.mathematik.tu-dortmund.de/LS3http://www.mathematik.tu-dortmund.de/LS3http://www.featflow.de/
  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    2/20

    Otto Mierka | TU Dortmund

    CFD simulation tool: Controlled droplet generation in jets

    Simulation results:dispersity, droplet generation frequency, jet length

    Simulation parameters:physical parameters, rheological properties, modulation parameters

    Motivation and Goals

    Increasingp

    ressu

    re

    Increasingp

    uls.f

    req.

    1) Jetting simulations with Newtonian fluids

    3) Modulation analysis of jetting simulations

    2) Non-Newtonian fluids

    Chhabra: Bubbles, Drops and Particles in Non-Newtonian Fluids

    2005 NOVA Chemicals Corporation

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    3/20

    Mass conservative FEM levelset approach with exact interphase reconstruction.

    Implicit treatment of the surface tension force term

    Fast solvers (parallel multigrid) for scalar equations and for the Pressure-Poissonequation supporting large density jumps

    Systematic validation and benchmarking (CFX, FEMLAB, FLUENT, OpenFOAM).

    Incorporation of adaptive grid deformation techniques (ALE approach)

    Methods

    Otto Mierka | TU Dortmund

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    4/20

    The incompressible Navier Stokes equation

    0

    STT

    v

    gfvvvvv pt

    on, nnf ST

    Interphase tension force

    Dependency of physical quantities

    vD

    unknown

    interphase

    location

    ,,vD

    Otto Mierka | TU Dortmund

    Governing Equations

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    5/20

    Discretization:

    Navier-Stokes: FEM Q2/P1

    Level Set: DG-FEM P1

    Crank-Nicholson scheme in time

    in space

    Main features of the FeatFlow approach:

    Parallelization based on domain decomposition

    High order discretization schemes

    Use of unstructured meshes

    Newton-Multigrid solvers

    FCT & EO stabilization techniques

    Adaptive grid deformation

    Otto Mierka | TU Dortmund

    Efficient Flow Solver

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    6/20

    Level Set Method (smooth distance function)

    Problems:

    It is not conservativemass loss

    Needs to be reinitialized to maintain its distance property

    Higher order discretization: possible, but necessary?

    Benefits:

    Provides an accurate representation of the interphase

    Provides other auxiliary quantities (normal, curvature)

    Allows topology changes Treatment of viscosity, density and surface tension without explicit

    representation of the interphase

    Adaptive grid advantageous, but not necessary

    Otto Mierka | TU Dortmund

    Efficient Interphase Capturing

    0 vt

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    7/20

    Steep gradients of physical

    quantities at the interphase

    Reinitialization (smoothed sign

    function, artificial movement of the

    interphase)

    Mass conservation (during

    advection and reinitialization of the

    Level Set function)

    Representation ofinterphacial

    tension: CSF, Line Integral, Laplace-

    Beltrami, Phasefield, etc.

    Otto Mierka | TU Dortmund

    1

    SS uu

    ,ST xnf

    2121 1,1 xxxx ee

    Cellwise averaging

    PDE based reinitialization

    CSF smoothening with Dirac function

    Problems and Challenges

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    8/20

    Validation for the rising bubble problem

    Free parameters to adjust Eo and Mo:

    1) Clift R., Grace J.R., Weber M. Bubbless, Drops and Particles. 1978, Academic

    Press, New York.

    2) Annaland M. S., Deen N. G., Kuipers J. A. M., Numerical simulation of gas

    bubbles behaviour using a three-dimensional volume of fluid method.Chem.

    Eng. Sci., 2005, 60(11):29993011, DOI: 10.1016/j.ces.2005.01.031

    Otto Mierka | TU Dortmund

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    9/20

    *

    *Annaland M. S., Deen N. G., Kuipers J. A. M., Numerical simulation of gas

    bubbles behaviour using a three-dimensional volume of fluid method.

    Chem. Eng. Sci., 2005, 60(11):29993011, DOI: 10.1016/j.ces.2005.01.031

    Rising bubble Case B

    Otto Mierka | TU Dortmund

    Eo=9,71 Mo=0,1001: 2=1: 2= 1:100

    ReSim =4,60 Regrap =5,60

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    10/20

    *

    *Annaland M. S., Deen N. G., Kuipers J. A. M., Numerical simulation of gas

    bubbles behaviour using a three-dimensional volume of fluid method.

    Chem. Eng. Sci., 2005, 60(11):29993011, DOI: 10.1016/j.ces.2005.01.031

    Rising bubble Case C

    Otto Mierka | TU Dortmund

    Eo=97,1 Mo=0,9711: 2=1: 2= 1:100

    ReSim =20,0 Regrap =18,0

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    11/20

    *Annaland M. S., Deen N. G., Kuipers J. A. M., Numerical simulation of gas

    bubbles behaviour using a three-dimensional volume of fluid method.

    Chem. Eng. Sci., 2005, 60(11):29993011, DOI: 10.1016/j.ces.2005.01.031

    *

    Rising bubble Case D

    Otto Mierka | TU Dortmund

    Eo=97,1 Mo=10001: 2=1: 2= 1:100

    ReSim =1,50 Regrap =2,03

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    12/20

    Glucose-Water mixture

    1

    3

    64,3

    972

    500

    minmlV

    mkg

    smPa

    D

    D

    D

    Continuous phase:

    Silicon oil

    1

    3

    04,99

    1340

    500

    mlminV

    mkg

    smPa

    C

    C

    C

    Dispersed phase:

    1

    034,0

    mNCD

    Validation parameters:

    frequency of droplet generation

    droplet size

    stream length

    Experimental Set-up with AG Walzel (BCI/Dortmund)

    Otto Mierka | TU Dortmund

    Benchmarking on experimental results

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    13/20

    Separationfrequency

    [Hz]

    Dropletsize

    [dm]

    Stream

    Length

    [dm]

    Exp 0,58 0,062 0,122

    Sim 0,6 0,058 0,102

    Group of Prof. Walzel

    BCI/DortmundExp. results

    Otto Mierka | TU Dortmund

    Benchmarking on experimental results

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    14/20

    Separationfrequency

    [Hz]

    Dropletsize

    [dm]

    Stream

    Length

    [dm]

    Exp 0,58 0,062 0,122

    Sim 0,37 0,068 0,113

    Otto Mierka | TU Dortmund

    Benchmarking on experimental results

    iRMB - Ying Wang, Institute for Computational Modeling

    in Civil Engineering, TU Braunschweig Mhlen-

    pfordtstrae 4-5 D-38106, Braunschweig, Germany

    Group of Prof. Walzel

    BCI/DortmundExp. results

    iRMB - LB TU Do - FEMExp

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    15/20

    VD

    [ml/min]

    Jetlength[m

    m]

    VD [ml/min]

    Droplets

    ize[mm]

    Otto Mierka | TU Dortmund

    Example 1:

    VD= 1,1 ml/minVC= 13,0 ml/min

    VD/Vtot = 0,08

    .

    .

    . .

    Example 2:

    VD= 1,5 ml/minVC= 41,1 ml/minVD/Vtot = 0,04

    .

    .

    . .

    Example 3:VD= 2,5 ml/minVC= 123,2 ml/minVD/Vtot = 0,02

    .

    .

    . .

    case 1: VD/Vtot = 0,08 (exp/sim)case 2: VD/Vtot = 0,04 (exp/sim)

    case 3: VD/Vtot = 0,02 (exp/sim)

    . .

    . .

    . .

    case 1: VD/Vtot = 0,08 (exp/sim)case 2: VD/Vtot = 0,04 (exp/sim)case 3: VD/Vtot = 0,02 (exp/sim)

    . .

    . .

    . .

    Validation for wide range of experimentsExperimental results: Group of Prof. Walzel BCI/Dortmund

    Effects of contact angle?

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    16/20

    Validation of non-Newtonian rheological modelsShear thining n=0,75 Shear thickening n=1,50

    Damanik* Our results Damanik* Our results

    level CD CL CD CL CD CL CD CL

    1 3,20082 -0,01261 3,20450 -0,01215 13,6209 0,34250 13,6233 0,34347

    2 3,26433 -0,01342 3,26637 -0,01347 13,7380 0,35052 13,7379 0,35037

    3 3,27739 -0,01342 3,27755 -0,01343 13,7688 0,34941 13,7688 0,34928

    Otto Mierka | TU Dortmund

    * Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: Monolithic Newton-multigrid solution techniques for incompressible nonlinear flow mo-

    dels, Ergebnisberichte des Instituts fr Angewandte Mathematik Nummer 426, Fakultt fr Mathematik, TU Dortmund, 426, 2011

    Power law model

    2D reference data

    Same discretization

    Same convergence

    n=0,75 n=1,50

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    17/20

    Influencable variables

    1) Parameters of the process:

    Flowrates Modulation frequency Modulation amplitude2) Geometrical changes: Capillary size Contraction angle

    Contraction ratio

    In case of monodisperse droplet generation:

    Modulation function (f,I)

    Otto Mierka | TU Dortmund

    Monodisperse droplet generation

    1) Droplet generation frequency2) Regulation frequency

    Multidimensional process diagrams

    f

    [1,2, 1,2, 12], [x1,x2,x3 ],V,a.

    +

    +

    +

    +

    ++

    +

    +

    +

    +

    +

    +

    ++

    ++

    +

    +

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    18/20

    Resulting operation envelope:

    Size: 4.5 mm 5.7 mm Volume: 0.38 cm3 0.77 cm3

    RegulatedFlowrate: 150%Capillary: STDDroplet size: 5.7mm

    No RegulationFlowrate: 100%Capillary: STDDroplet size: 5.2mm

    RegulatedFlowrate: 75%

    Capillary: 50% STDDroplet size: 4.5mm

    RegulatedFlowrate: 100%Capillary: STDDroplet size: 5.0mm

    Otto Mierka | TU Dortmund

    Monodisperse droplet generation in nozzles

    l d f k

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    19/20

    CFD solver improvement:- Non-Newtonian rheological model (Power law)

    - More realistic ratios of physical properties (Validation for Rising Bubble)- Implementation of a contact angle model- Adaptivity (grid deformation, hanging nodes)- HPC (GPU) parallelization

    Application of the developed CFD tool:

    - Testing in wider range of operation conditions- Modulation estimation of ranges for generation of monodisperse droplets- Preliminary simulations for non-Newtonian fluids

    Validated prediction tool for tailor-made droplet generationComparisons, validation, benchmarking

    Otto Mierka | TU Dortmund

    Conclusions and future tasks

  • 7/31/2019 CFD Simulation of Mono Disperse Droplet Generation by Means of Jet Break-up

    20/20

    Thank You for Your attention!

    Ott Mi k | TU D t d