cec_2014 _presentation_dzuy notes.pptx

21
Leandra Langlois Dzuy-Tam Tran McGill University Macdonald Campus A Canadian Integrated Northern Greenhouse A Solution For Year Round Food Security

Upload: dzuy-tam-tran

Post on 22-Jan-2018

94 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CEC_2014 _presentation_Dzuy notes.pptx

Leandra Langlois

Dzuy-Tam Tran

McGill University

Macdonald Campus

A Canadian Integrated Northern

GreenhouseA Solution For Year Round

Food Security

Page 2: CEC_2014 _presentation_Dzuy notes.pptx

1. Problem statement/Justification of innovation

2. Innovation/Technical feasibility1. Design goal

2. Design constraints

3. Design components

3. Social and Environmental impacts

4. Economic feasibility1. Cost

2. Marketability

5. Conclusion

Presentation Agenda

Page 3: CEC_2014 _presentation_Dzuy notes.pptx

• 2 million people are food insecure in Canada (United Nations, 2012)

o Problem is more severe among First Nation populations

• In remote communities

Justification of Innovation

Import ExpensiveLesser quality

Health and social issues

Page 4: CEC_2014 _presentation_Dzuy notes.pptx

• Innovative

• Replicable design

• Above the 60th parallel: Northern Communities

• Year-round production

Innovation Design Goal

Page 5: CEC_2014 _presentation_Dzuy notes.pptx

• Cold climate

• Limited sun exposure

• Social acceptance

Innovation Design Constraints

C

Page 6: CEC_2014 _presentation_Dzuy notes.pptx

+

Innovation

Page 7: CEC_2014 _presentation_Dzuy notes.pptx

Innovative Design

Page 8: CEC_2014 _presentation_Dzuy notes.pptx

Technical FeasibilityDesign component

Shell

• Repurposed oversea transportation container

• Polycarbonate glazed roof and side

• Variable-angle reflective panel

• Manual or electric steel shutters to transform system in

minutes

Foldable Closing System

Page 9: CEC_2014 _presentation_Dzuy notes.pptx

• Recommended values:

Floor and ceiling RSI-10

Sides RSI-5

• Spray foam: moisture barrier, insulation

• Extruded polystyrene rigid foam

• Air lock

• Insulation Blanket for glazed parts

Airlock

Insulation

curtains

Technical FeasibilityDesign component

Insulation

Page 10: CEC_2014 _presentation_Dzuy notes.pptx

• Motorized pivoting troughs

• Nutrient film technique hydroponics

• 483 lettuce heads produced per cycle

Technical FeasibilityDesign component

Irrigation and Plant Configuration

Page 11: CEC_2014 _presentation_Dzuy notes.pptx

• Summer shading

• Integrated into the NFT pivoting hydroponic system

• LED’s emitting blue and red wavelengths

• LED’s provide 50 µmol/s PAR to plants

Technical FeasibilityDesign component

Supplemental Lighting

Page 12: CEC_2014 _presentation_Dzuy notes.pptx

• CING Volume of 86.37 m3

• Fans provide up to 23.60 m3/s of airflow

• Heat exchanger: 9.09 m3/min

• Duct heaters: 2 of 5 kW, 9.91m3/min

Stage # Air Flow Operation Mode Outside Temperature

Stage 1 0.25 ACH Minimal air flow -20oC>T

Stage 2 1 ACH Gas control -10oC>T>-20oC

Stage 3 3ACH Heat recovery 0oC>T>-10oC

Stage 4 0.1 ACM Heat recovery 10oC>T>0

Stage 5 0.5 ACM Flow through 20oC>T>10oC

Stage 6 1-2 ACM Flow through T>20oC

Technical FeasibilityDesign component

HVAC

Page 13: CEC_2014 _presentation_Dzuy notes.pptx

Social and Environmental

ImpactSocial element

• Provide fresh nutritious produce constantly

• More affordable

• Improve overall health of communities

• Community development

• Possibility of being rejected by the community

Environmental element

• Reduce GHG

• Reduce reliance on transportation

• Repurposing containers

Page 14: CEC_2014 _presentation_Dzuy notes.pptx

Capital Cost $40,000

CING Unit Sale Price $50,000

Profit Margin $10,000 (20%)

Delivery Cost $8,730

Economic FeasibilityFixed Costs

Page 15: CEC_2014 _presentation_Dzuy notes.pptx
Page 16: CEC_2014 _presentation_Dzuy notes.pptx

Nutrients

Economic FeasibilityOperational Costs

Page 17: CEC_2014 _presentation_Dzuy notes.pptx

• Pay back period of 5 years

• Market price per lettuce head

• A. Paulatuk, $0.16/kWh: $8.00 (savings of $0.55)

• B. Resolute Bay, $1.00/kWh: $20.00 (savings of $7.60)

Economic FeasibilityMarketability

Paulatuk,

NT

Resolute Bay,

NU

Page 18: CEC_2014 _presentation_Dzuy notes.pptx

Conclusion

• Justification

• Innovation/technical feasibility

• Social impact

• Environmental impact

• Economic feasibility

Page 19: CEC_2014 _presentation_Dzuy notes.pptx

Acknowledgements Dr. Mark Lefsrud, Project Supervisor

Dr. Grant Clark, Academic Supervisor

Scott Manktelow, Shop Technician

Patricia Gaudet, Researcher

Sara Tawil, Researcher

Nicolas Fabien- Oulette, Contributor

Misha Shodjaee-Zrudlo, Contributor

Jean-Francois Plante, Mentor

Page 20: CEC_2014 _presentation_Dzuy notes.pptx

• Hendricks, P. 2012. Life Cycle Assessment of Greenhouse Tomato (Solanumlycopersicum L.) Production in Southwestern Ontario. The University of Guelph.Available at http://dspace.lib.uoguelph.ca/xmlui/handle/10214/4052. Accessed 9 April2013.

• Jahns, T. 2009. Controlling the Greenhouse Environment. University of AlaskaFairbanks. Available at http://www.uaf.edu/files/ces/publications-db/catalog/anr/HGA-

00336.pdf. Accessed 9 April 2013.• Controlled Environment Agriculture Takes Root in Alaska, Available

at:http://www.lumigrow.com/aboutus/case-studies/controlled-environment-agriculture-takes-root-in-alaska/

• Patterson, R.L. and Giacomelli, G. A. (2008). Resource and Production Model for the South Pole Food Growth Chamber. The University of Arizona

Bibliography

Page 21: CEC_2014 _presentation_Dzuy notes.pptx

We will now happily answer your questions

THANK YOU!