certificate in plant-based nutrition course two: diseases ...shamanicspring.com/2-0 transcripts_101...

101
TCC502: Calories, Obesity, and Diabetes For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS 1 Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence Calories, Obesity, and Diabetes

Upload: others

Post on 01-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Calories, Obesity, and Diabetes

   

Page 2: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Introduction  Today’s   lecture   is   on   one   of   the   most   talked-­‐about   problems   of   recent   times;   namely,  obesity   and   overweight   problems—and   their   sequel,   a   disease   that   tends   to   occur   along  with  obesity;  namely,  diabetes.  If  you  have  heard  the  news  perhaps  you  have  even  caught  a  glimpse   of   the   staggering   statistics   that   now   exist   on   obesity   among   Americans:   two  thirds—two  out  of  three  adult  Americans—are  now  considered  to  be  overweight,  and  one  third  of   the  adult  population   is   considered   to  be  obese.   In  other  words,  about  half  of   the  people  who   are   considered   to   be   overweight   are   classified   as   being   obese.   Not   only   are  these  numbers  high,  but  the  rates  at  which  they  have  been  rising  are  ominous,  as  you  can  see  in  the  adjoining  chart.  Let’s  take  a  look  at  this  chart  a  little  bit. 1  [See  slide  number  3.]   You  will   see   that   from  1960   to   the  year  2000,   the  percentage  of  people  who  were  obese  increased  from  around  13%  or  so  in  1960  to  now  at  least  30%  in  the  year  2000.  Let’s  look  a  little  more   closely.   From  1960   to  1980   it  didn’t   seem   that   the  percentage  of  people  with  overweight  problems  was  that  different;  it  went  from  13%  to  15%,  more  or  less,  in  that  20-­‐year  period.  But   in   the  next  20-­‐year  period,   from  1980  until   the  year  2000,  essentially   it  doubled,  so  what  we  are  really  seeing  here   is  the  emergence  of  what  many  people  would  call  an  epidemic.      But  what  do  “overweight”  and  “obesity”  really  mean?  The  standard  expression  of  body  size  is  referred  to  as  the  “body  mass  index.”  What  this  means  is  that  we  take  the  body  weight,  which  is  measured  in  kilograms,  and  express  it  relative  to  the  height  of  the  individual.  So  we   take   into   consideration   the   height   of   people   before  we  determine   the   relationship   of  weight   to  height.  According  to  most  official  standards,  being  overweight   is  having  a  body  mass  index  of  about  25,  but  those  who  have  a  body  mass  index  above  30  are  considered  to  be  obese.  Now,  you  can  determine  your  own  body  mass   index  using  charts  that  are  fairly  widespread,  and  we  have  one  here  with  us.  [See  slide  number  4.]   This   information   is   expressed   in  pounds   and   inches,   and  kilograms  and  meters,   for   your  convenience.   The   numbers   in   this   chart   are   consistently   the   same   for   both   females   and  males,  and  so  either  men  or  women  can  use  the  same  numbers.    Chapter  2:  Overweight  and  Obesity  in  Children    Perhaps   the  most   depressing   element   of   our   so-­‐called   super-­‐size   or   excess  weight   is   the  growing   number   of   overweight   and   obese   children.   About   15%   of   children—or   young  people   between   the   ages   of   6   and   19   years—are   now   considered   to   be   overweight,   and  another  15%  are  at  risk2  of  becoming  overweight.3  In  other  words,  a  total  of  30%  of  young  people  now  are  either  overweight  or  closely  at  risk  of  being  overweight.  When  people  are  

1  Flegal  KM,  Carroll  MD,  Ogden  CL,  et  al.  “Prevalence  and  trends  in  obesity  among  US  adults,  1999-­‐2000.”  JAMA.  288(2002):1723-­‐1727.  2  The  term  “at  risk”  refers  to  the  attribute  of  this  population  (in  this  case,  15%  of  children)  who  are  capable,  or  more  likely,  to  develop  obesity  because  of  various  factors  such  as  dietary  consumption  or  activity  level.    3  Ogden  CD,  Flegal  KM,  Carroll  MD,  et  al.  “Prevalence  and  trends  among  overweight  US  children  and  adolescents.”  JAMA.  288  (2002):1728-­‐1732.  

Page 3: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

overweight,  young  people   in   this  particular  case,   they  are   likely   to   face  a  host  of  medical  problems.   For   example,   they   can   have   increased   cholesterol   levels,   and   that   in   turn   can  translate  into  increased  risk  for  heart  disease;  yes,  even  at  a  young  age.  We  have  evidence,  for  example,   that  atherosclerosis   is  now  being  seen  in  very  young  children,  even  younger  than   ten  years  of  age,  which   in   turn   is  associated  with   these   increased  cholesterol   levels,  which  are  oftentimes  associated  with  being  overweight.      Overweight   children   can   also   have   a   condition   called   glucose   intolerance,   which   is  reflective   of   a   diabetes-­‐like   condition.   Their   blood   pressure   can   be   elevated   as  well,   and  then   there   is   the   condition   among   some   people   called   sleep   apnea,   which   can   cause  neurological  or  cognitive  problems.  Most  importantly,  however,  overweight  young  people  are  much  more  likely  to  be  obese  adults  compared  to  young  people  who  are  not  obese.4  So  seeing   this   much   obesity,   this   much   overweight   in   young   people   actually   indicates   an  increasing  likelihood  of  there  being  lifelong  health  problems  for  these  folks.      Chapter  3:  Overweight  and  Obesity  in  Adults    Now,  we  know  that  there  are  problems  for  adults  as  well,  of  course,  who  are  overweight.  There  are  practical,   everyday  problems.  Obviously,  people  who  have   too  much  weight   to  carry   around   aren’t   able   to   have   the   same   degree   of   physical   activity,   and   that   only  compounds  the  problem.  In  people  who  are  consistently  and  substantially  overweight,  just  regular  routine  and  mundane  things  that  most  of  us  take  for  granted  are  compromised.  The  ability   to   even   tie   shoes,   for   example,   really   strikes   home   the   consistent   problems   that  these  people  have.  That  is  the  short-­‐term,  practical,  everyday  situation.  In  the  longer  term,  obesity  is  an  indication  of  diseases  to  come.  I  mentioned  briefly  the  fact  that  diabetes  is  one  such  disease,   although  we  also  know   that  obesity   tends   to  be   reflective  of   future  disease  like  the  cancers  and  heart  disease  as  well.      The   American   Obesity   Association   has   given   us   some   numbers   to   show   the   size   of   the  problem.  The  medical  costs  attributed  to  obesity  are  now  said  to  be  $100  billion  per  year.5  In  addition,  we  spend  another  $30  to  40  million  out-­‐of-­‐pocket  money  to  keep  the  weight  off  in   the   first   place.6   Buying   various   and   sundry   products   and   doing   gimmicks   of   all   kinds,  simply   to   try   to   keep   the  weight   off   or   get   the  weight   down,   at   least   in   the   short   term.  Together  that   is  a   lot  of  money.  An  economic  black  hole  essentially   is  sucking  our  money  away   without   really   offering   anything   in   return,   if   we   look   at   those   increasing   rates   of  obesity   that  we   saw   in   the  previous   chart.   Clearly  no  one   really  wants   to  be  overweight.  That   is   very   clear.   So   why   is   it   that   two   out   of   every   three   Americans   are,   in   fact,  overweight?  Why  is  one  third  of  the  population  obese?      I   applaud  people   for   trying   to  achieve  a  healthy  weight,   and   I  know  that   there  are  major  personal   impediments   for   many   people   to   reduce   their   weight.   A   lot   of   personal   and  societal  issues  seem  to  get  in  the  way.  I  know  it  is  not  easy  for  people  who  are  overweight   4  Dietz  WH.  “Health  consequences  of  obesity  in  youth:  childhood  predictors  of  adult  disease.”  Pediatrics  101(1988):518-­‐525.  5  Adcox  S.  “New  state  law  seeks  to  cut  down  on  obesity.”  Ithaca  Journal  (Sept.  2002):5A.  6  Colditz  GA.  “Economic  costs  of  obesity  and  inactivity.”  Med  Sci  Sports  Exerc.  31(1991):S663-­‐S667.  

Page 4: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

to  really  bring  their  weight  under  control.  I  also  know  that  overweight  people  really  don’t  want  to  be  overweight.  So,  why  are  so  many  people  overweight?      Aside   from   the   personal   difficulties   of   people   coming   to   terms   with   their   overweight  problems,   I  am  concerned  with  our  societal   system  that  allows  and  even  encourages   this  problem.  We  are  essentially  drowning  in  an  ocean  of  very  bad  information  coming  from  all  kinds   of   sources:   newspapers,   radios,   television,   just   conversation   of   all   kinds.   We   are  really  just  getting  an  awful  lot  of  bad  information.  Too  much  of  it  is  intended  to  put  money  into   someone   else’s   pockets—taking   advantage   of   us,   essentially,   instead   of   honestly  helping  people  to  lose  weight.  We  actually  need  a  new  solution—that  is  very  clear.  We  need  better  information,  and  particularly  we  need  a  system  that  tells  people  what  they  can  do  for  themselves  at  an  affordable  price.  This  seems  like  a  simple  idea  to  me,  but  that  in  fact  is  not  really   being   delivered.  We  need   to   stop   telling   people   the   latest   gimmick   that   only   costs  money  [and]  creates  problems  that  cost  even  more  money  in  the  long  run.      Chapter  4:  Proposed  Solutions    I   am   convinced   that   the  most   practical   solution   for   losing  weight   is   a  whole   food,   plant-­‐  based   diet—coupled,   of   course,   with   a   reasonable   but   regular   amount   of   exercise.   This  means  a  long-­‐term  lifestyle  change.  It  does  not  mean  a  quick-­‐fix  fad.  This  lifestyle  change  is  a  practice  that  [yields]  sustained  weight  loss  while  minimizing  the  risk  of  chronic  disease.  If  we  only  think  about  losing  weight  in  the  short  run,  we  oftentimes  lose  sight  of  what  this  is  all   really  about:  our   long-­‐term  health.  So   thinking  about  short-­‐term  magic   tricks   is   really  not  going  to  do  the  job  for  us.      Solving  this  problem  does  not  require  these  magic  tricks  and  complex  equations  involving  blood  types  or  carbohydrate  counting  or  calorie  counting,  as  so  many  people  think,  or  soul-­‐searching.  Take  a   look  around  and  you  can  see  for  yourself  who  is  slim  and  vigorous  and  healthy,   and   who   is   not.   Also,   while   you   are   at   it,   consider   some   impressive   research  studies   large   and   small   that   consistently   show   that   vegetarians   and   vegans   are   slimmer  than  their  meat-­‐eating  counterparts.  We  have  a  lot  of  evidence  on  that  now.  According  to  a  recent  summary  of  seven  studies,  vegetarians  or  vegans  are  somewhere  around  10  to  30  pounds   slimmer   than   their   fellow   citizens,   and   this   really   applies   to  most   vegetarians  or  vegans  except   for  a  small  but  significant  minority,  and   I  will  have  a  word  about   that   in  a  moment.  7  8  9  10  11  12  13      

7  Ellis  FR,  Montegriffo  VME.  “Veganism,  clinical  findings  and  investigations.”  Am  J  Clin  Nutr.  23  (1970):249-­‐255.  8  Sacks  FM,  Castelli  WP,  Donner  A,  et  al.  “Plasma  lipids  and  lipoproteins  in  vegetarians  and  controls.”  New  Engl  J  Med.  292  (1975):1148-­‐1151.  9  Key  TJ,  Fraser  GE,  Thorogood  M,  et  al.  “Mortality  in  vegetarians  and  nonvegetarians:  detailed  findings  from  a  collaborative  analysis  of  5  prospective  studies.”  Am  J  Clin  Nutri.  70(Suppl.)  (1999):516S-­‐524S.  10  Bergan  JG,  Brown  PT.  Nutritional  status  of    ‘new’  vegetarians.”  J  Am  Diet  Assoc.  76(1980):151-­‐155.  11  Appleby  PN,  Thorogood  M,  Mann  J,  et  al.  “Low  body  mass  index  in  non-­‐meat  eaters:  the  possible  roles  of  animal  fat,  dietary  fibre,  and  alcohol.”  Int  J  Obesity  22(1998):454-­‐460.  12  Dwyer  JT.  “Health  aspects  of  vegetarian  diets.”  Am  J  Clin  Nutr.  48(1988):712-­‐738.  13  Key  TJ,  Davey  G.  “Prevalence  of  obesity  is  low  in  people  who  do  not  eat  meat.”  Brit  Med  J.  313(1996):816-­‐817.  

Page 5: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

In  one  study,  people  were  told  to  eat  as  much  as  they  wanted  of  the  foods  that  were  mostly  low-­‐fat,  whole  food,  and  plant-­‐based.  In  only  three  weeks  these  people  lost  an  average  of  17  pounds.14  In  other  words,  what  that  really  indicated  [was]  that  they  could  just  eat  foods  as  much  as  they  wanted  and  not  think  about  being  on  a  diet  and  still  lose  weight.      At   the   Pritikin   Center,   which   is   an   old   established  wellness   clinic   that   has   been   around  since   the   1960s   and   1970s,   they   looked   at   the   information   on   some   4,500   patients  who  [were]  run  through  their  clinic  over  a  period  of  time—4,500  patients  who  were  on  a  three-­‐week   program   at   the   center.   While   there,   consuming   a   mostly   plant-­‐based   diet   and  engaging  in  some  regular  exercise,  the  clients  lost  a  total  of  5½%  (on  average)  of  their  body  weight—again,  over  a  period  of  only  three  weeks.    An  intervention  study,  of  course,  is  [one  in  which]  you  take  individuals  and  actually  get  them  to  change,  and  then  see  what  has  happened.  For  example,  one  study  showed  a  loss  of  2  to  5  pounds  after  only  12  days  of  switching  the  diet;15  another  one,  10  pounds  in  three  weeks,16  17  16  pounds  over  12  weeks,18  and  24  pounds  over  a  year.19  All  studies  having  to  do  with  switching  over  to  a  whole  food,  plant-­‐based  diet.      Chapter  5:  Will  It  Work  for  Everyone?    While  a  plant-­‐based  diet  works  for  most  people,  it  seems,  as  I  said  before,  not  to  work  for  every  individual.  First  and  foremost,  losing  body  weight  on  a  plant-­‐based  diet  is  much  less  likely  to  occur  when  these  individuals  are  consuming  too  much  of  the  refined  carbohydrate  foods.  Sweets,  pastries,  and  pastas  simply  won’t  do  it.  Although  they  are  considered  to  be  vegetarian  or  vegan,   if  you  will,   in  reality   those  are  not   the  kinds  of   foods  we  are   talking  about.20   These   foods   are   high   in   readily   digested   sugars   and   starches—in   other   words,  refined  carbohydrates,  and  the  pastries  are  often  also  very  high  in  fat  as  well.  This  is  one  of  the  main  reasons  that  I  usually  refer  to  the  optimal  diet  as  a  whole   food,  plant-­‐based  diet,  where  the  entire  food  is  present  and  [where]  the  carbohydrates  that  are  being  consumed  are  the  complex  natural  kind.      

14  Shintani  TT,  Hughes  CK,  Beckman  S,  et  al.  “Obesity  and  cardiovascular  risk  intervention  through  the  ad  libitum  feeding  of  traditional  Hawaiian  diet.”  Am  J  Clin  Nutr.  53(1991):1647S-­‐1651S.  15  McDougall  J,  Lizau  K,  Haver  E,  et  al.  “Rapid  reduction  of  serum  cholesterol  and  blood  pressure  by  a  twelve  day,  very  low  fat,  strictly  vegetarian  diet.”  J  Am  Coll  Nutr.  14(1995):491-­‐496.  16  Ornish  D,  Scherwitz  LW,  Doody  RS,  et  al.  “Effects  of  stress  management  training  and  dietary  changes  in  treating  ischemic  heart  disease.”  JAMA.  249(1983):54-­‐59.  17  Shintani  TT,  Beckham  S,  Brown  AC,  et  al.  “The  Hawaii  diet:  ad  libitum  high  carbohydrate,  low  fat  mult-­‐cultural  diet  for  the  reduction  of  chronic  disease  risk  factors:  obesity,  hypertension,  hypercholesterolemia,  and  hyperglycemia.”  Hawaii  Med  J.  60(2001):69-­‐73.  18  Nicholson  AS,  Sklar  M,  Barnard  ND,  et  al.  “Toward  improved  management  of  NIDDM:  a  randomized,  controlled,  pilot  intervention  using  a  lowfat,  vegetarian  diet.”  Prev  Med.  29(1999):87-­‐91.  19  Ornish  D,  Scherwitz  LW,  Billings  JH,  et  al.  “Intensive  lifestyle  changes  for  reversal  of  coronary  heart  disease.”  JAMA.  280(1998):2001-­‐2007.  20  Some  of  my  physician  friends  who  care  for  vegan  and  vegetarian  patients  (including  Drs.  Michael  Klaper,  Neil  Barnard,  John  McDougall,  and  Hans  Diehl)  have  told  me  that  upwards  of  5%  or  even  10%  of  their  patients  have  difficulty  keeping  their  weight  down,  even  when  they  continue  on  a  diet  comprised  only  of  plant  foods.  There  seems  to  be  a  consensus  among  these  practitioners  that  most  of  these  “failed”  cases  can  be  explained  as  given  in  the  text.    

Page 6: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

In   addition   to   eating   the  wrong   kind   of   plant-­‐based  diet,  weight   loss  may  be   elusive   if   a  person   never   engages   in   any   physical   activity.   A   reasonable   amount   of   physical   activity  sustained  on  a  regular  basis,  of  course,  can  pay  important  dividends.  Keeping  body  weight  off   is   a   long-­‐term   lifestyle   choice—and   in   fact,   what   I   will   be   consistently   [saying]  throughout   these   lectures   is   that   this   kind   of   dietary   lifestyle   is   one   that   we   should   be  thinking  of  as  a  lifestyle  practice,  not  a  short-­‐term  dietary  situation.  Gimmicks  that  produce  impressively  large,  quick  weight  loss—such  as  the  high-­‐protein,  high-­‐fat,  low-­‐carb  diets—don’t  work  in  the  long  term.  Short-­‐term  losses  in  body  weight  should  not  come  along,  [as  they  do]  in  those  kinds  of  diets,  with  long-­‐term  pain—which  will  include  kidney  problems,  heart  disease,  cancer,  bone  or  joint  ailments,  and  other  problems  that  may  be  brought  on  as  people  persist  in  using  high-­‐protein,  high-­‐fat,  low-­‐carb  diets.      One  very   large   study  of  more   than  21,000  vegetarians   and  vegans21   found   that   the  body  mass  index  of  these  folks  was  lower  among  those  who  adhered  to  their  diet  for  five  or  more  years  compared  to  people  who  used  this  diet  for  less  than  five  years.  In  other  words,  this  really  goes  to  the  point  I  am  trying  to  make—namely,  that  one  should  not  only  not  be  using  this  diet  just  for  quick  weight  loss,  but  should  stay  on  it.  And  those  who  stay  on  it  for  five  years  or  more  become  accustomed  to  it  and  enjoy  it,  and  they  are  going  to  have  additional  benefit  compared  to  those  who  don’t.      Generally  speaking,  throw  away  those  simplistic  ideas  about  counting  calories.  I  have  found  that   counting   calories   (as   people   tend   to   advocate   that   idea)   is   a   simplistic  recommendation   often   used   by   those   who   oppose   a   change   in   the   type   of   food   to   be  consumed.   In  other  words,   people  who   tend   to  be  opposed   to   switching  over   to   a  plant-­‐based  diet  are  likely  to  say  things  like,  “Oh,  it’s  just  the  amount  of  food  that  we  consume,”  and  that  is  about  all  there  is  really  to  it—or  in  other  words,  the  total  amount  of  calories  we  consume.  I  think  it  is  a  very  simplistic  view  to  simply  talk  about  calories  being  consumed  as  being  largely  related  to  our  weight  problems.  With  a  whole  food,  plant-­‐based  diet,  we  can  eat  as  much  as  we  want  and  still  lose  weight,  as  long  as  we  eat  the  right  type  of  food.      In   some   studies,   those   who   follow   a   whole   food,   low-­‐fat,   plant-­‐based   diet   consume  somewhat  fewer  calories,  but  [it   is]  a  rather  small   incremental  decrease  in  calorie   intake.  They   actually   spend  more   time   eating—there  has  been   research  on   this—and   they   eat   a  larger   volume  of   food   than   their  meat-­‐eating   counterparts,  while   still   consuming   slightly  [fewer]  calories.22  Fruits,  vegetables,  and  grains  as  whole  foods  are  much  less  energy-­‐dense  than  animal  foods  and  added  fats.  There  are  few  calories  in  each  spoonful  or  cupful  of  these  whole  foods.  Remember  that  [the]  fats  present  in  animal  foods  (and,  of  course,  added  fats)  have  nine   calories   per   gram,  whereas   carbohydrates   and  protein  have   only   four   calories  per   gram.   In   addition,   the  whole   fruits,   vegetables,   and   grains   have   a   lot   of   fiber,  which  makes  you  feel  full21  23—again,  there  has  been  good  research  on  that—and  yet  the  fiber  in  these  kinds  of  foods  contributes  almost  no  calories  to  the  meal.  So  if  you  eat  a  healthy  meal,  you  may  reduce  the  calories  you  consume,  digest,  and  absorb,  even  if  you  eat  significantly   21  Key  TJ,  Davey  G.  “Prevalence  of  obesity  is  low  in  people  who  do  not  eat  meat.”  Brit  Med  J.  313(1996):816-­‐817.  22  Duncan  KH,  Bacon  JA,  Weinsier  RL.  “The  effects  of  high  and  low  energy  density  diets  on  satiety,  energy  intake,  and  eating  time  of        obese  and  nonobese  subjects.”  Am  J  Clin  Nutr.  37(1983):763-­‐767.  23  Heaton  KW.  “Food  fibre  as  an  obstacle  to  energy  intake.”  Lancet  (1973):1418-­‐1421.    

Page 7: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

more   food.   [These   are]   just   some   of   the   observations   that   people   who   consume   a  vegetarian—or,   better   yet,   a   vegan—   type   of   diet   are   likely   to   consume   a   little   [fewer]  calories,   although   we   know   at   the   same   time   [with]   that   kind   of   food   we   can,   in   fact,  consume  actually  more  food  and  get  the  same  benefit,  more  or  less.      However,   this   [approach]   of   just   counting   calories,   as   I   said   before,   is   not   quite   good  enough—not  yet,  anyway.  The  same  criticisms  I  would  make  against  the  high-­‐protein,  high-­‐fat,   low-­‐carb   diet,   such   as   the   Atkins   diet—which   initially   induces   a  much   lower   calorie  intake—can   also   be   applied   to   short-­‐term   studies   [in   which]   subjects   consume   fewer  calories   while   eating   a   plant-­‐based   diet.   Short-­‐term   calorie   reduction   means   little   or  nothing,  as  people  find  it  very  difficult  to  continue  consuming  fewer  calories,  and  if  weight  loss  is  due  to  calorie  restriction,  the  diet  will  not  likely  lead  to  long-­‐term  weight  loss.  That  is  why  other  studies  form  a  crucial  link  in  this  story.      Studies   show   that   the  weight   loss   effect   of   a   whole   food,   plant-­‐based   diet   is   not   due   to  calorie   restriction  alone.  These   studies  document   the   fact   that   vegetarians  who   consume  the   same   amount   [of],   or   even   significantly   more   calories   than,   their   meat-­‐eating  counterparts   actually  will   be   slimmer.   The   China   Study   demonstrated   that   rural   Chinese  consuming  a  plant-­‐based  diet  actually  consumed  significantly  more  calories  per  pound  of  body  weight  than  Americans.  Of  course,  as  we  said  before,  some  of   that   is  due  to  the  fact  that   they   are  more   active.   Even   the   least   active  Chinese   tend   to   be  more   active   than   the  average   American.   Most   people   will   automatically   assume   that   these   rural   Chinese   are  going   to   be   heavier   by   consuming   more   calories—heavier   than   [their]   US   meat-­‐eating  counterparts.   Not   so—the   rural   Chinese   are   still   slimmer   while   consuming   a   greater  volume  of  food  and  more  calories.24  25  26      What   is   the  secret?  One   factor   is   the  process   that  we  refer   to  as     “thermogenesis,”  which  refers   to   our   production   of   body   heat   during  metabolism—namely,   the   calories   that   are  being  consumed  under  these  conditions.  In  the  case  of  consuming  a  plant-­‐based  diet,  some  of  those  calories  are  going  to  be  burned  off  as  body  heat,  instead  of  being  laid  down  as  body  fat.   Vegetarians   have   been   observed   to   have   a   slightly   higher   rate   of  metabolism   during  rest,27  and  that  is  reflective  of  this  thermogenesis  phenomenon.  Thus  they  burn  up  slightly  more  of  their  ingested  calories  as  body  heat,  rather  than  [depositing]  them  as  body  fat.28  A  relatively  small  increase  in  metabolic  rate  translates  surprisingly  to  a  significant  number  of  calories   over   the   course   of   24   hours.   If   we   actually   are   capable   in   our   metabolism   [of  losing]   an   extra   50   calories   a   day—which,   incidentally,   is   not   an   amount   that   is   easily  measured;  in  fact,  it  hardly  can  be  measured  at  all—this  has  been  shown  to  be  related  to  a  loss  of  about  8  to  10  pounds  of  body  weight  per  year.  Now  that  may  sound  like  a  fairly  slow   24  Appleby  PN,  Thorogood  M,  Mann  J,  et  al.  “Low  body  mass  index  in  non-­‐meat  eaters:  the  possible  roles  of  animal  fat,  dietary  fiber,  and  alcohol.”  Int  J  Obesity  22(1998):454-­‐460.    25  Levin  N,  Rattan  J,  Gilat  T.  “Energy  intake  and  body  weight  in  ovo-­‐lacto  vegetarians.”  J  Clin  Gastroentrol.  8(1986):451-­‐453.  26  Campbell  TC.  “Energy  balance:  interpretation  of  data  from  rural  China.”  Toxicol  Sci.  52(1999):87-­‐94.  27  Pochlman  ET,  Arciero  PJ,  Melby  CI,  et  al.  “Resting  metabolic  rate  and  postprandial  thermogenesis  in  vegetarians  and  nonvegetarians.”  Am  J  Clin  Nutr.  48(1988):209-­‐213.    28  The  study  by  Pochlman  et  al.  showed  high  oxygen  consumption  and  higher  resting  metabolic  rate  but  was  badly  misinterpreted  by  the  authors.  We  had  very  similar  results  with  experimental  rats.    

Page 8: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

rate  of  body  weight  loss,  but  if  one  is  losing  8  to  10  pounds  of  body  weight  per  year—let’s  say  over  a  period  of  three,  four,  or  five  years—you  can  see  that  this  really  adds  up.  It  really  is   a   very   small   differential   in   the   amount   of   calories   that   are   being   laid   down   as   body  weight  as  opposed  to  calories  that  are  being  burned  off.      Chapter  6:  The  Role  of  Exercise    Many  studies  have  shown  that  sustaining  an  exercise  program  on  a  regular  basis  helps  to  keep   off   the   weight   that   is   initially   lost.   Starting   and   stopping   exercise   programs   is   not  really   a   very   good   idea.   It   should   be   on   a   regular   basis.29   In   regards   to   the   amount   of  exercise  we  need,  a  mere  15  to  45  minutes  per  day,  every  day,  will  maintain  a  body  weight  (according   to   some   very   good   research)   that   is   11   to   18   pounds   lighter   than   it   would  otherwise  be.  The  idea  of  combining  diet  and  exercise  to  control  body  weight  really  works  wonders.  Recall  for  example  the  studies  on  our  experimental  animals,  which  were  fed  diets  containing  either   the   traditional  20%  casein  or  20%  protein.  The  animals  consuming   the  5%   casein   diets   had   strikingly   less   cancer.   They   had   lower   blood   cholesterol   levels   and  longer  lives.30  They  also,  surprisingly,  consumed  slightly  more  calories,  but  they  burned  off  those   calories  as  body  heat.   [We]   actually  did   some   fairly  detailed   studies  and  measured  the  amount  of  body  heat  that  was  being  lost,  and  then  determined  the  kinds  of  mechanisms  that  were  at  play  to  cause  this  to  happen.      I  then  wondered,  after  seeing  those  early  studies  in  experiments  with  animals:  would  these  impressive   benefits   of   a   low-­‐protein   diet   affect   their   physical   activity?   Some   of   us   had  noticed   over   the   course   of   these   experiments   that   the   5%   casein   animals   (getting   less  cancer,  of  course)  seemed  to  be  more  active  than  the  20%  casein  animals.  To  test  this  idea,  we  housed  rats  in  cages  with  little  exercise  wheels  and  then  fed  them  either  the  5%  or  20%  diet,  and   these  exercise  wheels  could  record   the  number  of   turns  when   they  got   into   the  wheel   and   turned   it.   Within   the   very   first   day   the   5%-­‐casein-­‐fed   animals   voluntarily  exercised   in   the  wheel   about   twice  as  much  as   the  20%-­‐casein-­‐fed  animals,   and  exercise  remained  considerably  higher  for  the  5%-­‐casein  animals  throughout  the  two  weeks  of  the  study.31      Now,  we  can  take  these  results  and  combine  them  with  some  very  interesting  observations  on   body  weight.   A   plant-­‐based   diet—lower   in   protein,   of   course   (certainly   [in   terms   of]  plant  protein  as  opposed  to  animal  protein)—operates  on  calorie  balance   in   two  ways  to  keep  body  weight  under  control.  First,  as  we  have  just  discussed,  it  discharges  calories  as  body  heat  through  the  process  of  thermogenesis,  instead  of  storing  these  calories  as  body  fat,  and  as  I  said  before,  it  doesn’t  take  many  calories  to  make  a  big  difference  over  a  year  or  so.  Second,  a  plant-­‐based  diet  encourages  more  physical  activity.  I  think  most  of  you  know  that  when  you  are  consuming  a  heavy  meal—oftentimes  high  in  fat  and  high  in  protein—

29  Fogelholm  M,  Kukkonen-­‐Harjula  K.  “Does  physical  activity  prevent  weight  gain—a  systematic  review.”  Obesity  Rev.  I(2000):95-­‐111.    30  Gibney  MJ,  and  Kritchevsky  D,  eds.  Current  Topics  in  Nutrition  and  Disease,  Volume  8:  Animal  and  Vegetable  Proteins  in  Lipid  Metabolism  and  Atherosclerosis.  New  York,  NY:  Alan  R.  Liss,  Inc.,  1983.    31  Krieger  E,  Youngman  LD,  Campbell  TC.  “The  modulation  of  aflatoxin  (AFB1)  induced  preneoplastic  lesions  by  dietary  protein  and  voluntary  exercise  in  Fischer  344  rats.”  FASEB  J.  2(1988):3304  Abs.  

Page 9: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

you   feel   sluggish.   You   don’t   feel   like   the   same   kind   of   physical   activity   [you   do   when]  consuming   a   light  meal,   generally  meaning   a   diet   low   in   fat   and  plant-­‐based.   So   a   plant-­‐based  diet  basically  encourages  more  physical  activity,  therefore  more  calorie  expenditure.  As   body   weight   goes   down,   it   becomes   easier   to   be  more   physically   active.   So   diet   and  exercise  are  operating  in  harmony  to  achieve  the  same  thing.  This  is  really  what  a  healthy  lifestyle  is  all  about.      Moreover,  while  this  is  going  on,  we  know  that  we  can  prevent  chronic  diseases  like  cancer,  heart   disease,   and   diabetes.   Of   course,   this   whole   lifestyle   notion   of   combining   exercise  with  diet  and  getting  the  long-­‐term  result  is  a  far  cry  from  the  usual  quick  weight  loss  kind  of  achievements  that  people  get  using  high-­‐protein,  high-­‐fat  diets.    Chapter  7:  Closing  Remarks  on  Obesity    Obesity,   as   I   indicated  before,   is   really  an  ominous   indicator  of  poor  health   that  Western  nations  are  currently  facing,  and  I  just  thought  we  might  keep  in  mind  a  couple  of  ideas  that  have  been  widely  discussed.  First,  be  aware  of  diets  and  potions  and  pills  that  create  rapid  weight   loss  with   no   promise   of   good   health   in   the   future.   The   diet   that   helps   to   reduce  weight  in  the  short  run  needs  to  be  the  same  diet  that  creates  and  maintains  health  in  the  long  run.      Another  thought:  considering  obesity  as  an  independent  specific  disease  is  misplaced.32  33  In  recent  years,   for  example,  medical  authorities  have  created  a  specific  code   for  obesity,  considering   it   as   a   separate   disease.   I   think   that   was   an   error.   It   gives   us   the   wrong  impressions.   If  we  think  of  obesity  as  a  separate  disease,  we  tend  to   lose  sight  of   the  fact  that   it   really   is   related   to  many  other  diseases.   In  other  words,  we   lose   the  notion  of   the  larger  context.  As  a  result  of  thinking  of  obesity  as  a  separate  disease,  we  tend  to  look  for  specific  cures  to  take  care  of  this  disease.      A  third  notion:   forget  the  promise  of  there  being  a  specific  gene  or  even  a  few  genes  that  can  be  manipulated  to  control  obesity.34  35  36  At  present,  for  example,  the  last  count  that  I  heard  said  more  than  20  genes  had  been  discovered  to  be  related  in  some  way  to  weight  control.  There  is  no  way  under  the  sun,  as  we  discover  these  genes  and  go  forward,  that  we  are  really  ever  going  to  know  how  all  of  these  genes  coordinate  their  activities  to  control  obesity.  Discovering  genes  for  obesity  is  primarily  for  the  purpose  of  developing  a  drug  to  knock  out  or   inactivate   those  genes.  We  can  control   the  cause  of  overweight  and  obesity  without  changing  our  genes.  It  is  right  at  the  end  of  our  fork.             32  Heshka  S,  Allison  DB.  “Is  obesity  a  disease?”  Int  J  Obesity  Rel  Dis.  25(2001):1401-­‐1404.  33  Kopelman  PG,  Finer  N.  “Reply:  is  obesity  a  disease?”  Int  J  Obesity  25(2001):1405-­‐1406.  34  Campbell  TC.  “Are  your  genes  hazardous  to  your  health?”  Nutr  Advoc.  I(1995):1-­‐2,8.    35  Campbell  TC.  “Genetic  seeds  of  disease.  How  to  beat  the  odds.”  Nutr  Advoc.  I(1995):1-­‐2,  8.    36  Campbell  TC.  “The  ‘Fat  Gene’  dream  machine.”  Nutr  Advoc.  2(1996):1-­‐2.    

Page 10: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

Chapter  8:  Overview  of  Diabetes    The  one  disease  that  we  hear  a  lot  about  these  days  is  diabetes.  Diabetes  tends  to  occur  in  people  who  are  overweight,  so  the  two  go  hand-­‐in-­‐hand.  From  1990  to  1998,   just  a  mere  eight  or  nine  years,  the  incidence  of  diabetes  in  the  United  States  increased  by  33%.37  Over  8%   of   American   adults   are   now   diabetic,   and   over   150,000   young   people   now   have   the  disease.      Diabetes  is  classified  as  either  type  1  or  type  2.  Type  1  is  the  really  serious  kind.  Type  2  is  less  serious,  but  nonetheless   in   the   long  run  can  cause   just  as  much  damage.  Type  1,   the  serious  type,  develops  in  children  and  young  people,  and  thus  is  sometimes  referred  to  as  juvenile-­‐onset  diabetes.  This  form  accounts  for  about  5  to  10%  of  all  diabetes  cases.  Type  2,  which  accounts   for  the  remaining  90  to  95%  of  all  cases,  used  to  occur   in  adults  aged  40  years  and  up,  and  thus  type  2  diabetes  was  called  adult-­‐onset  diabetes.38  But  because  up  to  45%  of  the  new  diabetes  cases  in  children  are  now  type  2  diabetes39—in  other  words,  the  adult   type   of   diabetes   is   now   occurring   in   children—the   age-­‐specific   names   are   being  dropped  and  the  two  forms  of  diabetes  are  simply  referred  to  as  type  1  and  type  2.      In   both   of   these   types   of   diabetes,   the   disease   begins  with   an   impaired   or   dysfunctional  glucose   metabolism—that   is,   the   metabolism   of   the   blood   sugar   that   is   circulating   and  providing  much   of   the   energy   for   our   bodies.   In   type   1,   there   is   a   loss   of   the   ability   to  produce   insulin.   Insulin,   you  may   recall,   is   a   hormone   produced   by   the   pancreas   that   is  required  for  the  utilization  of  glucose,  specifically  for  the  ability  of  glucose  (as  it  circulates  in  the  blood)  to  penetrate  and  enter  into  the  cells  where  it  does  its  business.  So  insulin  is  critically  important  to  being  able  to  utilize  glucose.      Type  1  individuals  have  lost  their  ability  to  produce  insulin.  The  cells  that  actually  produce  the   insulin   in  the  pancreas  have  been  damaged,  often  in  very  severe  ways  so  never  again  can  they  produce  insulin,  even  when  plenty  of  glucose  is  present.  In  type  2  diabetes,  the  so-­‐called  adult-­‐onset  diabetes,  there  is  a  loss  of  the  control  of  using  the  glucose.  Blood  levels  become   high   in   individuals   who   are   consuming   simple   refined   carbohydrates—the  carbohydrates  are  quickly  absorbed,  and  higher  glucose   levels  result.  Among  people  who  persistently  consume  these  kinds  of  foods,  blood  glucose  levels  tend  to  remain  fairly  high,  and   in  response   insulin   is  overproduced  to   try   to  help   the  glucose  get   into   the  cells.  This  continuous  production  of  high  levels  of  insulin  eventually  leads  to  a  resistance  on  the  part  of   the   cells   to   actually   use   the   insulin.   This   ends   up   being   a   condition   called   insulin  resistance.   So   in   these   cases,   even   though   there   is   plenty   of   insulin   around,   and   ample  supplies   of   glucose   (as   in   the   case   of   type   2   diabetes),   it   still   ends   up   as   a   diabetes-­‐like  condition  because   the  glucose   is   simply  not  getting   into   the  cells   to  do  what   it   should  be  doing.         37  Mokdad  AH,  Ford  ES,  Bowman  BA,  et  al.  “Diabetes  trends  in  the  US  1990-­‐1998.”  Diabetes  Care  23(2000):1278-­‐1283.  38  Center  for  Disease  Control  and  Prevention.  “National  diabetes  fact  sheet:  general  information  and  national  estimates  on  diabetes  in  the  United  States,  2000.”  Atlanta,  GA:  Centers  for  Disease  Control  and  Prevention;  2000.  39  American  Diabetes  Association.  “Type  2  diabetes  in  children  and  adolescents.”  Diabetes  Care  23(2000):381-­‐389.  

Page 11: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

11

Chapter  9:  Complications  Due  to  Diabetes    The  complications  of  diabetes  can  be  quite  serious.40  There   is   two   to   four   times  as  much  heart   disease   among   people  with   diabetes.   There   is   two   to   four   times   the   risk   of   stroke  among  diabetics.  Over  70%  of  the  people  with  diabetes  have  high  blood  pressure.  Diabetes,  incidentally,   is   the   leading   cause   of   blindness   in   adults,   and   one   that  many  people   know  about  is  that  diabetes  is  the  leading  cause  of  end-­‐stage  kidney  disease,  which  often  requires  kidney   dialysis,   a   very   expensive   procedure.   Over   100,000   diabetics   underwent   kidney  dialysis   or   kidney   transplantation   in   1999   alone.   And   other   very   serious   conditions   can  result   in   those  who  have  diabetes,   such  as   serious  nervous   system  disorders,  which  may  require   [the]   amputation   of   limbs.   In   fact,   over   60%  of   all   lower   limb   amputations   have  been  performed  on  diabetics.  41    This   list   is   long   enough   to   show   that   diabetes   is   very   serious.   The   disease   has   many  complications,  and  often  it  is  the  overweight  who  tend  to  get  it.  Modern  drugs  and  surgery  really  offer  no  cure  for  diabetics.  At  best,  current  drugs  may  help  to  maintain  a  reasonably  functional   lifestyle,   but   these   drugs   will   never   offer   substantial   improvement.   As   a  consequence,   diabetics   face   lifetimes   of   drugs   and   medications,   making   diabetes   an  enormously   costly   disease.   The   economic   toll   of   diabetes   [in   the   US]   is   over   130   billion  dollars  a  year.42    Chapter  10:  There  Is  Hope    But  there  is  hope.  In  fact,  there  is  much  hope.  The  food  we  eat  has  enormous  influence  over  this  disease.  The  right  diet  not  only  prevents  but  also  has  been  shown  to  treat  diabetes,  and  of   course   that   diet   is   the   same   diet   that   is   used   to   control   obesity.   Like   most   chronic  diseases,  diabetes  shows  up  more  often  in  some  parts  of  the  world  than  in  others.  This  has  been   known   for   100   years.   It   has   also   been  well   documented   that   populations  with   low  rates  of  diabetes  eat  different  diets   [from]  populations  with  high  rates  of  diabetes.   In   the  adjoining  chart,43 44we  have  some  figures  that  were  accumulated  now  over  70  years  ago  to  illustrate  this  point.  [See  slide  number  24.] As   carbohydrate   intake   goes  up   and   fat   intake   goes  down,   diabetes   rates  decline   rapidly  from  around  20.4  to  2.9  deaths  per  100,000  people.  Of  course,  the  carbohydrate  intake  we  are   talking   about   here,   as   I   pointed   out   in   the   previous   lecture,   is   [of]   the   complex  carbohydrates   that   come   along   with   the   consumption   of   plant-­‐based   food.   So   a   high-­‐carbohydrate,   low-­‐fat   diet—what   I   call   a  whole   food,   plant-­‐based  diet—actually   helps   to  prevent   diabetes.   This  was   70   years   ago,   and   I   find   it   really   surprising   that  we   knew   so  much   so   long   ago   and   so   few  people   really   seem   to   know  or   to   take  up   this   idea.  Thirty   40  Centers  for  Disease  Control  and  Prevention.  “National  Diabetes  Fact  Sheet:  General  Information  and  National  Estimates  on  Diabetes  in  the  United  States,  2000.”  Atlanta,  GA:  Centers  for  Disease  Control  and  Prevention.    41  Centers  for  Disease  Control  and  Prevention.  “National  Diabetes  Fact  Sheet:  General  Information  and  National  Estimates  on  Diabetes  in  the  United  States,  2000.”  Atlanta,  GA:  Centers  for  Disease  Control  and  Prevention.    42  Centers  for  Disease  Control  and  Prevention.  “National  diabetes  fact  sheet:  general  information  and  national  estimates  on  diabetes  in  the  United  States,  2000.”  Atlanta,  GA:  Centers  for  Disease  Control  and  Prevention;  2000.  43  Himsworth  HP.  “Diet  and  the  incidence  of  diabetes  mellitus.”  Clin.  Sci.  2  (1935):  117–148.      44  Himsworth  HP.  “Diet  and  the  incidence  of  diabetes  mellitus.”  Clin  Sci.  2(1935):117-­‐148.  

Page 12: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

12

years   later   the   question   was   reexamined—in   this   case,   using   11   countries.   [See   slide  number  25.]  We  can  see  the  results  in  the  adjoining  chart.45   Very  clearly,  the  relationship  between  diabetes  and  obesity  is  very  impressive.  Increasing  amounts  of  overweight  and  obesity  are  associated  with  increasing  incidence  of  diabetes.      Yet  both  of  the  studies  in  the  previous  two  charts  are  often  considered  to  be  kind  of  crude  because  we  are  really  comparing  populations.  Populations  are  rather  diverse,  and  so  many  people   who   don’t   want   to   think   about   these   relationships   point   out   that   these   kinds   of  studies   are   unreliable   since   they   involve   populations.   Some   critics   of   the   notion   of   this  relationship  between  diet  and  diabetes  quite  frankly  will  never  be  convinced.  According  to  them,  [because]  diabetes  [is]  a  genetics-­‐based  disease,  there  may  be  unmeasured  cultural  factors   that  we  have  to   think  about,   there  are  uncertain  physical  activity   [factors],  and  of  course   some   of   this   can   play   a   role.   But   that   tends   to   focus   people’s   attention   on   those  factors,  and  we  lose  sight  of  the  dietary  effect.    So   instead  of   looking  at  diverse  populations  across  the  broad  range  of  dietary  conditions,  let’s  look  at  diabetes  rates  within  single  populations.      Chapter  11:  Findings  from  Seventh-­‐day  Adventists    The   Seventh-­‐day   Adventist   community   shows   up   in   a   lot   of   research.   They   are   an  interesting  group  to  study  because  of  their  dietary  habits.  Their  religion  encourages  them  to  stay  away  from  meat,  fish,  eggs,  coffee,  alcohol,  and  tobacco.  As  a  result,  about  half  [of]  Seventh-­‐day  Adventists  are  vegetarians,  but  90%  of  this  half  still  consumes  dairy  and  egg  products,  deriving  a  significant  amount  of  their  calories  from  animal  sources.  It  should  be  noted  that  the  meat-­‐eating  Adventists  (the  other  half)  are  not  really  the  meatiest  of  eaters.  They  consume  about   three   servings  of  beef  a  week  and   less   than  one  serving  of   fish  and  poultry.46  I  know  plenty  of  people  who  consume  this  amount  of  meat  every  couple  of  days.  So  in  these  Adventist  studies,  scientists  are  comparing  moderate  vegetarians  to  moderate  meat  eaters.  This  really  is  not  a  big  difference  to  discern  what  relationship  diet  may  have  with  diabetes.      Even  so,  the  Adventist  vegetarians  are  much  healthier  than  their  meat-­‐eating  counterparts.  Those  Adventists  who  deprive  themselves  of  meat  also  deprive  themselves  of  the  ravages  of  diabetes.  The  vegetarians  in  these  studies  have  shown  about  half  the  rate  of  diabetes41  47  of  the  meat  eaters,  even  though  the  nutritional  differences  between  these  groups  of  people  are  not  nearly  as   large  as   they  might  be.  The  vegetarians  also  have  about  half   the  rate  of  obesity.  There  are  actually  dozens,   if  not  hundreds,  of   studies   that  have   shown   the   same  thing.     45  West  KM,  Kalbfleisch  JM.  “Influence  of  nutritional  factors  on  prevalence  of  diabetes.”  Diabetes  20(1971):99-­‐108.  46  Fraser  GE.  “Associations  between  diet  and  cancer,  ischemic  heart  disease,  and  all-­‐cause  mortality  in  non-­‐Hispanic  white  California  Seventh-­‐day  Adventists.”  Am  J  Clin  Nutr.  70(Suppl.)(1999):532S-­‐538S.  47  Snowdon  DA,  Phillips  RL.  “Does  a  vegetarian  diet  reduce  the  occurrence  of  diabetes?”  Am  J  Publ  Health  75(1985):507-­‐512.    

Page 13: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

13

Chapter  12:  Intervention  Research  on  Diabetes    Now,  if  you  are  still  not  convinced  of  this  relationship,  consider  the  more  rigorous  kinds  of  experimental   study—the   so-­‐called   controlled   or   intervention   studies   where   the  experimentalist  may,   in   fact,   take  a  group  of  people  who  are  diabetic  and  actually  change  their  diet  to  see  what  happens.  Professor  James  Anderson  at  the  University  of  Kentucky  is  one  of  the  most  prominent  scientists  studying  diet  and  diabetes  and  has  been  doing  this  for  many   years.   He   has   published   impressive   results   using   dietary  means   alone.   One   of   his  studies  examined   the  effects  of  a  high-­‐fiber,  high-­‐carbohydrate,   low-­‐fat  diet  on  25   type  1  diabetics   (that   is   the   serious   kind)   and  25   type  2  diabetics,   and  he  did   this   in   a   hospital  setting,   so   it  was   a   good   study.  None   of   his   50  patients  was   overweight,   and   all   of   them  were   taking   insulin   shots   to   control   their   blood   sugar   levels.   After   just   three  weeks,   the  type  1  diabetic  patients  were  able  to  lower  their  insulin  medication  by  an  average  of  40%.48  This  is  truly  remarkable  because  most  people  in  the  field  even  today  would  deny  that  diet  really  had  much  if  anything  to  do  with  type  1  because  these  are  the  people  who  allegedly  are   not   able   to   produce   insulin,   and   so   should   be   unresponsive   to   dietary   change.  Nonetheless,   he  was   able   to   show   that  with   a   dietary   change   to   a   plant-­‐based   diet   they  were  able  to  lower  their  insulin  medication  by  an  average  of  40%.      Their  blood  sugar  profiles  also  improved  dramatically.  Just  as  importantly,  their  cholesterol  levels   dropped   by   30%.   I   think   this   study,   although   a   single   study,   is   really   quite  remarkable  in  terms  of  its  effect,  and  needs  to  be  explored  further.  Of  the  25  type  2  patients  (that  is  the  adult-­‐onset  type),  24  were  able  to  discontinue  their  insulin  medication  during  the  course  of   this  study.   49   In  another  study  of  14   lean  diabetic  patients,   total  cholesterol  levels  decreased  by  32%   in   just   two  weeks,50   as   shown   in   the   adjoining   chart.   [See   slide  number  29.]    These  benefits,  representing  a  decrease  in  blood  cholesterol  from  around  206  mg/deciliter  down  to  about  141,  are  truly  astounding,  especially  considering  the  speed  with  which  they  appear.   Professor   Anderson   also   found   no   evidence   that   this   cholesterol   decrease   was  temporary.  As  long  as  people  continued  consuming  this  high-­‐carbohydrate,  low-­‐fat,  plant-­‐based  diet,  it  remained  low  for  an  additional  four  years,51  as  far  as  his  study  was  concerned.  Another   group   of   scientists—at   the   rather   famous   Pritikin   Center—achieved   equally  spectacular   results   by   prescribing   a   low-­‐fat,   plant-­‐based   diet   and   exercise   program   to   a  group  of  diabetic  patients.  Of  [the]  40  patients  on  medication  at  the  start  of  the  program,  34  were   able   to   discontinue   all  medication   after   only   26   days.52   As   you   can   see   from   these  studies,  we  can  actually  beat  diabetes  and  keep  it  under  control,  and  save  some  of  that  130  

48  Anderson  JW.  “Dietary  fiber  in  nutrition  management  of  diabetes.”  In:  Vahouny  GV,    Kritchevsky  D,  eds.  Dietary  Fiber:  Basic  and  Clinical  Aspects.  New  York:  Plenum  Press,  1986:343-­‐360.  49  Anderson  JW.  “Dietary  fiber  in  nutrition  management  of  diabetes.”  In:  Vahouny  GV,    Kritchevsky  D,  eds.  Dietary  Fiber:  Basic  and  Clinical  Aspects.  New  York:  Plenum  Press,  1986:343-­‐360.  50  Anderson  JW,  Chen  WL,  Sieling  B.  “Hypolipidemic  effects  of  high-­‐carbohydrate,  high-­‐fiber  diets.”  Metabolism  29(1980):551-­‐558.    51  Story  L,  Anderson  JW,  Chen  WL,  et  al.  “Adherence  to  high-­‐carbohydrate,  high-­‐fiber  diets:  long-­‐term  studies  of  non-­‐obese  diabetic  men.”  J  Am  Diet  Assoc.  85(1985):1105-­‐1110.    52  Barnard  RJ,  Lattimore  L,  Holly  RG,  et  al.  “Response  of  non-­‐insulin-­‐dependent  diabetic  patients  to  an  intensive  program  of  diet  and  exercise.”  Diabetes  Care  5(1982):370-­‐374.    

Page 14: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Calories, Obesity, and Diabetes

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

14

billion  dollars  a  year   that  we  spend  on   it.  And  as  we  are  doing   these  kinds  of   treatments  and  employing   these  procedures,  we  also  will   (as  we  spoke  about   in   the   first  part  of   the  lecture)  begin  to  control  obesity  as  well.  So  the  results  are  really  remarkable  in  terms  of  the  effects  of  diet  on  both  obesity  and  diabetes.    

Page 15: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

The Pleasure Trap

 

Page 16: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  The  Greatest  Philosophical  Question  of  All  Time    My   name   is   Doug   Lisle.   I   am   a   psychologist.   I   am   here   to   talk   about   a   very   important  problem  we   face   today:  when   it  comes   to  diet  and   lifestyle   issues,  why   is   it   that  once  we  know  the  right  thing  to  do,  it  is  very  difficult  to  do  it?  To  figure  this  out  and  to  attack  this  problem,  we  have  to  ask  and  answer  the  greatest  philosophical  question  of  all  time.      Why  does  a  shark  have  teeth?  Why  does  a  shark  have  teeth?  To  eat.  A  shark  has  teeth  to  eat.  Why  does  a  shark  eat?  A  shark  eats  to  survive.  It  survives  so  that  it  can  reproduce  so  that  little  tiny  sharkies  can  do  this  all  over  again,  and  this  has  been  going  on  for  millions  upon  millions  upon  millions  of  years.  Chapter  2:  Guidance  System    And  this  is  why  a  shark  has  teeth.  A  shark  has  teeth,  actually,  because  he  is  not  reproducing  himself;  he  is  actually  reproducing  DNA,  or  strands  of  DNA,  that  we  call  genes.  Those  genes  actually   build   the   teeth   and   the   rest   of   that   shark   so   that   it   can  manage   to   survive   and  reproduce  within  its  natural  habitat.      Now,  how  does  a  shark  know  when  to  eat?  When  it  is  hungry.  What  do  we  call  things  like  that,   little   signals   from   within   the   shark’s   body   that   tell   it   what   to   do?   Instincts,   and  instincts   are   actually   neural   circuits.   An   instinct   is,   in   fact,   the  pattern  of   neurons   or   the  way   that   the   “vine”   is   built   through   these   effective   electrical   circuits.   As   the   shark   goes  about   its   business,   it   has   inputs   from   the   environment   coming   in   through   its   eyes   or   its  nose,   for   example,   and   that   shark   can   smell   one   drop   of   blood   in   a   million   gallons   of  seawater.   That   shark   is   literally   designed   by   nature   to   take   that   information   from   the  environment  and  have  that  information  activate  specific  neural  circuits.      The  neural  circuits  of  a  shark  are  absolutely  unique  to  that  shark’s  body.  Just  as  a  glove  fits  a   hand   perfectly,   the   shark’s   particular   set   of   neural   circuits   fits   the   shark’s   body   and  encourages  shark-­‐like  behavior.  So,  for  example,  suppose  that  it’s  a  couple  hundred  years  from  now  and  we  have   a   poor   shark   that   has   lost   its   olfactory   circuitry   so   it   can’t   smell  anymore.  We  also  have  a  big  hippopotamus  in  the  zoo  that  had  an  accident  and  he  didn’t  make   it.   We   did   some   bypass   surgery   on   the   hippo   and   we   actually   took   from   that  hippopotamus  some  neural  circuits  of   its  olfactory  system.  If  we  wired  those  circuits   into  that   shark,  would   they  work?  They  wouldn’t  work,  because   those  specific   sets  of   circuits  are  actually  for  sharks,  for  no  other  creature.  Those  circuits  are  part  of  the  shark’s  nature.      Now,  it  turns  out  that  across  the  animal  kingdom  we  find  that  the  different  kinds  of  neural  circuits   for   different   kinds   of   organisms   are   actually   patterned   in   a   very   similar  way.   So  sharks  are  being  encouraged  to  do  certain  kinds  of  behavior.  That  shark  could  in  principle  just  circle  around  and  around  in  the  water.  It  could  find  a  sea  wall  and  bang  its  nose  into  it,  and  then  circle  back  around  and  bang  its  nose  into  it  again.  But  that  is  not  what  the  shark  will   do.   The   shark   will   actually   perform   a   certain   set   of   stereotypic   behaviors   that   will  increase   the   statistical   likelihood   of   its   survival   and   reproduction.   To   do   so,   it   needs   a  guidance  system,  and  this  is  that  guidance  system.  

Page 17: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

 Chapter  3:  The  Motivational  Triad    The   guidance   system   consists   of   three   parts.   The   first   one   is   pleasure,   and   pleasure   is   a  signal  to  the  shark’s  nervous  system  to  tell  it  when  it  has,  in  fact,  maneuvered  its  body  into  circumstances  with  respect  to  the  environment  that  are  in  the  best  interest  of  the  survival  and  reproduction  of  its  genes.  So  let’s  talk  about  what  that  might  be.      We  already  know  that  the  shark  is  doing  what  he  needs  to  eat  and  to  survive,  and  that  he  needs   to   survive   to   reproduce.  The  number-­‐one   job  of   this   creature   is   to   take   care  of   its  need   to  eat.  So  a   top  priority  behavior   is  going   to  be  seeking   food   to  make  sure   that   this  shark  survives.      When  the  shark  eats,  it  activates  what  we  now  know  as  the  pleasure  pathway.  It  causes  a  set  of  dopamine  circuits  to  go  off  near  the  pleasure  centers  of  the  brain,  so  this  shark  will  know  when  it  has  done  something  that  was  good  for  its  long-­‐term  best  interest.  Inside  an  animal’s   nervous   systems   are   two   primary   systems   that   help   this   organism   know  when  they  are  maneuvering  in  the  environment  in  a  way  that  is  in  their  best  interest  biologically.      The  first  is  food—it  needs  to  eat.  It  is  made  out  of  stuff  [cells],  and  it  needs  to  take  in  things  from   the   environment   to   keep   the   cells   going.   Taking   in   good   food   activates   pleasure  systems   in   the   brain.   Engaging   in   sexual   activity   also   causes   the   pleasure   centers   of   the  brain  to  go  off,  and  in  a  more  intense  fashion.  Both  activities  produce  dopamine  rushes  in  the  pleasure  centers  of  the  brain.      Now   it   is  not  enough   for   this  creature   to  know  when   it   is  headed   for  good   things.   It  also  needs  to  know  when  it  has  run  into  problems.  When  it  moves  through  water  and  the  water  is  a  little  too  cold  or  too  hot,  or  it  rubs  against  some  fire  coral  and  may  tear  some  tissue,  it  is  going   to   need   to   have   another   set   of   signals   to   tell   it   when   its   relationship   to   the  environment  is  not  in  its  best  interest.  Those  signals  are  quite  diverse,  and  they  fall  under  what  we  are  going  to  call  pain.      So  this  creature  is  actually  designed  by  nature  to  do  two  processes  at  the  same  time  as  it  goes  about  trying  to  survive  and  reproduce.  Number  one  is  to  try  to  feel  good  with  pleasure  activities.  Those   can  be   considered   something   like   the   “profits”   of   biology.  And   then   it   is  going   to   have   avoidance   circuitry   that   is   going   to   let   it   know  when   it   is   actually   losing  points.   It   is   trying   to  get  positive  points  and  avoid   losing  points.  So  pleasure  seeking  and  pain   avoidance   are   the   two   primary   guidance   systems   that   help   creatures   maneuver  around  this  planet  so  that  they  can  survive  and  reproduce.      Now,  for  several  thousand  years,  philosophers  and  natural  scientists  and  others  have  tried  to  analyze   this  pleasure  seeking  and  pain  avoidance.  They  have   talked  a   lot  about   it,   and  they   have   come   pretty   close   to   understanding   motivation.   However,   a   third   part   of  motivation  has  recently  been  identified  that  we  now  understand  to  be  a  key  component  of  why  creatures  do  what  they  do.  It   isn’t  enough  for  this  shark  to  simply  seek  pleasure  and  avoid  pain.  It  has  to  do  as  good  a  job  of  it  as  it  possibly  can.  If  there  is  a  tuna  flopping  in  the  

Page 18: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

water   20   feet   away   and   another   tuna   flopping   in   the   water   40   feet   away,   we   know  intuitively,  all  other  things  being  equal,  the  reason  why  the  shark  is  going  to  go  for  the  tuna  that   is  20   feet   away.  The   reason   is   energy   conservation,   and   this   is   important  because   it  prevents  him  from  being  sloppy  in  his  behavior  and  not  getting  as  much  profit  as  he  could.  This  is  why  all  over  the  world  predators  go  after  the  weak,  the  sick,  the  slow,  the  young,  the  isolated,   and   the   injured.   They   do   that   for   a   reason—they   do   that   because   they   have  preferential  neural  circuits  that  look  for  creatures  that  are  compromised,  which  increases  their  likelihood  of  survival  and  reproduction.  This  principle  has  also  helped  us  understand  a  great  deal  more  about  why  creatures  do  what  they  do.    Chapter  4:  More  to  Life    Now,  you  might  be  saying  to  yourself,  my  life  seems  a  little  more  complicated  than  this.  My  life  seems  more  complex  than  just  seeking  pleasure,  avoiding  pain,  and  conserving  energy.  Surely  there’s  more!  And  in  fact,  there  is  more.    

This  is  a  gray  shrike.  [See  slide  number  11.]  This  is  a  proud  bird  of  prey  of  Middle  Eastern  desert.  This  is  a  male.  You  can  tell  by  the  distinctive  markings.  Now  this  male  flies  around  all  spring  long  and  gathers  up  bugs—kills  bugs  and  things  like  this—and  impales  them  on  thorns  inside  of  his  territory.    Now,  why  would  he  do  such  a  thing?  To  attract  a  mate.  The  reason  he  has  to  go  through  all  this  trouble  is  that  a  little  bit  later  in  the  spring,  the  females  cruise  into  town,  and  after  the  weather  has  turned  nice  and  warm  and  everything  is  kind  of  cushy,  they  fly  around  and  see  which  guys  have  more  stuff  in  their  trees.  They  mate  with  the  guys  who  have  the  most  stuff.  Now,  isn’t  it  strange  that  he  knows  what  to  do?  How  would  he  know  in  advance—weeks  in  advance,  before  any  females  get  there—what  he  must  do  to  win  a  female?  Well,  biologists  have  said  that  the  answer  is  instinct.     How  does  such  an  instinct  work?  This  creature  is  going  to  make  a  lot  of  choices.  He  might  have  a  good  period  where  he  puts  a  lot  of  stuff  in  his  tree,  but  then  a  rainstorm  may  come  and   knock   it   out   of   the   tree.   Then   he  might   put  more   stuff   into   his   tree,   only   to   have   a  competitor  come  and  try  to  fight  him  for  his  territory  and  just  take  it.  His  life  is  a  big  circus,  and  it  lasts  for  weeks.      How   does   his   behavior   remain   orchestrated   so   intelligently   that   he   continually   uses   the  best  judgment  he  can  to  get  the  most  stuff  possible  into  his  tree?  Well,  you  might  think  that  nature  gives  him  a  little  jolt  of  pleasure  as  a  guidance  system;  every  time  he  kills  a  bug  and  puts  it  on  a  thorn,  he  might  get  a  little  dopamine  hit  to  remind  him  of  the  big  dopamine  hit  to  come.  You  might   think   that   that’s  what  nature  did,  but   that’s  not  actually  what  nature  did.                

Page 19: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

Chapter  5:  Moods  of  Happiness    What   nature   did   was   to   invent   an   entirely   different   guidance   system   completely  independent  of  pleasure:  the  moods  of  happiness.     The  moods  of  happiness  are  a  guidance  system  that  works  in  the  following  way.  Suppose  you  are  a  kid  and  you  have  a  piñata,  and  you  and  your  brother  and  sister  are  playing  Hide  the  Piñata.  You  would  be  blindfolded  and  move  this  way  and  that,  and  they  would  say,  “You  are  getting  cold,”  when  you  move  away   from  the  piñata,   and   they’d  say,   “You  are  getting  warm,”  when  you  move  toward  it.  A  guidance  system.  This  guidance  system  will  help  you  move  very  efficiently  toward  your  goal.  Whereas  without  this  guidance  system,  you  would  just  wander  around  hoping  that  you  get  to  the  right  place.      This   guidance   system   is   the   moods   of   happiness,   and   an   associated   psychological  experience:  moods  of  unhappiness.  The  moods  of  happiness   involve   completely  different  circuits  in  the  brain.  They  are  actually  located  in  a  different  place.  They  involve  serotonin  circuitry   and   norepinephrine   circuitry,   and   experiences   such   as   pride,   satisfaction,   and  romantic  love.  These  are  actually  parts  of  the  guidance  system  to  tell  creatures  when  they  are  on  their  way  to  very  important  goals.      Now,  suppose  we  did  something  kind  of  unusual  with  this  shrike,  and  we  put  him  in  a  cage.  Suppose  that  in  this  cage  we  had  two  buttons.  If  he  pushed  one  button,  a  little  door  would  open,  and  he  could  fly  out  into  the  aviary  and  start  to  kill  bugs  and  put  them  on  thorns.  If  he  pushed  the  other  button,  we  [would]  present  him  with  a  female  all  ready  to  go.  Now,  which  button  will  he  choose?      He  will  choose  the  female.  The  motivational  triad  dictates  what  he  will  do.  We  know  he  is  pursuing   pleasure,   trying   to   avoid   pain,   and   he’s   trying   to   conserve   energy.   So   the  conservation  of  energy  principle  determines  what  he  is  going  to  do,  and  that  is  what  he  will  do.      Now,  let’s  suppose  we  put  him  back  in  his  cage.  This  time  he  has  a  different  set  of  buttons.  The  first  button  produces  a  female  all  ready  to  go,  but  pressing  the  second  button  produces  a  little  catheter  filled  with  cocaine,  which  we  stick  in  his  head.  Cocaine  actually  causes  the  dopamine  release  of  pleasure,  just  like  what  happens  with  food  and  sexual  activity.  It’s  an  absolute  mimic  for  that.  If  he  hits  that  button,  he  gets  the  same  amount  of  dopamine  as  he  would  get  from  sexual  activity.  Now  what  is  he  going  to  do?      He   will   hit   the   cocaine   button.   Why   is   that?   The   conservation   of   energy   principle   once  again.   It  will   turn   out   that   a   typical   laboratory   animal   given   that   paradigm   actually   dies  within  10  to  12  days.  If  given  unlimited  access  to  that  kind  of  chemical,  even  as  the  circuits  in   the  nervous  system  are  screaming  that   they  are  starving  or  dehydrated  and   in  serious  trouble,   they   will   continue   to   hammer   on   that   circuitry,   because   we   have   trapped   the  motivational  system.      

Page 20: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

Chapter  6:  What  Motivates  Creatures    We   now   understand  what  motivates   creatures:   the  motivational   triad.   Pleasure   seeking,  pain   avoidance,   and   energy   conservation.   We   can   track   that   motivational   system   quite  effectively   and   make   it   so   that   this   creature   can   actually   end   its   life   in   the   pursuit   of  pleasure.      Now,  suppose  that  before  he  got  into  serious  trouble  we  stopped  and  let  him  recover.  We  fed  him  and  let  him  go  through  the  process,  and  then  we  let  him  go  right  back  again  to  the  same   process.   We   could   see   to   it   that   we   could   have   in   this   gray   shrike’s   life   more  dopamine  hits  than  any  gray  shrike  that  had  ever  lived.  At  the  end,  would  that  have  been  a  good   life?  What  would  have  been  missing   from  that   life?  The  up  and  down,   the  moods  of  happiness.   If   you   short-­‐circuit   the   system   directly   to   the   ultimate   goal,   the   pleasure  activation  of  dopamine,  what  you  leave  behind  are  the  moods  of  happiness.      In  this  country  in  about  1950,  a  young  man  came  of  age  who  was  incredibly  talented,  very  handsome,   and   fortunate.  He   came  of   age   at   just   the   right   time.   The  movie   industry,   the  recording  industry—everything  was  just  ready  to  heap  adulation  on  one  person,  and  Elvis  was  the  one.  By  1992,  his  recordings  had  sold  billions  of  copies  more  than  any  other  artist  in  history,  and  yet  Elvis  was  miserable,  and  by  the  time  he  was  middle-­‐aged,  he  was  six  feet  under  the  ground.  He  had  been  a  martial  arts  enthusiast  in  his  youth.  He  really  liked  to  do  that  a  lot,  and  liked  to  work  out  with  people,  but  toward  the  end  of  his  life,  because  of  the  pleasure  trap,  he  had  short-­‐circuited  himself  right  to  pleasure  instead  of  using  the  process  of  the  moods  of  happiness.      Chapter  7:  Pleasure  Trap    Let’s   look  at  how  this  works.  We  can  trap  the  motivational   triad.  We  can  do   it   in  animals  very  easily,  and  we  don’t  need  to  spend  a  lot  of  time  and  energy  trying  to  figure  out  how  to  do  it.      But  there’s  a  problem.  In  modern  society,  we  work  very  hard  to  figure  out  how  to  trap  each  other.   We   now   have   very   sophisticated   mechanisms,   very   sophisticated   products   and  services,  [with  which]  we  are  trying  to  help  people  take  a  short  cut  to  the  pleasure,  because  that  is  the  way  we  compete  in  the  marketplace.  There  are  actually  three  general  processes  that  can  cause  this  problem.  We  might  call  it  the  pleasure-­‐seeking  trap  when  we  artificially  stimulate  dopamine  production  through  things  such  as  drugs  and  processed  foods.  A  pain-­‐avoidance   trap  would  be  where  modern  medicine,   despite   its   tremendous   successes   and  great  utility,  can  also  encourage  people  to  use  pain-­‐blocking  medications  that  actually  help  them   toward   destruction.   The   pleasure-­‐seeking   trap,   the   pain-­‐avoidance   trap,   [and]   the  energy-­‐conservation  trap  I  just  call  the  pleasure  trap.  The  pleasure  trap  is  what  happens  to  a  creature  when  it  faces  novel  environmental  circumstances  for  which  it  was  not  designed.  As   a   result   of   that,   it   makes   poor   choices   that   can   disrupt   or   destroy   its   health   and  happiness.      

Page 21: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

Chapter  8:  Unrefined  Plant  Food  Consumption    Now,  let’s  look  at  the  biggest  pleasure  trap  in  the  modern  world.  1   What  this   is,   is  a  schematic.   [See  slide  number  24.]  This   is  not  a  detailed  scientific  paper,  but   rather   a   schematic   of   a   very   important   paper   produced  by   the  National   Institutes   of  Health   and   the  World  Health  Organization,   published   in   1999.   Let  me   tell   you  what   this  picture   shows  us.  We   see   countries   and   epidemiological   events   that   have   been   recorded  with   respect   to   dietary   excellence   and   diseases   such   as   heart   disease,   congestive   heart  failure,  and  cancer.  Those  are  depicted  in  red  for  each  country.  What  is  depicted  in  green  are   the   amounts   of   all   unprocessed   and   minimally   processed   plant   foods.   So   this   is   an  extraordinary  graph.  This  is  just  about  all  the  science  anybody  needs  to  see  to  understand  what   direction   to   go.  We   see   that   in   countries   where   people   consume   very   little   whole  natural  food,  the  death  rates  from  heart  disease  and  cancer  are  extraordinarily  high.  They  reach  about  90%  in  Hungary.  Right  next  to  Hungary  is  the  United  States,  a  close  second,  the  second-­‐worst  in  the  world  with  respect  to  these  diseases.  We  see  an  amazing  crisscross—as  mortality  rates  fall  from  these  diseases,  there  is  an  increase  in  the  extent  to  which  fruits  and   vegetables,  whole   grains,   legumes,   and   starchy  materials   form   the   basis   of   a   health-­‐promoting  diet.      As  a  former  statistics  professor  at  Stanford  University,  I  can  tell  you  that  after  looking  at  a  great  deal  of  science,  you  rarely  get  the  chance  to  see  something  this  beautifully  presented,  this  clear,  this  convincing.  And  I  am  not  talking  about  50  subjects  or  100  subjects;  I’m  not  talking   about   some   little   paper   someone   published   for   some   untoward   reason.   We   are  talking   about   major   epidemiological   work   involving   millions   of   people,   and   when   we  examine  it  closely,  we  see  a  beautiful  pattern  of  results  telling  us  which  way  to  go.      Chapter  9:  Whole  Natural  Foods    It  is  pointing  toward  a  diet  of  whole  natural  foods.  The  basis  of  the  diet  is  fresh  fruits  and  vegetables,   whole   grains,   legumes,   and   starchy   materials.   We   are   now   going   to   try   to  understand  why  this  is  difficult  for  people  to  embrace.  Let’s  look  at  something  that  should  be   a   very   important   tip   to   a   creature   wandering   around   in   an   environment   looking   for  pleasure   and   trying   to   understand  what   it   should   be   going   for   and  what   it   shouldn’t   be  going   for.  The  caloric  density  of   food   is  going   to  be  an   important  variable   in  determining  how  valuable  that  material  is  for  that  creature’s  survival.     So  when  we  consider  salad,  and  when  you  actually  taste  salad,  you  might  think  to  yourself,  “It’s  okay.”  That  salad  is  about  100  calories  a  pound,  so  it  is  not  bad.  But  I  would  have  to  eat  about   15   or   20   pounds   of   salad   a   day,   and   since   I   am   not   really   designed   that   way,  something  that  has  greater  caloric  density  will  probably  taste  better.  Consider  vegetables  such  as  corn  and  carrots  and  broccoli.  These  are  tastier  at  200  calories  a  pound,  and  you  can  tell  the  difference.  As  you  are  tasting  it,  you  can  tell  the  difference  between  a  raw  salad  vegetable  and  carrots  or  corn.     1  Produced  by  the  National  Institutes  of  Health  (NIH)  and  the  World  Health  Organization  (WHO),  1999.    

Page 22: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

 But   if  we  move  on  to   fruit,  we  find  that   it   is  very  tasty  and  that   it   is  about  300  calories  a  pound.   So  we   can   start   to   see   that   this   amazing   signaling   device,   this   amazing   pleasure-­‐seeking  compass  inside  of  us,  is  actually  telling  us  what  direction  to  go  by  letting  us  know  how  much  caloric  density  there  is  in  food.      As  we  get  to  the  starches  that  form  the  basis  of  a  health-­‐promoting  diet—rice  and  potatoes  and   beans—these   are   about   500   calories   a   pound.   And   then   the   most   calorically   dense  whole  natural  foods  in  nature  are  nuts  and  seeds,  at  2000  or  maybe  2500  calories  a  pound.  So  now  we  start  to  see  that  the  basis  of  a  health-­‐promoting  diet  is  built  around  these  sorts  of  foods  with  this  degree  of  caloric  density.    Chapter  10:  Popular  Foods    Let’s   look   at   popular   foods,   because   these   foods   form   a   very   large   percentage   of   the  standard  American  diet.     Consider   chocolate.  What   is   in   chocolate   that   people   like?   Pure   sugar.  We   took   a  whole  natural   food,   sugar   cane,   and   separated   out   all   the   fiber,   water,   mineral,   and   vegetable  matter  and  what  was   left  was  this  pure  crystalline  substance  that  carries  1800  calories  a  pound.  Think  about  that  relative  to  your  raw  salad  at  100  calories  a  pound,  or  your  fruit  at  300   calories   a   pound.   Sugar,   the   pure   carbohydrate,   is  what   the   pleasure   centers   of   the  mouth  are  designed  by  nature  to  respond  to.  A  pure  1800  calories  a  pound  is  going  to  hit  that  system  pretty  hard.  Then  we  take  fat  from  either  milk  or  some  other  source.  Pure  fat  is  4000   calories   a   pound,   the  most   calorically   dense   substance   there   is.   Chocolate,   then,   is  pure  sugar  and  pure  fat  to  produce  an  amazingly  concentrated  substance  all  the  way  up  at  2500  calories  a  pound.    Let’s   look  at  potato  chips  and  French  fries.  What  is   in  French  fries  that  people  like?  What  we   have,  we   have   2   substances:   fat   and   salt,   and   a   little   bit   of   potato.   It   is   a   little   bit   of  vegetable  matter  dipped  into  the  deep  fryer  filled  with  4000-­‐calorie-­‐a-­‐pound  oil.  When  we  eat  it,  it  is  going  to  be  2500  calories  a  pound.  And  people  salt  it  on  the  way,  so  it  is  only  a  little  healthier  than  if  you  stick  the  straw  straight  in  the  deep  fryer.      What  about  cheese?  What  is  in  cheese  that  people  like?  Fat  and  salt.  They  take  trucks  full  of  salt  and  they  just  roll  right  up  there  and  pour  it  in  those  bins  to  make  cheese,  and  what  you  have  is  a  super-­‐high-­‐fat  food  that  came  from  a  milk  product.  That  milk  product  was  actually  designed  by  nature  to  take  a  little  baby  cow  that  is  about  60  pounds  and  turn  it  into  a  big  animal   of   600  pounds   in   about   six  months.   So  we  wonder  why  we  have   all   these   health  problems.  Again,  the  caloric  density  in  cheese  is  very  high,  1700  calories  a  pound.      Now  let’s  look  at  ice  cream.  What  have  we  got  in  ice  cream  that  people  like?  Fat  and  sugar.  Because   there   is   a   little   bit   of   water   in   it,   the   actual   caloric   density   of   ice   cream   is  theoretically  only  1200  calories  a  pound,  but  the  truth  is  that  the  water  passes  through  the  gut   very   quickly.   This   is   basically   a   completely   concentrated   food   on   the   order   of   3,000  

Page 23: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

calories   a   pound.   No   surprise   that   it   bangs   the   human   pleasure   center   so   hard.   It   was  introduced  in  Paris  in  1677  to  rave  reviews  for  the  next  300  years.      Chapter  11:  The  Dietary  Pleasure  Trap  (Part  I)    And  here  is  the  actual  American  diet:  51%  oil  and  refined  carbohydrates,  and  42%  animal  food.  7%  percent   is   left  over   for   fruits  and  vegetables,  and  of   that,  2%  (or  a   third)   is   the  potatoes  in  potato  chips  and  French  fries.  [See  slide  number  28.]  You  have  a  diet  in  America  that  has  completely  left  its  roots,  to  the  point  that  basically  95%  is  things  we  shouldn’t  be  eating.  The  things  we  should  be  eating  have  become  the  decorations  on  the  plate.      Let’s  look  at  why  this  has  happened  so  that  we  can  understand  it.  This  is  the  pleasure  trap.  [See  slide  number  30.]      Our   species   has   now   created   a   whole   set   of   artificial   inputs—foods—that   bear   no  relationship   to  how  our  motivational  system  was  designed.  Let’s   look  at  why  this  gets  us  into   such   trouble.  This   is   a   schematic  pleasure  diagram   that   shows  how  much  dopamine  circuits   in   the   brain   are   being   activated   depending   on   what   kind   of   substance   we   are  interacting  with,   and  we’re   talking  about  people  here.  With  a  whole  natural   foods  diet,   a  McDougall-­‐style  diet  2(discussed  later),  we  find  that  people  experience  pleasure  in  what  I  am  going  to  call  the  normal  range  because  that  was  the  diet  for  which  you  were  designed.      How  much   pleasure   you   experience   in   your   food   depends   on   a   couple   things.   If   you   are  very   hungry,   then   the   nervous   system   is   designed   by   nature   to   activate   your   pleasure  circuitry  more;  the  degree  of  activation  depends  on  how  important  the  survival  problem  is.  So,  of  course,  the  hungrier  you  are,  the  more  pleasure  you  get  from  the  same  food,  all  other  things  being  equal.  Another  variable  is  the  caloric  density  of  the  food.  A  salad  might  be  nice  at  100  calories  a  pound,  but  fruit  at  300  is  a  little  better,  and  if  you  are  very  hungry  things  like   beans   and   rice   at   500   calories   a   pound   provide   a   robust   meal   that   really   starts   to  activate  the  pleasure  centers.  So  both  caloric  density  and  how  hungry  you  are   interact   to  determine  how  much  you  enjoy  your  food.      Now,  when  we  introduce  foods  that  were  not  designed  by  nature,  we  find  the  following:  we  are  designed  by  nature  to  get  more  concentrated  foods.  Those  are  our  instincts,  the  signals  that  evolved  to  save  our  lives  in  an  environment  of  scarcity.  When  we  introduce  foods  that  are  not  consistent  with  our  natural  history,  and  we  move  away  from  whole  natural  foods,  it  enhances  activation  of  the  pleasure  centers.  The  result  is  the  junk  food  diet  that  people  in  America  eat  today.    Chapter  12:  The  Dietary  Pleasure  Trap  (Part  II)    Now,  the  problem  is  that  if  we  continue  to  eat  this  way,  a  remarkable  phenomenon  occurs.  Neuroscientists   call   this   neuroadaptation—nerves   adapting.   Psychologists   call   it  habituation,  which  simply  means  that  you  get  used  to  it,  and  that’s  what  it  really  is.  So,  for   2  Dr.  Lisle  is  referring  to  a  whole  food,  plant-­‐based  diet  that  is  low  in  fat.    

Page 24: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

example,  when  you  walk  into  a  home  during  the  holiday  season  and  smell  the  fragrance  of  a  Christmas  tree,  you  have  gone   from  a   low  concentration  of   that  smell  outside  to  a  higher  concentration  inside,  and  it  smells  great.  But  after  10  or  15  minutes,  you  get  used  to  it.  Or  if  you  are  in  a  theater  and  you  walk  outside,   it  seems  really  bright  at  first,  but  then  you  get  used  to  it.  Or  if  you  have  some  friends  splashing  around  in  a  pool,  you  may  stick  your  toe  in  the  water  and  say,  “Oh,  that’s  cold.”  But  if  you  jump  in,  you  may  find  that  15  minutes  later  it  seems   nice.   The   temperature   of   the   water   didn’t   change—you   changed.   Your   nervous  system  changes  its  signaling  depending  on  the  nature  of  the  stimulus  you  are  giving  it.      This  is  a  very  difficult  thing  for  people  to  grasp  when  they  are  in  this  motivational  dilemma,  which  we  are  going  to  call  the  dietary  pleasure  trap.  This  goes  in  stages.  Stage  I  is  the  diet  we  were  designed  to  eat,  and  our  responses  to  it  are  those  that  our  nervous  system  evolved  to   have.   In   Stage   2,   we   introduce   unnatural   foods,   and   these   are   very   exciting   by  comparison.  They  have  a  drug-­‐like  effect  on  the  system.  You  are  getting  hyperactive  levels  of  dopamine   in   your   circuitry,   and   it   convinces   your  nervous   system   that,   in   fact,   it   is   in  your  best  interest  to  pursue  that  food.  In  Stage  3,  we’ve  gotten  used  to  it.  [See  slide  number  31.]      Now,  if  you  are  very  lucky  you  have  come  across  a  book  by  John  McDougall  or  Dean  Ornish  or  Joel  Furman.  Even  if  you  are  fortunate  enough  to  understand  what  direction  to  go  in,  you  still   find   yourself   in   an   extraordinary   motivational   dilemma.   In   Stage   3   of   the   dietary  pleasure   trap,  what   happens   if   you   do   the   right   thing   is   that   as   you  move   from   a   highly  concentrated   diet   to   a   less   concentrated   diet   based   on  whole   natural   foods,   the   sensing  mechanisms   in   your   tongue   tell   you   that   you   are  moving   in   the  wrong   direction.   This   is  what  makes  the  pleasure  trap  such  a  devastating  problem.      We  now  are   starting   to   see   the   reasons  we  have   the  problem   that  we  began   this   lecture  with.  Why   is   it   that  once  we  know  the  right   thing   to  do,   it   is   still  difficult   to  do   the   right  thing?  The  answer  is  that  the  pleasure  trap  has  trapped  the  motivational  system  of  human  beings  into  a  180-­‐degree  spin.  When  you  do  the  right  thing  it  feels  wrong,  and  when  you  do  the  wrong  thing  it  feels  right.  Now  we  start  to  see  why  this  is  so  difficult.      Chapter  13:  The  Dietary  Pleasure  Trap  (Part  III)    Now  it  turns  out  that  if  you  stick  with  it  for  several  weeks,  you  are  going  to  wind  up  right  back  where  you  started,  right  where  you  belong.  [See  slide  number  33.]  But  it  is  not  easy.  It’s  not  easy  to  do  this.  We  need  some  techniques  and  guidance  to  try  to  recalibrate  what  I  call   an   internal   compass.   Our   internal   compass   is   this   whole   motivational   system—the  motivational  triad  that  helps  us  move  in  the  right  direction  in  life,  toward  what  is,  in  fact,  in  our  biological  best  interest.  The  problem  is,  it  can  be  disrupted  and  it  can  take  us  for  quite  a  spin.  If  you  stick  to  this  process  through  Stage  4,  you  will  in  fact  recover  and  come  to  Stage  5.      But  it  is  not  an  easy  battle.  It  may  last  8  to  12  weeks.  It  is  not  nearly  as  difficult  as  the  battle  of  drug  addiction.  In  fact,  what  is  happening  with  cocaine  addiction,  alcohol  addiction,  and  cigarettes   is   exactly   the   same   process,   and   the   nervous   system   goes   through   exactly   the  

Page 25: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

11

same   recovery   phase.  We’ve   actually   seen   that   the   recovery   curves   for   drug   and   alcohol  addiction  can  be  not  8  to  12  weeks,  but  17  years.  That  is  how  long  it  can  take  to  recover.  I  have   not   seen   any   more   heroic   fight   in   my   work   in   clinical   psychology   than   watching  people  caught  in  the  pleasure  trap,   in  an  addictive  cycle,   fight  to  get  their  systems  turned  right-­‐side  up.  This  is  a  very  difficult  problem,  and  it’s  difficult  whether  we  are  talking  about  food  or  about  a  chemical  that  shouldn’t  be  in  the  system  the  way  it  is.      Chapter  14:  Escaping  the  Trap    This  is  a  tough  road,  but  a  few  things  can  help  you  move  in  the  right  direction.  Let’s  look  at  how  it  is  that  we  escape  the  pleasure  trap.      Number  one  is  knowledge.  We  need  to  know  that  the  trap  is  there.  We  need  to  know  that  it  is  giving  us  false  feedback  as  we  go  in  the  right  direction.  Even  though  it  doesn’t  seem  as  exciting,  even  though  it  doesn’t  seem  as  good,  we  have  to  stick  with  it  and  get  to  the  right  direction.  If  we  do  that,  we  will  in  fact  recover.    Some  of  you  are   saying,   “Great,  but   that   isn’t   going   to  get   it  done   for  me.  You  had  better  have   something   else.”   And   we   do   have   something   else.   A   few   other   things   that   can   be  useful.   One   thing   that   can   be   useful   is   to   actually   get   yourself   hungry.   If   you   have   been  trying  to  do  well  and  yet  you  have  a  weekend  and  the  wheels  just  come  off  and  you’re  back  in   the   dietary   pleasure   trap   and   you   know   that   really   healthy  meals   just   aren’t   going   to  taste  good,  on  Monday  morning  don’t  eat  for  a  while.  Go  all  the  way  to  Monday  night.  What  will  happen  is  that  the  sensitivity  of  your  taste  receptors  will  increase,  your  motivation  for  eating  is  going  to  rise,  and  then  once  you  have  a  meal  that  you  know  is  healthy  and  that  you  have   liked   before,   you   increase   the   likelihood   that   you  will   actually   enjoy   that  meal.   So  getting  hungry  is  a  very  short  way  to  try  to  move  through  this  trap.      Another  technique  is  to  use  something  like  juice  fasting,  where  you  might  go  two  or  three  days  on   juices.   If  you  use  something   like  carrot  and  apple   juice,  you  are   taking  all   the   fat  and  salt  out  of  the  diet,  leaving  just  the  carbohydrate  in  there.  In  doing  so  you  are  resting  those   receptors   and   increasing   their   sensitivity.   This   can   be   a   very   useful   short-­‐term  maneuver  to  help  you  recover  on  your  way  out  of  the  pleasure  trap.      Sometimes  attempting   these   things  on  our  own   is  not  enough.  Sometimes  we  need   to  be  locked  up.   I   am   involved   in   two   “prison”  programs.  The   first   is   at   the  True  North  Health  Center,   operated   by   Dr.   Alan   Goldhamer.3   4   5   At   the   True   North   Health   Center,   we   take  people   on  water   only.   People   go   perhaps   a   week   or   ten   days   on  water.   Let  me   tell   you  something:  nothing  motivates  people  to  eat  whole  natural  foods  better  than  giving  them  a  prison   diet   for   a  week—bread   and  water,   except  with   no   bread.   The   taste   nerves   in   the  

3  Goldhamer  A,  Lisle  D,  Parpia  B,  Anderson  SV,  Campbell  TC.  Medically  supervised  water-­‐only  fasting  in  the  treatment  of  hypertension.  J  Manipulative  Physiol  Ther.  2001  Jun;24(5):335-­‐9.  4  Goldhamer  AC,  Lisle  DJ,  Sultana  P,  Anderson  SV,  Parpia  B,  Hughes  B,  Campbell  TC.  Medically  supervised  water-­‐only  fasting  in  the  treatment  of  borderline  hypertension.  J  Altern  Complement  Med.  2002  Oct;8(5):643-­‐50.  5  McCarty  MF.  A  preliminary  fast  may  potentiate  response  to  a  subsequent  low-­‐salt,  low-­‐fat  vegan  diet  in  the  management  of  hypertension  -­‐  fasting  as  a  strategy  for  breaking  metabolic  vicious  cycles.  Med  Hypotheses.  2003  May;60(5):624-­‐33.  

Page 26: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: The Pleasure Trap

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

12

tongue  recover  very  quickly,  and  people  will  really  enjoy  that  food.  A  woman  recently  told  me  that  after  about  three  or  four  days  she  was  dreaming  about  carrots.      I   like  the  True  North  Health  Program.  It   is  a   little  bit  uncivilized,  but   it  gets  the   job  done.  But   it   is  not  my  favorite  program.  My  favorite  program  is  run  by  Dr.   John  McDougall,   the  internist  who  has  been  a  trailblazer  in  helping  us  understand  what  direction  to  go.  He  is  a  master  of  explaining  the  details  in  a  way  that  we  can  understand.  The  McDougall  program  is  a  terrific  experience.  People  experience  ten  days  of  really  good,  healthy  food,  and  they  get  a  great  educational  experience.      We  need  to  recover  our  way.  We  need  to  understand  why  we  have  lost  our  way.  This  is  a  very  difficult  problem  that  we  have  in  the  modern  environment.  It  isn’t  just  that  some  of  us  are  obsessed  with  talking  about  healthy  food;  no,  this  is,  in  fact,  the  biggest  problem  people  face   in   terms   of   undermining   their   health   and   happiness.   This   is   a   big   claim—that   both  health  and  happiness  are  affected,  but  I  can  support  it  with  Duke  University  surveys  going  back  five  decades.  They  tell  us  that  the  most  important  predictor  of  happiness  in  life  is  our  health.   When   the   pleasure   trap   is   disintegrating   the   natural   relationship   between   the  pursuit  of  pleasure  and   the  moods  of  happiness,  when   that   is  undermined  so   that  we  do  things  that  harm  our  health,  we  wind  up  undermining  our  happiness  as  well.  The  dietary  pleasure  trap  is  the  biggest  problem  that  most  of  us  face  in  a  modern  environment,  the  one  that  most  threatens  our  individual  and  collective  well-­‐being.  Programs  like  this,  where  we  get  together  with  like-­‐minded  folks  who  are  trying  to  head  in  the  right  direction,  can  be  a  terrific  source  of  support.  But  I  have  to  tell  you  this  is  a  difficult  journey,  one  that  each  of  us  must  walk  alone.  It  is  likely  to  be  the  most  difficult  and  yet  ultimately  the  most  rewarding  path  to  choose.      Thank  you  very  much.    

Page 27: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Heart Disease

 

Page 28: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Introduction    My   name   is   Dr.   Caldwell   B.   Esselstyn,   Jr.,   and   I   am   absolutely   delighted   to   be   with   you  today.  As  you  will  see  as  this  lecture  proceeds,  my  interest  since  1985  has  been  to  prevent  and   reverse   cardiovascular   disease,   the   number-­‐one   killer   of   women   and   men   in   all   of  Western  civilization.  But  let  us  go  on  to  the  rest  of  this  story.  While  I  was  at  the  Cleveland  Clinic  at  the  top  of  my  career  in  thyroid  surgery,  parathyroid  surgery,  and  breast  surgery,  along  came  this  other  interest.      Chapter  2:  Prevent  and  Reverse  Heart  Disease    It  was  around  the  late  1970s  and  early  1980s  that  I  began  to  get  a  little  disillusioned  with  what  I  was  doing  in  surgery.  Not  that  I  wasn’t  perfectly  delighted  to  orchestrate  resolution  of  a  problem  that  had   to  be  resolved  surgically.  But  no  matter  how  many  of   these  breast  operations   I  was   doing,   I  wasn’t   doing   one   single   thing   for   the   next   victim.   That   is  what  really  sparked  my  drive  in  searching  the  world  literature  and  finding  that  in  other  cultures,  breast  cancer  was  very  infrequently  seen.  For  instance,  it  was  20  times  less  frequently  seen  in   Kenya   than   in   the   United   States.1   In   the   1950s   in   rural   Japan,   breast   cancer   was  practically  unheard  of,  but  by  the  time  Japanese  women  migrated  to  the  United  States,  by  the   second   and   third   generation,   they   had   the   same   rate   of   breast   cancers   as   their  Caucasian  counterparts.2      Many  other  diseases  had  a  similar  echo,  but  I  had  the  feeling  that  if  I  tried  to  do  a  study  of  nutrition   and   cancer,  my   bones  would   be   dust   long   before   I   got   some   results.   I   think   in  retrospect  that  that  was  probably   incorrect,  but   I  decided  therefore  at   that  time  to  tackle  cardiovascular  disease,  which  was  benign,  but  still   it  was  the  leading  killer  of  women  and  men  in  Western  civilization.  Back  there  in  1981,  1982,  1983,  even  before  I  think  I  met  John,  I  had  stumbled  upon  the  McDougall  plan,  which  was  to  me  very  exciting,  very  inspirational  reading,  and  I  think  it  threw  down  some  hard  guidelines  that  really  helped  in  my  ultimate  decision  to  really  focus  on  heart  disease.  My  dream  was,  quite  simply:  if  we  can  show  that  heart   disease   is   nothing  more   than  merely   a   toothless   paper   tiger   that   need   never,   ever  exist—and  if  it  does  exist  it  need  never,  ever  progress—if  people  would  start  eating  to  save  their  hearts,  then  the  rest  of  this  common  chronic  killing  disease  disappears.  So  it  was  very  exciting,  and  that  was  the  dream  that  many  of  us  today,  who  still  have  our  shoulders  to  the  wheel  in  this  area,  still  feel  very  strongly  about.    Chapter  3:  Absence  of  Coronary  Artery  Disease    Let’s   just  do  a   little  background  quickly.  Even  today,  as  much  as  we  are  trying  to  destroy  the  rest  of   the  world  with  our  American  way  of  eating,  even  today  there  are  nations   that  seem   to   have   escaped.   For   instance,   we   see   it   in   rural   China,   and   among   the   Papua  Highlanders,  the  people  of  central  Africa,  and  the  Tarahumara  Indians  in  northern  Mexico.  

1  Government  Accountability  Office.  2  Lewis  H.  Kuller,  et  al.,  Archives  of  Internal  Medicine,  January  9,  2006:  “10-­‐year  Follow-­‐up  of  Subclinical  Cardiovascular  Disease  and  Risk  of  Coronary  Heart  Disease  in  the  Cardiovascular  Health  Study.”

Page 29: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

If  you  are  a  heart  surgeon  and  you  go  to  these  places  to  earn  a  living,  forget  it.  You  are  going  to  have  to  sell  pencils.  It  is  just  not  there.        There  are  some  basics  that  we  know,  for  instance.  If  you  look  carefully  at  our  children,  by  age  12  they  have  internal  medial  thickening  of  their  carotid  artery  to  the  brain.3  Now  have  you  heard  about  giving  statin  drugs  to  children?  Then  all  that  old  business  we  heard  three,  four,  or  five  years  ago  about  putting  statins  in  the  drinking  water  is  suddenly  beginning  to  almost   seem   realistic.   How   powerful   are   the   drug   companies   going   to   be?   So   if   you   are  giving  statins   to  children  and  they  already  have   thickening  of   their  carotid  arteries,  what  happens  to  them  six  or  eight  years  later?  We  know  from  autopsies  of  Korean  and  Vietnam  War  soldiers  that  80%  of  our  GIs  who  are  age  20  already  have  gross  evidence  of  coronary  artery  disease.4  5  If  you  don’t  like  that  study,  we  have  a  more  recent  one.  Some  people  will  say   it  was   the  war   that  made   the  disease  come  on  so  suddenly.  All   right,   let’s   look  at   the  civilians.  We  look  at  today’s  study,  “The  Pathobiologic  Determinance  of  Atherosclerosis  in  the  Young,”  and  what  do  we  see?     In  those  who  died  of  accidents,  homicides,  and  suicides  between  the  ages  of  16  and  34,  the  disease   is   ubiquitous.   Even   in   a   16-­‐year-­‐old   woman   now   you   see   the   early   signs   of   the  disease.  So  maybe  we  are  doing  something  wrong,  because  these  other  nations  don’t  ever  seem  to  have  this  problem.    Now,  last  spring  in  a  conference  in  Los  Angeles  that  I  was  moderating,  I  asked  Lew  Kuller  to  be  on  the  panel  because  he  had  done  a  wonderful  ten-­‐year  cardiovascular  health  study.  He  is   from   the  University  of  Pittsburg   School   of  Public  Health,  where  he   is   a  professor.   Lew  Kuller  said  at  that  panel,  “All  males  who  are  65  and  all  females  who  are  70  who  have  been  exposed  to  the  traditional  Western  diet  have  cardiovascular  disease  and  should  be  treated  as  such.”  Now  that  is  pretty  powerful.  We  were  saying  that  this  is  the  case  in  our  children  and  our  young  GIs  and  it  is  not  a  great  surprise  that  everybody  now  has  it  when  they  are  in  their  60s  and  70s.  They  may  not  have  had   their   stroke  yet.  They  may  not  have  had   their  heart  attack  yet.  The  other  gifts  of  cardiovascular  disease,  if  you  don’t  have  a  heart  attack  or  stroke,  are  dementia  and  frailty.  We  will  talk  about  frailty  a  little  bit,  and  hypertension.  It  is  interesting   that   in   the   Framingham   Study,   if   you   took   a   thousand   participants   in   the  Framingham   Study   who   at   age   50   were   measured   and   found   to   have   normal   blood  pressure—when   you   look   at   that   same   group   at   70,   20   years   later,   90%   have  hypertension.6  7  Not  a  good  track  record.           3  Berenson  G,  Srinivasan  S,  Bau  W,  Newman  WP,  Tracy  RE,  Wattingney  WA.  Association  between  multiple  cardiovascular  risk  factors  and  atherosclerosis  in  children  and  young  adults.  N  Engl  J  Med  1998;338:1650-­‐1656.  4  Enos,  WF,  Holmes  RH,  Beyer  J.  Coronary  disease  among  United  States  soldiers  killed  in  action  in  Korea.  JAMA  1953;152:1090-­‐1093.  5  McNamara  JJ,  Molot  MA,  Stremple  JF,  Cutting  RT.  Coronary  artery  disease  in  combat  casualties  in  Vietnam.  JAMA  1971;216:1185-­‐1187. 6  Castelli  W.  Take  this  letter  to  your  doctor.  Prevention  1996;48:61-­‐64.    7  Castelli,  W.,  Doyle,  J,  Gordon,T.  et  al.  “HDL  Cholesterol  and  Other  Lipids  in  Coronary  Heart  Disease.”  Circulation.  (May,  1977).  

Page 30: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

Chapter  4:  Plant-­‐Based  Nutrition    Here  is  where  we  as  a  profession  totally  blew  it,  just  totally  blew  it.  [See  slide  number  17.]  One   of   the   great   public   health   experiments   of   all   time   occurred   in  World  War   II.   Recall  when  the  Axis  powers  of  Germany  took  over  the  low  countries  of  Holland  and  Belgium,  and  occupied  Denmark  and  Norway.  Characteristically,  their  troops  took  away  their  livestock—their  cattle,  their  sheep,  their  goats,  their  pigs,  their  chickens.  These  populations  were  now  subsisting  on  plant-­‐based  nutrition,  and  lo  and  behold,  what  do  you  think  happened?  Let’s  look  at  Norway  and  the  deaths  from  heart  attack  and  stroke.  8   If  we   look  here  at  1927,  1930,  and  1935,   they  are  going  up  and  up  and  up.   In  1939,  here  they   come—the  Germans,   the   greatest   public   health   officers   that  Norway   has   ever   seen.  Suddenly,   in  1940,  1941,  1942,  1943—if   the  Germans  had   stayed  any   longer   they  would  have  totally  obliterated  all  the  cardiovascular  disease  in  Norway.  When  have  we  ever  seen  a  population  with  this  degree  of  plummeting  of  disease  because  of  a  statin?  When  have  we  ever  seen  this  plummeting  of  disease  in  a  population  when  there  has  been  angioplasty  or  stents   or   coronary   artery   bypass   surgery?   No,   the   most   powerful   thing   of   all   that   ever  happened   in   the   Westernized   nation   was   when   suddenly,   perhaps   not   with   their   own  blessing,   they   went   plant-­‐based,   and   profound   things   occurred.   Look   what   happened   in  1945.  Cessation  of  hostilities,  bingo,  we  are  going  back  up.  It  is  so  powerful  that  Neil  Picard,  a  pathologist   in  Belgium,  was  telling  his  students  at  the  autopsy  table,  “See  this  plaque  in  these  coronary  arteries,  we  didn’t  see  this  during  the  war  years.  They  weren’t  there.”  Very  powerful  stuff.      [See  slide  number  18.]  Now,  obviously  you  are  going  to  say  that  on  the   left   that’s  kind  of  normal,  and  you  are  right;  and  you  are  going  to  say  on  the  right  it  is  kind  of  bad.  When  you  have   a   coronary   angiogram,   and   the interventional   cardiologist   sees   this   90%   blockage,  here  is  what  is  going  to  come  out  of  his  mouth—it  is  almost  a  guarantee:  “You  are  a  walking  time   bomb.”   But   nothing   is   probably   further   from   the   truth,   because   in   actual   fact,   this  plaque   has   been   around   a   long,   long   time.   It   is   not   a   young   juvenile   plaque   filled   with  mostly  fat  and  cholesterol  that  is  so  much  at  risk  for  rupture.  This  is  a  stable  plaque,  which  is  very  unlikely  to  rupture.    As  a  matter  of  fact,  what  often  happens  here  with  the  slow  chronic  onset,  these  patients  are  very  likely  to  have  angina  and  are  very  likely  to  have  developed  little  vascular  threads  that  run   around   outside   of   the   artery   feeding   this   downstream   heart   muscle.   We   call   these  collaterals,   and   the   collaterals,   of   course,   are   never   going   to   equal   something   like   this  [normal  artery],  but  they  can  be  enough  that  when  the  artery  finally  blocks  off,  the  patient  will  not  have  had  a  heart  attack.  Maybe  the  angina  will  have  gotten  a  lot  worse  or  they  often  will  have  100%  blockage  with  absolutely  no  damage  to  the  downstream  heart  muscle.  No  heart  attack.     8  Strom  A,  Jensen  RA.  Mortality  from  circulatory  diseases  in  Norway  1940–1945.  Lancet  1951;1:126–129.  http://jama.ama-­‐assn.org/cgi/content/full/295/17/2018  

Page 31: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

On  the  other  hand,   if  you  can  say  that  10%  of  heart  attacks  occur  this  way,  where  do  the  other  90%  occur?  The  90%  are  with  these  young  small  juvenile  plaques  that  are  occupying  no  more  than  10,  30,  40,  50%  of  the  lumen  of  the  artery.  What  seems  to  occur  is  that  as  you  eat   this   typical  American  diet,   very,  very  hazardous   things  happen   to   these  plaques.   [See  slide  number  19.]   When   you   start   eating   this   fat   diet,   the   first   thing   that   occurs   is   that   things   begin   to   get  sticky.  The  cellular  elements  of  your  blood   flow  become  very   sticky.  Your  white   cells  get  sticky.  Your  platelets   responsible   for   clotting  get   sticky.  Your  endothelial   cells   are   sticky;  even   your   LDL   particles,   your   bad   cholesterol,   get   to   be   sticky.   When   that   stickiness  develops,  a  nasty,  nasty  cascade  of  events  begins  to  [occur].  I  am  going  to  take  some  time  on  this  because  in  my  opinion  the  next  three  or  four  slides  are  where  I  really  try  to  do  what  I  call   throw  in  the  hook,  grasp  somebody.  Because  I   think  when  people  understand  these  next  four  or  five  slides  they  are  never  going  to  want  to  eat  the  American  way.      Chapter  5:  Birth  of  a  Plaque    Let’s  just  do  this,  let’s  sort  of  start  here  from  the  left  and  work  our  way  slowly  across  to  the  right.  [See  slide  number  20.]  Let’s  say  now  everything  has  gotten  sticky.  As  you  look  here,  the   blood   is   supposed   to   be   flowing   through   there   (this   drawing   is   from   Peter   Libby   of  Harvard),  and  the  blood  is  flowing  up  here,  and  here  is  the  arterial  wall,  and  the  muscle  is  here.  These  are  the  endothelial  cells,  these  little  purple  single-­‐layer  endothelial  cells.  When  you  are  young  and  healthy  and  everything  is  fine,  it  is  estimated  that  if  you  spread  out  your  endothelial   cells   one   layer   thick,   you  will   cover   six   to   eight   tennis   courts.   If   you  were   to  gather  them  all  together,  you  would  have  something  as  large  as  your  liver.  It  is  the  largest  endocrine  organ  in  the  body.      Now,  with  these  endothelial  cells  and  everything  getting  sticky,  we  start  over  here  and  we  have  this  bad  LDL  cholesterol  (this  is  what  we  call  the  fluffy,  puffy  LDL  cholesterol),  which  migrates  and  crosses  into  the  subendothelial  space,  and  you  see  it  here.  Now,  sadly,  what  happens  once  it   is   in  this  subendothelial  space  is  that   it   is  oxidized  by  free  radicals.  Now,  what  is  oxidation?  Let’s  get  that  term  cleared  up.  If  you  take  a  bite  out  of  an  apple  and  now  you   put   it   down   and   have   two   minutes   of   conversation   and   then   you   go   back   to   take  another   bite,   what   happened   to   that   apple?   It   got   brown   on   you,   it   got   oxidized.   What  causes  the  oxidizing?  These  free  radicals.  Free  radicals  are  molecules  that  are  really  sort  of  unstable.  They  either  have  an  extra  electron  or   they   lack  an  electron,  and  being  unstable  they  are  very  potent  oxidizers.  Where  do  they  come  from?  Well,  they  come  from  eating  the  oil,   the  dairy,   the  meat,  etc.   It   is  so  characteristic  of  this  American  diet,  and  once  this  bad  cholesterol  is  oxidized,  it  goes  from  orange  to  yellow.        Now   it   is   the   small,   hard,   dense  molecule   that   is   really   a   rascal,   but   the  body   recognizes  how  lethal  this  is  and  so  it  calls  upon  the  SWAT  team,  which  happens  to  be  the  white  cells,  which,  of  course,  are  blue.  Now  the  white  cells  also  go  across  into  the  subendothelial  space,  where   they  become   like  a  Pac-­‐Man.   It   starts  gobbling  up   this  bad  oxidized  LDL  molecule,  and  as  we  follow  it  across,  look  what  we  finally  get  over  here.  We  get  a  white  cell  that  is  so  filled  up  with  bad  cholesterol  that  we  do  what  we  often  do  in  medicine  to  confuse  people  so  

Page 32: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

that  we  don’t  understand  what  we  are  talking  about:  we  change  the  name.  We  don’t  call  it  just  the  white  cell  that  is  gobbling  up  bad  cholesterol;  we  now  call  it  a  foam  cell.      Now  the  foam  cell  is  really  the  Darth  Vader  of  this  whole  sequence,  because  this  foam  cell  elaborates   these   nasty,   nasty   chemical   substances   that  we   call  metalloproteinases—bear  with   me—stromelysin,   elastase,   collagenase,   myeloperioxidase.   These   rascals,   these   bad  metalloproteinases,  selectively  begin  to  erode  this  cap  over  the  plaque,  and  it  erodes  it  and  erodes  it,  often  selectively  in  the  upstream  border  of  the  plaque  where  the  shoulder  of  the  plaque  meets  the  vessel  wall.  When  that  cap  gets  to  be  as  thin  as  a  cobweb  and  we  have  this  sheer   force   of   blood   racing   over   that   cobweb,   it   tears.   When   it   tears,   we   have   the  extravasation,   or   shall   we   say,   the   oozing   out   of   plaque   content   into   the   flowing   blood,  where  it  activates  our  clotting  factor  platelets.  It  is  highly  thrombogenic,  meaning  it  is  likely  to  cause  a  clot,  and  lo  and  behold  we  now  go  to  B.  The  clot  is  formed.  We  try  to  mend  and  repair  this  tear,  but  the  clot  is  in  and  of  itself  self-­‐propagating,  and  so  in  a  matter  of  minutes  we  can  go  from  here  to  here.  There  is  no  time,  obviously,  for  collaterals  to  develop,  which  would   take  months.   Suddenly   the   entire   vessel   is   blocked,   and   all   the  downstream  heart  muscle   is   immediately   deprived   of   oxygen   and   nutrients,   and   that   sadly   is   the   case   that  John  McDougall  wrote  up  so  beautifully.9  10    This  man  clearly  ruptured  his  plaque,  and  at  autopsy  it  showed  that  he  had  many  of  these.  These  are  never  treated  with  bypasses  or  angioplasty  because  the  patient  can  have  literally  hundreds  of  these.  But  by  the  same  token,  the  very  fact  that  you  see  this  cascade  and  how  terrible  it  is  tells  us  the  answer.  It  gives  us  the  absolute  positive  clue  about  what  you  can  do  to  never  have  a  heart  attack.  Why,  this  disease  is  nothing  more  than  a  toothless  paper  tiger  that  need  never  exist,  and  if  it  does  exist  it  need  never  progress.  We  want  you  to  know  what  you  can  do  so  that  you  never  rupture  your  plaque.  You  strengthen  this  cap  over  the  plaque,  and  it  interrupts  the  whole  cascade  of  events.     Chapter  6:  Endothelial  Cells    One   of   the   great   breakthroughs   in   our   understanding   of   endothelial   cells   has   a   very  interesting  history.   In  1980,  Dr.  Furad  began  to   identify  the   fact   that   the  endothelial  cells  were  not  just  lovely  little  cells  that  were  sort  of  an  inside  barrier  to  these  pipes  that  we  call  blood  vessels.  In  actual  fact,  the  endothelial  cell  is  a  metabolic  dynamo,  changing  minute  by  minute,   and   when   they   first   began   to   see   that   the   endothelial   cell   was   manufacturing  something   that   was   allowing   the   vessel   to   dilate,   nobody   knew   what   it   was.   So   we   in  medicine,  as  usual,  chose  a  word  that  was  very  easy  for  everybody  to  remember:  the  EDRF  factor,  the  endothelial  derived  relaxation  factor.  Fortunately,  that  term  only  lasted  six  years  because  other  great  scientists  went   to  work  and  discovered  that   that  was   in  actual   fact  a  gas:  nitric  oxide.  Your  endothelial  cells,  your  healthy  endothelial  cells,  are  making  a  gas  that  is  only  there  for  milliseconds,  but  that  is  absolutely  the  key  to  the  health  of  your  vessels.    

9 A Posthumous Interview by Tim Russert, Former Host of Meet the Press. McDougall newsletter, volume 7, June 2008. Accessed online 4/12 at http://www.drmcdougall.com/misc/2008nl/jun/russert.htm 10 Commentary on My Posthumous Interview with Tim Russert. McDougall newsletter, volume 7, July 2008. Accessed online 4/12 at http://www.drmcdougall.com/misc/2008nl/jul/080700.pdf

Page 33: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

 What  jobs  does  nitric  oxide  do?  The  most  important  is  that  it  dilates  the  vessel.  When  you  run  upstairs,  the  coronary  arteries  dilate,  the  arteries  in  your  legs  will  dilate.  At  the  same  time,  it  keeps  things  from  getting  sticky.  If  you’ve  got  plenty  of  nitric  oxide,  then  you  don’t  start  this  whole  process  because  it  doesn’t  get  sticky.  You’ve  got  plenty  of  nitric  oxide  if  you  are   eating   correctly.   You  don’t   have   the   free   radicals.   If   you’ve   got  plenty  of  nitric   oxide,  nitric  oxide  will  absolutely  destroy  and  kill  Darth  Vader,  the  foam  cell.      Well   now,   you   are   saying   to   yourself,   I’ve   got   this   great   system,   this   great   nitric   oxide  system;  why  should  I  ever  have  to  have  a  heart  attack  in  the  first  place?  Well,  maybe  you  do  something   that   injures   the  system.  So  we  have   to   look  at   that,  and  some  very   interesting  science.   Robert   Vogel   from   the   University   of   Maryland   and   his   team   did   some   very  interesting  experiments  to  help  us  understand  how  we  injure  the  endothelial  cells.11  They  did   something   called   the   brachial   artery   tourniquet   test,  where   you   place   an   ultrasound  probe  over  the  brachial  artery  and  get  a  nice  measurement.  Then  for  five  minutes  you  have  a   blood   pressure   cuff   encircling   your   upper   arm   and   it   is   elevated   above   systolic   blood  pressure,  so  for  five  minutes  you  have  zero  blood  flow  to  your  lower  arm.  Then  you  release  the   cuff   and   you   remeasure   the   diameter   of   the   brachial   artery   and   it   will   have   gone  “whoop”  in  response  to  that  period  of  occlusion  by  the  cuff.  The  nitric  oxide  is  just  pouring  out.   Vogel  did  a  brilliant   thing.  He  took  these  young  subjects   to  a  certain   fast   food  restaurant.  Half   the   group   got   cornflakes,   and   their   brachial   artery   tourniquet   test  was   normal.   The  other  half  had  hash  browns  and  sausage,  and  within  120  minutes  they  couldn’t  dilate  the  blood  vessel.  They  had  so  tortured,  so  absolutely  assaulted  their  endothelial  cells  that  they  could   not   manufacture   enough   nitric   oxide   after   that   meal   to   dilate   the   artery.   Now,   in  young  subjects  a  number  of  hours  later,  it  began  to  come  back  and  recover,  but  you  and  I  know   that   the   next  morning   they   are   going   to   have   scrambled   eggs   and   bacon.   At   lunch  they’ll  have  white  bread  with  mayonnaise  and  cold  cuts,  and  at  suppertime  they’ll  have  a  baked   potato  with   sour   cream,   vegetables   in   butter,   a   lamb   chop,   ranch   dressing   on   the  salad,  and   ice  cream  and  cake.  We   just  hammer  and  hammer  and  hammer  away  at   those  endothelial  cells  in  this  typical  American  diet.      So  by  the  time  you  are  12,  you  have  carotid  artery  thickening.  By  the  time  you  are  18  or  20,  if  you  die  in  combat  we  find  that  you  have  coronary  artery  disease,  and  everybody  has  it,  of  course,  when  they  are  60  and  70.  Not  a  good  plan.  It  doesn’t  happen  just  with  hash  browns.  It  has  been  repeated  with  dairy  products,  and  repeated  with  oil.  Ever  hear  me  say  no  oil?  No  oil!  We  don’t  want  you  to  injure  your  endothelial  cells.  You  are  doing  it  with  oil  and  you  are  doing  it  with  dairy,  and  you  are  doing  it  with  anything  that  has  a  mother  or  a  face.  As  John  McDougall  says,  “All  muscle,  whether  it  paws  with  a  hoof,  flaps  a  wing,  or  wiggles  a  fin,  

11  Brachial  artery  ultrasound:  A  noninvasive  tool  in  the  assessment  of  triglyceride-­‐rich  lipoproteins.  Robert  A.  Vogel  M.D.,  F.A.C.C.,  Clinical  Cardiology            Article  first  published  online:  3  FEB  2009.  DOI:  10.1002/clc.4960221407  http://onlinelibrary.wiley.com/doi/10.1002/clc.4960221407/abstract

Page 34: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

is  made  up  of  animal  cholesterol,  animal  protein,  and  animal   fat,  all  of  which  are  bad   for  you.”        So  we  understand  how  you  injure  the  endothelial  cells.  Now  we  should  go  one  step  further,  in  case  you  really  want  to  know,  anatomically,  exactly  where  these  are   located.  [See  slide  number  25.]    Chapter  7:  Nitric  Oxide    My  wife  always  gets  annoyed  with  me.  Ann   is  very  patient,  but   she  gets  annoyed,   saying  that   you   are   spending   too  much   time   on   the   biochemistry.  Well,   I   am   going   to   be   guilty  again  because  I  think  it  is  so  important,  and  I  am  going  to  use  a  phraseology  that  you  all  will  be  able  to  grasp.  First,   let’s   just   look  here,  one,  two,  three:  arginine,  nitric  oxide  synthase,  and  nitric  oxide.  [See  slide  number  26.]   Think  of  it  this  way:  you  have  raw  material,  the  factory,  and  the  end  product.  Arginine  your  body  makes,   and   you   get   it   from   beans.   You   are   not   ever   going   to   be   short   on   arginine.  Nitric  oxide  synthase,  this  is  a  factory.  This  is  going  to  work  well,  and  for  those  of  you  who  exercise   it   works   even   better,   and   then   we   get   the   nitric   oxide.   If   it   were   only   so  straightforward,   one,   two,   three,   we   would   have   no   problem.   However,   here   we   have  ADMA—asymmetric  dimethylarginine.  All  of  us  make  it.  It  is  sort  of  a  normal  byproduct  of  protein  metabolism.      Now,  the  problem  with  ADMA  is  that  it  also  wants  a  spot  in  the  factory,  and  it  seems  to  have  a  greater  affinity  in  being  more  powerful  for  displacing  arginine.  So  nature  has  given  us  two  good  ways   to   get   rid   of   ADMA.   You   get   rid   of   it   through   the   urine   and   you   get   rid   of   it  through   this   very,   very   wonderful   and   powerful   enzyme   that   we   call   DDAH,   dimethyl  arginine,  dimethyl   amino  hydrolase.  What  does   it   do?   It  destroys,   it  metabolizes   away,   it  gets  rid  of  ADMA.  Now,  as  an  example  of  how  important  both  these  pathways  are,  you  may  or  may  not  know  that  people  in  renal  failure  who  go  on  living  on  chronic  dialysis  and  have  lost   the   ability   to  make   urine   on   a   regular   basis   have   a   very,   very   high   rate   of   vascular  disease.  Why?  Because  they  have  so  much  ADMA  that  is  always  filling  up  the  factory,  and  arginine  can’t  get  in  there.  They  can’t  make  nitric  oxide.      Now  what   about   the   rest   of   us,  who  do  have   adequate   and  normal  urinary  output?  How  does  it  work  with  us?  Well,  I  have  said  that  this  is  a  very  powerful  enzyme,  but  it  is  delicate.  What  do  we  do   that  destroys   this   so   that  our  urine   can’t  keep  up  with   it   and  we  get   too  much   ADMA?  What   do  we   do   that   destroys   this?   Every   single   cardiovascular   risk   factor  destroys  DDAH  and  makes  too  much  ADMA.  What  are  these  risk  factors?  Hypertension  will  destroy   DDAH.   High   cholesterol   destroys   DDAH.   High   homocystine   does   it.   High  triglycerides  do   it.   Insulin   resistance   is  one  of   the  worst.  This   is  of   course   in  people  who  have  diabetes.  You  may  do  wonderful  things  with  their  cholesterol,  but  if  they  are  diabetic  they  still  are  destroying  their  DDAH;  they  are  making  so  much  of  this  and  can’t  get  rid  of  it  that  we  can’t  have   them  make  nitric  oxide   to  protect   their  arteries.  So   if  you  are   treating  somebody  who  is  diabetic,  be  sure  you  get  them  to  understand  and  buy  into  the  fact  that  they  have  to  do  everything  they  can  to  control  and  get  rid  of  their  diabetes  to  spare  DDAH.  

Page 35: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

The  other  thing  that  does  it  is,  of  course,  tobacco  smoke.  So  you  can  see  if  you  take  a  statin,  you  are  really  not  attacking  all  of  those  things  at  all.  You  are  just  getting  one.      Now,   I  am  famous   for  being  totally  unsympathetic  with  physicians  who  tell  me,   “Ess,  you  are   a   little   bit   too   strict.   You   are   extreme;   I   believe   in   moderation.”   And   I   say,   what   is  moderation?  One  person  will  say,  “Well,  I  don’t  think  I  will  have  any  tonight,”  and  another  person  will  say,  “Well,  I’ll  just  have  a  little  bit.”  But  moderation  is  a  term  that  I  don’t  like  to  use  here.   If  you  were  to  go  to  the  Tarahumara  Indians  who  never  have  this  heart  disease  and  they  are  eating  corn  and  beans  and  vegetables  in  moderation,  they  are  perfectly  happy;  the  Papua  Highlanders  are  perfectly  happy.      The  key  here  is  that  we  decided  to  go  ahead  and  look  at  what  happened  in  the  past.  When  you   look   collectively   at   all   these   statin   studies,   here   is  what   you   end  up  with—the  great  pills  that  came  forward  in  the  1990s.  30%  fewer  new  heart  attacks,  30%  fewer  new  heart  attack  deaths,  30%   less  need   for   intervention   such  as  bypass  and  angioplasty.12  Well  my  question  was,  what  about   the  other  70%?  This   is  not  cancer.  What   is  going  on  here?  The  downside  of  this  present  approach  is  that  we  have  significant  mortality.  Let’s  say  there  are  going   to   be   a  million   angioplasties   and   stents   in   this   country   this   year.   Now,   everybody  probably   points   to   the   fact   there   is   only   1%   mortality.   What   is   1%   of   a   million?   Ten  thousand,  and  if  you  do  that  in  ten  years,  that  is  100,000  people  who  have  been  killed  by  the  procedure.  I  don’t  know  if  that  is  a  great  record.  If  we  lost  10,000  GIs  in  Iraq  this  year,  I  think  there  would  be  some  sort  of  an  outcry.  It  would  be  called  carnage.  Now,  what  about  morbidity?   There   is   a   significant   morbidity   with   these   procedures.   The   expense   is  absolutely   inordinate,   and   the   sad   thing   is   that   even   those   who   do   these   procedures  recognize  that  all  they  are  doing  is  a  stopgap  patch  job,  the  benefits  of  which  are  going  to  continue  to  erode  with  the  passage  of  time.  We  think  that  is  a  little  bit  scary.      Recently,   there   was   a   great   rethink.   In   2006,   when   coated   stents   began   to   go   haywire,    there  was  big  panel  suggesting  that  we  better  be  more  cautious  about  it,  and  when  you  do  force  in  a  stent  sometimes  these  clots  are  released  downstream.  These  patients  often  have  a  small  heart  attack  when  this  occurs.  So,  they  wanted  to  get  a  better  drug.  So  along  came  this   great  blockbuster.   If   only  we   could   raise   the  HDL,   they   said.   So   they  did.  They  got   a  drug,   torcetrapib.   It   raised   the   HDL   just   out   of   sight,   and   at   the   same   time   Lipitor   was  taking  the  bottom  out  of  the  LDL.  Ideal  drug.  Everything  was  going  to  be  wonderful.      But  the  chairman  of  Pfizer  got  a  little  phone  call  two  weeks  before  the  end  of  this  last  trial  and  the  independent  monitoring  committee  said,  Mr.  Chairman  we  have  a  problem.  Really,  what’s   the  problem?  Well,   in   the   torcetrapib  group  there  were  81  deaths,  whereas   in   the  control  group,  or   the  placebo  rather,   there  seemed  to  be  only  50,  so   they  had  to  scrub   it.  They   did   look   at   the   trials   that   were   underway   with   it,   and   even   with   these   fantastic  numbers  there  was  absolutely  zero  benefit  to  patients  who  had  a  look  before  and  after  with  coronary  angiograms  or  ultrasounds,  and  the  same  was  true  of  the  carotid  artery  in  British  

12  “The  Bypass  Angioplasty  Revascularization  Investigation  (BARI)  Investigators.  Comparison  of  coronary  bypass  surgery  with  angioplasty  in  patients  with  multivessel  disease.”  N  Engl  J  Med.  335  (1996)  217-­‐225.  

Page 36: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

studies  with  this  drug.  So  we  had  these  wonderful  numbers,  but  there  was  really  no  benefit  and  quite  a  bit  of  setback.      Chapter  9:  We  Are  Going  to  Put  the  Fire  Out    This  slide  I  have  to  put  up  because  I  do  poke  a  little  fun  at  my  friends  from  Harvard.  [See  slide  number  35.]  Now,  I  have  great  respect  for  Harvard  and  for  Boston.  Through  the  years,  they  have   contributed  great   things   to  medicine.  But   I   get   the  Harvard  Heart  Letter   every  month,  and  in  the  back  of  it  there  are  often  patient  comments  to  the  editor.  This  75-­‐year-­‐old  gentleman  was  asking  the   following  question.  He  said,   look,  when  I  was  65  I  had  this  coronary   artery   bypass,   triple   bypass,   and   I   have   done   absolutely   everything   that   they  asked   that   I   should  do   and  now   I   am   told   at   75   that   I   have   to  have   another  bypass.  The  editor  replied,  “Dear  sir,  you  should  congratulate  yourself.  The  best  that  can  be  hoped  for  in  this  disease  is  to  slow  the  rate  of  progression.”      I  don’t  think  he  was  very  excited  about  that  answer,  but  I  would  respectfully  disagree.  I  ask  patients  when  I  see  them  with  their  heart  disease  to  think  of   it  as  a   low-­‐grade  brush  fire.  Their  house   is  on   fire,   and   I  have  a   little   arrangement  beforehand.   I   try   to   talk   to   all   the  patients  over  the  phone  before  I  see  them  and  say,  “Look,  I  am  more  than  happy  to  try  to  help  you,  but  we  have  to  have  two  things  that  you  must  understand.    One,  we  have  to  have  the  same  shared  vision  for  your  disease   if   I  am  going  to  treat  you,  and  that  shared  vision  has  to  be  that  I  am  not  interested  in  slowing  the  rate  of  progression  of  your  disease.  This  disease   is   a   toothless   paper   tiger.   We   have   to   agree   that   we   are   going   to   abolish   this  disease.  The  second  thing   I  have   to  have   from  you   is  a  request.  Are  you  and  your  spouse  willing  to  give  up  the  following  phrase,  which  is,  “This  little  bit  can’t  hurt”?      Can  you  imagine.  When  I  get  through  four  hours  of  counseling  somebody—this  happened  once  this  summer.  They  were  leaving,  going  out  the  door,  and  the  husband  said,  “Well,  two  weeks  from  now  Ruth  and  I  have  an  anniversary,  I  guess  I  might  do  a  little  cheating.”  I  said,  “Get  back  in  here.  You  mean  to  tell  me  you  love  Ruth  so  much  that  on  your  anniversary  you  are  going  to  celebrate  and  destroy  a   few  of   those   last  remaining  endothelial  cells?”  Come  on.  Three  things  that  I  want  my  patients  to  know  that  I  never  want  to  hear  from  them.  Don’t  ever  let  any  of  my  patients  tell  me  they  were  pretty  good.  I  never  want  to  hear  that  that  was  all  they  had.  What  would  happen  if  you  missed  a  meal?  Your  endothelial  cells  will  rejoice,  and  I  don’t  ever  want  to  hear  “Dr.  Esselstyn,  there  just  wasn’t  time.”  No,  if  I  am  treating  this  disease,   the  patient  and   I   together  have  an  understanding   that   they  are  not  going   to  add  one  single  thimbleful  of  gasoline  to  the  fire.  We  are  going  to  put  the  fire  out.  That  has  to  be  the  goal.    Chapter  10:  Review  of  the  First  12  Years      So,   just  a   little  review  of   the   first  12  years  of   the  study  when  we  were  following   it  pretty  intensely.   [See  slide  numbers  37  and  38.]  As  you  know,   I  have  given  you  the  background  epidemiological  data  on  this,  and  with  these  patients  they  were  really  kind  of  the  walking  dead.  They  had   serious  disease,   triple-­‐vessel  disease.  Most  had  either   failed   their   first  or  second  bypass,  or   failed   their   first  or   second  angioplasty,  or   they  were   too  sick   for   these  

Page 37: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

11

procedures,  or  they  had  refused.  The  goal  was  to  keep  their  total  [cholesterol]  under  150  and  their  LDL  80  or  under,  and  this  is  what  we  wanted  to  avoid:  No  oil,  no  fish,  fowl,  meat,  or  dairy.    No  oil,  no  oil,  no  oil.  Why  no  oil,   for  those  who  are  still  skeptical?  There  is  a  paper  out  of  [Vilano  Group  and  Research   Institute,  Cardiovascular  Foundation  of  Colombia].13  Looking  at  olive,  soybean,  and  palm  oil   intake,   they  have  a  similar  acute  detrimental  affect  on   the  endothelial   function   in   healthy   young   subjects.  Whether   the   olive   oil  was   taken   at   room  temperature,  partially  heated,  or  fully  heated  to  frying,  there  was  the  same  damage  to  the  endothelial  cells.      Chapter  11:  Arrest  and  Reversal  Treatment  Regimen    Now,  these  next  few  slides  I  have  purloined,  with  his  help,  from  Jeff  Novik,  so  I  give  Jeff  full  credit  for  that.  [See  slide  number  41.]   Now,  I  am  a  bit  of  a  taskmaster  to  patients  who  have  coronary  disease.  I  don’t  like  them  to  have  nuts,  and  I  don’t  like  them  to  have  oil.  Why  not  these  oils?  You  can  see  that  olive  oil,  Omega-­‐6  and  Omega-­‐3.  We  need  Omega-­‐6  and  we  need  Omega-­‐3,  but  something  happened  in   the  20th  century,   and   I  don’t  know  quite  when   it  occurred.   I   am   just  going   to  guess   it  might  have  been  in  the  early  20s.  Suddenly,  everything  you  began  to  purchase  had  oil  in  it.  The  bread  had  oil   in   it,  all  spreads  had  oil   in  them,  and  everything  that  was  often  canned  had  oil  in  it.    So  suddenly  we  were  getting  far  more  than  the  Omega-­‐6  we  should  have.  The  ideal  ratio  of  Omega-­‐6  and  Omega-­‐3   is  somewhere  around  1:1,  2:1,  or  3:1  of  Omega-­‐6  to  Omega-­‐3,  but  today  in  the  United  States  it  is  10:1,  20:1,  or  30:1.  When  that  ratio  gets  so  far  out  of  whack,  it   really   does   begin   to   injure   our   vessels,   produce   insulin   resistance   and   a   lot   of  inflammation.  Things  that  we  don’t  want.  So  when  I  ask  people  to  stop  the  oils,  immediately  what  we  are  doing  is  that  we  are  greatly  reducing  this.  You  can  see  how  much  more  Omega-­‐6   to   Omega-­‐3   there   is.   Except   for   the   one   thing—I   do   like   my   patients   to   have,   in   the  morning,  ground-­‐up  flaxseed  meal.  But  look  at  here:  sunflower,  15:1  Omega-­‐6  to  Omega-­‐3,  and  corn  oil  79:1.     This  is  showing  how  high  the  ratio  is  of  the  essential  fatty  acid  6.  The  essential  fatty  ratios  of  nuts  and  seeds,  again,  4:1,  16:1,  16:1,  20:1,  37:1,   filberts  88:1,  more  nuts,  again  117:1,  300:1,   1,000:1,   1,800:1.   And   now   saturated   fat,   here   are   the   nuts.   The   American   Heart  Association  doesn’t  like  you  to  have  more  than  8%  in  your  diet.14  Well  look  at  here,  we  have  all  these  nuts  filled  with  all  this  saturated  fat,  which  is  obviously  horrible  for  us.  [See  slide  number  43.][Note:  All  ratios  in  the  chart  are  presented  as  06:03  except  those  for  flaxseed  and  chia  seed,  which  are  presented  in  the  reverse  (03:06).]  

13  Rueda-­‐Clausen  CF,  et  al.  Olive,  soybean  and  palm  oils  intake  have  a  similar  acute  detrimental  effect  over  the  endothelial  function  in  healthy  young  subjects.  Nutr  Metab  Cardiovasc  Dis.  2007  Jan;17(1):50-­‐7.  14  Jeff  Novick:  http://drmcdougall.com/forums/viewtopic.php?f=22&t=6796&start=0.  

Page 38: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

12

Now,  we  want   to   have   people   have   all   their  whole   grains   from   their   cereal,   breads   and  pasta,  legumes,  lentils,  vegetables,  and  fruit.  It  ended  up  that  this  is  about  an  11%  fat  diet.      So  my  patients  often  were  taking  a  little  cholesterol-­‐lowering  medication.  When  we  started,  we   didn’t   have   any   statins,   but   on   the   other   hand   some   of   our   best   results   recurred   in  patients  who  never  took  any  statins.  The  exercise  was  unstructured,  and  I  think  exercise  is  wonderful,  but  I  learned  something  from  Dr.  James  Prochaska,  who  is  a  great  psychologist  from  Rhode  Island.  When  you  are  talking  about  behavioral  psychology  and  getting  patients  to   change,   if   you   ask   them   to   do   four   things—exercise,   meditate,   relax,   and   the   most  significant  food  change  that  they  will  ever  have  in  their  lives—chances  are  it  is  going  to  be  difficult,  and  you  are  going  to  have  recidivism  of  some  of  these  things.  I  think  each  of  us  has  within  us   just   so  many  behavioral  modification  units,  and   therefore,   since   food   trumps   it  all,  if  you  go  out  and  use  moderation  in  your  diet  and  yet  you  are  an  exercise  fiend  like  Jim  Fixx,   that   doesn’t   spare   you,   doesn’t   save   you.   Food   trumps   it   all.   I   have   patients   with  strokes  who   never   could   exercise   and   yet   they   did   absolutely   beautifully   over   20   years.  They  couldn’t  exercise  a  lick.  But  that  is  not  my  message—I  want  people  to  exercise,  but  I  want  them  to  understand  that  I  will  not  punish  them  or  be  angry  with  them  or  upset  if  they  can’t  exercise  or   they  occasionally  miss   times  or   if   they  have   injuries   to   their  extremities  and  can’t  exercise.  But  boy  if  they  stray  on  the  food,  I  am  going  to  be  over  them  like  a  tent.      The   key   is   to   have   that   initial   interview   with   the   patient   and   spouse   and   get   them   to  understand  this  whole  endothelial  cascade.  You  can  get  patients  to  get  their  arms  around  this  pathophysiology,  get  patients  to  understand  the  endothelial  cells  and  how  they  injure  them  and  how  exciting   it  can  be  and  how  rapidly   they  can  restore  when  they   treat   these  kindly.  When  I  was  seeing  patients  originally,  I  didn’t  know  how  I  would  get  to  them.  They  were   leaving   their   cardiologist   and   coming   over   to   a   general   surgeon  who  had   this  wild  idea.  The  mantra  that  I  decided  to  use  with  them,  since  I  was  not  a  trained  psychologist,  I  used  the  same  mantra  that  I  did  with  my  cancer  patients.  I   learned  this  mantra  years  ago  from  Bert  Dunphy,  a  surgeon  from  the  West  Coast  who  was  a  surgeon  for  whom  I  had  great  respect.  Bert  used   to   say   that  patients  with   cancer   are  not   afraid   to   suffer.   Patients  with  cancer  are  not  afraid  to  die,  but  patients  with  cancer  are  afraid  of  being  abandoned  by  their  physician   or   by   their   family.   The   first   five   years   I   saw   every   patient   myself   every   two  weeks,  the  next  five  years  I  saw  every  patient  myself  every  four  weeks,  and  then  the  next  three  years  they  are  on  autopilot.  After  10  years  we  were  seeing  them  quarterly.  We  had  group  gatherings  as  we  started.  They  liked  the  fact  that  my  wife  and  I  were  eating  the  same  way.      Chapter  12:  Monell  Chemical  Senses  Study    The  Monell   Chemical   Senses   Center15   has   shown   us   [slide   number   48]   that   you   can   get  those  people  and  cradle  them  through  those  first  12  weeks;  that  is  when  you  can  have  them  lose  and  down-­‐regulate  their  receptor  for  fat.  

15 Mattes RD. Fat preference and adherence to a reduced-fat diet. Am J Clin Nutr. 1993 Mar;57(3):373-81.

Page 39: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

13

We  have  receptors  for  cocaine,  heroin,  nicotine,  sugar,  and  fat.  It  takes  about  12  weeks  to  down-­‐regulate  the  receptor  for  fat.  Then  they  no  longer  have  that  craving  and  they  are  in  good  shape.  We  started  with  an  average  mean  cholesterol  of  237,  and  at  five  years  you  can  see   they  were  pretty  darn  good,   and   this  was   the   absolute  key   right  here—the  LDL,   and  even  at  12  years  keeping  it  right  down  here  where  we  wanted  it.  Don’t  be  upset—many  of  the  patients  who  reversed  their  disease  had  HDL  cholesterols  under  the  40  that  you  usually  see   on   a   standard   lab   handout.   Now   that   standard   lab   handout,   I   really   don’t   pay   any  attention  to  that.  Many,  many  of  my  patients  have  cholesterols  under  40,  which  would  drive  the   average   cardiologist   apoplectic.   They   don’t   need   that  much  HDL.   If   you   are   going   to  lower  the  cholesterol  that  is  part  of  what  comes  down,  but  I  will  be  very  fussy  about  trying  to  help  them  get  the  LDL  down.      Now,  what   about   angiograms?   Angiograms   are   kind   of   interesting.   All   these   angiograms  that  I  am  going  to  share  with  you  have  been  reviewed  in  triplicate  in  the  Cleveland  Clinic  Angiography  Core  Laboratory,  where  these  two  individuals  do  nothing  all  day  long  except  review  angiograms   for  national  medical   trials.   [See   slide  number  49.]  They  review   these,  and  when  they  give   the  percentage   I  know   it   is  accurate  because  of   the  degree  of  review  that  they  received.  Now,  this  is  as  small  an  improvement  that  your  eye  can  see  in  a  67-­‐year-­‐old  pediatrician  with  a  10%  improvement  in  1987  to  1992.     Now,   that   isn’t  how   long   it   took   for   that   to  happen.  That   is  when  we  happened   to  do   the  angiogram.  This  is  in  a  58-­‐year-­‐old  factory  worker.  [See  slide  number  50.]     The  circumflex  vessel   [is]  here  and  you  can  see,   I   think,   there   is  quite   [a]  difference  here  when  you  compare  to  over  here.     This  happens  to  be  in  a  54-­‐year-­‐old  retired  security  guard,  where  this  was  described  as  a  30%  improvement.  [See  slide  number  51.]    Now  this  wonderful  young  surgeon,  Joe  Crowe  [slide  number  52],  replaced  me  as  chairman  of   the   Breast   Cancer   Task   Force.   In   1996,   at   age   44  with   cholesterol   of   156—no   family  history,   not   hypertensive,   not   diabetic,   not   a   smoker—Joe   began   to   get   chest   pains,   and  throughout  October,  cardiology  worked  him  up.  Everything  was  fine,  no  problem.  It  came  to  November—first  week,  he  finished  his  surgical  schedule.  He  sat  down,  was  writing  post-­‐op   orders—“Shew!”   Splitting   headache,   immediately   followed   by   this   elephant   that   was  just  sitting  crushing  his  chest,  pain  in  his  jaw  and  down  his  arm.  Joe  had  a  heart  attack.  He  was  whipped  down  to  the  cath  lab.  They  started  his  catheterization  and  cardiac  arrest.  Got  him  going  again,   finished  the  catheterization,  another  cardiac  arrest.  Got  him  going  again,  stabilized,  up  to  the  floors.  Three  days  later,  everything  was  fine  and  he  was  discharged,  but  he  was  very  depressed  because  they  found  that  his  arteries  were  in  pretty  good  shape  but  the   entire   lower   third   of   his   left   anterior   descending   artery  was   so   diseased   he   couldn’t  have  stents.     You  just  can’t  stack  up  stent  after  stent  after  stent  after  stent.  That  doesn’t  work.  It  was  too  far  down  the  artery  to  have  a  bypass.  So  here  he  was  at  44,  thinking  that  nothing  could  be  

Page 40: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

14

done,   very   depressed.   So  Ann   and   I   had  him  out   to   the   house   two  weeks   after   his   heart  attack.   “Joe,   look,   you   have   been   eating   this   toxic   American   diet.   You   have   the   typical  disease.  You  gotta  go  plant-­‐based.”  He  said,  “Ess,  I’ll  do  it.  I  have  no  other  options,  but  I’m  not  going  to  take  any  of  the  cholesterol-­‐lowering  drugs.   I  am  just   leery  about  them.”  Hey,  fine,  that  is  your  call,  no  problem.      For  the  next  two  and  a  half  years,  Joe  became  the  absolute  personification  of  commitment  to   the   plant-­‐based   diet.   His   total   cholesterol   went   from   156   to   89.   He   was   like   a   rural  Chinese.  His  bad   cholesterol  went   from  98   to  38,   and   then  not   five   years  or   seven  years  later  but  30  months  after  his  heart  attack,  he  had  another  angiogram.  I  knew  it  was  coming  and  my  office  was  three  doors  down,  and  on  the  day  that  he  had  it,  I  walked  in  at  noon  and  said  “Joe,  I  understand  you  had  an  angiogram  this  morning.  Want  to  share  with  me?  How  did   it   go?”   He   got   up   from   his   desk,  walked   past  me,   closed   the   door,   and   put   his   arms  around  me  and  a  couple  of   little   tears  and  he  said,   “You  know  you  saved  me.”     [See  slide  number  53.]   Joe,  wait  a  minute,  I’m  the  cheerleader—whatever  happened,  you  did  it.  Can  you  show  the  angiogram?  So  it  is  kind  of  exciting.  Although  I  used  to  get  a  big  boot  out  of  doing  surgery  and   having   some   complicated   procedure   come   out   successfully,   I   don’t   think   there   is  anything   quite   as   exciting   or   rewarding   [as]  when   you   can   shepherd   somebody   through  this  sort  of  coronary  disease  and  have  this  kind  of  a  result.  I  think  that  the  key  is  to  really  spend  the   time  when  you  are  counseling   these  people  with  passion.   I   think   it  was  a   little  tough  when  we  started  the  first  three  or  four  years,  we  didn’t  have  a  database,  but  I  think  now  when  we  see  patients  and  they  can  see  the  experience  and  what  can  happen  and  what  they  themselves  can  do,  it  is  so  powerful.      Chapter  13:  Summary,  and  Shift  to  the  Brain    Here  we  look  at  the  summary  of  12  years.  [See  slide  number  54.]  These  are  the  dropouts.  These  are  the  patients  that  despite  all  my  persuasive  powers  within  the  first  12  months,  I  recognized   that   these   wonderful   guys,   six   guys,   just   weren’t   cutting   it,   and   with   their  understanding   I   returned   them   at   full   time   to   their   expert   cardiologists   with   the  understanding   that   I  would  peek   in   from  time   to   time   to   see  how   they  were  doing.  They  kind  of  became  my  control  group,  and  what  did  we  see?  Lo  and  behold,  these  six  patients  over   the   next   12   years   had   13   new   coronary   events:   increasing   angina,   cardiac  arrhythmias,  bypass,  angioplasty,  congestive  heart  failure,  and  a  death.     Now  what  about  the  other  18  during  that  12  years?  [See  slide  number  55.]  Well,   first  we  decided  we’d  see  how  many  coronary  events  they  had  had  before  I  ever  saw  them.  In  the  eight   years   prior   to   seeing   them   while   they   were   with   their   expert   cardiologist,   [there  were]  49  coronary  events  in  these  18  people.  In  the  12  years  on  the  program,  there  were  no   further   events   in   17   of   the   patients.   One   sheep   wandered   from   the   flock   and   had  increasing  angina  and  a  bypass,  but  now  he  is  back  with  the  flock.     So   if   you   don’t   comply   then   you   have   the   problem.   Now,   as   we   compare   what   we   saw  earlier,  there  is  no  mortality  from  the  diet.  There  is  no  morbidity  from  the  diet,  and  most  

Page 41: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

15

exciting   of   all,   the   benefits   continue   to   improve   with   the   passage   of   time.   I   think   the  greatest  gift  that  we  can  give  patients  with  heart  disease  is  the  following.  There  is  nothing  that  a  patient  who  has  had  a  heart  attack   fears  more,  as  does  his   family,   than  wondering  when   the  other  shoe   is  about   to   fall.  When   is  grandpa  or  my  husband  going   to  have   that  next  heart  attack?  You  never  have  to  have  another  heart  attack.  You   just  keep  eating  this  way  and  keep  the  numbers  right,  and  you  have  made  yourself  heart  attack-­‐proof.  We  know  this  because  of  the  database,  now  over  20  years.      Now   we   shifted   to   the   brain.   We   know   that   about   50%   of   Americans   by   age   85   have  dementia.16  What,  are  you  going  to  work  hard  all  your  life  and  have  that  be  a  reward?  Not  a  good  plan.  Now  we  know   that   the  normal  brain   is   going   to  be  uniformly  dark.   [See   slide  number  60.]  The  areas  that  are  light  here  are  the  cerebral  ventricles  that  you  see  here.   There  was  a  good  study  in  2001  by  Megan  [Leary]  and  her  team.17  Megan  Leary,  from  the  West  Coast,  and  her  team  had  looked  at  MRIs  of  the  brains  of  Americans,  and  what  did  they  begin   to   see   at   age   50?   These   little   white   spots,   which   we   now   know   are   little   strokes.  Whether  you  are  playing  tennis,  driving  a  car,  sleeping—zappo,  you  get  a  little  stoke.  Not  a  problem.  Lots  of  reserve  in  the  brain,  small  stroke,  but  now  you  are  65  and  you  continue  to  eat   this  way.   You   find   yourself   saying  more   often   than   before,   “Sweetheart,   where   did   I  leave  the  car  keys?”  No  problem.  Now  you  are  75  and  you  have  continued  to  eat  the  same  way,  and  now  you  might  say,  “Sweetheart  where  did  I  leave  the  car?”  So  you  continue  to  eat  this  way  and  now  you  are  85,  and  you  look  at  her  and  you  say  “Are  you  my  sweetheart?”     That  doesn’t  have  to  happen.  Here  is  a  rascal.  This  poor  gentleman,  90  of  these  hits—ding,  ding,   ding,   ding,   ding,   ding.   Can   you   imagine   the   brain   trying   to   send   beautifully  coordinated  synaptic  messages?  Zap,  hit  at  a  scar,  back  up  [and]  try  another,  scar,  another  scar.  Not  a  good  plan.  A  wonderful  organ,  but  we  really  ought  to  take  care  of  it,  and  the  time  to  do  it  is,  of  course,  in  middle  age  or  much  earlier.      Chapter  14:  Brain  Debris    I  want  to  say  a  word  about  the  work  of  Pierre  Amarenco.  He  is  a  physician  from  Paris.  He  took   as   patients   men   who   were   most   likely   to   have   vascular   disease.   He   had   them   do  transesophageal   echocardiography.   The   esophagus   has   such   anatomical   proximity   to   the  ascending   aorta   that   he  was   able   to   get   precise   pictures   of   whether   the   aortas   in   those  Frenchmen   had   1  mm   of   atherosclerotic   debris,   1–3.9  mm   of   debris,   or   over   3.9  mm   of  debris.  He  then  followed  them  for  three  years.  Which  group  had  the  highest  rate  of  stroke?  Yes,   the  group  with   the  greatest  amount  of  debris,  because  when  your  heart  beats,  blood  goes  rushing  into  that  aorta,  and  this  loosely  applied  debris  breaks  off.    

16  Skoog,I,  Nilsson,  Palmertz,  L.  et  al.  “A  Population-­‐Based  Study  of  Dementia  in  85-­‐year-­‐olds.”  NEJofM.    (Jan  21,  1993):  http://www.nejm.org/doi/full/10.1056/NEJM199301213280301.  17 Leary, M. "Annual Incidence of First Silent Stroke in the U.S" Cerebrovasc Dis 2003;16(3):280-5. Accessed online 3-12 at http://www.happyhealthylonglife.com/happy_healthy_long_life/2011/07/brain_on_exercise.html  

Page 42: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

16

It  doesn’t  go  down  around  into  your  abdomen,  your  intestine,  or  your  feet.  The  path  of  least  resistance  is  right  up  into  your  head.  You  see  this  in  spades,  although  it  isn’t  something  that  is   often   talked   about   with   the   patient   beforehand,   when   surgeons   have   to   place   the  Satinksy  clamp  on   the  side  of   that  aorta   to  pinch  up   the   little  cuff   so   they  can  sew   in   the  vein  bypass  graft.  When  they  do   that,   if  at   the   time  he   is  clamping   this  aorta  on   the  side,  with  the  nurse  up  here  monitoring  the  middle  cerebral  artery  with  an  ultrasound,  he  says  clamping,  she  hears  “schwu,”  and  if  it  is  four  bypasses  it  is  “schwu”  four  times.  Sadly,  if  the  patient  dies  and  you  have  someone  do  an  autopsy  and  look  in  the  brain  as  Dr.  Guy  Macon  did  at  Johns  Hopkins  Hospital  in  Baltimore,  you  see  that  debris.  Which  explains  why  these  patients  often  have  flank  encephalopathy,  personality  changes,  and  inability  to  hold  a  job.  When  they  are  carefully  studied  with  neurocognitive  studies  before  and  after  surgery,  22%  of  the  people  will  permanently  lose  over  22%  of  their  cognition.18  Not  a  good  reward.      And  what  about  the   legs?  One  patient  coming  to  my  office  for  his  heart  evaluation  had  to  stop   five   times   crossing   the   skyway   because   he   had   angina   in   his   calf.   We   call   it  claudication,   you   know,   just   to   confuse   the   public.   So   I   said,   “Don,   over   you   go   to   the  vascular  lab.”  And  this  was  the  ankle  pulse  volume  when  I  first  saw  him.  [See  slide  number  62.]  Forgot  all  about  his  leg,  we  were  so  focused  on  his  heart,  and  about  eight  months  later  he   said,   “Remember,   Dr.   Esselstyn,   I   used   to   stop   those   five   times   coming   to   your   office  because  of  the  ankle  angina  and  calf  pain?”  Yup.  “You  know  the  last  month  it  got  to  be  four  times,  three,  two,  one,  and  I  don’t  stop  anymore.”   Okay  Don,   back   you   go   to   the   vascular   lab.  As   you   can   see,   the   amplitude  was  markedly  different.  So  with  no  operative  procedures  in  the  leg,  this  change  in  diet  obviously  restored  the  circulation.    Chapter  15:  Finally—Endothelial  Cells    Now,  finally,  we  come  back  to  the  endothelial  cell.  One  thing  I  couldn’t  get  the  cardiologists  to   accept   was   the   fact   that   I   said   often   patients   will   say   that   their   angina   is   improving  rapidly  or  they  are  getting  rid  of  it  within  4  to  6  to  8  weeks.  “Patients  will  tell  you  anything,  Ess.  You  can’t  believe  that.”  Well,  I  believed  it.  So  I  wanted  to  get  some  science.  [See  slide  number   63.]   This   was   a   PET,   a   PET   rubidium   dipyridamole   scan,   but   a   PET   scan,  nevertheless,  where  we  label  the  red  cell,  and  if  the  red  cell  got  into  the  heart  muscle  here,  it  showed  up  as  either  yellow  or  orange,  and  we  knew  we  were  in  good  shape,  but  here,  not  good,  very  poor  perfusion.      So,   with   this   58-­‐year-­‐old   school   bus   driver   from   Youngstown   who   entered   first   with   a  cholesterol  of  261,   I   counseled  him  an  hour  after  he  had   this,   and   then  10  days   later  his  cholesterol  was   down   to   126,   and   then   six  weeks   later  we   got   another   scan   and   it   is   all  back.      

18  Newman,  M.  et  al.  “Longitudinal  Assessment  of  Neurocognitive  Function  after  Coronary-­‐Artery  Bypass  Surgery.”  NEJofM.  (Feb  8  2001).  http://www.nejm.org/doi/full/10.1056/NEJM200102083440601  

Page 43: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

17

Does  he  need  an  angioplasty  or  bypass?  And  here  was  an  older  fellow;  [slide  number  64]  this  was  a  75-­‐year-­‐old  retired  tool  and  die  maker  who  had  a  248  cholesterol.     This  whole  wall  of  his  heart  was  not  perfusing  well.   I   counseled  him  an  hour  afterwards  and  10  days  later  137—12  weeks  later  (takes  longer  when  you  are  older),  got  it  back.      This  was  a  65-­‐year-­‐old  retired  barber  from  Sandusky.    [See  slide  number  65.]   The  only  thing  higher  than  his  cholesterol  of  290  was  his  weight.  He  was  lying  beached  in  the   Intensive  Care  Unit   of   the   clinic,   having   failed   two  bypass   operation   operations  with  angina  at  rest.  You  are  supposed  to  look  like  a  donut  in  this  view,  and  here  he  wasn’t  even  filling  it  out  at  all.  I  counseled  him,  10  days  later,  my  all-­‐time  champ,  160  points  in  10  days  it  came  down.  Six  weeks  later  got  it  back.  Pretty  exciting.      Finally,  we  have  a  58-­‐year-­‐old  stockbroker  [slide  number  66]  with  cholesterol  of  248  and  close  again—might  be  [a]  donut  here  but  not  closing  the  loop  right  here.     He  has  an  area  of  ischemia,  not  good  flow.  I  counseled  him.  After  an  hour  he  had  this,  and  10  days  later  137—not  six  weeks  later,  not  12  weeks  later,  but  3  weeks  later,  he  got  it  back.  Why   does   that   happen?  Remember   it’s   those   powerful   cells   lining   your   arteries   that   are  going   to   do   it.   [See   slide   number   67.]   The   endothelial   cells.   It   seems   that   when   you  profoundly   lower   their   cholesterol,  most   importantly  when  you  give   them   the   right   food  and  take  away  the  wrong  food  and  you  stop  punishing  the  endothelial  cells  and  you  nourish  them,  back  they  come  in  force,  and  now  they  dilate  and  even  the  diseased  arteries  can  carry  more  flow.  So  if  you  recall  Pascal’s  law  in  physics,  flow  is  related  to  the  fourth  power  of  the  radius.   So   for   a   tiny   increase   in  diameter,   you   get   a  huge   increase   in   flow,   and  you  have  these  people  locked  in.   If  you  get  rid  of  their  angina  within  a  few  weeks,  boy,  are  they  believers.  So  here  we  go,  a  little  bit  different  than  we  saw  earlier.  As  you  eat  correctly,  notice  how  this  is  going  to  get  straightened.  That  is  wider,  it’s  thicker,  it’s  firmer,  and  the  plaque  is  getting  smaller.  I  don’t  care  if  you  go  any  further  than  this;  you  are  home  free  now.  Oh,  if  you  want  to  get  a  bonus  that  is  wonderful  too.    Chapter  16:  Old  and  Frail—A  Matter  of  Heart    Ed  Underwood   is   from   the  University   of   Pittsburg,   Dr.   Tamara  Harris   the  NIH.   Together  they  did  a   thing   called   the  400-­‐meter  walk   study.19   [See   slide  number  68.]  Take  patients  over   the  age  of  70,  walk  20  meters  out   and  20  meters  back   ten   times,  400  meters.  They  timed   them.  These  were  all  patients  over  70.  Followed   them   for   six  years,   and   then   they  divided   them   into   core   groups—fastest,   next   fastest,   next   fastest,   slowest.   Then   they  compared   the   fastest   to   the   slowest   at   the   end   of   six   years.   The   slowest   now   had   the   19  Newman,  A,  Harris,  T.  Association  of  Long-­‐distance  corridor  walk  performance  with  Mortality,  cardiovascular  disease,  mobility  limitation  and  disability.  (AKA  400  Meter  Walk  Study)  JAMA:  http://jama.ama-­‐assn.org/cgi/content/full/295/17/2018.  

Page 44: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

18

greatest  onset  of  new  partial  disability,   the  greatest  onset  of  new  total  disability,  and  the  greatest  difference  in  mortality.  If  you  go  back  to  those  pictures  that  I  showed  you  earlier  of  the  brain,  where  there  were  all  those  little  strokes,  there  is  a  strip  at  the  top  of  our  brains  called  the  motor  strip.  As  you  begin  to  infarct  and  have  little  strokes  in  the  motor  strip  that  controls  our  ability  to  use  our  arms  and  legs,  we  are  no  longer  able  to  use  our  arms  and  legs  as  freely  or  with  as  much  alacrity  in  dispatch.  And  as  our  muscles  whither  and  shrink  and  atrophy,  at  the  same  time  our  brain  is  withering  and  shrinking  and  atrophying.  So  frailty,  where  people  can  no  longer  hold  their  balance  and  they  have  lost  all  their  muscle  strength,  appears  to  be  a  vascular  disease.     But  there  is  good  news  with  the  exercise.  Several  institutions  have  now  clearly  shown  that  in  the  elderly,  instead  of  having  your  brain  shrink,  your  brain  can  grow.  [See  slide  number  70.]   The   parts   of   the   brain   that   grow   with   exercise   are   the   hippocampus,   which   is  responsible  for  memory,  and  the  frontal  lobes,  which  control  executive  thinking.  But  what  is  the  exercise  that  does  it?  You  can’t  wash  the  car  or  plant  a  few  flowers.  The  exercise  that  does  it  is  at  least  three  to  four  times  a  week  at  least  30  minutes  really  getting  the  heart  rate  up  and  getting  a  sweat.     That’s   really   exercise.   Given   the   present   way   that   most   Americans   live,   this   is   a   rather  exciting  but  very  scary  platform.  It   is  really  exciting  how  things  suddenly  change.  When  I  was  in  training  in  surgery  and  when  I  first  came  to  work  on  the  staff  at  the  Cleveland  Clinic,  one  of  the  most  common  operations  that  I  did  was  for  duodenal  ulcer.  We  did  all  kinds  of  different   operations   for   duodenal   ulcers,   from   taking   out   half   of   the   stomach   to   cutting  vagus  nerves.  Every  day   there  were  surgeons  who  had  ulcer  operations  on   their   list,  and  yet,  these  wise  guys  from  Australia,  Warren  and  Matthews,  said  wait  a  minute.  They  were  looking  at  these  specimens  and  they  said,  you  know  I  think  we  see  some  bacteria  here  in  these   ulcer   patients.   And   of   course,   the   surgeons   said,   nonsense,   what   are   you   talking  about.   No   organism   can   live   in   one-­‐tenth   normal   hydrochloric   acid   that   we   have   in   our  stomach.  Oh  yes,  I  think  we  see  some.  So  they  stuck  with  it  and  stuck  with  it  and  stuck  with  it  despite  the  resistance  that  they  were  encountering,  and  lo  and  behold  they  put  a  name  to  it.  What   you’re   seeing   here   is   the   artist’s   description   of   Helicobactor   pylori,  which   cause  duodenal  ulcers.  [See  slide  number  72.]     There  are  bacteria   in   the  stomach,  and  you  can  get   rid  of   them   in  about   two  weeks  with  some  antibiotics.  What  happened  to  all  those  operations  we  used  to  do  for  duodenal  ulcers?  Well,  they  are  now  in  the  history  textbooks.  So  what  happened  to  Warren  and  Matthews?  Well,  they  do  what  all  Australians  do—they  had  a  little  good  time  about  it  all.  They  even  did  it  better  than  most.  They  went  over  to  Nobel’s  country  and  got  the  Nobel  Prize  for  making  that  significant  contribution.      Now,  the  Cleveland  Clinic,  where  I  hail  from,  has  been  touted  12  years  in  a  row—and  now  it  is  actually  I  think  14  or  15—for  being  the  best  heart  center.  When  it  says  that,  though,  it  is  talking  about   invasive  procedures,  and  I  am  sure  that   if   I  had  to  have  an  angioplasty  or  a  bypass  I  would  probably  want  to  have  it  done  there.  But  that  is  mostly  done  on  the  second  floor.  What  we  do  on  the  first  floor  in  our  hospital  is  we  create  the  disease.  I  did  have  my  blood   drawn   today.   I   don’t   take   any   cholesterol-­‐lowering   medication   except   what   Ann  

Page 45: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Heart Disease

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

19

feeds  me.  The  total  was  123.  The  triglycerides  were  32.  The  HDL  was  40.  The  LDL  was  77.  Blood  glucose  was  80.  So,  I  think  it  is  important  that  if  we  are  going  to  ask  you  to  do  some  of  these  things,  we  really  sort  of  have  to  do  some  of  these  things  ourselves.      There  is  a  little  epicenter  of  wonderful  things  that  are  happening  in  Wooster,  Ohio.  There  is  a  little  branch  down  there  of  the  Cleveland  Clinic,  a  wonderful  cardiologist,  endocrinologist,  and  family  physician.  They  embrace  this  whole  idea,  and  this  is  David  Shewmon’s  work  as  you  can  see,  down  here  his  name.  [See  slide  number  76.]  He  is  an  endocrinologist  there.  I  implored  him  to  let  me  use  his  slide  and  give  him  credit.  He  had  a  patient  who  resisted  and  resisted  with  diabetes  and   finally   suddenly  began   to  eat   the  plant-­‐based  diet,   and  within  days  in  the  gray  area  that  glucose  was  in  the  normal  range.     Pretty  powerful   and  very  exciting.  This   is   another  of  his  patients.   [See   slide  number  77.]  When  you  are  in  Wooster,  Ohio,  where  he  is  from,  you  are  in  some  serious  dairy  country.  This  dairy  maiden  was  a  little  overweight.  This  is  his  patient,  and  you’re  normal  in  the  blue.  This  was  her  urinary  calcium  eating  all  this  meat  and  dairy.     Finally,  he  implored  her.  Would  you  please  just  give  us  a  little  try  and  see  what  we  can  do.  She  went   on   a   plant-­‐based   diet   and  within   one  week,   zappo,   she   is   down   in   the   normal  range.  Kind  of  exciting,  isn’t  it?  I  mean,  just  diet.    

Page 46: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Diet and Cancer I:

Chemical Causes of Cancer

 

Page 47: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Cancer—How  It  Begins  and  How  It  Progresses    Cancer   is   a   disease   that   is   often   dreaded,   but   that   need   not   be   the   case   if   we   better  understand  how  this  disease  begins  and  how  it  progresses.  This  is  a  matter  of  exchanging  fear   for   the   hope   that   arises   when   we   have   reliable   knowledge.   Lack   of   knowledge  encourages  fear,  an  emotion  that  seems  to  permeate  every  level  of  what  has  now  become  a  cancer  industry.      In  this  first  of  a  series  of  three  lectures,  we  will  begin  by  considering  what  many  believe  to  be  the  chief  cause  of  cancer,  the  chemicals  that  pollute  our  environment—especially  those  that  arise  from  the  harvesting,  packaging,  and  processing  of  our  food.  Many  of  these  cancer-­‐causing   chemicals—or   carcinogens,   as   we   generally   call   them—are   those   that   are   man-­‐made;  that  is,  they  are  not  normally  found  in  nature.      We   begin   with   the   topic   of   cancer-­‐causing   chemicals   because   they   have   dominated   the  discussion  of   cancer   for   at   least   four   to   five  decades.  We   spend   large   amounts   of  money  testing   chemicals   for   their   cancer-­‐causing   properties,   and   then  we   spend   excessive   time  and  emotion  debating  how  we  should  regulate  and  control  them.  Although  much  has  been  learned,  especially  about  the  biological  and  biochemical  properties  of  cancer,  there  are  also  what  I  consider  to  be  serious  misunderstandings.  Some  we  will  consider  here,  and  some  in  the  next  lectures.      Chapter  2:  Cancer  Is  Traditionally  Studied  in  Stages    I   want   to   point   out   that   researchers   traditionally   divide   the   development   of   cancer   into  stages,  admittedly  for  the  convenience  of  their  own  thought  processes.  Although  the  lines  dividing   these   stages   are   somewhat   arbitrary,   each   state   is   considered   to   have   certain  unique  characteristics  that  help  us  identify  events  that  may  help  us  treat  or  even  cure  this  disease.  Although   these  stages  have  unique  characteristics,   they  also  have  some  common  features,  as  we  shall  see.      Chapter  3:  The  Stages  of  Cancer    There  are   three  stages  of  cancer:   initiation,  promotion,  and  progression.   Initiation,  as   the  name  implies,  begins  the  process;  promotion  pushes  it  along,  and  progression  describes  the  more  serious  stage  of  cancer,  as  it  begins  to  spread  from  its  primary  site  into  other  tissue  sites.      We  begin  by  considering  initiation.  This  is  the  initial  stage  where  chemicals  are  primarily  thought  to  act.  At  least  that  is  [what  has  been  thought]  in  recent  years.  Chemicals  capable  of  causing  cancer,  as  we  said  before,  are  called  carcinogens.  Following  consumption,  and  after  passing  into  the  intestinal  tract,  they  are  absorbed  into  the  bloodstream.  Because  most  of  these  chemicals  are  soluble  in  fat,  they  tend  to  seek  storage  in  our  body  fat.  However,  the  body   also   likes   to   rid   itself   of   these   chemicals.   Through   enzymes,   mostly   in   the   liver,   it  converts   them  to  water-­‐soluble  metabolites,  which  are  much  more  readily  excreted   from  the  body.    

Page 48: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

 Unfortunately,  during  this  enzymatic  conversion  of  these  chemicals  into  water-­‐soluble  and  of   course   less   toxic   metabolites,   a   small   amount   also   may   escape   the   process   and   be  converted  into  intermediate  metabolites,  which  are  (chemically  speaking)  highly  reactive.  These   intermediate   products   are   so   reactive   that   they   can   non-­‐enzymatically   attack  crucially  important  molecules  like  DNA,  RNA,  and  protein.  Attacking  DNA  to  form  what  we  call  covalent  chemical  bonds  is  especially  troublesome,  because  DNA  is  the  stuff  of  genes.  Although   the   cell   has   a   highly   efficient   process   of   repairing   most   of   this   damaged   DNA  within   the   genes,   small   amounts   may   escape   repair.   If   the   damaged   DNA   remains  unrepaired   and   permanently   changed   for   future   cell   generations,   it   is   considered   to   be  what  we  call  a  mutation.      Chapter  4:  Initiation  and  Promotion    In  this  slide  [slide  number  9]  we  show  that  if  the  cells  containing  this  damaged  DNA  divide  (or   replicate,   as   we   say)   into   a   new   generation   of   cells   before   they   are   repaired,   the  damaged,  mutated  DNA  will  be  retained  in  the  genes  of  the  new  cells.  These  mutations  are  rarely  if  ever  reversed,  and  thus  fix  the  destiny  of  these  new  cells  and  their  progeny.  Some  of   them  may   give   rise   to   cancer.   This   slide   [slide   number   10]   describes   how   promotion  begins  with  the  replication  of  initiated  or  mutated  cells  into  clones  of  these  cells.  These  new  clones  will   continue   to  multiply  or  replicate  as   the  years  pass,   if   the  conditions  are  right.  Eventually   they  cluster   together   to   form  so-­‐called  “foci”  of   cells   that  can  be  seen  under  a  relatively   low-­‐power   microscope.   Promotion   may   be   a   years-­‐long   process.   Most  importantly,  this  stage  of  cancer  development  may  be  reversible  under  certain  conditions.    Chapter  5:  Progression    In   this   slide   [slide   number  11]  we   see   how   these   early   clusters   or   foci,   or   so-­‐called   pre-­‐cancer   cells,   gradually   grow   into   small   and   then   ever-­‐larger   tumors,   eventually   to   be  diagnosed  as  cancer  itself.  Tumors  may  stay  at  their  site  of  origin  and  remain  benign  and  relatively  harmless  in  many  cases.  Or  they  may  begin  to  invade  neighboring  tissues,  some  of  which  may  be  elsewhere  in  the  body.  This  property  of  invasiveness  is  called  “metastasis.”  The   term   “malignancy”   describes   the   property   of   cancer   cells   becoming   independent,  aggressive,  and  relatively  resistant  to  destruction.  “Rugged  individualism”  might  be  a  good  phrase  to  describe  this  property.      Chapter  6:  Cancer  Development  Over  Time    Here  we   see   a   schematic   summary  of   the   three   stages   of   cancer   development.   [See   slide  number  12.]   Although  these  stages  are  arbitrarily  divided   in   this  chart,  note   the  gradual  color  change,  which   is   meant   to   convey   that   these   stages   also   share   some   common   features   that  gradually   change   in   degree.   Note   also   the   time   dimension   for   these   stages.   Initiation,   at  least   from   the   perspective   of   a   single   cell,   occurs   within   a   very   short   period   of   time—

Page 49: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

merely   the   time   required   for   the   absorption   of   the   carcinogen   into   the   cell,   where   it   is  metabolized  to  a  form  that  tightly  balances  the  DNA,  now  called  a  DNA  adduct.      Promotion,   in   contrast,   may   take   years   from   the   time   the   initiated   mutated   cell   first  replicates   itself   until   the   time   it   grows   into   a   troublesome   tissue  mass.   One   of   the  most  important  features  of  promotion  is  its  reversibility,  as  we  said  before.  This  implies  a  push-­‐pull   kind   of   process   that   is   controlled  by   the   relative   amounts   and   activities   of   so-­‐called  promoters  and  anti-­‐promoters.  When  promoters  are  more  active,  the  process  goes  forward  toward   cancer.   When   anti-­‐promoters   are   more   active   and   prominent,   the   process  regresses.  This   concept   cannot  be  overstated,   because   it   suggests   that   if   the   identities   of  these  promoters  and  anti-­‐promoters  are  known  and  can  be  controlled,  of  course  then  the  cancer  process  can  be  kept   in  a  stable  state  of  regression  even  if  and  when  mutated  cells  remain  in  the  tissue.      The   final   stage,   progression,   is   often   considered  with   foreboding   and   is   relatively   short.  Perhaps   also   a   time   when   the   process   can   be   only   prevented   by   harsh   treatments—hopefully   treatments   that   selectively   target  destruction  of   cancer   cells  without  damaging  normal   neighboring   cells.   But   there   is   essentially   little   or   no   reason   to   believe   that   the  reversible  process  occurring  during  promotion  does  not  also  operate  during  progression,  a  very  exciting  concept  indeed.      Chapter  7:  The  Causes  of  Cancer    This  summarizes  many  different  kinds  of  cancer  causes,  some  of  which  are  unequivocally  proven  and  some  of  which  are  a  little  more  speculative.  [See  slide  number  13.]  But  first,  I  need   to   define   what   I   mean   by   the   word   “cause.”   Namely,   I   consider   any   factor   or   any  condition  that  favors  cancer  development  at  any  of  its  stages  a  cause.  Chemicals  and  certain  viruses   have   been   shown   to   initiate   cancer.   Many   of   these   agents   also   promote   cancer.  Family  history  implies  the  presence  at  birth  of  cells  already  initiated;  that  is,  the  genes  have  been  mutated,   implicating   genetics   as   a   cause   of   cancer.   Excessive   radiation   either   from  sunlight  or  from  radioactive  substances  may  act  both  to  initiate  and  to  promote  cancer.      Stress   is   a   more   speculative   cause,   although   it   is   widely   thought   to   be   significant.   The  biochemical   and   physiological   bases   of   stress,   of   course,   are   very   complex.   Nonetheless,  most   researchers   would   agree   that   stress   compromises   in   some   way   the   very   complex  immune  system  that  otherwise  keeps  the  development  of  cancer  under  control.  Stress  may  act  during  any  of  the  three  stages  of  cancer  development.      Nutritional  imbalances  are  the  most  significant  causes  of  cancer.  Many  nutrients  consumed  above  or  below  their  optimal  levels  have  been  experimentally  shown  to  promote  cancer.  In  contrast,   returning   to   optimum   levels   of   consumption   of   these   nutrients   will   halt  promotion  and  perhaps  even  reverse  it,  perhaps  all  the  way  back  to  (but  not  including)  the  initiation   stage.   Keep   in   mind,   of   course,   that   reversal   of   initiation   in   theory   requires   a  back-­‐mutation,  a  rare  event.  Nutritional  control  of  cancer  during  its  promotion  stage  may  also   act   during   the   progression   stage,   although   the   supporting   evidence   is   much   less  developed.   Incidentally,   nutritional   control   of   cancer   should   be   considered   within   the  

Page 50: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

context   of   food,   not   [within   the   context   of]   supplements   of   individual   nutrients.   And   of  course  with  food,  the  nutritional  effect  depends  mostly  on  the  integrated  activities  of  a  very  large  number  of  highly  active  nutrient-­‐like  substances  in  food.    Chapter  8:  Chemical  Causes  of  Cancer    This  summarizes  a   few  of   the  more   important  points  made  so   far.   [See  slide  number  14.]  During   the   past   five   to   six   decades,  most   people—and   this   includes   researchers   and   the  public   alike,  by   the  way—have  assumed   that   cancer   is   caused  by   chemicals   found   in  our  food,   water,   and   environment.   Furthermore,   researchers   have   assumed   that   these  chemicals  primarily  act  during  the  initiation  stage—thus  being  considered  initiators.  As  a  result,   there   has   long   been   considerable   public   pressure   to   identify   which   of   the   many  environmental   synthetic   chemicals  might,   in   fact,   cause   cancer.   This   very   public   concern  and  pressure   led   to   a   government-­‐led   research  program   to   test   these   chemicals   for   such  activity,   and   to   regulate   how   much   if   any   of   these   substances   might   be   allowed   in   our  environment.   The   primary   regulation   for   testing   and   controlling   these   chemicals   was   a  1958  amendment  added  to  the  food  and  drug  regulations,  called  the  Delaney  Amendment,  after  Congressman  James  Delaney  of  New  York.  Although  this  amendment  was  rescinded  in  1996,   its   underlying   presumption   continues   to   this   day.   For   this   reason,   we   need   to  understand  how  the  carcinogenicity  of  chemicals  has  been  experimentally  determined.    Chapter  9:  1958  Delaney  Amendment    This  shows  the  actual  wording  of  this  amendment.  [See  slide  number  16.]     The   wording   leaves   no   doubt   that   these   chemicals   should   not   be   added   to   food   in   any  amount.  This  necessity   for   their  absence  has  been  referred  as  zero  tolerance.  This  begins  our   consideration   of   the   limitations   of   this   regulation,   and   there   were   many.   Most  importantly,  the  number  of  environmental  chemicals  to  which  we  are  being  exposed  is  far  higher  than  can  reasonably  be  tested.  Early  estimates  during  the  1960s  and  1970s,  not  long  after   the   Delaney   Amendment   was   passed,   quickly   demonstrated   that   testing   a   single  chemical   would   cost   a   few   hundred   thousand   dollars.   Moreover,   the   time   required   to  conduct  these  tests  and  evaluate  the  results  was  prohibitively   long,  perhaps  three  to  four  years  per  chemical.  It  thus  was  clear  from  a  very  practical  perspective  that  this  regulation  made   little   or   no   sense.   There  were   also   other   concerns   that   emerged,   that   continue   to  linger   in   the  public  mindset   even   today.  Most   importantly,   the   focus  on   chemicals   as   the  main  causes  of  cancer  diverted  attention  away  from  other  possible  causes,  especially  those  concerning  nutrient  imbalances.  Also,  the  experimental  requirements  to  do  these  chemical  tests  turned  out  to  be  seriously  flawed.    Chapter  10:  Carcinogenicity    Testing   these   chemicals   in   humans   was   clearly   not   allowed,   so   experimental   animals  (specifically  rats  and  mice,  for  the  most  part)  were  required.  The  slide  shows  that  there  are  several   important   criteria   for   testing   chemical   carcinogens.   [See   slide   number   19.]   First,  multiple   groups   of   animals—one   group   used   as   a   control   and   three   to   four   used   as  

Page 51: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

treatment  groups—had   to  be   included   to  determine  whether   there  was  a   so-­‐called  dose-­‐response   relationship   for   chemicals   shown   to   cause   cancer.   That   is,   when   a   chemical  experimentally   causes   cancer,   there   should   be   increasing   numbers   of   tumors   with  increasing   doses   of   the   chemical.   As   an   aside,   if   the   number   of   tumors   observed   in   the  treatment  groups  is  not  related  to  dose,  then  the  results  are  seriously  in  doubt.      Second,  the  results  are  more  convincing  if  the  observed  tumors  are  the  same  type,  because  specific   chemicals   being   tested   usually   don’t   cause   a   variety   of   tumors.   Third,   there   is   a  need   to   have   enough   animals   per   group   to   detect   relatively   small   but   statistically  significant  increases  in  tumor  development.  And  fourth,  the  length  of  the  study  is  about  two  years,  the  normal  lifetime  of  the  animals.  This,  of  course,  is  considered  to  be  equivalent  to  70  years  of  lifetime  for  humans.    Chapter  11:  Positive  Lab  Animal  Test    This   graph   [slide   number   20]   illustrates   schematically   a   typical   tumor   response   where  increasing  chemical  doses  are  associated  with  increasing  tumor  responses.     Note   that   the   doses   chosen   for   study   are   intentionally   set   very   high   to   maximize   the  detection—statistical   detection,   I   should   say—of   a   potential   response.   And   finally,   the  doses  also  span  a  very  wide  range,  perhaps  two  to  three  orders  of  magnitude,  as  shown  by  the  logarithmic  nature  of  the  doses  in  this  chart  in  the  110  and  100  scale  that  is  being  used.  This   schematically   illustrates   two   serious   problems   with   this   type   of   testing:   the  experimental  doses  are  usually  far  higher  than  the  practical  doses  normally  experienced  by  humans  in  everyday  life.  [See  slide  number  21.]  Therefore,  it  is  necessary  to  know:  what  is  the  so-­‐called  dose-­‐response  relationship  for  humans?  This  requires  knowing  how  to  extend  the   line   from  the  high  experimental  doses   to   the  much   lower  practical  doses,  an  exercise  called  interpolation.     For  example,  [does]  the  slope  of  the   line  observed  at  the  upper  doses  extend  in  the  same  linear  manner  all  the  way  down  to  the  zero  dose?  Or  does  it  slope  downwards  to  indicate  a  dose  below  which  no  cancer  might  be  expected?  This  uncertainty  has  led  to  a  serious  and  acrimonious   debate   in   science   for   many   years,   mostly   with   little   consensus.   Thus,  regulatory   authorities,   politically   playing   it   safe,   so   to   speak,   have   assumed   a   linear   line  extending  to  zero,  but  others  have  objected,  specifically  when  it  became  known  that  certain  chemicals  tested  using  this  methodology  were  already  present  in  nature.    Chapter  12:  How  to  Predict  Human  Response  from  Animal  Data    This   is   a   new   dimension   of   difficulty.   In   addition   to   the   difficulty   of   knowing   how   to  interpolate  high  dose-­‐response  to  low  dose-­‐response,  as  we  already  discussed,  there  is  the  problem   of   knowing   how   to   extrapolate   the   response   from   one   species—for   example,  rodents—to  another,  humans.  Again,  this  is  a  highly  arbitrary  exercise,  as  illustrated  by  the  fact   that   even   for   closely   related   rat   and   mouse   species,   there   is   only   a   50%  correspondence.  That  is,  of  the  chemicals  causing  cancer  in  rats,  only  about  50%  are  likely  

Page 52: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer I

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

to   cause   cancer   in   mice.   It   is   anyone’s   guess   what   the   correspondence   might   be   when  extrapolating  from  rodents  to  humans.      Chapter  13:  In  the  Interim  (Post  1958)    This   summarizes   the   evolution   of   some   of   the   main   ideas   that   have   occurred   since   the  adoption  of  zero  tolerance  [through]  the  Delaney  Amendment  of  1958.  [See  slide  number  24.]  As  a  result  of  these  concerns  and  the  other  difficulties  mentioned  earlier,  the  original  Delaney  Amendment  was  eventually  abolished   in  1996.  However,  keep   in  mind,  although  these   regulations  may   have   gradually   changed,   the   focus   on   single   chemicals   as   primary  causes  of  cancer  remains  with  us.  This  slide  summarizes  a  couple  of  the  main  points  that  we  have  been  making  during  this  lecture.     First,  cancer  development   is   typically  considered  as  an  ordered  sequence  of   three  stages:  initiation,   promotion,   and   progression.   Secondly,   chemical   carcinogens   mostly   (but   not  always)   have   been   considered   as   initiators.   Thus,   conditions   that   promote   (for   example,  nutrient  imbalances)  have  been  underemphasized  and  even  ignored  as  causes  of  cancer.    

Page 53: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Diet and Cancer II:

Initiation versus Promotion  

Page 54: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Cancer—Initiation  Versus  Promotion    You   will   recall   from   the   first   lecture   that   I   spent   some   time   talking   about   the   different  stages  of  cancer,  especially  the  role  of  chemicals  and  their  being  able  sometimes  to  cause  cancer,  primarily  during  the  so-­‐called  initiation  stage.      You  will  also  recall  that  there  are  two  additional  stages:  promotion  and  progression.  I  spent  much   of  my   early   career   investigating   in   experiments   the   effect   of   a   particular   chemical  carcinogen  on   the  development  of  early  cancer  cells—studying  various   factors   that  could  affect   the   way   that   carcinogen   acted—and   eventually   got   into   the   second   stage,   called  promotion.  What   arose   from   those   early   studies  were   some   ideas   that  were   really   quite  provocative,  especially  in  regard  to  the  role  of  nutritional  imbalances  and  how  they  could  affect  these  different  stages.  So  this   lecture  focuses  on  a  specific  question:  Are  nutritional  imbalances  important  in  the  cancer  process?  The  question  we  raised  in  my  research  group  was:   Is   there   a   difference   in   nutrition’s   effect   on   initiation   as   opposed   to   promotion,   for  example?   So   I   want   to   spend   this   lecture   talking   about   a   comparison   of   the   features   of  initiation   and   the   features   of   promotion,   and   particularly   about   the   role   of   a   particular  nutrient  on  the  activity  of  those  two  stages.    Chapter  2:  Cancer  Development  Over  Time    This  is  a  repeat  of  the  slide  seen  in  the  previous  lecture,  simply  showing  the  different  stages  of   cancer:   the   initiation   stage,   the   promotion   stage   (which   is   reversible,   and   that   is   a  thought  to  keep  in  mind  as  we  go  through  this),  and  the  final  stage:  progression.  [See  slide  number  6.]     This   is   somewhat   repetitive   of   what   we   generally   talked   about   in   the   first   lecture,   but  showing   a   little   bit   more   detail,   which   is   important   as   we   get   into   this   comparison   of  initiation  and  promotion.  [See  slide  number  7.]  This  is  the  stage  of  initiation  showing  how,  when  a  chemical  that  causes  cancer  comes  into  the  body,  it  eventually  goes  to  cells  and  gets  metabolized  to  eventually  damage  DNA  or  genes.     These  chemicals  that  can  cause  cancer  are  very  toxic,  and  it  is  natural  for  the  body  to  want  to  get   rid  of   them.  These   chemicals  also   tend   to  be   lipid-­‐soluble—that   is   to   say,   they  are  more  soluble  in  fatty  tissue  than  in  aqueous  or  water  tissue.  So  when  the  chemical  comes  into  the  body  it  is  metabolized  by  a  very  complex  enzyme  system  called  the  mixed  function  oxidase   enzyme   system,   or  MFO   system.   That   enzyme,   primarily   located   in   the   liver   but  also   in   a   few   other   tissues,   is   responsible   for   converting   the   chemical   to   less   toxic  metabolites.   In   that   process   it   is   converting   a   fat-­‐soluble   chemical   into   a   more   water-­‐soluble   chemical,   with   additional   enzyme   steps,   incidentally,   to   eventually   produce  metabolites  that  are  less  toxic  that  then  can  be  excreted.      But   that  enzymatic  process,  which  we  studied  extensively  and   in  considerable  detail,   is  a  very   complex   system.   In   that   process   it   turns   out   that   the   enzyme,   as   it   converts   the  carcinogen  to  less  toxic  metabolites,  also  produces  a  very  small  amount  of  an  intermediate  referred  to  as  an  epoxide.  That  epoxide  only  has  a  minute  fraction  of  a  lifetime;  essentially,  

Page 55: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

it  is  extremely  reactive.  For  the  chemist  who  may  be  listening  to  this,  it  is  so  reactive  that  it  is   electrophilic   in   nature—it   can   bind   as   an   electrophile,   it   can   bind   to   so-­‐called  nucleophilic  substances,  one  of  the  most  important  being  the  DNA  component  of  the  gene.  Once  that  material  forms,  it  very  quickly  binds  chemically  to  the  DNA  in  a  very  tight  bond  called  a  covalent  bond,  to  lead  to  what  we  consider  a  damaged  gene.      Chapter  3:  Carcinogen  Activity  During  Promotion    This   shows   what   eventually   becomes   of   this   so-­‐called   damaged   DNA—we   also   call   it   a  carcinogen   DNA   adduct.   [See   slide   number   8.]  What   becomes   of   these   damaged   genetic  components  as  they  progress  to  the  promotion  stage?     Most   of   the   damaged  DNA   is   repaired.   Some   estimate   that   in   the   neighborhood   of   99   to  maybe  99.9%  of  it  actually  gets  repaired.  But  if  this  cell  actually  divides  into  daughter  cells  before  some  of  the  damaged  DNA  is  repaired,  then  in  a  sense  the  damaged  DNA  gets  fixated  into  the  so-­‐called  daughter  cells,  the  progeny  of  the  parent  cell.  And  once  it  is  fixed  into  the  DNA,   then   it   is  going  to  remain  there   for  all  subsequent  generations  of  cells  coming  from  that  original  cell.  That  is  considered  to  be  the  process  of  mutation.      In  other  words,   the  carcinogen  comes   into  the  cell  and  gets  enzymatically  metabolized  to  cause  a  reactor  product  that  then  binds  the  DNA,  alters  the  DNA  permanently  to  give  rise  to  a  mutation.  That  mutated  cell  or  damaged  cell,  which  is  [otherwise]  a  clone  of  the  original  cell,  eventually  grows  into  clusters  of  little  cells,  which  eventually  become  larger  and  larger  and  form  tumors.  And  of  course  that   is  the  process  of  promotion.  So  now  the  question  is,  since  we   know  a   little   bit   about   initiation   and   something   about   promotion,   how  do   they  compare  in  terms  of  actually  producing  the  ultimate1  tumor?    Chapter  4:  An  Experimental  Role  for  Nutrition  in  Cancer  Development    I’m  simply  drawing  our  attention  to  the  idea  that  henceforth,  in  the  remaining  slides,  I  want  to  talk  about  some  experimental  results  that  we  obtained  over  a  number  of  years  showing  the  effect  of  nutrition  on  the  development  of  cancer.  In  the  process  we  learned  a  great  deal  about   the   relative   importance   of   nutrition—affecting   promotion   on   the   one   hand   and  initiation  on  the  other.  I  am  basically  outlining  some  ideas  that  led  to  this  area  of  research.      The   initial  observation  arose   in   the  Philippines  when  I  was   there  helping   to  coordinate  a  nationwide   program   of   feeding   malnourished   children.   It   was   widely   assumed   in   those  days—and   of   course   assumed   by   myself   and   my   senior   colleagues—that   these   children  most  of  all  needed  to  consume  more  protein,  as  we  would  be  doing  here  in  the  West.  They  were  said   to  be  consuming  very   low-­‐protein  diets,  and   that  was  certainly   true.  They  also  were  consuming  protein  that  was  not  so-­‐called  “high-­‐quality,”  which  is  the  term  often  used  to  describe  animal  protein.      

1  By  “ultimate”,  Dr.  Campbell  is  referring  to  an  eventual  tumor.  

Page 56: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

In  any  case,  one  of  our  efforts  in  the  Philippines  was  to  make  sure  that  these  children  got  enough  protein.  However,   it   turned  out  that   in  a  happenstance  manner,   I   learned  [that]  a  few  children  in  the  Philippines,  a  very  few,  were  actually  getting  primary  liver  cancer  at  a  very   young   age,   four   years   of   age   and  younger.  That   could  have  been   just   an   anomalous  observation,   I   guess,   except   for   the   fact   that   when   I   started   inquiring   about   who   these  children  were   and   inquiring   about   their   families,   it   turned   out   that   the   families   of   these  children  were  the  ones  who  were  already  consuming  the  higher  levels  of  protein,  which  we  were  attempting  to  provide  to  the  rest  of  the  children.  And  so  the  idea  arose  that  somehow  higher-­‐protein   diets   like   we   might   be   consuming   here   in   the  West   were   more   likely   to  create   conditions   in  which   the   children  were   susceptible   to   primary   liver   cancer.   So   the  remaining   research   then   focused   on   the   question   concerning   how   did   protein   relate   to  primary  liver  cancer.    Chapter  5:  Dietary  Protein  and  AFB1-­‐Induced  Liver  Cancer      Here  are  some  interesting  results  published  by  some  researchers  in  India  on  the  question  of  higher  protein  intake  and  primary  liver  cancer.2  3  [See  slide  number  11.]     Of  course,   the  observation  that  higher-­‐protein  diets   tend  to  promote   liver  cancer  seemed  obviously   somewhat   provocative   and   somewhat   anomalous   until   I   saw   this   report   that  came  from  India.   In  that  case,   the  researchers  were  studying  the  effect  of  regular  protein  diets   compared   with   low-­‐protein   diets   on   the   development   of   liver   tumors   in   rats.  (Incidentally,   the   liver  tumors   in  rats  that  were  being  observed  were  actually  caused—or  initiated,  if  you  will—by  a  chemical  carcinogen  that  was  being  widely  studied  at  the  time,  including  [through]  some  work  in  our  own  lab,  a  chemical  called  aflatoxin,  a  metabolite  of  a  mold  that  grows  on  peanuts  and  corn  in  particular.)      These  researchers  divided  their  animals  into  two  groups:  those  fed  regular  levels  of  protein  (that  is  to  say,  20%  of  total  energy),  and  another  group  fed  5%,  which  was  considered  to  be  an   inadequate   level  of  protein.  They   thought   initially   that   feeding   the  animals   the  higher  levels   or   the   regular-­‐to-­‐good   levels   of   protein  would  help   to   repress   the  development   of  liver   tumors   that  might   be   caused   by   this   chemical   carcinogen.   In   actual   fact,  what   they  learned   was   that   the   animals   given   the   regular   levels   of   protein   were   the   ones   that  produced  the  tumors,  and  the  ones  given  the  lower  levels  of  protein  did  not.  You  can  see  in  the  results  here  that  the  difference  between  the  20%  protein  diets  and  the  5%  protein  diets  in   terms   of   their   ability   to   affect   tumor   development   was   really   substantial.   It   was  essentially  100%  in  the  case  of  the  animals  fed  the  regular  levels  of  protein  and  only  0%  in  the  case  of   the  animals   fed  5%  protein.  So   this  was  consistent  with  what   I   thought   I  was  seeing  with  the  children.        

2  Madhavan  TV,  and  Gopalan  C.  “The  effect  of  dietary  protein  on  carcinogenesis  of  aflatoxin.”  Arch.  Path.  85  (1968):  133–137.    3  Confirmed  by  Wells  et  al.,  1974.  

Page 57: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

Chapter  6:  Two  Objectives      There  were   two  objectives   that  we   set   for  ourselves   in   a   long   series  of   experiments   that  were  to  be  continued  over   the  next  25  to  30  years   in  my   laboratory  research,  which  was  primarily   funded   by   the   National   Institute   of   Health   and   a   bit   by   the   American   Cancer  Society  and  the  American  Institute  for  Cancer  Research.  The  first  objective  was  to  confirm  these   unusual   findings   from   the   laboratory   animal   experiments   that   were   conducted   in  India.  We  simply  wanted  to  know  if  it  was  true  that  higher-­‐protein  diets  promoted  tumor  development   in   animals   exposed   to   aflatoxin.   And   secondly,   since   this   observation   was  basically  quite  different   from  what  one  would  otherwise  expect,  we  wanted  to   learn  how  the   protein   worked.   We   do   in   science   want   to   know   how   things   work   because  understanding  how  they  work  gives  us  a  lot  more  confidence  in  the  original  observations  we  make.      Here  I  am  showing  just  one  sample  of  findings45  that  we  obtained  over  the  next  many  years  on   the   effect   of   protein   on   tumor   development   initiated   by   this   chemical   carcinogen,  aflatoxin   (or   AF   as   abbreviated   here).   [See   slide   number   13.]   In   this   slide,   I   am   simply  showing  the  effect  of  protein  feeding  on  the  development  of  early  precancerous  foci.      If   you   recall,   I   talked   about   clusters   of   cells   that  would   emerge   early   during   promotion,  which   would   eventually   lead   to   tumor   development.   This   is   simply   a   display   of   results  comparing   the   effect   of   20%   protein   diets   and   5%   protein   diets   on   the   development   of  these  early  precancerous  clusters—as  I  refer  to  them  here,  foci.      Now,  if  we  look  at  the  dotted  line  as  shown  there  over  the  first  12  weeks  of  this  early  tumor  development,  you  see  that  in  the  animals  fed  the  20%  protein  diet,  these  early  foci  began  to  increase  and  continued  to  increase  over  that  12-­‐week  period,  if  in  fact  the  animals  were  fed  that  20%  protein  diet.  In  contrast,  if  we  went  back  then  and  decided  to  switch  the  diet  from  20%  to  5%  and  back  to  20%  and  back  to  5%  again—in  other  words,  if  we  did  what  is  called  a   dietary   intervention   study—we   got   some   really   interesting   results.   For   the   first   three  weeks,  animals   fed  the  20%  protein  diets—those  are  the  regular   levels—would  grow  the  foci  as  expected,  as  you  can  see  with  the  dotted  line.  If  the  animals  were  then  switched  to  a  low-­‐protein  diet  for  three  weeks,  the  development  of  those  early  foci  were  turned  off.  Then,  for  the  following  three  weeks,  going  up  to  nine  weeks,  if  the  animals  were  put  back  on  the  20%  protein  diet,  these  cells  continued  to  grow—they  were  turned  on  again.      What   we   learned,   in   effect,   with   this   kind   of   study,   is   that   we   can   virtually   turn   tumor  development   on   and   off,   as   expressed   here   by   these   early   precancerous   foci.   I   probably  shouldn’t  say  tumors—they  are  precancerous  foci  indicative  of  tumor  development.  We  can  essentially  turn  on  and  turn  off  the  development  of  these  early  foci  over  the  first  12  weeks  of  the  experiment  simply  by  feeding  them  20%  protein  diets  or  5%  protein  diets.   4  Youngman  LD,  and  Campbell  TC.  “High  protein  intake  promotes  the  growth  of  preneoplastic  foci  in  Fischer  #344  rats:  evidence  that  early  remodeled  foci  retain  the  potential  for  future  growth.”  J.  Nutr.  121  (1991).  5  Youngman  LD,  and  Campbell  TC.  “Inhibition  of  aflatoxin  B1-­‐induced  gamma-­‐glutamyl  transpeptidase  positive  (GGT+)  hepatic  preneoplastic  foci  and  tumors  by  low  protein  diets:  evidence  that  altered  GGT+  foci  indicate  neoplastic  potential.”  Carcinogenesis  13  (1992):  1607–1613.  

Page 58: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

 Chapter  7:  Dietary  Protein-­‐  and  Chemical  Carcinogen-­‐Induced  Lifetime  Liver  Cancer      Here   is   an   extension   of  what  we   looked   at  with   respect   to   early   foci   development.6   [See  slide  number  14.]      What  we  were   looking  at  was   the  effect  of  protein   intake  or  protein  consumption  on   the  development  of   tumors  over  the   lifetime  of  the  animal—not   just  early   foci   formation,  but  full  tumor  growth  during  that  period.  In  this  experiment,  these  animals  were  exposed  to  a  chemical  carcinogen  in  the  beginning  that  could  cause  liver  cancer,  but  then  were  fed  two  different  levels  of  protein  (again  the  5%  and  the  20%)  and  we  measured  to  see  what  kinds  of   tumors   actually   formed   after   100   weeks—or   about   two   years,   which   is   the   normal  lifetime  of  the  animals.      And   you   can   see   that   the   animals   fed   the   20%  protein   diets   had   a   very   large   amount   of  tumor   activity.   We   refer   to   it   as   tumor   severity,   which   considers   both   the   percentage  incidence—that   is,   the   numbers   of   animals   that   actually   get   the   tumors—and   the   tumor  weight.  The   tumor  severity   index   shows   that   the  animals  given   the  20%  protein  diet  got  lots  and  lots  of  tumor  activity.  The  animals  given  the  5%  protein  diets  had  almost  no  tumor  activity.  But  what  was  really  interesting  about  this  study  was  that  when  the  animals  were  given  the  5%  protein,  they  were  all  living  at  100  weeks,  were  very  thrifty,  alive,  well,  had  sleek  hair   coats,   very  energetic   and  active  and   jumping  around   the   cages  as   if   they  were  still   reasonably   young,  with   no   observable   tumors.   In   contrast,   the   animals   fed   the   20%  protein   diets   were   all   dead   at   100   weeks   with   liver   tumors.7   8   This   really   remarkable  difference   was   consistent   with   what   the   Indian   workers   had   reported.9   So   we   achieved  objective   number   one,   showing   that   animals   fed   the   regular   levels   of   protein   did   indeed  grow  tumors  far  more  dramatically  than  animals  fed  the  lower  levels  of  protein.    Chapter  8:  Effects  of  Protein  Feeding  on  Viral  Carcinogenesis    What   we   just   saw   in   the   previous   slide   was   the   effect   of   protein   feeding   on   the  development  of   tumors   initiated  by  a  chemical.  The  next  question  we  were  able  to  ask   in  part   because   some   research   had   been   done   in   other   laboratories.   We   wanted   to   ask  whether   the   protein   feeding   might   have   an   effect   on   the   development   of   liver   tumors  initiated  not  by  a   chemical,  but  by  a  virus.   So  we  were  asking  about   the  effect  of  protein  feeding  on  viral  carcinogenesis.    

6  Youngman  LD,  and  Campbell  TC.  “Inhibition  of  aflatoxin  B1-­‐induced  gamma-­‐glutamyl  transpeptidase  positive  (GGT+)  hepatic  preneoplastic  foci  and  tumors  by  low  protein  diets:  evidence  that  altered  GGT+  foci  indicate  neoplastic  potential.”  Carcinogenesis  13  (1992):  1607–1613.  7  Youngman  LD,  and  Campbell  TC.  “Inhibition  of  aflatoxin  B1-­‐induced  gamma-­‐glutamyl  transpeptidase  positive  (GGT+)  hepatic  preneoplastic  foci  and  tumors  by  low  protein  diets:  evidence  that  altered  GGT+  foci  indicate  neoplastic  potential.”  Carcinogenesis  13  (1992):  1607–1613.    8  Youngman  LD.  The  growth  and  development  of  aflatoxin  B1-­‐induced  preneoplastic  lesions,  tu•mors,  metastasis,  and  spontaneous  tumors  as  they  are  influenced  by  dietary  protein  level,  type,  and  intervention.  Ithaca,  NY:  Cornell  University,  Ph.D.  Thesis,  1990.    9  Madhavan  TV,  and  Gopalan  C.  “The  effect  of  dietary  protein  on  carcinogenesis  of  aflatoxin.”  Arch.  Path.  85  (1968):  133–137.    

Page 59: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

 In   the   case  of   the   chemical   (in   the  previous   studies),  we  knew   that   in   rats   aflatoxin   gets  metabolized,   attacks   genes,   and   initiates   liver   cancer.   In   the   study   on   the   virus,  we   took  advantage  of   some  work   that  had  been  done  by  others   showing   that  when  animals  were  exposed   to   hepatitis   B   virus,   this   virus   (comprised   of   DNA,   incidentally)  was   capable   of  inserting  a  portion  of  its  DNA  or  its  gene  into  the  liver  DNA,  in  this  case  with  mice.  That  was  a  means  by  which  the  virus  initiated  the  development  of  liver  cancer  in  these  animals.  So,  the  question  we  wanted  to  ask  was  whether  the  protein  feeding  could  affect  the  subsequent  development  of  the  tumors  that  would  emerge  from  this  hepatitis  B  virus  initiation.      Chapter  9:  Protein  Nutrition  Predominates  Over  Viral-­‐Induced  Cancer  Genes    In   this   slide   [slide   number   16]   we   see   some   results—from   feeding   different   levels   of  protein—on   the   development   of   liver   tumors   in   the  mice   that   have   been   exposed   to   the  hepatitis  B  virus  gene.10  11    Just  a  word  by  way  of  background  on  what   this  picture   is   really  showing.  These  are   four  tissues—we  refer  to  them  as  sections—that  have  been  prepared  from  essentially  a  biopsy  of  the  livers  of  these  mice.  You  will  see  that  two  of  these  pictures  have  big  white  holes  in  them.   Ignore  that—it  means  nothing.   It   is   just  a  cross  section  of  a  vessel  passing  through  the  tissue.      I   want   to   draw   your   attention   to   the   idea   that   when   animals   are   transfected   with   the  virus—they   were   considered   transgenic—and   then   fed   different   levels   of   protein,   the  protein  had  a  really  substantial  effect  on  the  development  of  these  lesions.  In  the  panel  in  the  upper  right  quadrant,  you  can  see  some  dark  stained  areas.  It  is  the  dark  staining  that  really   matters   here.   That   is   what   indicates   the   emergence   and   development   of   tumor  material   in   these  animals.  You  can  see  a   lot  of   it   in   the  animals   that  had  20%  protein.   In  contrast,   in   the  panel  on   the   lower   left,   from  animals   fed  12%  protein  (that   is  quite  a  bit  less,  just  enough  to  satisfy  development  of  growth  and  a  little  more),  you  can  see  that  there  is   somewhat   less   tumor  activity.   In   the   animals   fed  6%  protein,   there  was  essentially  no  staining.   So   this   is   telling   us   that   the   20%   animals   really   were   actively   growing   early  tumors,   the   6%   animals   were   not,   and   the   12%   protein   animals   were   somewhat  intermediate.  These  three  panels  can  be  compared  with  the  one  on  the  upper  left.  This  is  a  section  of  a  normal  liver  in  an  animal  that  has  not  been  transfected  but  has  been  fed  20%  protein,  and  you  can  see  that  there  is  no  tumor  activity  in  that  animal.      Chapter  10:  Multiple  Explanatory  Mechanisms    In  this  slide  [slide  number  17]  I  summarize  some  of  the  so-­‐called  explanatory  mechanisms  that  we  learned  about  as  the  protein  affected  the  development  of  the  tumors.     10  Hu  J,  Cheng  Z,  Chisari  FV,  et  al.  “Repression  of  hepatitis  B  virus  (HBV)  transgene  and  HBV-­‐induced  liver  injury  by  low  protein  diet.”  Oncogene  15  (1997):  2795–2801.  11  Cheng  Z,  Hu  J,  King  J,  et  al.  “Inhibition  of  hepatocellular  carcinoma  development  in  hepatitis  B  virus  transfected  mice  by  low  dietary  casein.”  Hepatology  26  (1997):  1351–1354.  

Page 60: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

You  recall  that  we  satisfied  objective  number  one,  showing  that  higher-­‐protein  diets  turned  on   tumor   development   far  more   than   low-­‐protein   diets.   The   second   question   was:   how  does  it  work?  This  is  a  brief  summary  of  some  of  the  so-­‐called  mechanisms  we  examined.    You  will   see   that   during   both   initiation   and   promotion,   the   level   of   protein   affected   the  development  of  early  and   later   tumors   in  a  number  of  different  ways.   It  was  almost  as   if  every  time  we  looked  for  an  explanatory  mechanism  we  found  one,  and  at  first  I  found  that  observation   somewhat   frustrating  and   troubling  because   it  was  hard   to  know  which  one  really  mattered.  But  eventually  it  became  quite  clear  that  the  protein  was  acting  in  such  a  way   on   both   of   these   stages   that   it   seemed   to   cause   the   emergence   of   a   whole   host   of  different   kinds   of   mechanisms   that   were   very   likely   to   be   highly   integrated   as   they  produced  the  final  response.  I  will  come  back  to  this  point  a  little  bit  later  when  I  talk  about  how  nutrients  work  as   they  affect   the  development  of   cancer.  We  were   learning   that   the  effect  on  promotion  was  apparently  much  greater  than  the  effect  on  initiation,  and  we  will  see  in  the  subsequent  findings  how  that  really  works.      Chapter  11:  Experimental  Protein  Casein    In  this  slide  I  am  simply  summarizing  a  very  provocative  part  of  our  research,  which  arose  when  we  asked  about  the  kind  of  protein  we  were  using  in  these  animal  studies.  [See  slide  number  18.]  Throughout  these  studies,  we  had  been  using  casein,  which  represents  about  87%  of  the  protein  in  cow’s  milk.  It  was  really  quite  remarkable  to  realize  that  something  so  commonly  consumed  and  so  regarded  as  important  was  capable,  when  fed  in  excess  of  what   is   actually   needed,   of   having   this   rather   remarkable   effect   on   tumor   development.  What  made   it  more  remarkable  was   the   fact   that  when  we   tested  soy  protein  and  wheat  protein,  two  plant  proteins,  also  at  20%  of  total  diet  calories,  we  did  not  see  tumors  being  developed  at  all.  It  only  happened  when  we  were  using  casein,  an  animal-­‐based  protein.      In  this  slide  and  the  next  one,  I  want  to  just  point  out  a  couple  more  features  about  the  way  in  which  protein  works  that  we  need  to  bear  in  mind.  In  this  slide  [slide  number  19]  I  am  showing  the  effect  of  the  percentage  of  dietary  protein  on  the  development  of  these  early  cancer  cells.12     You  can  see  that  as  we  explored  this  relationship,  when  casein  represented  from  4  to  10%  of   the   total   dietary   protein,   essentially   there  was   no   effect   on   the   development   of   these  early  foci.  However,  when  the  level  of  protein  exceeded  10%  in  the  diet,  there  was  a  fairly  sharp  dose-­‐response  relationship  when  you  went  from  10%  to  20%  protein.13  You  can  see  these  remarkable  differences  in  the  two  figures  of  20%  and  the  4-­‐6%  at  the  bottom.        So  what   really  was   interesting   about   this   particular   finding  was   that   about   10%  protein  was  the  amount  required  for  maximizing  growth  rates  in  these  young  animals.  In  fact,  they   12  Dunaif  GE,  and  Campbell  TC.  “Dietary  protein  level  and  aflatoxin  B1-­‐induced  preneoplastic  hepatic  lesions  in  the  rat.”  J.  Nutr.  117  (1987):  1298–1302.  13  Remember  that  in  the  context  of  this  experiment,  casein  represented  100%  of  total  protein  intake,  and  100%  of  the  %  calories  from  protein  in  the  diet.  In  a  human  context,  adding  animal  protein  to  the  diet  easily  takes  the  %  calories  from  protein  above  10%.    

Page 61: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

can  do  with  less  than  10%  as  they  become  older,  but  in  any  case,  10%  is  the  amount  that  is  needed   of   this   very   important   nutrient.   It   was   the   amount   consumed   in   excess   of   the  amount  needed  that  actually  caused  the  cancerous  response.      To  put  this  in  the  context  of  human  nutrition,  I  should  point  out  that  the  amount  of  protein  required   by   humans   is   approximately   the   same   as   by   rodents.  We   also   need   about   10%  protein,  more   or   less—in   fact   even   less,   possibly.   It   turns   out   that  most   humans,   in   fact  almost  all  humans,  are  consuming  diets  that  are  considerably  in  excess  of  the  10%  amount  we  actually  need.  So  this,  if  it  [relates  to]  humans,  is  a  very  important  observation.      Chapter  12:  Liver  MFO  Activity  in  Rats  Fed  5%  and  20%  Dietary  Protein    In   this   slide   I   am   showing   yet   another   feature   of   this   protein   effect   that   is   really   quite  interesting.  14  [See  slide  number  20.]     I  could  show  a  lot  of  effects  of  protein  on  various  and  sundry  activities.  Here  I  am  showing  just   a   couple   that   are  particularly   significant.   In   this   case,  we  are   looking   at   the   effect   of  20%   dietary   protein   and   5%   dietary   protein   on   the   principal   enzyme   responsible   for  metabolizing   that   initiating   chemical   carcinogen,   aflatoxin.   That   enzyme   is   very,   very  important.   It   has   all   kinds   of   activities,   but   what   was   really   interesting   is   that   we   saw  essentially   a   twofold   difference   in   that   enzyme   activity  within   one   day   after   feeding   the  protein  meals.  Other  studies  indicated  that  this  enzyme  activity  could  change  very  rapidly,  even   after   a   meal   of   consuming   high   or   low   protein.   And   as   you   can   see   from   this  presentation,   it   becomes  very,   very  different  over   a   four-­‐day  period,   as  one   feeds   a  20%  versus  a  5%  protein  diet.  From  my  perspective,  this  is  an  extremely  rapid  response,  which  reflects   the   ability   of   food   to   alter   important   activities   that   may   influence   cancer  development.  And  food  can  cause  this  effect  in  a  very  short  period  of  time.    Chapter  13:  Heresy?    In  this  slide  I  want  to  pause  for  a  moment  and  summarize  what  we  have  observed  so  far,  pointing   out   three   observations   that   many   would   regard   as   virtual   heresy.   [See   slide  number   21.]   They   involve   a   very,   very   important   protein   that   people   think   is   healthy:  namely,   casein,   but   when   fed   at   higher   than   the   amount   required,   it   actually   promotes  cancer.     Second,   a   reasonable   shift   in   the   level   of   dietary   protein—from   5%   to   20%   or   10%   to  15%—is   the   kind   of   shift   that   people   make   from   day   to   day,   or   that   occurs   among  individuals.  A  reasonable  shift  in  the  level  of  dietary  protein  consumed  turns  cancer  on  and  off  even  at  relatively  advanced  stages  of  disease.  That  is  a  very  provocative  thought,  if  one  

14  After  Maso   and  Campbell,   1978.   It  was  mainly  published   in  Martha  Maso's   undergraduate  honors   thesis,   but   is   also  supported  by  similar  studies  that  we  did  and  never  published.  The  arrow  in  the  chart  refers  to  the  2-­‐fold  difference  in  the  enzyme  activity  within  the  first  day  after  starting  the  diets.  At  the  time,  I  [Dr.  Campbell]  thought  it  was  remarkable  that  a  dietary   change   like   that   could   cause   such   a   rapid   change   in   an   enzyme   activity   that   is   so   critical   to   many   reactions,  including  carcinogenesis.    

Page 62: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

stops  and  thinks  about  it  a  bit.  And  finally,  protein  feeding  as   it  causes  these  changes  can  act  very  swiftly,  perhaps  within  hours  after  consuming  the  meal.      In  this  slide  [slide  number  22]  I  want  to  draw  our  attention  to  one  more  observation  that  many   would   regard   as   heresy,   but   I   don’t.   I   think   we   established   this   information   very  carefully  and   from  many  different  perspectives.  Only  a  part  of   the  data   is   shown  here.   In  any   event,   consider   the   traditional   regulatory   criteria   regarding   what   a   chemical  carcinogen  is  and  is  not,  according  to  the  Delaney  Amendment  that  we  talked  about  in  the  first   lecture.   If   we   observe   these   traditional   rules   of   the   day,   we   have   to   conclude   that  casein   is   the  most   significant   chemical   carcinogen  ever  discovered.   In   the  minds  of  most  people,   that  would  be  absolutely  heretical,  but  we  did   it  very  carefully  and  from  multiple  different  perspectives,  and  published  the  results  in  the  very  best  cancer  research  journals.      Chapter   14:   Nutrition   Controls   the   Expression   of   Genes   Involved   in   Cancer  Development    In   this   slide   we   see   another   observation   that   subsequently   turned   out   to   be   very,   very  important,  in  my  view—an  observation  illustrated  by  the  studies  we  just  talked  about.  [See  slide  number  23.]  Nutrition  controls  the  expression  of  genes  involved  in  the  development  of  cancer.  In  other  words,  if  we  have  genes  that  can  give  rise  to  cancer,  we  can  use  nutrition  to   control   the   expression   of   these   genes.   This   was   demonstrated   in   the   information   I  provided   here,   for   genes   altered   by   chemical   carcinogens   or   by   viruses.   The   effect   is  somewhat   broad,   but   it   brings   into   focus   the   idea   that   it   is   not   necessarily   the   kinds   of  genes  we   have   that   give   rise   to   cancer,   and   perhaps   other   diseases   as  well.   Rather,   it   is  nutrition  and  the  food  we  consume  that  become  important  in  controlling  the  expression  of  these  genes.   In  this  slide  I  am  simply  summarizing  very  quickly  the  effects  of  some  other  nutrients  on  other  kinds  of  cancers  that  we  also  studied  in  our  laboratory.     In  addition  to  the  work  we  did,  of  course,  other  laboratories  were  doing  research  that  really  expanded  the  scope  of  what  we  were  beginning  to  understand  about  the  role  of  nutrition  in  the   development   of   experimental   cancer.   [See   slide   number   24.]   In   our   laboratory,   for  example,   diets   that   were   higher   in   fat   tended   to   increase   the   development   of   early  pancreatic  cancer  clusters,  or  lesions.  We  also  note  from  larger  human  studies  that  high-­‐fat  diets  are  associated  with  a  higher  risk  for  pancreatic  cancer.      We  also  studied  the  effect  of  a  very  low  intake  of  carotenoids,  things  like  beta-­‐carotene,  for  example—the  colored  components  of  vegetables.  As  the  intake  of  those  carotenoids—those  plant-­‐based  anti-­‐oxidants—decreased,  the  liver  cancer  increased.  So  that  was  a  nutritional  imbalance,  in  a  sense,  that  stimulated  tumor  development.  And  finally,  we  also  studied  the  effect   of   diets   high   in   fat   on   transplanted   mammary   tumors.   Similarly,   high-­‐fat   diets  increased  the  ability  of  these  mammary  tumors,  once  they  were  transplanted  into  animals,  to  take  hold  and  to  grow.      Therefore   this   summary,   together  with   the   earlier  work   that   I   discussed,   addresses   this  whole  concept  of  nutritional  imbalance.  In  some  cases,  it  is  related  to  inadequate  intake  of  nutrients;   in  other   cases   it   is   related   to   an   excessive   intake  of   some  nutrients,   and   these  

Page 63: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

11

comparisons  divided  along  plant-­‐  versus  animal-­‐based  nutrients.  Animal-­‐based  nutrients,  when  fed  in  excess,  tended  to  stimulate  cancer.  Plant-­‐based  nutrients,  in  contrast,  tended  to  decrease   tumor   development,   and   the   effects   that  we   saw   in   these   experimental   studies  were  really  substantial.    Chapter  15:  Cancer  as  a  Function  of  Diet  (Diet  Constant)    In   this   slide   I   summarize   schematically   what   we   have   talked   about   during   this   lecture,  especially  in  regards  to  the  question  I  posed  at  the  beginning:  Which  is  more  important  as  far  as  the  effect  of  nutrition  is  concerned?  [See  slide  number  25.]     Is   it  more   important  during  the  process  of  promotion,  or   is   it  more   important  during  the  process   of   initiation?   Or   I   could   simplify   the   question   still   further:   which   is   the   more  important  process—promotion  or  initiation?      In  this  slide  I  show  normal  cells  in  blue  at  the  top.  When  initiated  either  with  a  high  dose  of  carcinogen—that   is,   a   high   C—or   a   low   dose   of   carcinogen,  we   get   different   amounts   of  cells  that  have  been  converted  to  cancer  cells.  We  get  more  cancer  cells  with  a  high  dose  of  carcinogen  than  with  a  low  dose  of  carcinogen,  as  indicated  by  the  red  cells  in  that  cluster.  If  we  continue  on  this  course—that  is  to  say,  the  only  difference  between  these  two  groups  is   the   level  of  carcinogen  being  consumed  or  administered—all   the  way  to  the  end  of   the  study,  the  animals  that  are  given  the  high  dose  of  carcinogen  have  more  initiation,  more  so-­‐called  DNA  adducts,  more  mutagenesis,  and  in  effect  more  initiation.  This  in  turn  gives  rise  to  more  clusters  or  foci,  and  eventually  to  more  tumors.      In   contrast,   if   we   look   at   the   right-­‐hand   pathway,   the   animals   given   the   lower   levels   of  carcinogen  have  fewer  DNA  adducts,   fewer  mutations,  and  of  course   less   initiation,   fewer  clusters,   and   fewer   tumors.   So   the   amount   of   tumors   that   we   get   at   the   end   of   the  experiment  is  strictly  a  function  of  how  much  carcinogen  we  get  exposed  to.  This  goes  back  to  the  concept  of  the  dose-­‐response  relationship  between  chemical  carcinogens  that  initiate  and  the  ultimate  tumor  response  we  see  at  the  end.      Chapter  16:  Cancer  as  a  Function  of  Diet  (in  Spite  of  C  Dose)    This   slide   is   a   follow-­‐up   to  what  we   just  described,   except   that  we  have  done   something  here  that  really  is  quite  remarkable.  [See  slide  number  26.]     Two   groups   of   animals   are   given   either   a   high   dose   of   carcinogen   or   a   low   dose   of  carcinogen.  But  instead  of  continuing  on  the  same  diet,  we  took  the  animals  that  had  more  preneoplastic  cells  in  the  beginning  because  of  a  high  dose  of  carcinogen  and  put  them  on  a  low-­‐protein  diet,  which  I  call  an  optimum  diet  (shown  in  green).  In  effect,  we  get  fewer  foci  and  tumors.  In  contrast,  if  we  take  the  animals  that  are  given  only  a  low  dose  of  carcinogen,  that   produces   much   less   initiation,   but   then   give   them   a   diet   that   is   considered   to   be  excessive—that  is,  high  in  protein—and  we  get  more  foci  and  more  tumors.      

Page 64: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer II

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

12

This   only   shows   schematically   this   effect,   but   the   results   that   we   got   were   really  remarkable  in  this  regard.  That  is  to  say,  the  level  of  carcinogen  that  we  got  exposed  to  in  the  beginning  or  that  we  were  using  in  these  experiments  didn’t  make  any  difference.  The  dose  of  carcinogen  made  no  difference  if  we  subsequently  fed  diets  that  had  different  levels  of  protein—diets  that  could  affect  the  growth  of  these  tumors  after  they  were  present.  The  animals  that  had  the  highest  amount  of  initiation  were  the  ones  that  were  getting  few  or  no  tumors.   The   animals   that   received   the   lowest   level   of   carcinogen,   when   given   the   high-­‐protein  diet,  in  fact  got  more  foci  and  more  tumors.  This  really  does  show  very  dramatically  that  the  effect  of  promotion  supersedes  what  goes  on  during  initiation.  More  particularly,  it  shows  that  simply  altering  diet  during  the  promotional  stage  can  have  a  dramatic  effect  on  whether  tumors  grow,  regardless  of  the  carcinogen  dose  in  the  beginning.      Chapter  17:  Main  Points    In  this  slide  I  am  simply  summarizing  the  points  I  just  made.  [See  slide  number  27.]    I  need  not   dwell   on   this   except   to   point   out   that   these   two   observations,   in   my   view,   really  summarize  a  lot  of  research,  only  a  small  portion  of  which  has  been  shown  here.  It  shows  primarily   that   nutrition,   especially   in   the   form   of   protein   intake   but   also   in   the   form   of  intake  of  other  nutrients,  plays  a  very  important  role  in  the  development  of  cancer,  and  the  role  is  played  primarily  during  promotion  rather  than  during  initiation.     I   should  point  out,   however,   and   I  didn’t   show   the   results  of   that  here,   that  high-­‐protein  diets   actually   increase   initiation—increase   the   activation   of   the   carcinogen,   for   example,  and   increase   the   formation   of   the   DNA   adducts.   And   so   the   high-­‐protein   diet   actually  increases   initiation   as  well   as   promotion,   but   the   effect   of   protein   on   promotion   activity  supersedes  whatever  may  have  occurred  during  initiation.    

Page 65: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Diet and Cancer III:

Human Studies on Diet and Cancer  

Page 66: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Types  of  Human  Studies  In  the  first  two  lectures,  I  talked  about  the  experimental  and  theoretical  basis  of  cancer.  I  talked   about   the   stages   of   cancer   that   researchers   like   to   use   for   studying   this   disease:  initiation,   promotion,   and   progression;   and   the   biological   and   clinical   characteristics   of  these  three  stages.  I  ended  by  talking  about  the  evidence  that  we  obtained  in  our  laboratory  showing   the  extremely   important  effect  of  nutrition  on   the  development  of   experimental  cancer  in  laboratory  animals.  This  basic  information  is  very  important,  but  it  means  little  if  we   are   not   showing   its   practical   significance   for   human   cancer.   Thus,   this   presentation  begins   a   discussion   on   the   more   practical   evidence   on   diet   and   cancer   when   we   study  humans.  Human  studies  are  also  referred  to  as  epidemiology  studies,  which  by  definition  are  designed  to  determine  the  distribution  and  causes  of  disease  in  populations  of  people.  There  are  three  different  kinds  of  epidemiology  studies,  as  shown  here   in  this  chart.   [See  slide  number  4.]      The   first   kind   of   study   is   observational,   which   simply   means   that   we   observe   diet   and  disease  associations  among  different  populations  to  see  how  they  compare.  Many  diet  and  lifestyle  characteristics  can  be  measured  and  then  recorded  and  compared,  or  correlated,  with  disease  rates.  Comparing  dietary  fat  with  breast  cancer  rates  for  different  countries  is  an  example  of  this  type  of  study.  It  is  observational  because  we  simply  observe  and  record  how  dietary  fat  is  related  to  breast  cancer  rates  under  practical  conditions.  It  is  not  the  kind  of  study,  though,  that  proves  cause-­‐and-­‐effect  associations,  whether  it  concerns  dietary  fat  or  something  else.  It  can,  however,  provide  hints  about  what  might  be  causes  of  disease.    The  second  kind  of  study  directly  analyzes  whether  a  specific  diet  or  lifestyle  factor  actually  causes  disease.  This   is  done   in  randomized  clinical   trials,  which  are  widely  used   for  drug  development.   The   researcher   gives   an   agent   to   one   group   of   people   and   compares   its  effects  with  the  effects  observed  in  a  control  group  not  given  the  agent.      The  third  group  of  studies  is  partly  analytical,  partly  observational.  There  are  two  kinds  of  studies   in   this   group.   A   case-­‐control   study   simply   compares   the   diet   and   lifestyle  characteristics   of   people  who  have   the  disease  with   control   people  who  do  not  have   the  disease   to   see   which   diet   and   lifestyle   factors   are   associated   with   the   disease.   Cohort  studies  are  very  similar,  except  that  subjects  who  are  healthy  at  the  start  of  the  study  are  followed  over  time  to  see  which  diet  and  lifestyle  practices,  which  are  usually  measured  in  advance,  are  associated  with  disease  occurrence.     The  main  message  I  want  to  convey  in  this  slide  is  simply  that  most  researchers  doing  these  studies  have  a  very  strong  tendency  to  discover  specific  causes  of  specific  diseases.  Here  I  show  the  methods  used  to  determine  how  one  dietary  or  lifestyle  factor  among  many  such  factors   is   associated   with   disease.   In   the   first   method,   used   in   observational   studies—although   we   know   that   many   dietary   and   lifestyle   factors   may   be   involved   in   disease  occurrence—in  reality,  we  still  try  to  find  the  disease-­‐producing  effects  of  single  factors  as  if  they  were  acting  alone.  We  do  this  by  statistically  adjusting  or  mathematically  controlling  for  the  simultaneous  or  confounding  effects  of  all  but  the  one  factor  we  are  most  interested  in.    

Page 67: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

Chapter  2:  Assuming  Single-­‐Factor  Causes  of  Disease    In  the  second  case,  we  design  randomized  clinical  trials  to  study  the  independent  effects  of  single   agents  by   actually  directly   testing   them.  Regardless  of  which   type  of   experimental  study   and   analytical  methods  we  use,   the   underlying   assumption   used   for  most   of   these  studies  is  that  single  diet  and  lifestyle  factors,  perhaps  even  acting  alone,  cause  the  disease  being   studied.   Most   investigators   ignore   that   this   is   an   assumption   because   they   truly  believe  that  single  factors  actually  cause  disease.  Most  of  us  tend  to  look  for  magic  bullets  and  simple  cures  because   they  are  easier   to  understand,  often  because   this   is   the  way   to  make  money,  as  with  drugs.  In  any  case,  this  assumption  has  consequences  that  seriously  violate  the  concept  of  nutrition,  and  in  fact  this  is  a  major  cause  of  confusion  about  diet  and  disease  relationships.  Nutrition,  as  we  shall  see,  represents  the  highly  integrated  effects  of  countless  dietary  lifestyle  factors  acting  together.   Chapter  3:  Breast  Cancer  (cases/100,000/yr)      Here  I  am  using  one  of  the  best-­‐known  examples,  the  association  of  dietary  fat  with  breast  cancer,  to  illustrate  my  ideas  about  human  studies  of  diet  and  disease.  [See  slide  number  6.]  What   is  true  in  this  example   is  often  true  for  most  other  diet  and  disease  studies  as  well.  The  late  professor  Ken  Carroll,  at  the  University  of  Western  Ontario   in  Canada,  published  this  information,  although  other  researchers  reported  similar  findings.1     Total  dietary  fat  is  shown  on  the  X  axis,  rates  of  breast  cancer  on  the  Y  axis.  We  see  a  very  impressive  association:  the  higher  the  fat  consumption,  the  higher  the  breast  cancer  rates.  An   interesting   feature   of   this   graph   is   the   threshold   level   of   dietary   fat.   Theoretically  speaking,   this   suggests   that   there   is   a   level   of   fat   consumption   below   which   no   breast  cancer  is  seen.  This  actually  is  a  reasonable  conclusion  because  there  is  a  need  for  a  certain  amount  of  fat  to  be  consumed.    Chapter  4:  Breast  Cancer  (cases/100,000/yr)      This  is  an  observational  study  involving  countless  different  diet  and  lifestyle  factors2.  [See  slide   number   7.]   Thus   we   cannot   conclude   that   dietary   fat   alone   is   the   cause   of   breast  cancer.  Many  dietary   lifestyle  factors  also  change  in  parallel  with  dietary  fat,  even  factors  such  as  the  number  of  telephone  poles  or  the  amount  of  paved  highway,  both  of  which  are  unlikely  to  cause  this  cancer.  Here  we  get  a  hint  as  to  whether  dietary  fat   is  acting  alone.  When   breast   cancer   rates   are   compared   with   dietary   plant   fat,   we   see   no   meaningful  relationship.  

1 Carroll  KK,  Braden  LM,  Bell  JA,  et  al.  “Fat  and  Cancer.”  Cancer  58  (1986):  1818-­‐1825.  2 Carroll  KK.  Experimental  evidence  of  dietary  factors  and  hormone-­‐dependent  cancers.  Cancer  Res.  1975  Nov;35(11  Pt.  2):3374-­‐83.

Page 68: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

For  example,  Ceylon  has  a  relatively  high  intake  of  plant  fat  and  a  low  rate  of  breast  cancer.  New   Zealand,   on   the   other   hand,   has   a   low   intake   of   plant   fat   and   a   high   rate   of   breast  cancer. Chapter  5:  Breast  Cancer  (cases/100,000/yr)      In  contrast,  when  we  compare  breast  cancer  rates  with  dietary  animal  fat,  we  again  see  a  strong  relationship.  [See  slide  number  8.]  In  this  case,  however,  there  is  no  threshold  effect,  as  we   saw   for   total   fat3.  That   is,   the   consumption  of   even   small   amounts  of   animal   fat   is  associated  with  increasing  breast  cancer  rates.     Thus,  the  question  arises  in  this  and  the  previous  slide  of  whether  animal  fat  causes  breast  cancer  but  plant  fat  does  not.  On  the  basis  of  other  studies  not  shown  here,  however,  this  is  not  a  reasonable  assumption.  Plant  fat,  in  fact,  has  been  shown  experimentally  to  stimulate  breast  cancer  development  more   than  animal   fat.   It   is   important   to  know,  however—and  this  is  a  very  important  point—that  this  effect  of  plant  fat  shows  up  only  when  the  total  fat  intake   becomes   relatively   high.   This,   by   the   way,   is   some   of   the   important   evidence  showing  that  total  dietary  fat  should  be  low  and  that  added  plant  fat,  usually  oils  (outside  the  context  of  whole  plant-­‐based  food)  should  be  minimized  or  even  avoided.      An  answer   to   this  apparent  dilemma—of  whether   it   is  plant   fat  or  animal   fat   that   is  best  related  to  breast  cancer—can  be  much  more  reliably  [found  when  we  consider]  foods,  not  just   fat.   In   foods,  a   large  number  of  nutrients  play  a  role,  and   fat   intake  merely  describes  these  foods.  For  example,  animal  fat  represents  animal-­‐based  food  and  plant  fat  represents  plant-­‐based  food.   Chapter  6:  Evidence  that  Dietary  Fat  Alone  Is  Not  the  Cause  of  Breast  Cancer    Several  types  of  evidence  show  that  dietary  fat  alone,  either  animal-­‐  or  plant-­‐based,  is  not  the  sole  cause  of  breast  cancer.  Here  we  show  the  first  of  three  such  kinds  of  evidence.  [See  slide   number   9.]   We   know   that   among   other   nutrients,   total   dietary   fat   for   different  countries   almost   perfectly   parallels   dietary   animal   protein   consumption,  which   parallels  animal   food,  of  course.   In  other  words,   the  association  of  breast  cancer  with  total  dietary  fat,  shown  here  and  in  our  earlier  slide,  could  just  as  easily  be  described  as  an  association  with   animal-­‐based   foods.  Dietary   fat   consumption   increases   in   these   countries   as   animal  protein  and  animal-­‐based  food  consumption  also  increase.4     This  is  shown  in  the  yellow  inset  [slide  number  10]  by  the  very  high  correlation—90%—between   fat   and   animal   protein—or,   of   course,   animal-­‐based   foods.5   At   the   same   time,  consumption   of   plant-­‐based   foods   tends   to   decrease   as   animal-­‐based   foods   tend   to  increase.  The  original  focus  on  total  fat  as  the  specific  cause  of  this  disease  (as  shown  here)   3 Carroll  KK.  Experimental  evidence  of  dietary  factors  and  hormone-­‐dependent  cancers.  Cancer  Res.  1975  Nov;35  (11  Pt.  2):3374-­‐83. 4  Chart  based  adapted  from:  Carroll  KK.  Experimental  evidence  of  dietary  factors  and  hormone-­‐dependent  cancers.  Cancer  Res.  1975  Nov;35  (11  Pt.  2):3374-­‐83.  5  Chart  adapted  from:  Carroll  KK,  Braden  LM,  Bell  JA,  et  al.  “Fat  and  cancer.”  Cancer  58  (1986):  1818–1825.  

Page 69: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

was  misplaced.  It  should  have  been  on  increasing  consumption  of  animal-­‐based  foods  and  decreasing   consumption  of  plant-­‐based   foods.  Taking   this  approach,  we  can  now  assume  that  a  large  number  of  nutrients  in  these  foods,  not  just  fat,  combine  to  play  a  role  in  breast  cancer  development.    Chapter  7:  Evidence  that  Dietary  Fat  Alone  Is  Not  the  Cause  of  Breast  Cancer    The  second  kind  of  evidence  shows  that  altering  the  level  of  fat  in  our  diets  has  no  effect  on  breast  cancer  development.  This   is  evidence  produced  by   the  well-­‐known  Nurses’  Health  Study  at  Harvard  University.6      This  study  is  a  cohort  study  of  about  90,000  American  nurses  who  have  been  followed  for  about   20   years   for   disease   associations   with   their   dietary   practices.   For   analytical  purposes,  these  nurses  were  divided  into  ten  groups  according  to  the  dietary  fat  [they  were  consuming].  These  results  show  that  as  dietary  fat  increases  from  less  than  29%  of  calories  to  more   than   49%   of   calories,   the   risk   of   breast   cancer   does   not   change.   Also,   note   the  correlation  of  dietary  fat  with  dietary  animal  protein.  A  correlation  of  approximately  zero,  which   is   shown   in   the  yellow  box,  means   the  dietary   fat  bears  no   relationship   to  dietary  animal  protein.  This  indeed  is  typical  of  the  American  diet,  as  shown  in  the  next  slide.  [See  slide  number  12.]      Chapter  8:  Nurses’  Health  Study  (8  years)    In   addition   to   there   being   no   relationship   between   dietary   fat   and   breast   cancer   in   this  study,   it  was   also   shown   that   decreased   fat   consumption  was   accompanied  by   increased  protein  consumption,  the  vast  majority  of  which  was  animal-­‐based.  Increased  consumption  of   protein,   especially   animal-­‐based   protein,   would   offset   any   benefits   that   might  theoretically  result   from  lower-­‐fat  diets.  At   the  same  time,  even  though  dietary   fat  varies  widely  in  this  study  with  no  breast  cancer  effect,  vegetable  and  fruit  consumption  remained  unchanged  and   [was]  very   low   for  all  groups,   regardless  of   fat   intake.  Researchers   found  other  evidence  supporting  this  tradeoff  of  total  fat  and  animal  based-­‐foods  in  another  very  large   group   of   American  women   in   the  Women’s   Health   Initiative   Trial.7   For   two   years,  these  women   received   intensive   coaching   on   how   to   specifically   reduce   their   fat   intake.  They   responded   by   decreasing   their   consumption   of   high-­‐fat   red   meat,   but   in   doing   so  increased  their  consumption  of  low-­‐fat  poultry  and  fish.     This  trade-­‐off  looks  unequal  but  it  is  not,  because  the  consumption  of  poultry  and  fish  was  higher   than   red  meat   at   the   start   of   the   study.  Exchanging   red  meat   for  poultry   and   fish  decreases  total   fat  without  altering  the  already  low  consumption  of   fruits  and  vegetables.  Thus,   they   retain   their   high   overall   consumption   of   animal-­‐based   foods  without   altering  their  overall  consumption  of  fruits  and  vegetables.     6  Willett  WC  et  al.  Dietary  fat  and  fiber  in  relation  to  risk  of  breast  cancer.  An  8-­‐year  follow-­‐up.  JAMA.  1992  Oct  21;268(15):2037-­‐44.  7  Writing  Group  for  the  Women’s  Health  Initiative  Investigators.  “Risks  and  benefits  of  estrogen  plus  progestin  in  healthy  postmenopausal  women:  principal  results  from  the  Women’s  Health  Initiative  Randomized  Controlled  Trial.”  JAMA  288  (2002):  321–333.  

Page 70: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

 Chapter  9:  Women’s  Health  Initiative  Feasibility  Trial    Here  we  show  the  effects  of  these  changes  on  nutrient  intake  after  two  years  of  coaching.  [See  slide  number  15.]  In  the  intervention  group,  dietary  fat  decreased  from  37%  to  23%,  but  their  already  high  dietary  protein  intake  increased  another  20%.8     Incidentally,   one   year   after   the   coaching   was   over,   dietary   fat   started   to   creep   back  upwards  from  23%  to  28%.  At  this  juncture,  we  should  pause  to  take  note  of  the  results  of  these  two  very  influential  but  very  different  studies.  The  international  study  of  Carroll  and  the   Nurses’   Health   Study   at   Harvard   long   presented   a   dilemma.   The   [apparent  contradiction]  now  can  be  reconciled.   In  both  cases,   the  hypothesis   that  dietary   fat  alone  might   be   a   major   cause   of   breast   cancer   was   incorrect.   Rather,   dietary   fat   was   only   an  indicator  or  surrogate  marker  for  animal-­‐based  foods.    Chapter  10:  Breast  Cancer  Risk  Factors  Keyed  to  Diet    In   addition   to   the   first   two   kinds   of   evidence,  we   should   note   that  many   other   diet   and  lifestyle  factors  have  been  found  to  alter  breast  cancer  risk.  [See  slide  number  17.]  Each  of  the  factors  shown  in  this  slide  can  either  directly  or  indirectly  trace  their  effect  on  breast  cancer  risk  to  the  consumption  of  plant-­‐  or  animal-­‐based  foods.  In  other  words,  there  are  many  ways   to   show   that   plant   foods   tend   to  decrease,  while   animal-­‐based   foods   tend   to  increase,  breast  cancer  risk.  It  is  important  to  note,  therefore,  that  it  is  the  full  complement  of   nutrients   present   in   these   foods   that   plays   a   role   in   breast   cancer   risk.   It   is   not   only  dietary  fat,  or  for  that  matter  any  other  single  nutrient,  acting  independently.      An   additional  word   on   these   arrows   in   the   slide:  When   age   at  menarche,   or   age   at   first  menses,   increases,   breast   cancer   risk   decreases.   When   body   weight   increases,   breast  cancer   risk   increases.   When   meat   intake   increases,   so   does   breast   cancer   risk.   When  legume  and  grain   intakes   increase,  breast  cancer  risk  decreases,  and  when  percentage  of  body  fat  increases,  so  too  does  the  risk  of  breast  cancer.  These  summaries  are  based  on  a  report  by   the  World  Cancer  Research  Fund  published   in  1997.9  The   evidence   that  plant-­‐based   foods  protect   [against]   and   animal-­‐based   foods   enhance  breast   cancer   risk   is   now  convincing.      However,  it  also  is  important  to  know  that  breast  cancer  risk,  especially  for  women  most  at  risk,  can  only  be  reduced  substantially  when  there  is  a  substantial—perhaps  even  total—switch   to   plant-­‐based   foods.   A   summary   of   144   studies   showing   statistically   significant  associations  of  vegetable  and  fruit  consumption  with  all  cancer  rates  was  published  by  an  expert   panel   in   1997   [by   the   World   Cancer   Research   Fund];   all   144   studies   showed   a  

8  Writing  Group  for  the  Women’s  Health  Initiative  Investigators.  “Risks  and  benefits  of  estrogen  plus  progestin  in  healthy  postmenopausal  women:  principal  results  from  the  Women’s  Health  Initiative  Randomized  Controlled  Trial.”  JAMA  288  (2002):  321–333.  9  Expert  Panel.  Food,  nutrition  and  the  prevention  of  cancer,  a  global  perspective.  Washington,  DC:  American  Institute  for  Cancer  Research/World  Cancer  Research  Fund,  1997.    

Page 71: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Diet and Cancer III

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

protective  effect.10  It  is  fair,  therefore,  to  conclude  that  consuming  fruits  and  vegetables  can  only  lead  to  lower  cancer  risk.  In  contrast,  there  are  no  studies  showing  a  protective  effect  of  animal-­‐based  foods  on  cancer  risk.    Chapter  11:  Main  Lessons  from  the  Example  of  Dietary  Fat  and  Breast  Cancer    Here   is  a  summary  of   the  main   lessons   to  be  drawn   from  this  example  of  dietary   fat  and  breast  cancer.  [See  slide  number  19.]  Lesson  1  is  simply  that  fat  alone  does  not  explain  the  effect  of  the  overall  diet  on  breast  cancer  risk.  Lesson  2  says  virtually  the  same  for  animal  protein,  or   for   that matter any other single nutrient. Overall, the lessons from this fat versus  breast   cancer   model   briefly   show   that   increased   consumption   of   animal-­‐based   foods  increases  breast  cancer  risk,  while  increased  consumption  of  plant-­‐based  foods  decreases  breast  cancer  risk.  Based  on  many  other  kinds  of  evidence,  this  can  be  assumed  to  be  the  same  for  other  cancers  as  well.  There  have  been  many  different  kinds  of  human  studies  as  well   as   many   different   kinds   of   other   studies   in   the   laboratory.   In   the   case   of   human  studies,  every  effort  should  be  made  to  avoid  making  conclusions  about  the  effects  of  single  nutrients.   Furthermore,   these   studies   alone   rarely,   if   ever,   prove   a   cause-­‐and-­‐effect  association.  Rather,  proof  is  much  more  a  question  of  considering  the  total  weight  of  all  the  evidence,  especially  when  the  evidence  is  gathered  under  a  wide  variety  of  conditions. Chapter  12:  Establishment  of  Weight  of  Evidence    When   establishing   the   weight   of   the   evidence,   some   very   useful,   well-­‐accepted   rules   or  criteria   have   been   developed   over   the   past   few   decades.   I   show   some   of   the   more  important   of   these   here   [slide   number   21].   An   example   of   a   strong   cause-­‐and-­‐affect  association  [can  be  found  in]  the  dietary  fat  versus  breast  cancer  relationship  that  we  just  considered.  11  A  consistent  association  for   individual  factors  within  the  same  food  groups  basically  means   that   the  various   factors  commonly  present   in  plant   foods  should  act   in  a  consistent  manner  to  help  reduce  disease  risk.  Consistent  association  for  different  kinds  of  studies   has   been   illustrated   here   with   the   Carroll   international   study   and   the   Nurses’  Health   Study   at  Harvard.   And  biological   plausibility   is   a   very   important   consideration.   It  basically   means   that   we   understand   something   about   how   these   things   work.   In   other  words,  we  begin  to  understand  how  it  all  makes  sense.    

10  Expert  Panel.  Food,  nutrition  and  the  prevention  of  cancer,  a  global  perspective.  Washington,  DC:  American  Institute  for  Cancer  Research/World  Cancer  Research  Fund,  1997.  11  As  fat  increases,  breast  cancer  risk  also  increases.  Total  fat  intake  is  highly  correlated  with  animal  food  intake,  except  in  cases  where  free  oil  has  been  added  to  the  diet  in  significant  quantities.    

Page 72: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Chronic Diseases

 

Page 73: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Review  and  Introduction    First  let  me  start  this  lecture  by  summarizing  some  of  the  previous  lectures,  because  this  is  an  outgrowth  of  those  lectures.    As  I  went  through  my  research  career,  I  first  realized  that  animal  protein,  when  tested  in  an  experimental  cancer  model  in  animals,  was  substantially  different  from  plant  protein  in  its  ability  to  promote  tumor  development.  It  turned  out  also  that  animal  protein’s  effect  was  quite  dramatic,  operating  through  a  whole  constellation  of  mechanisms  that  seemed  to  be  working  together.        At  that  point  in  time,  I  was  aware  that  working  on  the  effects  of  single  nutrients  on  single  diseases  (even  if  they  operated  through  multiple  mechanisms)  was  not  the  whole  answer.  But  the  distinction  between  animal  protein  and  plant  protein  certainly  was  a  signpost,  in  a  way,   [that   indicated]   the   kinds   of   foods   that   might   be   having   an   effect   on   cancer,   and  perhaps   other   diseases.   But   more   importantly,   it   [raised]   the   question   of   the   effect   of  multiple  nutrients  operating  together,  and  that  is  when  the  human  study  in  China  came  into  view  and  we  decided  to  look  at  dietary  patterns,  and  to  look  at  more  than  just  protein—to  look   at   the   effects   of   nutrients   or   the   associations   of   nutrients   with   multiple   disease  outcomes,   and  whether   they   tended   to   be   associated  with   animal   based-­‐foods   or   plant-­‐based  foods.      By  the  time  we  got  done  with  that  study,  and  with  considering  the  effect  of  foods  on  major  diseases   like   breast   cancer,   colon   cancer,   a   few   other   cancers,   obesity,   diabetes,   and   the  heart  diseases,   the   evidence  was   really  quite  provocative   and  quite   impressive—not   just  because  of  the  work  that  I  had  been  involved  in,  but  because  of  the  work  that  existed  in  the  literature  by  so  many  other  people.  At  that  point  in  time,  plant-­‐based  diets—and  I  should  emphasize  whole   food,   plant-­‐based   diets—really   seemed   to   be   very   impressive   in   their  effect  on  promoting  health  and  preventing  a  whole  host  of  different  kinds  of  diseases,  and  the  diseases  that  had  been  considered  up  to  this  point  seemed  to  have  a  lot  in  common.      They   shared   similar   kinds   of   mechanisms   at   the   cellular   level   within   the   body.     They  seemed   to   occur   in   the   same   kinds   of   populations,   and   some   of   the   same   nutrients   that  seemed  to  operate  on  one  set  of  diseases  also  operated  on  other  sets  of  diseases.     It  was  then  that  I  began  to  ask  questions  about  how  broad  really  was  this  plant-­‐based  effect.  Was  it  just  for  those  diseases  that  we  had  so  far  studied,  or  perhaps  were  there  others?      At   that  point   I   sat  down  with  my  son  and  decided   to  write  a  book,  and   to  consider  more  carefully  some  of  the  other  diseases  that  we  had  from  time  to  time  considered  in  our  policy  panels,   but   that   I   didn’t   know   a   whole   lot   about.     So,   we   systematically   got   involved   in  looking   at   the   effect   of   diet   on   a   range   of   diseases.   The   information   was,   quite   frankly,  explosive.  It  seemed  that  the  effects  of  a  plant-­‐based  diet  existed  not  only  for  the  diseases  that  I  just  mentioned,  but  also  seemed  to  exist  (operating,  of  course,  by  somewhat  different  mechanisms)  for  a  wide  variety  of  other  diseases  too.              

Page 74: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

Chapter  2:  Overview  of  Autoimmune  Diseases    There  is  one  cluster  of  diseases  that  seemed  to  really  stand  out,  and  to  be  quite  interesting  and   impressive.   These   were   the   so-­‐called   autoimmune   diseases.     Now,   as   their   name  indicates,  “autoimmune”  [means]  something  gone  awry  with  the  immune  system,  and  the  prefix  “auto”  refers  to  the  fact  that  the   immune  system  has  been  disrupted  in  such  a  way  that  it  turns  around  and  attacks  the  body  itself.    Now,  there  are  a  lot  of  people  who  have  autoimmune  diseases,  and  there  are  many  diseases  that  are  fairly  well  known  but  not  necessarily  [recognized]  by  the  public  to  be  autoimmune  in  nature.  There  are  about  a  quarter  of  a  million  people  in  the  United  States  each  year  who  get   diagnosed  with   one   of   these   autoimmune   diseases,   and   there   are   about   40   different  kinds,  at  least—maybe  more  according,  to  some  lists.  1    Women  are  somewhere  in  the  neighborhood  of  2-­‐3  times  as  likely  to  get  one  of  the  diseases  as  men,   and   although   these   diseases   tend   not   to   kill   quite   like   the   previous   diseases  we  talked  about,  they  are  very  debilitating,  very  serious,  and  very  costly   in  terms  of  not  only  financial   dollars,   but   also   in   terms   of   the   pleasantries   of   life.   It   is   said,   for   example,   that  there   are   at   least   8   ½,   maybe   9   million   people   in   the   United   States   who   have   an  autoimmune   disease,   and   some   estimates   go   as   high   as   12-­‐13   million.2   That   is   a   lot   of  people.   Now,   as   I   indicated,   there   are   some   40   different   kinds   of   autoimmune   diseases.  Many  of  them  are  somewhat  rare,  but  some  of  them  are  much  more  common,  and  some  of  the  autoimmune  diseases  shown  in  the  accompanying  chart  are  ones  we  have  heard  a   lot  about.3    [See  slide  number  10.]     Rheumatoid  arthritis  is  an  autoimmune  disease.  Grave’s  disease,  or  hyperthyroidism,  is  an  autoimmune   disease;   so   is  multiple   sclerosis,   or   as   some   people   refer   to   it,  MS.     Type   1  diabetes,   we   talked   about   that   a   little   bit   before.     It   is   the   kind   of   serious   diabetes   that  accounts  for  5-­‐10%  of  the  total  diabetics  in  the  country,  and  it  is  the  kind  where  people  are  not  able  to  produce  the  insulin  that  is  required  for  the  utilization  of  glucose.  And  then  there  is   the   condition   called   lupus,   or   its  more  extensive  name:   systemic   lupus  erythematosus.    All   of   these   diseases   and   many,   many   more   are   autoimmune   diseases   [in   which]   the  immune   system   has   basically   gone   awry   and   turned   on   itself.     Now,   as   far   as   these  autoimmune  diseases  are  concerned,  there  is  one  unique  characteristic  that  seems  to  apply,  at   least   to   the  ones   so   far   studied:   they   tend   to   exist   in   the  northern   climates.  They  also  tend  to  exist  in  the  industrialized  countries,  and  of  course,  in  the  populations  that  also  tend  to   get   heart   disease   and   cancer.     So   we   see   this   sort   of   commonality   between   the  autoimmune  diseases  and  the  other  so-­‐called  degenerative  diseases.       1  Mackay  IR.  “Tolerance  and  immunity.”  Brit.  Med.  Journ.  321  (2000):  93–96.    2  Jacobson  DL,  Gange  SJ,  Rose  NR,  et  al.  “Short  analytical  review.  Epidemiology  and  estimated  population  burden  of  selected  autoimmune  diseases  in  the  United  States.”  Clin.  Immunol.  Immunopath.  84  (1997):  223–243.  3  Ibid    

Page 75: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

Chapter  3:  A  Word  on  the  Immune  System    Before  I  talk  a  little  bit  about  autoimmune  disease,  I  should  say  a  word  about  the  immune  system   itself.     Some   people   think,   rather   simplistically,   that   the   immune   system   is   fairly  simple—like  an  organ,  like  the  liver,  the  heart,  or  lung.  Nothing  could  be  further  from  the  truth.  The  immune  system  is  extraordinarily  complex.  It  is  comprised  of  a  large  variety  of  different   kinds   of   cells   that   are   produced   as   needed.   It   is   comprised   of   a   lot   of   different  kinds   of   chemical   products   that   are   produced   by   these   cells,   and   the   system   operates  throughout  the  body.      Basically  what  it  is  intended  to  do  is  respond  to  the  presence  of  foreign  proteins  that  enter  our  blood  stream  and  our  bodies.  Foreign  proteins  that  otherwise  would  do  damage.  So  the  body   in   a   sense   is   defending   itself   against   these   strange   proteins   that   come   in   and  otherwise   would   be   doing   harm.   The   interesting   thing   about   this   is   that   the   immune  system,   because   it   has   such   enormous   flexibility   and   is   able   to   respond   to   all   kinds   of  foreign  materials  that  may  enter  our  body,  basically  looks  at  these  foreign  proteins  as  they  come   in.   It   looks  at   them  fairly  closely,  and   then  determines  how  to  make  a  product   that  interacts   with   the   foreign   protein.   Each   of   the   proteins,   as   you  may   recall,   is   unique   in  terms  of  the  sequence  of  amino  acids  that  comprises  the  polypeptide  chain.  That  gives  each  of   the  proteins  a  very  unique  and  specific   characteristic,   and   the   immune  system   in   turn  looks   at   that   pattern   of   amino   acids   and  makes   a   product   that   is   essentially   the  mirror  image   of   that,   and   so   can   bind   to   those   proteins.   Now,   the   [foreign]   proteins   that   are  entering  the  body  are  called  antigens,  and  the  products  that  are  being  produced  in  general  by  the  immune  system  are  called  antibodies.  So  antigens  are  the  substances  that  enter  our  bodies   and   cause   harm,   and   antibodies   are   the   substances   that   are   produced   by   the  immune  system  to  counteract  these  antigens.       Chapter  4:  Diseases  in  Greater  Detail    Now  there  are  some  of  these  autoimmune  diseases  that  I  want  to  discuss,  just  to  illustrate  what  we  know  so   far  about   them   in  a  broader  context.  Autoimmune  diseases   like   type  1  diabetes,   multiple   sclerosis,   and   arthritis   have   actually   been   examined  more   carefully,   I  think,  and  in  more  depth  than  some  of  the  others.    Basically,   the  antigen  comes  from  the  food,  gets   into  the  blood  stream,  and  is  seen  by  the  immune   system   as   something   to   attack.   It   makes   a   very   specific   antibody   against   these  proteins,  and  then  turns  around  and  discovers  that  the  same  sequence  of  amino  acids  in  the  antigen  coming  into  the  body  can  also  be  found  in  some  of  the  tissues  in  our  bodies  (that  are   otherwise   operating   normally).   So   the   antibodies   that   are   being   produced   to   tackle  these  foreign  proteins  in  a  sense  turn  on  [the  body],  find  exactly  the  same  kind  (or  at  least  a  portion  of  the  same  kind)  of  protein  somewhere  in  our  bodies,  and  attack  it.        In   the   case   of   type   1   diabetes,   for   example,   the   protein   that   enters   the   body   causes   the  production  of  an  antibody  that  finds  exactly  the  same  amino  acid  sequence  on  the  cells  in  the   pancreas   that   produce   insulin.   So   the   antibodies   begin   to   attack   the   cells   producing  

Page 76: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

insulin  and  wipe  out  the  ability  of  the  pancreas  to  produce  insulin.    Of  course,  that  can  be  a  relatively  permanent  process.      Multiple   sclerosis   is   a   condition  where   the  nerve   system—especially   the   central  nervous  system   and   the  main   nerve   cord   that   is   surrounded   by   a   so-­‐called   “myelin   sheath”—the  autoimmune  process  operating   there   is   that   the  antigen  coming   into   the  body  essentially  mimics   the   proteins   in   the  myelin   sheath.   The   body  makes   the   antibodies   to   attack   the  proteins  coming  in,  then  turns  around  and  discovers  exactly  the  same  amino  acid  sequence  is  present  in  some  of  the  proteins  that  surround  the  myelin  sheath,  and destroys  them.  So  we  get  a  condition  called  demyelination.  Obviously,  that  disrupts  the  nerve  function  and  its  conduction   of   signals,   and   therein   actually   leads   to   a   rather   serious   problem   that   is  progressive,  usually.  Arthritis   is   similar.   [In   the   case  of   rheumatoid  arthritis],   proteins   in  the   tissues   of   joints   are   destroyed   because   of   the   presence   of   antibodies   that   are   being  produced  against  a  substance  coming  in  from  the  outside.     Chapter  5:  Foreign  Invaders  and  the  Immune  System      Now,  in  terms  of  the  proteins  coming  from  the  outside  that  I  referred  to  as  foreign  invaders,  it   also   develops   that   the   immune   system   is   not   only   able   to   see   a   protein   and  make   an  antibody   against   it.   It   should  be  noted   that   these   antibodies   are   really   quite   remarkable,  and  the  system  is  quite  remarkable  because  oftentimes  it  will  be  seeing  a  protein  that  it  has  never   seen   before.   Maybe   something   altogether   new   that   perhaps   we   have   even  synthesized  through  our  industrial  processes.      So  the  immune  system  is  so  flexible,  so  adaptable,  and  so  creative  that  it  can  actually  make  antibodies   against   these   substances,   and   take   care   of   them   and   then   in   turn   save  (essentially,   memorize)   the   process   in   the   sense   that   if   ever   again   those   same   kinds   of  chemicals  were  to  come  into  our  system,  the  immune  system  could  quickly  get  up  to  speed,  produce  some  antibodies,  and  take  it  on  once  again.  Now,  let  me  just  illustrate  a  little  more  detail  about  a  couple  of  these  autoimmune  diseases;  namely,  type  1  diabetes  and  multiple  sclerosis   [and   discuss]   what   kinds   of   foods   seem   to   be   involved   in   or   related   to   the  incidence  and  production  of  these  diseases.    Chapter  6:  Type  I  Diabetes    Type   1   diabetes   tends   to   occur   in   very   young   children,   at   least   it   first   starts   in   infants,  basically,   and   at   first   the  whole   story   about   type   1   diabetes   and   its   relationship   to   food  began  with  the  observation  that  infants  who  were  not  breast-­‐fed  for  a  sufficient  length  of  time—perhaps  not  even  breast-­‐fed  at  all—and  then  given  foods  like  dairy  seemed  to  have  a  higher  risk  for  type  1  diabetes.        Further   research,   as   time  went   along,   [showed]   that   it   wasn’t   necessarily   just   that   they  weren’t  getting  the  native  mother’s  milk,  but  more  to  the  point,  they  were  being  exposed  to  cow’s  milk.  Subsequently,  some  researchers  started  to  take  apart  the  cow’s  milk  to  have  a  look  at  what  might  be  causing  this  problem,  and  indeed  they  found  some  proteins  in  cow’s  milk   that  had   this  unique  amino  acid   sequence   that,  when  entering   the  bloodstream  of  a  

Page 77: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

new-­‐born  infant  (especially  if  it  wasn’t  being  breast-­‐fed)  was  inducing  the  production  of  an  antibody.   The   original   discovery   involved   a   so-­‐called   17   amino   acid   sequence.   A   very  specific  sequence  of  amino  acids  that  generated  production  of  the  antibody,  and  once  the  antibody  was   produced   and   supposedly   only   recognized   that   17   amino   acid   sequence,   it  discovered  exactly  the  same  17  amino  acid  sequence  on  the  cells  of  the  pancreas  that  was  producing  insulin.    That  set  in  motion  a  train  of  events  that  destroyed  that  child’s  life,  in  the  sense  that  it  was  never  again  able  to  produce  insulin.  One  of  the  more  remarkable  reports  of  this  cow’s  milk  effect  was  reported  in  1992,  not  so   long  ago,   in  the  New  England  Journal  of  Medicine.4     In  that  particular  study,  done  in  Finland,  142  diabetic  children  were  tested  to  see  if  they  might  have  the  antibody  that  would  have  been  produced  only  if  those  children  had  been  exposed  to   cow’s  milk   early   in   life.     They  were   compared  against  79  normal   children,   so   in  other  words  we  have  142  diabetic  children  and  79  normal  children,  and  the  test  was  to  see  if  the  diabetic  children  might  have  the  antibody  that  would  indicate  [previous]  exposure  to  cow’s  milk,   as   opposed   to   those   who   didn’t.   And   sure   enough,   as   the   adjoining   chart   shows,  virtually  all  of  the  children  who  were  diabetic  had  the  antibody  that  was  specific  for  one  of  the  cow’s  milk  protein  fractions.    [See  slide  number  18.]     The  level  of  those  antibodies  in  the  blood  of  those  [diabetic]  children  was  across-­‐the-­‐board  higher   than   it   was   in   the   normal   children.   There   was   no   overlap.   It   was   really   quite   a  remarkable  study,  almost  clearly  pointing  to  the  idea  that  the  diabetic  children  had  not  only  been  exposed  to  the  cow’s  milk  early  in  life,  but  also  had  suffered  the  consequences  of  that  protein,  because  that  protein  had  been  shown  in  more  intricate  studies  to  be  able  to  bind  to  the   islet   cells   of   the   pancreas   that   produce   insulin.   Okay,   [it]   was   quite   a   controversial  finding   to  suggest   that  cow’s  milk  actually  could  cause   this  very  serious  disease   in   infant  children,  but  as  time  passed,  not  only  was  it  provocative  and  somewhat  controversial,  but  there  were  other  studies  at  the  same  time  that  started  to  show  the  same  thing.     It  turned  out   that   the  disease  was  a   little  more  complex   than  the  simple   fact  of  cow’s  milk  causing  type  1  diabetes.   Chapter  7:  More  on  Type  I  Diabetes      It  is  now  known,  for  example,  that  cow’s  milk  seems  to  operate  primarily  on  those  children  who  are  genetically  susceptible  in  the  first  place,  and  also  on  children  who—perhaps  this  is  not  so  well  confirmed—perhaps  had  been  exposed  to  a  particular  kind  of  virus.  So  it  was  the   combination   of   genetically   susceptible   children   being   exposed   to   cow’s   milk,   and  perhaps  also  to  a  certain  kind  of  virus,  that  led  to  the  production  of  the  disease.      After   that   there   were   some   additional   studies   focusing   on   the   risk   of   diabetes   in   these  genetically  susceptible  children—which,  in  this  case  could  be  assessed  at  the  beginning  [of  their   lives]—and   it   turned  out   that   for   the  children  who  were  genetically  susceptible  and  exposed  to  cow’s  milk,  their  risk  of  type  1  diabetes  was  in  the  neighborhood  of  11-­‐13  times  

4  Karjalainen  J,  Martin  JM,  Knip  M,  et  al.  A  bovine  albumin  peptide  as  a  possible  trigger  of  insulin-­‐dependent  diabetes  mellitus.  N  Engl  J  Med.  1992  Jul  30;327(5):302-­‐7.  

Page 78: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

what  it  would  have  been  in  children  who  were  not  genetically  susceptible.  An  11-­‐  to  13-­‐fold  increased  risk  of  type  1  diabetes  is  truly  huge.    In  fact,  as  shown  in  the  adjoining  chart5  [slide  number  20],  if  we  compare  the  level  of  risk  that  cow’s  milk  causes  type  1  diabetes  with,  let’s  say,  the  risk  of  some  other  sort  of  cause-­‐and-­‐effect  association  we  are  more   familiar  with,   it   turns  out   that  cow’s  milk  has  a  more  pronounced  effect  on  its  ability  to  cause  or  at  least  be  associated  with  type  1  diabetes  than,  for   example,   the   relationship   between   smoking   and   lung   cancer,   or   the   relationship  between  the  very  well-­‐known  high  blood  pressure  and  cholesterol  association  with  heart  disease.     In   other   words,   we   know  well   that   high   blood   pressure   and   high   cholesterol   levels   are  associated  with  heart  disease.  We  know  well  now   that   smoking   is   closely   related   to   lung  cancer,  and  we  can  determine  the  relative  risk.  But  it  turns  out  that  the  association  of  cow’s  milk  (in  children  who  have  the  high-­‐risk  genes)  with  type  1  diabetes  is  even  greater  than  is  the  relationship  between  smoking  and  lung  cancer,  according  to  the  data  that  have  so  far  been  published.  That  is  really  quite  remarkable.  It  would  be  nice,  of  course,  if  we  wanted  to  be   very   specific   and   determine   which   infants   were   susceptible   and   which   were   not;  perhaps  we  could  screen  out   those   individuals  who  were  genetically  susceptible  and  pay  particular  attention  not  to  give  them  cow’s  milk,  but  the  fact  of  the  matter  is  we  can’t  really  discern   that   that   well   yet.   So   we   really   don’t   know   which   children   are   likely   to   be  susceptible  to  this  effect  of  cow’s  milk,  but  rest  assured,  we  do  know  that  cow’s  milk  seems  to  have  this  very  prominent  effect  in  causing  this  very  serious  kind  of  diabetes.        That  kind  of  finding  would  have  been  quite  convincing  for  a  lot  of  people.  It  certainly  was  very   impressive,   but   obviously   it   still   didn’t   convince   everyone,   especially   given   the  enormously  impressive  so-­‐called  good  effects  of  cow’s  milk  that  a  lot  of  people  presumed.    So  let’s  look  at  some  other  kinds  of  studies  to  see  what  really  might  exist.  [See  slide  number  22.]    In  the  next  chart6,  if  we  look  at  the  relationship  between  cow’s  milk  consumption  and  the  incidence  of  type  1  diabetes  in  different  countries,  as  was  done  in  a  study  in  France,  we  see  this  again  this  impressive  relationship.     That  is,  the  higher  the  cow’s  milk  consumption,  the  higher  the  type  1  diabetes.    It  is  really  a  very   impressive  and  almost   linear  type  of  relationship,  and  furthermore,   it   turns  out  that  although  we  see  different  levels  of  type  1  diabetes  in  different  countries,  it  turns  out  that  if  people  move   from  one  risk  area—just   like   the  cancer,   just   like   the  heart  disease—if   they  move   from  one   risk  area   to  another   risk  area   (especially   earlier   in   life),   it   turns  out   that  their  risk  of  getting  the  full-­‐blown  disease  is  somewhat  attenuated  if  they  move  to  an  area  where  there  is  less  milk  being  consumed.           5   Hammond-­‐McKibben   D,   and   Dosch   H-­‐M.   “Cow’s   milk,   bovine   serum   albumin,   and   IDDM:   can   we   settle   the  controversies?”  Diabetes  Care  20  (1997):  897-­‐901.    6 Dahl-­‐Jorgensen  K,  Joner  G,  and  Hanssen  KF.  “Relationship  between  cow’s  milk  consumption  and  incidence  of  IDDM  in  childhood.”  Diabetes  Care  14  (1991):  1081-­‐1085.

Page 79: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

Chapter  8:  Faulty  Numbers  Game  

Now,   as   far   as   the   controversy   was   concerned,   I   really   became   quite   interested   in   the  nature  of  it,  because  I  find  that  in  much  of  the  [scientific]  literature—not  only  involved  in  this   particular   case,   but   in   other   diet   and   disease   cases—much   of   the   controversy   that  tends   to   erupt   relates   to   people’s   having   other   kinds   of   interests   and   being   essentially  impacted  in  a  negative  way  because  of  information  like  this.  Even  if  the  industry,  of  course,  becomes   quite   concerned   about   this,   or   perhaps   individuals   [become]   concerned   about  this,  it  is  a  fertile  ground  for  the  development  of  controversies.  

Having   said   that,   in   this  particular   case  of   the   controversy   involving   type  1  diabetes   and  cow’s  milk,  if  one  looks  at  a  summary  of  some  of  the  studies  that  have  been  done  in  the  last  12-­‐15  years  on  this—and  I  have  looked,  and  there  have  been  some  really  major  and  very  good  summaries  of  multiple  studies—it  turns  out  that  if  one  compares  all  of  these  studies  [to   see]  which   ones   showed   a   relationship   between   cow’s  milk   consumption   and   type   1  diabetes  and  which  ones  did  not,   something  happens   in   terms  of   the  analysis  of   the  data  that  I  need  to  share  with  you.  Because   it   is   this  kind  of  relationship,   this  kind  of  analysis,  that  is  too  often  used  in  science  that  ultimately  leads  to  confusion  and  controversy.      

If  we  have,   let’s  say,  20  studies  where  we  are  studying  the  hypothesis  of   the  relationship  between  cow’s  milk   consumption  and   type  1  diabetes,  before  we  know  anything  else  we  can  at  the  outset  assume  that  we  are  going  to  get  three  kinds  of  answers.  Either  we  get  an  increase  in  type  1  diabetes  with  an  increase  in  cow’s  milk  consumption  and  it  is  statistically  significant,   or   we   get   a   decrease   in   type   1   diabetes   with   an   increase   in   cow’s   milk  consumption.  We  either  get  an  increase  or  a  decrease,  and  let’s  assume  we  are  just  talking  about  statistically  significant  results  in  both  of  those  cases.  

And  then  there  is  a  third  group  of  possible  results.  Namely,  we  don’t  see  anything  one  way  or  the  other.  It  turns  out  that  if  we  can  look  at  it  that  way  and  we  look  at  all  the  results  of  these  studies  and   just  compare   the  statistically  significant  results  of  diabetes  going  up  or  diabetes  going  down  in  those  who  have  been  exposed  to  cow’s  milk,  every  single  study  that  has   so   far   been   done,   in   effect   (and   there   are   about   20-­‐some   studies   that   have   been  analyzed  in  this  way),  in  every  single  study  for  which  there  is  a  statistically  significant  result,  as  cow’s  milk  consumption  goes  up  type  1  diabetes  is  statistically  significantly  increased,  as  far  as  risk  is  concerned.      

Now,   I   think   that   is   straightforward  enough.  But   the  problem  with   this  whole  analysis   is  that  those  who  do  not  want  to  believe  this  and  have  reasons  to  find  something  wrong  with  these  kinds  of  studies,  what  they  tend  to  do  is,  they  say,  “Ok,  let’s  say  of  the  20  studies  there  are   10   of   them   that   show   a   statistically   significant   positive   effect,   and   then   there   are  another  10  that  show  no  effect.”  Mind  you,  none  of  them  show  the  inverse  effect.  That  is,  of  the  10  that  show  the  statistically  significant  effect  in  the  example  I  am  using,  they  were  all  positive.    There  were  none   that  were   statistically   significant   in   the   reverse  direction,  but  there  were   10   that   didn’t   show   any   effect   at   all,   and   so  what   they   end   up   saying,   these  critics,  is  that  10  studies  showed  an  effect  and  10  did  not;  therefore,  it  is  a  washout.    That  is  

Page 80: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

really   incorrect,   because   the   10   studies   that  were   found   to   be   statistically   significant   all  showed  the  same  direction;  the  10  studies  that  did  not,  did  not.      

So  when  one  analyzes  this  information  this  way,  it  turns  out  that  when  we  look  at  studies  that   showed   no   effect,   we   can   find   all   sorts   of   good   reasons—in   fact,   oftentimes   in   the  studies   themselves—why  we  would   not   have   actually   detected   an   effect   that   really  was  there  in  the  first  place.  I  simply  point  this  out  because  a  lot  of  studies  or  relationships  that  become   somewhat   confusing   and   controversial   unfortunately   have   been   analyzed   in   this  way,   without   taking   into   consideration   the   so-­‐called   “null   effect,”   where   one   see   no  relationship  at  all,  and  in  the  case  of  type  1  diabetes  and  cow’s  milk,  that  is  exactly  what  has  happened.    

I  also  point  this  out  because  as  I  was  becoming  familiar  with  this  literature  and  reading  all  the  material  and  mentioning  it  to  some  colleagues,  the  remark  I  got  from  people  who  really  didn’t  know  that  much  about  it  (but  they  certainly  had  heard  something  about  it)  was,  “Oh,  that  has  already  been  disproven.”  It  turns  out  that  the  people  who  were  saying  that  were  referring  to  a  very  specific  paper  where,   in  fact,  [there  was  a]  rather  serious  flaw.    So  my  conclusion   is,   at   the   present   time,   based   on   this   very   high   risk   observed   for   genetically  susceptible  children,  that  cow’s  milk  certainly  has  an  effect  on  causing  type  1  diabetes,  but  it  may  be  quite  selective  for  certain  individuals  under  certain  conditions.    So  much  for  type  1  diabetes.  

Chapter  9:  Multiple  Sclerosis  (MS)  

In   the   case   of   multiple   sclerosis,   which   of   course   is   another   very   serious   autoimmune  disease,  we  should  point  out  that  there  are  about  400,000  people  in  the  United  States  alone  who  have   the  disease.7  That   is   a   lot  of  people.  400,000  people,   according   to   the  National  Multiple  Sclerosis  Society.    Now,  the  word  “sclerosis”  stopped  us  for  a  second,  so  let’s  think  about  the  [term]  multiple  sclerosis  itself.    “Sclerosis,”  of  course,  is  basically  the  destruction  of  tissue;  it  is  the  loss  of  function  of  tissue,  and  in  this  particular  case,  it  is  nerve  tissue.    The  “multiple”  part  of  the  phrase  really  refers  to  the  multiple  kinds  of  symptoms  that  occur  as  a  result.    People  who  get  MS  often  will  have  all  sorts  of  problems,  and  the  kinds  of  symptoms  that  tend  to  occur  in  one  kind  of  person  don’t  necessarily  exist  in  exactly  the  same  way  in  other  kinds  of  people.    So  you  get  a  whole  variety  of  different  kinds  of  outcomes  in  MS,  and  it  has  been  considered  all  these  years  to  be  a  sort  of  degrading  disease  that  progresses  over  time,  and  eventually  people  with  MS  often  end  up  not  only   immobile   in  wheelchairs,  but  actually  bedridden  for  the  later  years  of  their  lives.  

One  of  the  remarkable  things  about  MS,  however—and  it  is  a  relationship  that  I  recall  was  basically  pooh-­‐poohed  because   it  was  often  thought  [to  be]  a  quack  kind  of   finding—was  the  work  of  a  certain  Dr.  Roy  Swank.  Dr.  Swank,  way  back  in  the  40s  working  in  Norway,  found   that  MS   tended   to   occur   in   rather   different   levels   in   the   different   communities   of  Norway.   For   example,   people   living   along   the   coast   tended   to   have   substantially   less  MS  than  people  living  inland.  People  living  inland  were  consuming  lots  of  dairy.  People  along   7  Reingold  SC.  “Research  Directions  in  Multiple  Sclerosis.”  National  Multiple  Sclerosis  Society,  November  25,2003.  Accessed  at  http://www.nationalmssociety.org%5Cbrochures-­‐Research.asp  

Page 81: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

the  coast  were  consuming  much  less  dairy,  but  more  fish.  At  the  same  time,  MS  (like  type  1  diabetes)   tends   to   be   very   high   where   sunlight   exposure   is   less,   and   Norway   over   the  course  of   the  year   tended   to  have   less   constant   sunlight   and   so   [MS   rates]   seemed   to  be  quite  a  bit  higher,  let’s  say,  than  countries  around  the  equator.  But  in  any  case,  setting  aside  the  sunlight  exposure  question,  what  Dr.  Swank  noticed  was  that  the  people  living  inland—subsisting   on   dairy   products,   to   a   considerable   extent—had  much  more  MS   than   people  living  along  the  coast.      

One   interpretation   of   that   finding,   of   course,   was   that   fish   consumption   was   protective  against  MS,  and  in  fact  there  is  some  evidence  that  fish  oils  in  particular  might  have  some  beneficial  effects  in  reducing  the  symptoms  of  MS.  But  the  relationship  that  concerned  Dr.  Swank   was   this   relationship   between   the   consumption   of   foods   in   the   inland   and  consumption   of   foods   along   the   coast,   and  what   he   focused   on   at   that   time—and   this   is  back   in   the   1940s,   early   1950s—given   the   information   he   had   in   front   of   him,   was   the  question   concerning   the   consumption   of   saturated   fat.   Saturated   fat,   of   course,   is   much  higher  in  dairy  foods,  certainly,  than  in  plant  materials,  and  so  he  focused  on  the  idea  that  maybe   this   differential   in   the   amount   of   MS   inland   as   opposed   to   the   coast   was   really  related  to  the  amount  of  saturated  fat  that  people  were  consuming.  So,  he  embarked  on  a  really  ambitious  trial  that  has  now  lasted  for  more  than  35  years.8    

In  fact,  Dr.  Swank  himself  moved  on  from  the  University  of  Montreal,  where  he  was  when  he  was  doing  this  work  in  Norway,  to  become  the  Director  of  the  Department  of  Pathology  at   Oregon  Medical   Center   in   Portland,   Oregon.   So,   Dr.   Swank   followed   these   individuals,  some  144  individuals  that  he  recruited  in  the  study,  for  the  next  35+  years,  and  published  a  sequence   of   reports   as   the   results   started   to   come   in.     Finally,   in   the   early   1990s,   he  published   a   paper,  which   is   the   summation   of   the   effects   over   all   those   years,   and   I  will  quote.  He  says:  “About  95%  of  the  patients  on  the  low-­‐fat  diet  during  the  early  stages  of  the  disease  remained  only  mildly  disabled  for  approximately  30  years.”9  95%  remained  mildly  disabled,  only  5%  of  these  patients  died.  These  are  the  people,  of  course,  consuming  much  less  fat—in  this  particular  case,  less  than  20  grams  of  saturated  fat.    In  contrast,  80%  of  the  patients  with  early-­‐stage  MS  who  consumed  a  poor  diet  with  higher  saturated  fat  died  of  MS.     So,  over   the  years,  he   followed   these  people   for  all   this   time,  and  divided   them   into  groups   who,   on   the   one   hand,   consumed   diets   that   contained   less   than   20   grams   of  saturated  fat  as  opposed  to  those  [consuming  diets]  that  contained  more  than  20  grams  of  saturated   fat.  He   saw   this   substantial  difference   in   the   rates  of  disease  progression.  Only  5%  of   the  people  on   the   low-­‐fat  diet  died;  80%  of   the  people  on   the  higher-­‐fat  diet  died.    Now,   as   I   said,   he   focused   on   saturated   fat,   but   saturated   fat   levels   in   these   diets   were  basically   an   indication  of   the   animal-­‐   versus  plant-­‐based   foods  being   consumed  by   these  two  different  groups  of  people.  So,  once  again,  we  see  essentially  a  result,  at  least  in  a  broad  sense,   that   is   very   similar   to   the   effect   of   diet   on   type   1   diabetes,   another   autoimmune  disease.  

8  Dr.  Swank  died  in  2008,  but  the  study  continues  to  the  present  day  at  Oregon  Health  &  Science  University  (in  Portland,  OR)  under  the  direction  of  John  McDougall,  MD.  The  diet  study  group  is  currently  following  the  low-­‐fat  McDougall  Diet.  Data  analysis  has  begun  and  results  should  be  available  in  2013.  9  Swank  RI.  “  Effect  of  low  saturated  fat  diet  in  early  and  late  cases  of  multiple  sclerosis.”  Lancet  336[1990]:37-­‐39.        

Page 82: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

11

 

Chapter  10:  More  on  Multiple  Sclerosis  

Since  that  time,  [as  with]  type  1  diabetes,  there  has  been  a  publication  showing  that  there  is  a  strong  and  impressive  relationship  between  milk  consumption  in  different  countries  and  MS. 10    [See  slide  number  31.]  

That   is,   the   higher   the  milk   consumption,   the   higher   the  MS.   As   far   as   the   details   of   the  effect  of  milk,  or  even  perhaps  other  kinds  of  foods,  on  the  development  of  MS  (and  there  are  some  other  foods  that  do  have  some  constituents  that  have  been  shown  to  possibly  be  related  to  MS),  it  turns  out  that  this  relationship  is  very  impressive,  very  similar  to  type  1  diabetes.   That   is   to   say,   the   higher   the   consumption   of   dairy,   the   higher   the   rates   of  diabetes  and  of  MS  as  well.      

Now,  it  turns  out,  from  the  studies  that  have  so  far  been  done  on  the  various  autoimmune  diseases,  that  they  seem  to  have  a  lot  in  common.  As  I  said  before,  they  tend  to  occur  in  the  same  kinds  of  populations.  They  tend  to  occur  in  the  northern  climates  where  there  is  less  sunshine,   and   there   is   considerable   work   showing   that   also   might   be   related   to   the  production  of  vitamin  D  in  the  skin  (by  the  sun);  in  any  case,  they  [have]  a  lot  in  common.  Sometimes   they   tend   to   occur   in   the   same   people,   not   only   in   the   same   populations.  Furthermore,   they   tend   to   have   other   things   in   common:   the   basic   biochemistry   that  underlies  the  development  of  these  diseases,  for  these  different  groups  of  people,  for  these  different  kinds  of  diseases.      

The  basic  biochemistry,   it   turns  out,   is   remarkably  similar  and   involves  a   role   for  animal  protein  in  particular,  in  its  effect  on  significantly  and  negatively  affecting  the  contribution  of  vitamin  D.  I  don’t  really  have  an  opportunity  to  get  into  the  details  of  that,  but  suffice  it  to  say   that   the   mechanisms   that   seem   to   exist   in   these   various   autoimmune   disease  conditions,  as  so  far  studied—these  mechanisms  and  the  integration  of  reactions  that  we  so  far   know   about—seem   to   have   a   lot   of   commonalities.   So,   we   have   a   rather   distinctive  contribution   of   animal   foods   to   the   production   of   these   individual   autoimmune   diseases  that   have   been   studied   in   considerable   depth,   and   these   include   type   1   diabetes,   lupus,  rheumatoid  arthritis,  and  MS.  Among  those  four,  at   least,  as  they  are  being  studied  at  the  present  time,  we  see  the  very  distinctive  differentiation  between  the  effects  of  animal  foods  and  plant   foods.     Animal   food,   of   course   (largely   through   the  protein   content,   but   surely  involving  other  nutrient  characteristics  as  well),  seems  to  raise  the  risk  of  these  diseases.      

So,   this   brings   us   to   a  whole   new   group   of   diseases   that   seem   to   be   influenced,   broadly  speaking,  in  the  same  way  as  were  the  degenerative  diseases  like  cancer,  heart  disease,  and  diabetes.    Once  again,  it  is  the  distinction  between  the  plant-­‐  and  animal-­‐based  food.  

 

10  Malosse  D,  Perron  H,  Sasco  A,  et  al.  “Correlation  between  milk  and  dairy  product  consumption  and  multiple  sclerosis  prevalence:  a  worldwide  study.”  Neuroepidemiology  11  (1992):  304-­‐312.    

Page 83: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

12

 

Chapter  11:  Osteoporosis  

What   about   some   other   diseases   that   seem   not   to   necessarily   fall   in   this   particular  category?  One  such  disease  is  osteoporosis.  Osteoporosis  commanded  a  lot  of  attention  in  the   last   two  or   three  decades   in   the  United  States.  Osteoporosis,  of   course,   is   the  disease  that  results  in  increased  risk  for  bone  fracture,  and  so  the  prevalence  of  osteoporosis  and  the   risk   of   osteoporosis   in   various   societies   and   countries   tends   to   be  measured   by   the  prevalence  or  percentage  of  people  who  actually  experience  bone  fractures.    

The  dairy  industry  has  been  promoting  for  years,  as  we  all  know,  greater  consumption  of  dairy  to  make  stronger  our  bones  and  teeth,  largely  because  dairy  has  calcium  and  calcium  is   a  major   component   of   bones,   and   so   that   notion,   simplistic   as   it  may   be,   nonetheless  sounds  somewhat  reasonable.  The  higher  the  consumption  of  dairy,  the  lower  the  rates  of  osteoporosis,  because  we  are  making  strong  bones,  after  all.  However,   it   turns  out   that   if  one   begins   to   examine   the   relationship   between   intake   of   calcium   and   animal   foods   in  general—and   specifically   dairy   food—the   higher   the   consumption   of   dairy   foods,   the  higher  the  consumption  of  animal  protein  in  calcium-­‐containing  foods,  there  is  no  evidence  that   osteoporosis   rates   are   decreased.   In   fact,   the   higher   the   consumption   of   animal  protein,   the  higher   the  consumption  of   calcium,  and   the  higher   the  consumption  of  dairy  which   contributes   in   a   major   way   to   those   two   nutrients,   the   higher   the   risk   of  osteoporosis,  not  the  lower.  Certainly  a  very  alarming  kind  of  finding,  at  least  as  far  as  the  dairy  industry  is  concerned.    

Now,   let’s   look  a   little  more   in   a   little  more  detail   of   some  of   these   relationships.     If   one  examines,   for   example,   an   increase   in   protein   intake   over  what   people   otherwise  would  consider  basal,  one  of  the  things  that  has  been  observed  for  a  long  time  is  the  greater  the  excretion  of  urinary  calcium—or  the  excretion  of  calcium  in  the  urine.  We  know  something  about  that  and  have  known  something  about  that—it  goes  back  all   the  way  to  the  1920s.  That   is   to   say,   animal   protein   tends   to   create   an   acid-­‐like   condition—albeit   somewhat  modest,  but  nonetheless   significant—in   the  blood  and   the  urine  of   the  body.  That  occurs  because  the  amino  acids  present  in  protein  (as  opposed  to  the  amino  acids  present  in  most  plant  proteins),  as  they  get  metabolized  and  altered  and  excreted  and  changed,  give  rise  to  products  that  are  somewhat  more  acidic.    

A  more  acid-­‐like  condition  in  the  body  is  not  tolerated,  and  what  the  body  wants  to  do  is  to  reduce  that  acidity,  so  to  speak.    It  does  so  by  adding  a  buffer.    The  best  buffer  it  can  get  its  hands  on,  essentially, is  the  calcium  present  in  the  bone.  So  as  individuals  tend  to  consume  more  protein  and  experience  more  fracture  rates,  as  we  know,  that  relationship  is  strongly  related  to  the  acid  condition  that  is  produced  in  the  body,  resulting  from  the  metabolism  of  animal  protein.  The  acid   [is   then  neutralized]  by   the   calcium  present   in   the  bone,   and  of  course  as  that  tends  to  occur  (as  protein  tends  to  go  up  and  animal  protein  tends  to  go  up),  one  tends  to  lose  more  calcium  in  the  urine  and  thereby  to  weaken  the  bone.  The  adjoining  

Page 84: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

13

chart  shows  this  clearly  in  a  study  of  some  human  subjects  in  the  United  States.11    [See  slide  number  34.]    

As  protein  intake  goes  up,  let’s  say,  100%  or  200%  over  what  the  lowest  level  might  be,  we  see  a  significant  and  very  impressive  increase  in  urinary  calcium.    Incidentally,  a  six-­‐month  study   recently   funded   by   the  Atkins   Center   (the  Atkins   people,   of   course,   are   promoting  high   intakes   of   animal   protein)   found   that   people   who   adopted   the   Atkins   diet   actually  excreted  50%  more  calcium  in  the  urine  after  six  months  on  the  diet,  which  of  course  is  just  one  more  strike  against  that  kind  of  diet—at   least   in  the   long  run,  this   is  going  to   lead  to  problems  were  it  to  continue.      

The   question   concerning   the   acidity   produced   by   animal   protein   consumption,   however,  became  somewhat  controversial.  Some  thought  it  was  a  little  bit  narrowly  focused,  thought  also  that  animal  protein  specifically  was  not  the  whole  answer.  It  was  known,  for  example,  that   exercising   regularly—especially   doing   weight-­‐bearing   exercises,   as   they   say—was  helpful   to   reduce   the   risk   of   osteoporosis,   and   so   the   question   concerning   the   effect   of  animal  protein  on  the  induction  of  acidity  in  the  body  (and  of  course  the  loss  of  calcium  in  the   urine)   many   have   thought   to   be   a   little   bit   narrow,   not   necessarily   that   significant,  although  it  certainly  has  been  noted  and  generally  accepted.  So  it  has  rested  as  a  somewhat  controversial,  and  maybe  at  times  almost  insignificant,  observation  amongst  some  people.  

Chapter  12:  More  on  Osteoporosis  

However,   some   recent   studies   have   really   put   that   idea,   I   think,   now   to   rest.     There   is   a  study  out   of   the  University   of   California   at   San  Francisco  done  by   a   group   that  has  been  spending  many  years  working  on  this  question  concerning  the  role  of  body  acid—referred  to   as   metabolic   acidosis—on   the   production   of   osteoporosis.     They,   for   example,  summarized  a  total  of  87  surveys  in  33  countries12  (that  is  a  lot  of  studies,  a  lot  of  people)  where  they  were  able  to  compare  the  ratio  of  vegetable  to  animal  protein  on  the  induction  of  bone  fractures  in  these  different  countries.  The  argument  being  that  maybe  it  wasn’t  just  the   animal   protein   alone   that   created   this   acid.   By   the   same   token,   it   could   be   that   the  amount   of   acid   produced   by   consuming   animal-­‐based   food   could   be   alleviated   and  attenuated,   to   some   extent,   if   people   at   the   same   time   consumed   more   vegetables   and  fruits.  

So,  what  came  to  mind  for  these  researchers  was  whether  it  was  the  ratio  of  the  animal  to  vegetable  protein   that  might   give   a   better   indication  of   the   acidity   that  would  otherwise  result,  and  therefore  the  bone  fracture  rate.  We  can  see  indeed,  in  the  accompanying  chart  [slide  number  36],  a  most  impressive  set  of  data—as  the  vegetable-­‐to-­‐animal  protein  ratio  increases  for  these  33  countries,  you  can  see  that  the  rate  of  bone  fracture  (or  hip  fracture  in  this  particular  case)  in  these  different  33  countries  dramatically  decreases.13  

11  Hegested  DM.  “Calcium  and  osteoporosis.”  J.  Nutr.  116  (1986):  2316-­‐2319.    12  This  is  known  as  a  meta-­‐analysis,  in  which  scientist  review  research  that  has  been  previously  done  and  compare  the  results  of  studies  that  have  similar  study  design.    13 Frassetto  LA,  Todd  KM,  Morris  C,  Jr.,  et  al.  “World  incidence  of  hip  fracture  in  elderly  women  relation  to  consumption  of  animal  and  vegetable  foods.”  J.  Gerentology  55  (2000):  M585-­‐M592.

Page 85: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

14

I’ve  hardly  seen  any  data  that  could  be  more  impressive  than  this.  So  there  is  more  to  the  story   than   just,   I  would   say,   animal   protein   specifically   giving   rise   to   an   acidic   condition  that  is  chiefly  responsible  for  osteoporosis;  rather,  it  is  also  the  ability  of  plant-­‐based  foods  to  be  able  to  attenuate  that  effect.  So   it   is  really   the  balance  of  animal   to  plant   foods  that  plays  a  major  role  in  this.  The  same  group  at  the  University  of  California  also  moved  from  comparing  a  bunch  of  different  societies  of  different  countries  over  to  a  study  of  their  own,  where   they   were   looking   at   more   than   1,000   women   age   65   and   up,   and   were   asking  questions  concerning  the  ratio  of  animal  to  plant  protein  in  that  case.  It  turned  out  that  as  they  followed  these  women  in  the  study  for  a  period  of  about  seven  years,  the  women  with  the  highest  ratio  of  animal  protein  to  plant  protein  had  3.7  times  more  bone  fractures  than  the  women  with  the  lowest  ratio.14      

So   I   think  we  are   finally  coming  to   terms  with  what   initially  might  have  been  considered  somewhat   controversial,   somewhat  narrowly   focused—we  are   coming   to   terms  with   the  idea   that   as  we   change   the   ratio   of   plant-­‐   to   animal-­‐based   foods,   it   certainly   can   have   a  dramatic  effect  on  whether  or  not  we  are  going  to  get  osteoporosis.    As  far  as  osteoporosis  is  concerned,  incidentally,  I  think  most  people  know  it  tends  to  occur  much  more  in  women  than   men,   and   also   in   women   who   are   post-­‐menopausal.   That   is   the   time   when   their  estrogen  levels  have  declined,  and  as  estrogen  levels  decline  the  risk  of  osteoporosis  tends  to  go  up—and  that  is  another  whole  story  in  itself.  The  levels  of  estrogen,  for  example—I  mentioned  this  before  in  the  breast  cancer  case—amongst  women  consuming  high  animal-­‐based  foods  tend  to  be  substantially  higher  than  amongst  women  consuming  plant-­‐based  foods.   So   as  women   consuming   animal-­‐based   foods   approach  menopause,   their   estrogen  levels  come  crashing  down—more  so   than,   let’s   say,  women  who  are  consuming  a  plant-­‐based  diet.  As  estrogen   levels  decline—estrogen   tends   to  protect   against   calcium   loss,   to  some  extent—that  is  another  mechanism  that  seems  to  come  into  play  in  explaining  all  of  this.      

Incidentally,   in   our   China   Project,   where   the   animal-­‐to-­‐plant   ratio   was   about   10%,   the  fracture  rate,  as  far  as  we  could  tell  (but  we  didn’t  have  really  good  data  on  this),  was  only  about  one   fifth   that  of   the  United  States.  But   subsequently   there  has  been  another   study  that  has  compared  a  number  of  different  countries,  insofar  as  this  animal-­‐to-­‐plant  ratio  is  concerned,  and  gotten  some  remarkable  results.  

Nigeria,  for  example,  where  the  animal-­‐to-­‐plant  ratio  is  only  about  10%  that  of  Germany—in  other  words,  in  Nigeria  they  are  mostly  consuming  plant  material;  in  Germany  they  are  mostly  consuming  animal  material.15    So,  in  Nigeria  where  the  animal-­‐to-­‐plant  protein  ratio  is   only   about   10%,   the   hip   fracture   rate   is   lower   by   over   99%.   So   I   think   now  we   have  evidence   that   not   only   helps   to   clarify   the   confusion   and   controversy   that   previously  existed,   we   also   have   evidence   to   show   that   the   relationship   of   diet,   and   particularly   of  dairy,  with  osteoporosis  is  overwhelmingly  impressive.        

14  Sellmeyer  DE,  Stone  KL,  Sebastian  A,  et  al.  “A  high  ratio  of  dietary  animal  to  vegetable  protein  increases  the  rate  of  bone  loss  and  the  risk  of  fracture  in  postmenopausal  women.”  Am.  J.  Clin.  Nutr.  73  (2001):  118–122.    15  Frassetto  LA,  Todd  KM,  Morris  C,  Jr.,  et  al.  “Worldwide  incidence  of  hip  fracture  in  elderly  women:  relation  to  consumption  of  animal  and  vegetable  foods.”  J.  Gerontology  55  (2000):  M585–M592.  

Page 86: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

15

Ok,   so   let’s   now   turn   our   attention.   Incidentally,   there   is   another   whole   sort   of  consideration  here  that  I  wish  I  could  cover,  but  I  won’t  be  able  to.    It  has  to  do  with  bone  density.   Bone   density   is   commonly   tested   these   days   in   women   as   an   indication   of  osteoporosis   risk.   It   goes   as   follows:   the   higher   the   bone   density,   the   lower   the   risk   of  osteoporosis.  So,  women  are  being  told  that,  or  being  advised  that  they  should  try  to  keep  their  bone  density  up.  Bone  density  naturally  declines  with  age  to  a  considerable  extent,  so  the  idea  is  to  keep  bone  density  up.  However,  there  are  a  lot  of  chinks  in  the  armor  of  that  argument   that   are  now  beginning   to  appear,   and   I   am  not  at   all   convinced   that   the  bone  density  measurement   tells   [us]   exactly  what   it   should   be   telling   [us],   but   I  won’t   have   a  chance  to  really  get  into  those  details.  

Chapter  13:  Kidney  Stones    

So  now  we  have   information  on  the  autoimmune  diseases  and  osteoporosis.    What  about  some  others?  And   I  will   just   quickly  mention   some  of   these,   because   as   one   looks   at   the  literature  on  these  diseases,  again  we  see  this  very  strong  distinction  between  animal-­‐  and  plant-­‐based  foods.      

Kidney  stones,   for  example.  Something  that  anyone  who  has  experienced  the  passing  of  a  kidney  stone  will  tell  you  is  the  worst  kind  of  pain  they  have  ever  experienced,  but  kidney  stones  tend  to  be  quite  common—more  so  than  one  might  imagine.  It  is  said,  for  example,  that   15%   of   Americans   (usually  more  men   than  women)  will   experience   a   kidney   stone  sometime  in  their  lifetimes.16  The  question  becomes:  what  about  kidney  stones  and  diet—is  there  anything  going  on  there?      

Well,   the  majority   of   kidney   stones   that   occur   are  made   up   of   calcium   and   oxalate,   and  there  is  a  man  who  previously  was  at  the  University  of  Glasgow—in  fact,  much  of  his  career  was  with  the  University  of  Glasgow—by  the  name  of  Dr.  Robertson,  who  had  been  studying  this  in  great  detail,  and  publishing  lots  of  studies  on  the  question  concerning  the  effect  of  diet  on  kidney  stone  formation.    

What  he  was  able  to  find  was  that  the  higher  the  animal  protein  intake,  the  higher  was  the  likelihood  of   kidney   stones.   In   fact,   his   data  was   so   impressive   as  he   started   to   compare  different  communities  around  Great  Britain,  for  example,  that  he  started  to  apply  that  idea  to  men  who   came   into   his  medical   practice   to   see   if   he   could   do   something   about   it.  He  found   something   really  quite   remarkable.  With  men  who   tended   to  have  a   recurrence  of  kidney  stone   formation,  he  simply   took  them  off  of  animal  protein;  switch  the  diet  and   it  went  away.  It  was  that  simple.  The  adjoining  chart  shows  the  relationship  among  protein  intake—  animal  protein  intake—and  the  discharge,  so  to  speak,  of  the  stones  per  100,000  people.  17[See  slide  number  39.]  

16  Stamatelou  KK,  Francis  ME,  Jones  CA,  et  al.  “Time  trends  in  reported  prevalence  of  kidney  stones.”  Kidney  Int.  63  (2003):  1817–1823.    17 Robertson  WG,  Peacock  M,  and  Hodgkinson  A.  “Dietary  changes  and  in  the  incidence  of  urinary  calculi  in  the  UK  between  1958  and  1976.”  Chron.  Dis.  32  (1979):  469-­‐476.

Page 87: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

16

The   amount   of   animal   protein   that   seems   to   begin   to   increase   the   risk   for   kidney   stone  formation   is   only   about   20   grams   per   person   per   day.   Obviously   this   is   not   going   to  influence  everyone,  but  for  those  who  are  susceptible,  20  grams  and  up  can  be  a  problem.  If  you  stop  to  think  about  that,  on  average  in  the  United  States  and  Great  Britain,  for  example,  men  are  consuming  100-­‐110  grams  of  protein  a  day,  with  about  70%  of  that  (let’s  say  70  grams  or  so)  in  the  form  of  animal  protein.    

What   Dr.   Robertson   found  was   that  with   about   only   20   grams   or   so,   risk   could   start   to  increase.   We   are   consuming   a   very   high   level   of   animal   protein,   and   unfortunately,   for  about  15%  of   the  men   in  our  society,   sometime   in   their   life   they  are  going   to  experience  this  awful  condition  called  a  kidney  stone  passing.  It  is  not  necessarily  fatal,  but  can  in  fact  lead   to   kidney   problems   later   in   life,   serious   kidney   problems,   and   it   certainly   is  extraordinarily,  excruciatingly  painful.  

Chapter  14:  Two  More  Diseases  

Two  more  diseases  I  will  just  mention  quickly  that  seem  to  segregate  according  to  whether  animal-­‐  or  plant-­‐based  food  is  consumed:  one  has  to  do  with  the  eyes,  and  the  other  has  to  do  with  the  brain.    

In   eye  problems   there   are   a   couple   of   conditions,   one  of  which   is   chiefly   responsible   for  blindness  among  people  age  65  and  over;   that   is   called  macular  degeneration.  The  other  condition  that  is  commonly  seen,  and  reasonably  correctable  for  most  people,  is  cataracts.  If   we   look   at   the   relationship   of   macular   degeneration—which   causes   blindness—and  cataracts,  which  as  I  say  are  correctable  to  some  extent,  it  turns  out  in  both  cases  there  are  now   very   impressive   studies   showing   that   in   people   who   consume   more   plant-­‐based  material,   and   more   antioxidants   in   particular,   the   lower   is   the   risk   for   macular  degeneration  and  cataracts.  Figure  something  like  in  the  neighborhood  of  50,  60,  70,  even  80-­‐90%  of  all  the  blindness  due  to  macular  degeneration  could  be  prevented,  according  to  the  evidence  that  is  now  coming  out,  simply  if  people  were  to  consume  a  plant-­‐based  diet.18    

Similarly,  in  the  case  of  brain  function,  there  are  a  couple  conditions  (one  of  which  is  much  less  serious   than  the  other,  and  more  common,  and   the  other  which   is  very  serious)   that  seem   to   show   the   same   thing.   I   am   referring   to   cognitive   dysfunction,   our   ability   to  remember  what  we  have  been  doing,  essentially.  Cognitive  dysfunction  tends  to  be  much  higher,   as   we   get   older,   among   people   who   are   consuming   an   animal-­‐based   diet   than  among  those  consuming  a  plant-­‐based  diet.  In  other  words,  consuming  a  plant-­‐based  diet,  you  are  going  to  keep  your  mind  for  a  longer  period  in  your  life,  and  not  have  to  suffer  this  cognitive  dysfunction.      

It  also  turns  out  that  people  with  cognitive  dysfunction  have  been  shown  to  have  about  a  six-­‐fold  increased  risk  of  Alzheimer’s  disease,  and  of  course  these  days  we  have  heard  a  lot  about   Alzheimer’s.   It   seems   to   be   increasing   in   its   prevalence.   It   is   worrisome.   Most  everybody  knows  that  for  people  who  have  Alzheimer’s,  it  is  a  very,  very  serious  problem,  

18  Seddon  JM,  Ajani  UA,  Sperduto  RD,  et  al.  “Dietary  carotenoids,  vitamins  A,  C,  and  E,  and  advanced  age-­‐related  macular  degeneration.”  JAMA  272  (1994):  1413–1420.  

Page 88: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Chronic Diseases

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

17

especially  for  the  family  that  has  to  care  for  them.  And  similarly,  in  the  case  of  Alzheimer’s  disease—which   some   people   have   referred   to   as   a   cardiovascular   disease   of   the   brain  because  of  the  presence  of  cholesterol  and  the  occlusion  of  blood  flow  in  the  brain—it  turns  out   that   Alzheimer’s   disease   also   is   being   strongly   linked   to   the   consumption   of   animal-­‐based   food.   So,   naturally,  we   tend   to   see  Alzheimer’s   travel   along  with   heart   disease.   As  people  consume  more  meat-­‐based  diets,  get  more  heart  disease  early  in  life  (and  of  course  later  in  life),  they  are  the  ones  who  are  at  much  higher  risk  for  getting  Alzheimer’s  diseases  as  well.    

So  we  have  cognitive  dysfunction  and  Alzheimer’s  disease  in  the  case  of  the  brain;  we  have  macular  degeneration  and  cataract  formation  in  the  case  of  the  eyes;  we  have  this  kidney  stone  problem  amongst  those  who  have  to  suffer  with  that.      

In  the  case  of  bones,  we  have  osteoporosis  and  fracture  rates,  and  of  course  then  we  have  this  whole  host  of  diseases  called  the  autoimmune  diseases.    

In   all   of   these   diseases   (obviously   the   list   is   becoming   very   large,   especially   when   you  consider  it   in  the  context  of  cancer,  heart  disease,  diabetes,  and  obesity)  we  see  the  same  trends.  Plant-­‐based  diets  protect  against  these  diseases.  Animal-­‐based  diets  do  not.  Animal-­‐based  diets  tend  to  promote  these  diseases;  plant-­‐based  diets  tend  to  protect  against  these  diseases,  and  I   just   find  that  kind  of  separation  of  effects   to  be  extremely   impressive.  We  tend   to   see   all   these  diseases   in   the   same   societies.  We   tend   to   see   sometimes   the   same  diseases  in  the  same  people,  and  when  we  look  at  the  sort  of  underlying  biochemistry  and  clinical  relationships,  we  see  a   lot  of  commonality  amongst  these  diseases.  Obviously,   the  mechanisms  are  going  to  be  somewhat  different.  The  organs  clearly  are  different  in  these  different  cases,  but  what  is  common  to  all  of  these  is  what  we  decide  to  put  in  our  mouth.

Page 89: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

         

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Principles of Nutritional Health

   

Page 90: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Benefits  of  a  Healthy  Lifestyle    In   this  course  I  have  talked  a   lot  about  the  evidence  that  plant-­‐based  eating   is  a  superior  way  of   eating.   I   have   talked   very   briefly   about   some  of   the   underlying   biochemistry   and  pointed  out  how  consistent   the   effect   is   for   a  whole   variety  of  different  diseases.   I   could  also  talk  about  many  other  benefits  from  eating  this  way.     I  have  found  that  many  people  who  are  hearing  this  evidence  for  the  first  time  eventually  become  quite  impressed  and  say  yes,  okay,  I  understand,  this  is  impressive  evidence.  But  to  go  away  and  actually  do  something  about   it   is   sometimes  another  question.   I  have   found  that  it  can  be  helpful  to  create  some  take-­‐home  ideas  that  reduce  the  issues  to  principles.  So  I  have  put  together  eight  principles  that  gather  in  all   this   information  in  ways  that  tell  us  how  we  should  be  doing  science,  how  we  should  be  treating  the  sick,  how  we  should  feed  ourselves,  how  we  should  think  about  health,  and  even  how  we  should  perceive  the  world.  I  find  that  this  evidence  is  so  broad-­‐based,  so  profound,  that  the  more  I  look  at  it  from  many  different  perspectives,  the  more  impressed  I  become.  This  is  really  about  much  more  than  just   deciding  what   kind   of   food  we   put   in   our  mouths   and   how  we   feel   about   it.   So   I’ve  reduced  some  of  these  notions  down  to  principles.  Let’s  consider  them.  Chapter  2:  Principle  #1    Principle   #1.   Nutrition   represents   the   combined   activities   of   countless   food  substances.  The  whole   is  greater   than   the  sum  of   its  parts—you  have  heard   that  before.  Foods  contain  an  enormous  number  of  chemical  substances.  Most  of  their  total  weight  is  in  the   form  of  nutrients,   and  all  of   these  elements  work   together   in  marvelous  ways.  Foods  are  not  just  a  handful  of  different  nutrients—we  should  measure  the  nutrients  in  each  food  perhaps  in  the  tens  of  thousands,  maybe  the  hundreds  of  thousands.      What   is   interesting   about   the   nutrients   in   foods   is   that   they   work   together   as   they   get  absorbed   and   then   become   highly   integrated   [through]   metabolism.   The   combined  activities   of   countless   food   substances   are   what   nutrition   is   really   all   about.   To   get   a  glimpse  of  what  we  mean  by  that,  let  us  develop  a  meal—let’s  say  spinach  with  ginger,  and  whole-­‐grain   ravioli   shells   stuffed   with   butternut   squash   and   spices,   and   topped   with   a  walnut  tomato  sauce.  Let’s  think  about  all  the  different  kinds  of  nutrients  that  are  present.  Let’s   just  consider  spinach,   for  example.   In  the  adjoining  table  you  will  see  that   there  are  amino  acids  of  all  kinds.  1  [See  slide  number  8.]     Most  amino  acids  are  present,  and  the  fatty  acids  that  make  up  lipids.  There  are  vitamins  and   minerals,   and   of   course   the   macronutrients.   We   also   have   a   catchall   group   of  substances   that   are   typically   present   in   plants,   called   phytosterols.   Many   of   these  participate  in  anti-­‐oxidation  reactions,  and  all  sorts  of  other  things.  I  should  emphasize  that  this   is   only   a  partial   list   of   some  of   the  nutrients  whose   structures  we  have  determined.  Then  think  about  how  all  these  things  work  together  to  create  a  response.  And  of  course,  

1  U.S.  Department  of  Agriculture.  “USDA  Nutrient  Database  for  Standard  Reference.”  Washington,  DC:  U.S.  Department  of  Agriculture,  Agriculture  Research  Service,  2002.  http://www.nal.usda.gov/fnic/foodcomp/cgi-­‐bin/nut_search_new.pl  

Page 91: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

we  are  only  talking  about  one  food,  spinach.  Spinach  has  a  lot  of  good  stuff  in  it,  and  when  it  is  ingested,  these  nutrients  are  ultimately  absorbed  in  our  intestines  and  together  produce  a  response.  It  is  the  whole  food.  The  nutrients  tend  to  mutually  support  each  other  as  they  do  their  work  inside  the  body.    Chapter  3:  Principle  #2    Principle   #2   is   a   sort   of   follow-­‐up   to   Principle   #1:   Vitamin   supplements   are   not   a  panacea   for   good   health.   That   doesn’t   mean   that   vitamin   supplements   never   have   a  beneficial  effect  in  [any]  cases,  at  least  in  the  short  term.  That  may  be  true,  but  in  the  long  term—and   that   is   what   we   are   talking   about   here:   long-­‐term   health,   the   prevention   of  disease,   and   the  promotion   of   health—using   vitamin   supplements   is   simply  not   going   to  work.  If  we  continue  to  consume  the  typical  Western  diet—high  in  animal  protein,   low  in  fiber,   and  high   in   fat—we  are  not  going   to  avoid   the  consequences  by  using  a  handful  of  different  kinds  of  supplements.  Evidence  that  that  is  a  good  course  to  follow  simply  doesn’t  exist.      I  have  followed  the  development  of  the  vitamin  supplement  industry  quite  closely  for  the  last   20   or   30   years,   and   have   been   involved   in   several   cases   developing   policy   on   the  marketing,  sale,  and  promotion  of  these  sorts  of  materials.  I  once  served  for  three  years  as  the  chief  consultant  to  the  Federal  Trade  Commission  as  they  were  putting  together  their  recommendations   in   the   early   days   regarding   what   health   claims   were   permissible   for  vitamin   supplements.   I   found   that   there   is   tremendous   pressure   in   the   marketplace,  resulting   in   a   multibillion-­‐dollar   market,   to   develop   very   specific   individual   chemical  substances  and  call  them  supplements  and  nutrients  that  do  various  things.      Dr.  Atkins,  for  example,  and  others  like  him,  have  promoted  the  high-­‐protein,  low-­‐carb  diet  that  we  know  so  much  about.  It  turns  out  that  many  of  the  people  who  are  doing  this  kind  of   promotion   actually   have   a   lucrative   marketing   activity   on   the   side   promoting  supplements.   If   I   may   say   so,   it   is   almost   as   if   they   were   promoting   sickness   and   then  hoping  that  they  could  sell  the  supplements  to  make  people  feel  they  were  getting  better.  So  supplements  really  don’t  work.  Consider  the  biochemistry  and  go  back  to  Principle  #1,  where  everything   is  working  together.  The   idea  of   taking  a  single  nutrient  out  of  context,  putting  it  in  a  pill,  and  consuming  it  to  achieve  what  all  these  nutrients  together  achieve  is  kind  of  mindless,  terribly  superficial,  and  it  doesn’t  make  a  lot  of  sense.      The  whole  idea,  the  enthusiasm  for  supplements,  began  in  the  late  70s  and  continued  into  the  80s,  but  it  began  to  unravel  to  some  extent  around  the  middle  of  the  1990s,  when  the  results  of  a  study  of  beta-­‐carotene  and   lung  cancer  were  released.  Beta-­‐carotene,  as   I  am  sure   you   know,   is   a   precursor   to   vitamin   A.   It   is   found   only   in   plants,   and   it   is   a   good  antioxidant.  Diets   containing  beta-­‐carotene  have  been   shown  across   the  board   to   reduce  various  diseases.  Sometimes  people  have  speculated  that  many  of   the  benefits  of  a  plant-­‐based   diet   are   really   due   to   the   consumption   of   beta-­‐carotene.   So   in   the   late   80s   beta-­‐carotene   became  quite   an   exciting   nutrient,   and   pills  were   being  made   and   people  were  starting  to  take  them  rather  extensively.      

Page 92: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

4

So   a   study  was   organized   to   see   if   taking   beta-­‐carotene   supplements  might   prevent   one  kind  of  cancer,   lung  cancer.2  3  That  was  considered  the  one  to  study  because  lung  cancer,  generally  promoted  by  cigarette  smoking,  of  course,  tends  to  occur  because  of  the  induction  of  free  radicals,  which  we  talked  about  before.  Free  radicals  are  more  likely  to  occur  where  there   is   lots  of  oxygen,  and   in   the   lung  tissue   itself   there   is  a  high  degree  of  oxygenation,  and  therefore  a  high  degree  of  free  radical  formation.  If  beta-­‐carotene  were  acting  the  way  most  people  thought  it  would,  as  an  antioxidant,  it  should  have  an  effect  on  lung  cancer.  So  the  study  was  organized  basically  in  Finland,  and  people  were  followed  for  a  total  of  eight  years.    The   results   caused   an   enormous   storm,   both   in   the   public   mind   and   in   the   science  community.   It   turned   out   that   taking   beta-­‐carotene   supplements  was   associated  with   an  increase   in   lung   cancer   rates,   not   a   decrease.   The   same   study   found   that   beta-­‐carotene  consumption   from   foods  was   associated  with   a   decrease   in   lung   cancer   rates.   So   adding  beta-­‐carotene  supplements   to   the  diet  did  not,   in   fact,   reduce   lung  cancer;   it   significantly  increased  it.  It  almost  brought  an  end  to  the  entire  marketing  scheme  for  the  use  of  beta-­‐carotene  supplements.  This  was  an  early  indication  that  taking  supplements  out  of  context  to  do  something  like  prevent  cancer  simply  wasn’t  working.      Since   then,   an   enormous   number   of   studies   have   been   reported,   and   as   far   as   we   now  know,   the   effect   of   these   supplements   on   preventing   serious   long-­‐term   diseases   such   as  heart  disease  and  cancer  are  simply  not  standing  up.  In  fact,  just  recently  a  report  came  out  that  resulted  in  two  major  reviews  of  all  the  trials  that  have  been  conducted  so  far.4  5  This  report  basically   concluded   that,   and   I’ll   quote:   “The   researchers   could  not  determine   the  balance   of   benefits   and   harms   of   routine   use   of   supplements   of   vitamin   A,   C,   or   E,   or  vitamins  with   folic  acid   [which   is   something   that   comes   in  plant  material]  or  antioxidant  combinations   for   the   prevention   of   cancer   or   cardiovascular   disease.”   This   was   a  major  report  reviewing  a  vast  amount  of  literature  that  had  been  conducted  over  15  or  20  years,  and  they  concluded  that  these  really  important  vitamins  that  everybody  assumed  were  to  have  a  beneficial  effect,  and  that  had  been  reported  from  time  to  time  to  have  a  beneficial  effect—mainly  vitamins  A,  C,  and  E—simply  were  not  working.  This  release  of  information  in  recent  years,  I  think,  is  beginning  to  raise  some  serious  questions  even  in  the  public  mind  about  the  use  of  supplements.6  7  It  is  not  the  way  to  go  to  get  long-­‐term  health.  Indeed,  in  a  recent  article   in  the  New  York  Times,  some  of  this  new  evidence  on  nutrient  supplements  was  reviewed  and  caused  quite  a  lot  of  discussion.   2  The  Alpha-­‐Tocopherol  Beta  Carotene  Cancer  Prevention  Study  Group.  “The  effect  of  vitamin  E  and  beta  carotene  on  the  incidence  of  lung  cancer  and  other  cancers  in  male  smokers.”  New  Engl.  J.  Med.  330  (1994):  1029–1035.  3  Omenn  GS,  Goodman  GE,  Thornquist  MD,  et  al.  “Effects  of  a  combination  of  beta  carotene  and  vitamin  A  on  lung  cancer  and  cardiovascular  disease.”  New  Engl.  J.  Med.  334  (1996):  1150–1155.    4  U.S.  Preventive  Services  Task  Force.  “Routine  vitamin  supplementation  to  prevent  cancer  and  cardiovascular  disease:  recommendations  and  rationale.”  Ann.  Internal  Med.  139  (2003):  51–55.  5  Morris  CD,  and  Carson  S.  “Routine  vitamin  supplementation  to  prevent  cardiovascular  disease:  a  summary  of  the  evidence  for  the  U.S.  Preventive  Services  Task  Force.”  Ann.  Internal  Med.  139  (2003):  56–70.  6  Long-­‐term  study  finds  vitamin  E  supplements  raise  the  risk  of  prostate  cancer.  Oncology  (Williston  Park).  2011  Nov  15;25(12):1236-­‐7.  7  Mursu  J,  Robien  K,  Harnack  LJ,  Park  K,  Jacobs  DR  Jr.    Dietary  supplements  and  mortality  rate  in  older  women:  the  Iowa  Women's  Health  Study.  Arch  Intern  Med.  2011  Oct  10;171(18):1625-­‐33.  

Page 93: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

5

Chapter  4:  Principle  #3    Principle   #3.   There   are   virtually   no   nutrients   in   animal-­‐based   foods   that   are   not  better   provided   by   plants.   Now  we   know   that   a   number   of   different   nutrients   exist   in  animal   versus   plant   foods   to   a   very   different   extent.   In   fact,   some   nutrients   might   be  present  in  one  and  not  the  other.  If  we  look  at  the  adjoining  chart  at  some  nutrients  as  they  exist  in  a  mixture  of  plant-­‐based  foods  and  a  mixture  of  animal-­‐based  foods,  we  see  some  very  distinctive  differences.  8  9  10  [See  slide  number  11.]   Cholesterol,   of   course,   is   only   found   in   animal-­‐based   food.   Dietary   fat   tends   to   be  more  common,  or  at  least  [occur]  at  higher  levels,   in  animal-­‐based  foods.  Protein  is  about  even,  but  I  have  already  pointed  out  that  the  protein  present  in  animal-­‐based  foods  tends  to  have  different   characteristic   effects.   Beta-­‐carotene,   which   we   just   talked   about,   is   technically  only  present  in  plant-­‐based  foods.  Only  plants  can  make  beta-­‐carotene.  There  is  a  tiny  trace  of  beta-­‐carotene  in  animal  flesh,  but  apparently  this  is  only  because  animals  had  consumed  food   that   contained   beta-­‐carotene.   Dietary   fiber,   of   course,   is   only   found   in   plant-­‐based  food.   Vitamin   C   and   folate,   as   I  mentioned   before,   and   vitamin   E,   all   tend   to   have  much  higher  concentrations   in  plant-­‐based   foods   than   in  animal-­‐based   foods.  And  on  down  the  list  we  see  the  different  minerals  and  vitamins,  and  there  is  a  really  interesting  relationship  here.      So  we  see  this  major  difference  between  plant-­‐  and  animal-­‐based  foods.  As  far  as  Principle  #3  is  concerned,  there  are  virtually  no  nutrients  in  animal-­‐based  foods  that  are  not  better  provided  by  plants.  This  chart  is  intended  to  show  that  all  the  nutrients  we  really  need  are  present  in  plant-­‐based  foods.  We  don’t  need  to  consume  animal-­‐based  foods  to  get  any  of  these  nutrients.  This   is  not  to  say  that  the  animal-­‐based  foods  don’t  have  these  nutrients.  They   do   have   some,   and   in   some   cases   fairly   generous   amounts,   as   with   protein,   for  example.  But  there  is  no  evidence  that  we  need  to  consume  any  animal-­‐based  food  to  get  our  supply  of  good  nutrition.     Now  there  are  a  couple  examples   that,  one  might  argue,  are  present  primarily   in  animal-­‐based   foods  and  not   in  plant-­‐based   foods,   so  we  should   therefore  consume  animal-­‐based  foods.   I   am   thinking  of  vitamin  B12  and  vitamin  D,  which   tends   to  be  present   in  animal-­‐based  foods,  although  it  is  primarily  present  in  milk  because  it  has  been  added  to  milk.  So  vitamin  D  and  vitamin  B12  are  anomalies.      Vitamin  D  is  not  really  a  vitamin.  A  vitamin  is  a  nutrient  that  we  have  to  consume  because  we  can’t  make  it.  In  reality,  we  can  make  vitamin  D.  All  we  need  to  do  is  to  go  out  and  get  some  sunshine  and  we  get  all   the  vitamin  D  we  need.  So  the  idea  that  you  must  consume  

8  Holden  JM,  Eldridge  AL,  Beecher  GR,  et  al.  “Carotenoid  content  of  U.S.  foods:  an  update  of  the  database.”  J.  Food  Comp.  Anal.  12  (1999):  169–196.  9  U.S.  Department  of  Agriculture.  “USDA  Nutrient  Database  for  Standard  Reference.”  Washington,  DC:  U.S.  Department  of  Agriculture,  Agriculture  Research  Service,  2002.  http://www.nal.usda.gov/fnic/foodcomp/cgi-­‐bin/nut_search_new.pl  10  The  exact  food  listings  in  the  database  were:  Ground  Beef,  80%  lean  meat/20%  fat,  raw;  Pork,  fresh,  ground,  raw;  Chicken,  broilers  or  fryers,  meat  and  skin,  raw;  Milk,  dry,  whole;  Spinach,  raw;  Tomatoes,  red,  ripe,  raw,  year-­‐round  average;  Lima  Beans,  large,  mature  seeds,  raw;  Peas,  green,  raw;  Potatoes,  russet,  flesh  and  skin,  raw.  

Page 94: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

6

animal   foods,  and  dairy   in  particular,   to  get  vitamin  D   is   really  nonsense.  We  can  get   the  vitamin  D  we  need  by   getting   adequate   sunshine.  This   isn’t   to   say   that   a   little   vitamin  D  can’t   be   helpful,   particularly   for   people   who   simply   can’t   get   the   sunshine.   But   it   is   not  otherwise  essential.      It   is   often   said   that  we  must   consume   some   animal-­‐based   foods   because   only   they   have  B12.   In   reality,   the   B12   present   in   any   food,   plant   or   animal,   is   only   there   because   of  synthesis   by  microorganisms.   In   the   case   of   animals,   the  microorganisms   producing   the  B12   reside   in   the   large   intestine,   or   in   the   case   of   ruminants,   in   the   lumen.   The  microorganisms  there  make  some  B12,  and  then  end  up  putting  a  lot  of  it  in  the  liver  and  some  other  tissues.  So  it  is  argued  that  we  perhaps  need  some  animal-­‐based  food  from  time  to  time  to  get  some  B12.      But  we  can  actually  get  B12  from  supplements  if  we  really  need  it.  People  who  rely  entirely  on  plant-­‐based  foods  do  have  lower  levels  of  B12.  The  question  arises,  however,  of  how  we  could  have  evolved  on  plant-­‐based  foods.  It  turns  out  that  plants  previously  thought  to  be  unable  to  take  up  B12  can  actually  do  so.  However,  those  plants  must  be  growing  in  organic  soil  where  there  are  lots  of  microorganisms  to  produce  the  B12.  The  B12  can  get  into  the  plant,   and   so  we   can   get   some   B12   that  way.   Also,   in   olden   days,   before  we   became   so  scrupulous   about   cleaning   our   foods,   having   a   little   soil   attached   to   the   plants   grown   in  organic  soils  always  gave  one  enough  B12.  So  there  wasn’t  really  a  distinction  between  B12  being   present   in   animal-­‐based   foods   and   not   in   plant-­‐based   foods.   It   is   really   all   from  microorganisms,  and  the  question  is  the  extent  to  which  those  organisms  contribute  to  the  B12  in  those  two  different  foods.      One  more  point  is  probably  worth  noting  concerning  the  differences  between  animal-­‐  and  plant-­‐based  foods.  The  protein  level  of  nuts  and  seeds  can  be  quite  high  compared  to  that  of  animal-­‐based   foods.   Nuts   and   seeds   have   quite   a   lot   of   fat   and   quite   a   lot   of   protein.   I  previously  said  that  animal  foods  in  general  have  more  fat  and  more  protein  than  plants—not  so  much  more  protein,  but  certainly  more  fat.  The  important  point   is  that  the  fat  and  the  protein  in  nuts  and  seeds  are  distinctively  different,  and  more  healthful.      Cholesterol   is   not   a   nutrient,   and   it   is   only   present   in   animal-­‐based   foods.   We   need  cholesterol   to   do   certain   things,   especially   to   maintain   membranes   in   our   cells.   It   is  particularly   important   in   some  of   the   tissue   that   surrounds  our  nerves.   So   cholesterol   is  important,   but   we   can   make   all   the   cholesterol   we   really   need,   and   we   don’t   need   to  consume  one  gram  of  it.      Chapter  5:  Principle  #4    Principle  #4.  I  find  this  one  quite  interesting.  Genes  do  not  determine  disease  on  their  own.  The  genes  function  only  by  being  activated  or  expressed.  Nutrition  plays  a  critical  role  in  determining  which  genes,  whether  they  are  good  or  bad,  are  being  expressed.  We  have  heard  a  lot  about  genes.  In  fact,  I  think  the  majority  of  the  basic  medical  research  budget  is  now  concerned  either  directly  or   indirectly  with   trying   to  discover   the  genes  responsible  for  producing  this  or  that  kind  of  disease,  whether  it  is  obesity,  diabetes,  heart  disease,  or  

Page 95: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

7

breast  cancer.  The  inference  is  being  made  that  if  we  just  knew  which  genes  did  what,  then  we  might   be   able   to—in   the   case   of   bad   genes—intercept   them.   If   we   know   something  about  the  structure  of  the  proteins  that  are  produced  from  the  genes  and  can  be  a  little  bit  creative,   we   can   come   up   with   drugs   to   intercept   the   activities   of   these   bad   genes.  Unfortunately,   I   find  that  whole  approach  to  understanding  biology  and  the  promotion  of  health   to   be   very,   very   mischievous.   It   is   going   in   the   wrong   direction,   as   far   as   I   am  concerned.      But   let’s   get   back   to   the   question   of   genes   and   health   or   disease.   Genes   are   required   to  produce  health.  Every  biological  event  that  occurs  essentially  originates  from  the  activity  of  some  gene  or  a  cluster  of  genes.  If  we  didn’t  have  genes,  we  wouldn’t  have  life.  Obviously,  some   genes,   if   they   act   in   the   wrong   way,   might   give   rise   to   disease,   but   we   are   now  discovering   that   the   idea   of   a   single   gene’s   causing   a   single   disease   has   passed   by   the  wayside.  I  don’t  think  there  are  many  people  around  anymore  who  subscribe  to  that  idea,  although  as  recently  as  5  to  10  years  ago  many  people  even  in  science  did  subscribe  to  it.  But  with  our  ability  to  determine  the  contribution  of  genes  to  disease,  we  have  discovered  that  for  any  one  disease,  more  and  more  genes  seem  to  be  involved.  11    The   China   Project   and   other   studies   of   people   with   different   dietary   lifestyle   practices  around   the  world   concluded   that   genes   didn’t   comprise  more   than,   let’s   say,   2   to   3%  of  cancer  risk,  or  perhaps  of  heart  disease  risk.  These  are  very   low  contributions.  So  on  the  one  hand,   genes   are   at   the   root  of   these  diseases’   getting   started,   but   they   are  not   alone  responsible  for  the  disease.      What   is   really   happening   is   our   understanding   of   the   role   of   nutrition.   If   a   certain   gene  would  give  rise,  perhaps  in  combination  with  other  genes,  to  certain  diseases,  it  is  easy  to  control  the  activities  of  these  genes  simply  by  eating  the  right  kind  of  nutrients.  One  of  the  fascinating  things  that  has  come  up   in  recent  years   is   that   the  nutrients  present   in  plant-­‐based  foods  tend  to  keep  mischievous  genes,  the  bad  genes,  under  control.  That  is  why  we  tend  to  get  much  less  of  these  diseases  when  we  consume  the  nutrients  in  that  way.      To  give  you  some  idea  of  how  foolish  this  genetic  research  is  in  terms  of  its  focus  on  single  genes   and   single   outcomes,   I   should   point   out   a   recent   little   study   published   in   a   well-­‐known  medical  journal  on  a  little  worm  that  has  some  16,000-­‐plus  genes.  We  have  perhaps  30  [thousand],  or  about  twice  that  many  genes.  The  researchers  basically  scored  the  ability  of  each  of  these  genes,  when  turned  on  or  turned  off,  to  contribute  to  body  weight.  This  is  obviously  interesting  and  important,  as  far  as  obesity  is  concerned,  if  in  fact  it  worked  the  same  way  in  humans.  In  any  case,  by  turning  each  one  of  these  16,000-­‐plus  genes  on  and  off,   they   discovered   417   genes   that   actually   affected   weight.   Now,   I   would   ask   anyone  working  in  this  field,  how  in  the  world  can  we  assume  that  if  there  are  at  least  400  genes  in  that  little  worm,  and  probably  twice  that  many  in  the  case  of  humans,  involved  in  causing  something   like   obesity,   then   how   ridiculous   would   it   be   to   think   about   reaching   in   and  getting   a   drug   from  one   of   those   genes,   or  maybe   a   couple   of   them?  That   is   really   quite  

11  Ashrafi  K,  Chang  FY,  Watts  JL,  et  al.  “Genome-­‐wide  RNAi  analysis  of  Caenorhabitis  elegans  fat  regulatory  genes.”  Nature  421  (2003):  268–272.  

Page 96: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

8

foolish,  and   I   think   this  discovery  really  says  a   lot  about   the  whole   idea  of  genes  causing  disease.  It  is  not  genes;  it  is  nutrition.    Chapter  6:  Principle  #5    Principle   #5.   Nutrition   can   substantially   control   the   adverse   effects   of   noxious  chemicals.  This  is  an  area  that  my  own  research  group  worked  in  for  many  years.  We  were  particularly   interested,   as   you   will   recall,   in   a   very   potent   carcinogen,   aflatoxin,   and   its  ability  to  cause  liver  cancer.  We  found  that  regardless  of  the  dose  of  the  carcinogen  being  given,  we   could   control  whether   that   carcinogen   actually   led   to   the   cancer.   Incidentally,  genetics  come   into  play  here,   too,  because  these  carcinogens  often  begin   their  activity  by  modifying   a   gene,   so   in   a   sense   we   are   talking   not   only   about   a   chemical   carcinogen’s  possibly  causing  a  disease,  but  about  the  contribution  of  the  gene  (that  has  been  altered  by  the  carcinogen)  to  cause  the  disease.  What  we  discovered,  at  least  in  the  initial  experiment,  was  that  we  could  basically  keep  under  control  even  the  most  noxious  chemical  carcinogen.      I  have  become  quite  interested  in  exploring  that  literature  for  many  years  now,  looking  at  various  kinds  of  toxic  agents  that  get  into  our  diet,  especially  small  amounts  of  toxic  agents.  I  should  point  out  that  I  subscribe  to  the  idea  that  we  should  control  exposure  to  noxious  agents,  especially   the  kind  that  we  synthesize  and  that  nature  has  never  seen  before.  But  sometimes   we   get   terribly   excited   and   make   a   lot   of   news   about   this   chemical   or   that  chemical   possibly   being   present   in   the   environment   and   causing   this   problem   or   that  problem,  when  we  tend  to  ignore  what  really  makes  the  difference  as  far  as  many  of  these  diseases  are  concerned.  Think  of  breast  cancer  and  heart  disease  and  the  like—it  is  really  the   balance   of   nutrients   being   consumed   that   can   sequester   the   toxicity   that   would  otherwise   occur   with   the   consumption   of   small   amounts   of   these   so-­‐called   chemical  carcinogens.      I  want  to  emphasize  that  I  do  not  mean  we  should  be  unconcerned  about  getting  exposed  to  some  of  these  noxious  chemicals.  We  should  be  concerned  because  it  is  not  only  cancer  that  we   have   to   be   thinking   about.   Some   other   unknown   phenomena   could   well   occur   that  maybe  nutrition  couldn’t  control  so  well.  But  in  my  view,  nutrition  has  an  enormous  ability  to  control  the  noxious  agents  that  we  otherwise  get.      A   good   example   is   cigarette   smoking.   Cigarettes   are   loaded   with   chemical   carcinogens,  especially   kinds   that   tend   to   promote   the   formation   of   tumors.   That   has   been   well  demonstrated.   We   know   that,   but   we   also   know   that   if   people   who   are   heavy   smokers  consume  a  plant-­‐based  diet,  their  risk  of  getting  lung  cancer  is  substantially  reduced.  In  one  of  the  biggest  studies  done  along  this  line,  people  who  were  heavy  smokers  and  consumed  the  most   vegetables   reduced   their   risk  of   getting   lung   cancer   almost   equal   to   that  of   the  nonsmoker.12  I  don’t  want  that  to  be  taken  out  of  context,  because  smoking  also  promotes  heart  disease,  and  we  don’t  know  too  much  about  that.  But  it  does  demonstrate  once  again  

12  Shekelle  RB,  Raynor  Jr.  WJ.  Dietary  vitamin  A  and  risk  of  cancer  in  the  Western  Electric  Study.  Lancet  1981;2:1185-­‐1190.  

Page 97: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

9

that  nutrition  plays  a  major   role   in  keeping   the  effects  of   these  noxious   chemicals  under  control.    Chapter  7:  Principle  #6    Principle   #6.   The   same  nutrition   that   prevents   disease   in   its   early   stages—that   is,  before  diagnosis—can  also  halt  or  reverse  disease  in  its  later  stages,  after  diagnosis.  The  best  way  to  illustrate  this  is  what  I  saw  evolve  over  the  last  30  to  40  years  with  respect  to  heart  disease.  When  I  was  a  student,  the  hypothesis  was  being  put  forward  that  we  could  prevent  heart  disease  by  consuming  a  diet  low  in  saturated  fat  and  low  in  cholesterol—that  is,   a   diet   higher   in   fruits   and   vegetables.   When   some   eminent   researchers   came   to   our  school,  Cornell  University,  to  talk  about  their  notion  that  a  plant-­‐based  diet  could  prevent  these  diseases   from  occurring   in   the   first  place,   I   remember   that  many  of   the  professors  were  rather  reluctant  to  accept  this  idea  that  eating  had  anything  to  do  with  prevention  of  heart   disease.   As   the   years   passed,   they   finally   came,   somewhat   begrudgingly   in   some  cases,  to  accept  the  idea  that  a  more  plant-­‐based  diet  low  in  saturated  fats  and  cholesterol  could  possibly  prevent  heart   disease.  But   they  often   said   at   the   same   time   that   although  this  disease  might  be  prevented,  there  was  no  way  that  the  disease  could  be  reversed  once  it  was   already  present.   That  was   an   idea   that   virtually   everyone   subscribed   to.   Some  10  years  ago,  we  learned  that  with  heart  disease  in  particular,  people  with  seriously  advanced  disease  could  bring  that  disease  under  control,  and  even  reverse  it,  by  consuming  a  plant-­‐based  diet.      It  is  really  quite  remarkable.  What  I  have  taken  away  from  this  history,  from  the  evidence  that  I  have  seen  myself  over  the  years—and  experimentally,  even  up  until  the  final  stages—is  that  diet  is  responsible  for  preventing  the  disease  in  the  first  place,  and  can  help  to  stop  it  wherever   it  may   be,   and   perhaps   in  many   cases   actually   reverse   it.  We   know   for   type   2  diabetes,  adult-­‐onset  diabetes,   that   if  we   take  diabetics  and  give   them  a  plant-­‐based  diet,  we  can  sometimes  reverse  the  disease  and  take  them  off  the  medicine.  I  have  actually  been  at  clinics  on  several  occasions  now  where  I  have  met  people  who  have  had  that  experience.  It   is   really  very  dramatic.   In  Professor  Anderson’s  work   from  the  University  of  Kentucky,  which   I   mentioned   in   the   lecture   on   diabetes,   he   was   able   to   show   that   even   type   1  diabetics,  who  absolutely  need  insulin,  when  put  on  a  plant-­‐based  diet,  were  able  to  reduce  their   drug   needs   by   40%  or  more.13  How   that  works   I   am  not   sure.   But   in   any   case   the  plant-­‐based  diet  has   that  nutritional  effect  on  diseases  at   fairly   late  stages  of   the  disease,  whether   it   is   heart   disease,   diabetes,   perhaps   even   cancer.   There   is   a   fairly  well-­‐known  study  now  that   indicates   that  melanoma,  a  very  deadly  cancer,  can  be  kept   largely  under  control  through  the  use  of  a  plant-­‐based  diet.    Chapter  8:  Principle  #7    Principle   #7.   Nutrition   that   is   truly   beneficial   to   one   chronic   disease  will   support  health  across  the  board.  The  last  bit  of  discussion  in  [Chronic  Disease]  was  an  attempt  to  

13  Anderson  JW.  “Dietary  fiber  in  nutrition  management  of  diabetes.”  In:  G.  Vahouny,  V.  and  D.  Kritchevsky  (eds.),  Dietary  Fiber:  Basic  and  Clinical  Aspects,  pp.  343–360.  New  York:  Plenum  Press,  1986.  

Page 98: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Principles of Nutritional Health

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

10

show  that  a  plant-­‐based  diet  has  very  broad  effect.  It  influences  a  large  variety  of  different  diseases,  and  now  we  are  beginning  to  understand  why  that  is  so.  This  is  due  in  part  to  the  fact   that   these  diseases  share  a  common  biochemistry  that  causes  disease  to  occur   in  the  first  place.  Nutrition  seems  to  act  through  that  medium  to  affect  a  wide  variety  of  diseases.      Chapter  9:  Principle  #8    Principle  #8.  Good  nutrition  creates  health  in  all  areas  of  our  existence,  and  all  parts  are   interconnected.   As   I   have   been   involved   in   research   over   the   years,   I   have   become  more  and  more  aware  that  science  tends  to  focus  on  one  little  itsy-­‐bitsy  part  of  the  puzzle.  Some   people   spend   their   entire   lives  working   on   just   one   part,  maybe   one   enzyme,   one  kind  of  cause-­‐effect  relationship,  what  have  you.  That  research  is  very  interesting  and  very  productive  in  the  sense  that  it  gives  us  an  insight  into  how  things  work,  so  I  don’t  want  to  belittle  it.        But  we  can’t   just   focus  on  details.   If  we  make  an  observation  on  one  detail   and   then  ask  broader  questions  and  keep  on  asking  broader  questions  every  time,  it  turns  out  that  all  of  these   parts   are   really   interconnected.   Initially,   I   considered   this   notion   of  interconnectedness   as   having   to   do  with   the   interplay   between  different   nutrients—let’s  say   in   the   same   food,   or   operating  within   the   cell.   But  now   it   turns   out   that   that   idea  of  interconnectedness   goes   beyond   biology;   it   goes   beyond  what   is   going   on   in   the   cell.   It  operates   between   organs.   Hormones   conduct   messages   from   one   organ   to   another,   for  example.  We  have   a   lot   of   interplay   between   organs   in   the   body.   There   is   also   interplay  between   individuals,   people  who  are   choosing   to   eat   this  way  and   those  who  don’t.   So  a  plant-­‐based  diet  really  has  an  impact  far  beyond  biology,  far  beyond  our  health  and  the  risk  of  our  getting  disease.  It  also  affects  our  ability  to  be  physically  active,  and  our  emotional  and  mental  health.      It  comes  into  play  in  a  major  way  with  respect  to  our  environment—if  anyone  would  like  to  know  more   about   that,   I  would  highly   recommend   reading   some  of   the  books  by  people  such  as  Professor  David  Pimentel,  or  John  Robbins,  who  wrote  Diet  for  a  New  America,  and  more   recently,   The   Food   Revolution.   Excellent   books   now   show   that   consuming   animal-­‐based  foods  is  often  at  the  root  of  environmental  problems.  I  would  actually  argue  that   it  even  goes  beyond  the  environment.  It  involves  political  and  economic  considerations.  I  am  referring   to   the   fact   that   rich   countries   tend   to   go   to   poor   countries,   take   some   of   their  valuable   land,   cut   down   their   forests,   put   cattle   on   the   land,   and   chase   away   the   local  peasantry  just  so  we  can  eat  meat.  In  doing  this,  we  create  a  terrible  economic  and  political  disequilibrium,  which  in  many  cases  eventually  leads  to  violence  and  wars,  and  the  rest  of  the  progression  of  the  story   is   fairly  well  known.  So  I   think  that   interconnectedness   is  an  important  concept  to  keep  in  mind.  It  involves  a  much  larger  domain  in  how  we  choose  to  live  and  to  interact  with  each  other.    

Page 99: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Coconut Oil

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

1

             

Certificate in Plant-Based Nutrition Course Two: Diseases of Affluence

Coconut Oil: Healthy or Hazardous?

Page 100: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Coconut Oil

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

2

Chapter  1:  Coconut  Oil    Hi,   I’m   Dr.   Matt   Lederman,   a   board-­‐certified   internist   who   specializes   in   nutrition   and  lifestyle  medicine.      I’m  not  quite  sure  why  people  think  there  is  something  magically  healthy  about  coconut  oil.  I   think  it   is  because  it   tastes  good,  and  therefore  the  misinformation  is  easier  to  swallow.  For   several   years   now,   coconut   oil   has   been  marketed   as   the   new  wonder   oil,   a   cure-­‐all  with   health   benefits   ranging   from   antimicrobial   properties   (such   as   fighting   viruses   and  bacteria,  including  HIV),  to  fighting  cancer  (by  supporting  our  immune  system),  to  reducing  heart   disease   (by   reducing   cholesterol   and  benefiting   our   arteries),   to   promoting  weight  loss,   to   treating   hyperthyroidism,   to   many   other   things.   Its   uses   are   also   varied—it’s   a  cooking  and  baking  oil,   an   ingredient   in  many  packaged   foods,   and  a   component  used   in  biodiesel  fuel,  soaps,  and  skin  products.    So  what’s   the   scoop?  Well,   it   is   true   that   coconut   oil   contains   some  medium-­‐chain   fatty  acids  called  MCFAs,  which  are  less  readily  absorbed  compared  to  longer-­‐chain  fatty  acids.  And  these  MCFAs  have  been  shown  to  have  less  of  an  effect  on  LDL,  bad  cholesterol.  But  is  that  not  similar   to  saying   that  burning  your  hand  with  a  300-­‐degree   flame  has   less  of  an  effect  on  your  skin  than  burning  your  hand  with  a  400-­‐degree  flame?  Oil  and  fat  are  oil  and  fat.      That  being  said,  I  have  read  that  MCFAs  are  absorbed  directly  into  the  liver,  and  as  a  result,  have  the  potential  [to  promote]  weight  loss.  Even  if  true—this  was  only  theoretical  in  the  study—this   reductionist  view  misses   the  point   that  people  don’t  eat  MCFAs.  Rather,   they  eat   coconut   oil,   and   half   the   saturated   fat   in   coconut   oil   is   not   MCFAs.   At   over   90%  saturated  fat,  taking  away  the  portion  of  MCFAs  in  coconut  oil—which  still  requires  us  to  make  the  huge  assumption  that  MCFAs  are  all  good  and  can’t  be  negated—then  you  are  still  left  with   45%  of   the   saturated   fat.   So   even   subtracting   all   of   the   theoretical   goodness   of  MCFAs   from   the   total   saturated   fat   content,   coconut   oil   is   still  worse   than   lard,  which   is  only  43%  saturated  fat.  And  we  all  know  that  lard  is  not  a  health  food.      In  many   cases,   the  minimal   amount   of   beneficial   MCFAs   in   coconut   oil   are   isolated   and  removed   from   the   oil   to   be   used  medicinally   or   in   beauty   products.   So  many  people   are  risking   their  hearts  and   their   lives  and  not  even  getting   the   little   theoretical  benefit   they  thought  they  were  getting.      Yes,  it  is  true  that  some  of  these  MCFAs,  like  loric  and  capric  acid,  have  been  shown  to  have  antifungal   and  antiviral  properties,   but  we  don’t   eat   foods  because  of   their   antimicrobial  properties.  We  eat  foods  to  provide  healthy  fuels,  which  as  a  result  strengthen  our  immune  system,  which  then  fights  microbes.  Now,  food  doesn’t  fight  infection;  rather,  our  immune  system  does.  With   that   argument  we   could   recommend  alcohol   as   a  health   food  because  alcohol  kills  some  microbes.    More  importantly,  we  shouldn’t  approve  of  a  food  just  because  one  part  of  it  has  a  specific  property  we  like.  This  reductionist  view  is  sort  of   like  saying  cigarettes  are  great  because  

Page 101: Certificate in Plant-Based Nutrition Course Two: Diseases ...shamanicspring.com/2-0 Transcripts_101 pages.pdfTCC502: Calories, Obesity, and Diabetes For individual student use only:

TCC502: Coconut Oil

For individual student use only: please do not copy or distribute. © 2012, T. Colin Campbell Foundation and TILS

3

they   have   found   some   antioxidants   in   the   tobacco.   The   take-­‐home   message   is   that   the  whole  food  serves  no  purpose  and  does  pose  a  serious  risk.  There  are  no  omega-­‐3  fats,  the  essential   fats   people   actually   need,   in   coconut   oil.   And   furthermore,   if   people   on   a   no-­‐added-­‐oil,   low-­‐fat,   plant-­‐based  diet   added   coconut   oil   to   their   diets,   the   fat   load  on   their  vessels  would  cause   serious  damage.   Inflammation  and  blood  vessel   flow  decrease  when  exposed  to  any  fat,  including  coconut  oil.  Overall,  health  takes  a  beating.      When   looking   at   the   whole   package,   the   numbers   just   don’t   lie.   Take   a   look   at   the  nutritional  content  of  one   tablespoon  of  coconut  oil.   [See  slide  number  7.]  There  are  116  calories,  which   all   come   from   fat,  which   is   easily   stored   as   fat   on   your  body.  The  mostly  saturated   fat   is   12   grams,   half   of  which   are   not  MCFAs,   this   theoretically   good  medium-­‐chain  fatty  acid.  There  are  no  carbohydrates  and  no  protein;  there  are  no  vitamins  except  0.1  micrograms  of  vitamin  K.  And  just  so  you  get  this  in  perspective,  one  romaine  leaf  has  30  micrograms  of  vitamin  K.      Are  we   sensing   a   theme   here?   The   bottom   line   is   that   coconut   oil   is   devoid   of   vitamins,  minerals,   and   most   other   nutrients.   It   is   pure   fat,   and   worse   than   that,   it’s   over   90%  saturated   fat.   The   same   saturated   fat   that   raises   our   cholesterol,   clogs   our   arteries,   and  contributes  to  our  heart  attacks.  In  the  1980s,  the  American  Heart  Association  recognized  coconut  oil’s  high  saturated  fat  content  as  being  overall  destructive  to  heart  health,  as  well  as  specifically  promoting  heart  damage  and  disease.  As  a  result,   they  continued  to  advise  the  reduction  of  all  saturated  fats,  including  coconut  oil,  to  less  than  7%  of  dietary  calories.  This  opinion  is  shared  by  the  World  Health  Organization  and  the  FDA,  both  recommending  decreasing   intake   of   saturated   fats,   because   the   reduction   of   saturated   fat,   including  coconut  oil,  has  been  shown  to  benefit  our  overall  health.      In  light  of  this  information,  coconut  oil  seems  better  served  in  our  cars  and  on  our  skin,  and  really  should  never  be  used  in  our  food.  Having  said  that,  if  you  enjoy  the  taste  of  coconut,  or   if  a   little  bit  of  coconut   is  helping  you  stay  on   this  healthy  new  diet  and   lifestyle,   then  using  a  little  bit  of  the  whole  plant  food,  not  the  oil,  once  in  a  generous  while,  is  okay.