cfd analysis of newtonian turbulent flows in annular … · federal u iversity of uberl dia...

27
FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG CFD Analysis of Newtonian Turbulent Flows in Annular Spaces José Luiz Vieira Neto (FEQ / UFU) Prof. Dr. Marcos Antonio de Souza Barrozo (FEQ / UFU) Prof. Dr. Carlos Henrique Ataíde (FEQ / UFU) Prof. Dr. Aristeu da Silveira Neto (LCTM / FEMEC / UFU) Eng. Dr. André Leibsohn Martins (CENPES / PETROBRÁS)

Upload: dokien

Post on 04-Apr-2018

218 views

Category:

Documents


1 download

TRANSCRIPT

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

CFD Analysis of Newtonian Turbulent

Flows in Annular Spaces

José Luiz Vieira Neto (FEQ / UFU)

Prof. Dr. Marcos Antonio de Souza Barrozo (FEQ / UFU)

Prof. Dr. Carlos Henrique Ataíde (FEQ / UFU)

Prof. Dr. Aristeu da Silveira Neto (LCTM / FEMEC / UFU)

Eng. Dr. André Leibsohn Martins (CENPES / PETROBRÁS)

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� ITRODUCTIO

� LITERATURE REVIEW

� EXPERIMETAL METHODOLOGY

� CFD METHODOLOGY AD TURBULECE MODELLIG

2

� RESULTS AD DISCUTIOS

� COCLUSIOS

� FUTURE STAGES

� ACKOWLEDGMETS

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

ITRODUCTIO

� Main Interest of Annular Flows � Oil Industry

�Drilling fluids application in vertical oil wells:

� Carry the cutting from the hole and permit their

separation at the surface;

3

separation at the surface;

� Cool and clean the bit;

� Maintain the stability of the well bore;

� Prevent inflow of formation fluids.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

LITERATURE REVIEW

� Experimental Studies:

� Nouri et.al. (1993): Turbulent flows in concentric/eccentric annuli:

� Newtonian and non-Newtonian fluids;

� LDA: Axial, radial and tangential velocity profiles.

� Nouri & Whitelaw (1994): Turbulent flows in rotating concentric annulus;

4

� Nouri & Whitelaw (1994): Turbulent flows in rotating concentric annulus;

� Nouri & Whitelaw (1997): Turbulent flows in a rotating eccentric annulus;

� Numeric Studies:

� Chung et. al. (2002): DNS of turbulent concentric annular pipe flow;

� Ninokata et. al. (2006): DNS of turbulent flows in eccentric annuli;

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

EXPERIMETAL UITY (ouri et. al., 1993-1994)

5Circuit Flow Configuration Concentric and Eccentric Arrangements

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Experimental Unit Dimensions:

� Outer Diameter (Do) = 40.3 mm;

� Inner Diameter (Din) = 20.1 mm;

� Hydraulic Diameter (Dh) = 20.2 mm.

� Experimental Flows Conditions:

EXPERIMETAL METHODS (ouri et. al., 1993-1994)

Aspect Ratio = 0.5

6

� Experimental Flows Conditions:

� Newtonian Fluid � 31.8 % of tetraline in tupertine mixture (25ºC):

� Density (ρ) = 896 Kg/m3 ; Kinematics' viscosity (υ) = 1.63 x 10–6 m2/s.

� Axial Bulk Velocity (Ub) = 2.14 m/s � Re = 26,600

� Volume flow rate = 2.06 x 10–3 m3/s �Mass Flow Rate = 1.8368 Kg/s.

� Inner Cylinder Surface Velocity (Vt) = 0.315 m/s � � = 300 RPM;

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Mesh Generation Software � GAMBIT® 2.3.16;

� CFD Simulation Software � FLUE�T® 6.2.36;

� Volume Finite Method:

� Stationary, Newtonian flow, segregated solver strategy;

� Boundary Conditions:

CFD METHODOLOGY

7

� Boundary Conditions:

� Periodic Flow (mass flow rate), Inner Shaft Rotation.

� Pressure Interpolation � STA�DARD;

� Pressure-Velocity Coupling � SIMPLE;

� Momentum & Turbulence Discretization � First Order Upwind;

� Convergence Criteria = 0.0001;

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Concentric Arrangement Mesh

Plan 1 Plan 3

Plan 2

8

Face with 1024 cells:64 divisions for the perimeter16 divisions for the annulus

Periodic Section: Axial length = 0.202 m (with 48 divisions)

Total Mesh: 49.152 cells

Plan 4

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Eccentric Arrangement (e=0.5) Mesh

Plan 1

Plan 2

Plan 3

9

Plan 4

Face with 1024 cells:64 divisions for the perimeter16 divisions for the annulus

Periodic Section: Axial length = 0.202 m (with 48 divisions)

Total Mesh: 49.152 cells

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Motion Equations:

� Continuity Equation:

� Axial Component

� Tangential Component:

(1)

(2-a)

10

(2-b)

� Turbulence Models (RA�S):

� k-ε Standard and k-ε R�G: 2 additional transport equations;

� k-w Standard and k-w SST: 2 additional transport equations;

� RSM Model: 7 additional transport equations;

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

RESULTS AD DISCUTIOS

Concentric Arrangement �Axial Velocity Profiles (Re=26,600)

0.75

1.00

1.25

u/Ub

Exp. Nouri

K-e Std

0.75

1.00

1.25

u/Ub

Exp. Nouri

K-e Std

11

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

r1/S

u/U K-e Std

K-e RNG

K-w Std

K-w SST

RSM Std

0.00

0.25

0.50

0.0 0.2 0.4 0.6 0.8 1.0

r1/S

u/U K-e Std

K-e RNG

K-w Std

K-w SST

RSM Std

Without rotation With inner cylinderrotation (300 rpm)

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Concentric � Simulated Axial Velocities (Re=26,600)

k-ε Standard k-ε R�G RSM Linear

12

k-ε Standard k-ε R�G RSM Linear

Standard

k-w Standard k-w SST

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

RESULTS AD DISCUTIOS

Concentric Arrangement � Tangential Velocity Profiles (300 RPM)

0.10

0.15

0.20

Exp. Nouri

K-e Std

K-e RNG

K-w Std

K-w SST0.6

0.8

1.0

1.2

w/Vt

Exp. Nouri

K-e Std

K-e RNG

K-w Std

K-w SST

13

Normalized with Bulk Velocity (Ub)

Normalized with Inner ShaftTip Velocity (Vt)

0.00

0.05

0.10

0.0 0.2 0.4 0.6 0.8 1.0

r1/S

w/Ub

K-w SST

RSM Std

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0r1/S

w/V K-w SST

RSM Std

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Concentric � Simulated Tangential Velocities (Re=26,600 / 300RPM)

k-ε Standard k-ε R�G RSM Linear

14

k-ε Standard k-ε R�G RSM Linear

Standard

k-w Standard k-w SST

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Eccentric Annuli (e=0.5) �Axial Velocities Profiles (Re=26,600)

0.00

0.25

0.50

0.75

1.00

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 3

RESULTS AD DISCUTIOS

15

0.0 0.2 0.4 0.6 0.8 1.0

r1/S

0.00

0.0 0.2 0.4 0.6 0.8 1.0r1/S

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.2 0.4 0.6 0.8 1.0r1/S

u/Ub

Exp-Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 2

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.2 0.4 0.6 0.8 1.0r1/S

u/Ub

Exp-Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 4

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Eccentric (e=0.5) � Simulated Axial Velocity (Re=26,600)

k-ε Standard k-ε R�G RSM Linear

16

k-ε Standard k-ε R�G RSM Linear

Standard

k-w Standard k-w SST

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

0.00

0.25

0.50

0.75

1.00

1.25

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 3

RESULTS AD DISCUTIOSEccentric (e=0.5): Axial Velocities Profiles (Re=26,600 / 300RPM)

17

0.00

0.0 0.2 0.4 0.6 0.8 1.0r1/S

0.00

0.0 0.2 0.4 0.6 0.8 1.0r1/S

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.2 0.4 0.6 0.8 1.0r1/S

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 2

0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.2 0.4 0.6 0.8 1.0r1/S

u/Ub

Exp. Nouri K-e Std

K-e RNG K-w Std

K-w SST RSM Std

Plan 4

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Eccentric (e=0.5) � Simulated Axial Velocities (Re=26,600 / 300rpm)

k-ε Standard k-ε R�G RSM Linear

18

k-ε Standard k-ε R�G RSM Linear

Standard

k-w Standard k-w SST

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

w/Ub

Exp-Nouri k-e Std

k-e RNG K-w Std

K-w SST RSM-Std

Plan 1

RESULTS AD DISCUTIOS

Eccentric (e=0.5): Tangential Velocities Profiles (Re=26,600 / 300RPM)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

w/Ub

Exp-Nouri k-e Std

k-e RNG K-w Std

K-w SST RSM-Std

Plan 3

19

0

0 0.2 0.4 0.6 0.8 1r1/S

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1r1/S

w/Ub

Exp-Nouri k-e Std

k-e RNG K-w Std

K-w SST RSM-Std

Plan 2

0

0 0.2 0.4 0.6 0.8 1r1/S

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

Eccentric (e=0.5): Simulated Tangential Velocities (Re=26,600 / 300RPM)

k-ε Standard k-ε R�G

20

k-ε Standard k-ε R�G RSM Linear

Standard

k-w Standard k-w SST

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Concentric Arrangement:

� the simulated axial velocities showed good agreements with the

experimental data of Nouri-Whitelaw (1994), specially with the

rotation of the inner cylinder.

COCLUSIOS

21

rotation of the inner cylinder.

� the simulated tangential velocities normalized with bulk velocity

(Ub) and with inner shaft tip velocity (V

t) presented good

agreements with the experimental data of Nouri-Whitelaw (1994),

mainly with the k-w SST and RSM models.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Eccentric (e=0.5): Axial Velocities without rotation (0 rpm):

� the simulated axial velocities showed good agreements with the

experimental data of Nouri et.al. (1993), except for the smallest gap

(plan 1) where the simulated velocities were underestimated;

COCLUSIOS

22

(plan 1) where the simulated velocities were underestimated;

� It can be observed that in the larger annular space (plan 3) the axial

normalized velocities were nearly 1.5*Ub

what indicates a

canalization of the axial flow for this region.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Eccentric (e=0.5): Axial Velocities with rotation (300 rpm):

� the simulated axial velocities showed underestimated values in

comparison with the experimental data of Nouri-Whitelaw (1997)

for all the plans, except for the plan 2, where they were

superestimated;

COCLUSIOS

23

superestimated;

� The model that presented the better approaches with the

experimental data of Nouri-Whitelaw (1997) was the RSM models,

except for the larger gap (plan 3), where the k-w SST and the

k-w Standard models got better results.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

� Eccentric (e=0.5): Tangential Velocities (300 rpm):

� the simulated tangential velocities showed underestimated values in

comparison with the experimental data of Nouri-Whitelaw (1997)

for the smallest annular space (plan 1);

COCLUSIOS

24

for the smallest annular space (plan 1);

� The experimental data of Nouri-Whitelaw (1997) presented

fluctuations in the plan 2, what can explain the spacing for the

simulated results.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

FUTURE STAGES

� Experimental study of turbulent flows:

� in concentric and eccentric annuli;

� with Newtonian and non-Newtonian fluids.

� CFD Simulations with different turbulent methodologies:

25

� CFD Simulations with different turbulent methodologies:

� RA�S/URA�S Models;

� LES (Large Eddy Simulation);

� CFD Simulations of Non-Newtonian fluids;

� Taking into account the anisotropic effects.

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

REFERECES� Experimental Studies:

J.M. Nouri, H. Umur; J.H. Whitelaw. Flow of Newtonian and non-Newtonian fluids inconcentric and eccentric annuli, J. Fluid Mech. (1993), vol. 253, pp. 617-641.

J.M. Nouri & J.H. Whitelaw. Flow of Newtonian and non-Newtonian fluids in aconcentric annulus with rotation of the inner cylinder. Journal of Fluids Eng. (1994),vol. 116, pp. 821-827.

J.M. Nouri & J.H. Whitelaw. Flow of Newtonian and non-Newtonian fluids in aeccentric annulus with the rotation of the inner cylinder, Int. J. Heat and Fluid Flow.

26

eccentric annulus with the rotation of the inner cylinder, Int. J. Heat and Fluid Flow.

(1997), vol. 18. Nº2, pp. 236-246.

� Numeric Studies:

S.Y. Chung, G.H. Rhee, H.J. Sung, Direct numerical simulation of turbulent concentricannular pipe flow, Part 1: Flow field. Int. J. Heat and Fluid Flow. 23 (2002) pp.426–440.

H. Ninokata, T. Okumura, E. Merzari and T. Kano. Direct Numerical Simulation ofTurbulent Flows in an Eccentric Annulus Channel. pp. 293-296

FEDERAL UIVERSITY OF UBERLÂDIA – SCHOOL OF CHEMICAL EGIEERIG

The authors thanks the support from:

FAU-UFU / CENPES-PETROBRÁS project number (0050.0029778.07.2)

ACKOWLEDGMETS

27

project number (0050.0029778.07.2)