cec esp esp cecjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3i)(davies, 1962) 1+i i...

12
mmol L K ' G ESR K ' G SAR ESP K ' G ESR SAR ESP SAR ESR SAR SAR mmol L r SAR ESR EC e dSm -1 r SAR ESR corr K ' G K ' G DDL G K EC e ESP G K ESP ESP SAR ESR (Exchangeable sodium percentage) ESP (Cation exchange capacity) CEC Bower et al., 1952 CEC ESP * 1 oustan@hotmail.com CEC ESP (Rhoades, 1982) CEC dSm -1 > EC e (Jurinak et al., 1984) ESP (Soluble sodium percentage) SSP ESP (Kovda,1973) USSL Sodium adsorption ratio Richards, 1954

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

mmol L

K'GESRK'

GSAR

ESPK'G

ESRSARESPSAR

ESRSAR

SARmmol LrSARESR

ECedSm-1

rSARESRcorr

K'GK'

G

DDL

GK

ECeESPGK

ESP

ESPSARESR

(Exchangeable sodium percentage)

ESP

(Cation exchange

capacity)

CECBower et al., 1952

CECESP

*[email protected]

CEC

ESP

(Rhoades, 1982)CEC

dSm-1 >ECe

(Jurinak et al., 1984)

ESP

(Soluble sodium

percentage)

SSPESP(Kovda,1973)

USSL

Sodium adsorption ratio

Richards, 1954

Page 2: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

2/][

][)(

22

5.01

MgCa

NammolLSAR

Na+Ca2+Mg2+mmolcL-1

SAR

Gapon,1933

Sparks,1995

Na+

Ca2+Mg2+

2/][

][

][

][22 MgCa

NaK

NaXCEC

NaXG

XCECNaXcmolc

kg-1

Ca2+Mg2+

Na+Ca2+Mg2+

GK

(Jurinak and Suarez,

1990)

SARKESRG

ESR(Exchangeable sodium

ratio)ESPESR

ESR1

ESR100ESP

GK

SARESP

ESRSAR

(Richards, 1952)

rSARESR

SAR

ESR

ESR>

GK

Na+

Na+Ca2+Mg2+(Agca and

Dogan, 1998 ; Guth and Brown, 1985; Frenkel and Alperovitch,1984; Jurinak et al.,1984; Evangelou and Marsi,2003; Poonia et al., 1984; Kapoor et al.1989;

Doering and Willis, 1980; Bower, 1954)

GK

(Abrol et al.,

1988;Levy and Hillel,1968;Nadler and Margaritz 1981;

Kopttike et al., 2006;Patruno et al.,2002)

Bresler et al., 1982GK

GK

ECpH

ESP

(Endo et al.,2002; Paliwal and Gandhi, 1976;Bajwa

and Kalkat,1990;Pratt et al., 1962)

ESPSAR

EC

ECe

pHpHp

Richards, 1954

Nelson and Sommers, 1982

CECBower et al, 1952

Jackson, 1960

Bouyocos, 1962

SARESRESP

(Bower and

Hatcher,1962)

VMINTEQ

Page 3: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

(Davies, 1962))I3.0

I+1

I(AZ=log 5.0

5.02ii

B

(Helgeson, 1969) IBBIa

IAZii 5.0

5.02

1log

L mol-1 B°C

a

cmcm

Kerrisk,1981aB

NaCl

Helgeson,1969

Bethke,1996

SP

pHp

mmolcL *

mmolcL

mmolcL

mmolcL

mmolcL

mmolcL

mmolcL

ECedSm

CECcmolc kg

cmolc kg

SARmmol L

ESP

* mmolcL

[(ESR Naex/(CEC-Naex)]

ESRSAR

mmol L)SAR 00618/0 + 0458/0= ESR

SEEr

GK]mmolL[

GK

mmol LESRSAR

pHp

SAR

mmol L

]mmol LGK[

Paliwal and Maliwal,1971

GK

]mmol L[

(Bazargan and

Towfighi, 1990; Agca and Dogan, 1998; Amrhein and Suarez, 1991; Jurinak et al., 1984; Doering and Willis, 1980; Paliwal and Gandhi, 1976; Patruno et al., 2002; Poonia and Pal, 1979; Poonia and Talbudeen, 1977;

Van-Bladel et al., 1972)GK

mmol L

(Evangelou and Marsi,2003; Frenkel and

Page 4: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

Alperovitch,1984; Guerrero-Alves et al., 2002)

SARmmol LESR>

y = 0.00618x + 0.0458

r2 =0.692 SEE=0.16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160

SAR

ES

R

ESRSAR

ESRSAR

SEE

rSARESR

y = 0.00717x + 0.011

r2 =0. 858 SEE=0.086

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100

SAR

ES

R

ESRSARmmol LSAR<

r =- 0.438*

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 25 50 75 100 125 150

ECe

K'G

GKECe

SARmmol L

GK

mmol L

GK

(Bazargan and Towfighi, 1990; Frenkel and Alprovitch,1984; Jurinak et al., 1984; Doering and

Willis, 1980)Babcook

Shainberg et al.

Jurinak et al.

Total soluble salts

mmolc LGKmmol L

TSSGKBower

Doering and WillisGK

Kopttike et al.

GK

quasicrystals

Amrhein and Suarez

Na+-Ca2+Bazargan

and TowfighiGKEC

GKEC

(Paliwal and Gandhi,1976; Szabolcs and

Darab,1966)

(Evangelou and Marsi, 2003; Guerrero-Alves et al.,

2002; Richards, 1954)

Anion exclusion

dSm>ECe

CEC

ESR

ESRcorrSARSAR

mmol L

SEErmmol LSAR

ESRcorr

ESRSAR

Bazargan and Towfighi

ESRSAR

mmol L

Page 5: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

Bazargan and Towfighi

mmol L

SAR

mmol LAmrhein and

SuarezGK

K'GK'

G

]mmol L[

]mmol L[

y = 0.0120x - 0.0415

r2 = 0.903 SEE=0.116

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

SAR

ES

Rco

rr

ESRcorrSARmmol L SAR<

SARGK

mmol L

SAR

SAR

GK

Sposito and Mattigod

Evangelou and Phillips

SAR)GKSAR / (1+GK

ENa=

ENa

CEC

Na=E ex

NaENa

SAR

SAR 1ENaSARGK

SAR

mmol L

GK

mmol LENa

SAR

GKmmol L

Sposito and

Mattigod

SAR

EN

a

y=0.0073x/(1+0.0073x)r2=0.899 SEE=0.042

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

ENaSAR

mmol L SAR<

Oster and Sposito

GK

GK

Na

2Na

cG E2

E1SAR=K

SARc

GKmmol L

SARc

2NaNa E1/E2

SEEr

y = 0.0076x + 0.078

r2 = 0.875 SEE=0.104

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

SARc

2EN

a /(1-

EN

a2 )0.5

2NaNa E1/E2SARc

mmol LSAR<

Page 6: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

SARc

=

2NaNa E1/E2

SEEr

GK

y = 0.0112x + 0.047

r2 =0. 941 SEE=0.101

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

SARc

2EN

acor

r /(1-

EN

acor

r2 )0.5

2NaNa E1/E2SARc

mmol L SAR<

Rao et al.

ESRENa/(1-ENa)EFR

ENa/(1-ENa)0.5

SAR

RieuRieu et

al.

Evangelou and Coale

ESRGK

ESR1SAR /1Naex

SAR/ NaexNaex/SAR

SARESRSAR

ECeSAR

NaexSAR

rNaex

SAR

y = 0.0099x0.878

r2 = 0.942 SEE=0.280

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

SAR

EF

R

EFRSARmmol L

SAR<

Evangelou and Coale,1988

(Naex)-1 = (CEC)-1 K'G

-1 (SAR)-1 + (CEC)-1

NaexSAR

(CEC)-1 K'G-1CEC

CECcmolc kg

CEC

cmolc kg

y = 9.959x + 0.0559

r2 = 0.941 SEE=0.242

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5

1/SAR

1/N

aex

Naex1SAR/1

SAR

SARCEC

cmolc kg

GKmmol L

GK

ESRSAR]mmol L[

Bower ESR

[Naex]

CECCaex+Mgex

pH

Page 7: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

KG*r

Mgex/Caex

Emerson and Chi

Rahman and Rowell

r = 0.60*

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.5 1 1.5

Mgex/Caex

KG

Bow

er

KGMgex/ Caex

22 ]1)//[(4 aVex SARKNaCEC

SARa

KV L molKV

mmol L

Guth and Brown

ESPGK

ESP

ESP30

dSm>(ECe ESP

P<ESP

ESP

ESPcorrESP

y = 0.0497x + 0.0276

r2 =0. 822 SEE=0.117

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

SARa2

4/[(C

EC

/Nae

x )2 -1

]

mmol LSAR<

(Exchangeable

sodium content)ESP(Cook et al.,

1997)SAR***r=

ESPSAR ***r

ESPECe SAR

SP

P866/0=2 r) SP 4486/0 + SAR 1177/0 +

ECe 1181/0 + 0145/9- = ESP

y = 1.1947x + 2.7697

r2 = 0.903 SEE=5.35

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

ESP

ES

Pco

rr

ESPESPcorrESP

dSm 10ECe

GK

ECeESP

ESPECe)mol LGK

Pr2

GKESP

ESP)mol LGK

Pr2

Babcook

Shainberg

Page 8: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

GKESP

Evangelou and Marsi

GKESP

Bower Pratt et al. GK

ESPGK

Van-Bladel et al.

Ponia et al. GKESP

Doering and Willis

GK

GK

Poonia and Talbudeen

GKESP

Kapoor et al.

GKSAR

EaECeSP

ECedSm

ECeSPEa (cmolckg-1)

Pr

SP

ECESP

GK

ECESP

CEC

Ea

ECe

ESRcorr

ENa

K'G

KV

Naex

SARa

SARc

SP

REFERENCESBazargan,K., and Towfighi, H.(1990).Estimation of

modified Gapon selectivity coefficient and effective factors in salt-affected soils of Iran. In: Proceeding of 6th Iranian Congress of Soil Science,28-31Aug., University of Ferdosi, Mashhad, Iran. pp.211-212.

Abrol, I. P., Yadav, J. S. P., and Massoud, F. I. (1988). Salt-affected Soils and Their Management. FAO, Rome.

Agca, N., and Dogan, K. (1998). The relationships between the exchangeable sodium ratio (ESR) and sodium adsorption ratio (SAR) in some soils of the Amik plain. Mustafa Kemal University, Faculty of Agriculture, Department of Soil Science TR 31040 Antalya Turkey.

Amrhein, C., and Suarez, D .L.(1991). Sodium - calcium exchange with anion exclusion and weathering corrections. Soil Sci. Soc. Am. J.55,698-706.

Babcook, K.L. (1963). Theory of the chemical properties of soil colloidal systems at equilibrium. Hilgardia. 34,417-542.

Bajwa, M.S., and Kalkat, J.S.( 1990). Determination of exchangeable sodium status of salt-affected soils and its reactions with growth of plants. Agrochemical Agrcax. 34(1/2), 69-79.

Bethke,C.M.(1996). Geochemical Reaction Modeling,

Concepts and Applications. Oxford University Press, New York.

Bower, C. A., Reitemeier, R.F.,and Fireman, M.(1952).Exchangeable cation analysis of saline and alkali soils. Soil Sci.73,251-261.

Bower.C.A.(1959).Cation exchange equilibria in soils affected by sodium salts.Soil Sci,88:32-35.

Bower, C.A., and Hatcher, J.T. (1962). Characterization of salt-affected soils with respect to sodium. Soil Sci. 93, 275-280.

Bouyocos, G. J. (1962). Hydrometer method improved for making particle size analysis of soil. Agron. J. 54,464-465.

Bresler, E., Mc Neal, B.L., and Carter, D.L.(1982). Saline and Sodic Soils. Springer-Verlag. Berlin, Germany.

Cook, G., Muller, D., and Warren, L. (1997). Is exchangeable sodium content a better index of soil sodicity than exchangeable sodium percentage?:A reassessment of published data. Soil Sci.162(5), 343-349.

Davies C.W. (1962). Ion Association. Butterworth, London.

Doering, E. J., and Willis, O.W. (1980). Effect of soil solution concentration on cation exchange relationships. Proc. Inter. Symp. on Salt-affected

Page 9: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

Soils. Karnal, India.

Emerson W. W., and C. L. Chi.(1977).Exchangeable calcium,magnesium and sodium and the dispersion of illites in water. .Dispersion of illites in water.Aus. J. Soil Res.15,255-262.

Endo, T., Yamamoto, S., Honna, T. and Eneji, A.E. (2002). Sodium-calcium exchange selectivity as influenced by clay minerals and composition. Soil Sci.167(2),117-125.

Evangelou V. P., and Coale F.J.(1987).Dependence of the Gapon coefficient on exchangeable sodium for mineralogically different soils. Soil Sci. Soc. Am.51:68-72.

Evangelou V. P., and Coale F.J.(1988).An investigation on the dependence of the gapon coefficient on exchangeable sodium by three linear transforms.Can. J. Soil Sci.68(4),813-820.

Evangelou, V.P., and Marsi, M. (2003). Influence of ionic strength on sodium-calcium exchange of two temperate climate soils. J. Plant Soil.250(2),307-313.

Evangelou V. P., and Phillips R. E.(1987). Sensitivity analysis on the comparison between the Gapon and Vanselow exchange coefficients. Soil Sci. Soc. Am.J. 51,1473-1479.

Frenkel, M., and Alperovitch, N. (1984). The effect of mineral weathering and soil solution concentration on ESR-SAR relationships on arid and semi-arid zone soils from Israel. Soil Sci. 35, 367-372.

Gapon, E.N. (1933). On the theory of exchange adsorption in soils. J. Gen. Chem. USSR. 3, 144-152.

Guth, D.L., and Brown, K.W. (1985). A comparison of the SAR and Vaneslow equations in three soils. Soil Sci. 14(5), 356 - 361.

Guerrero-Alves, J., Pla-Sentis, I., and Camacho, R. (2002). A model to explain high values of pH in an alkali sodic soil. Braz. Sci. Agric. 59(4), 763-770.

Helgeson, H. C. (1969). Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am.J.Sci.276,729-804.

Jackson M. L. (1960).Soil Chemical Analysis.Prentice-Hall,Inc.

Jurinak, J. J., Amrhein, C., and Wagenet, R.J. (1984). Sodic hazard: The effect of SAR and salinity in soils and overburden materials. Soil Sci. 137, 152 - 158.

Jurinak, J. J., and Suarez, D.L. (1990). The chemistry of salt -affected soils and water. In K.K. Tanji(Ed.) Agricultural Salinity Assessment and Management, ASCE Manuals Prac.No.71,(pp.42-63).Am. Soc. Civ. Eng., New York.

Kapoor, A., Pal, R., and Poonia, S.R .( 1989). Prediction of exchangeable sodium percentage in soils by mechanistic and layer models. Aust. J. Soil Res.27(2),325-332.

Kerrisk,J.F.(1981).Chemical equilibrium calculations for aqueous geothermal barines.Los Alams Scientefic Laboratory. University of California.

Kopittke, P. M., So, H. B., and Menzies, N. W.(2006).Effect of ionic strength and clay mineralogy on Na Ca exchange and the SAR ESP relationship.European J. Soil Sci. 57(5),626-633.

Kovda, U.A. (1973). Irrigation, Drainage and Salinity. FAO/UNESCO.

Levy, R., and Hillel, D. (1968). Thermodynamic equilibrium constants of Na/Ca exchange in some Israel soils. J. Soil Sci. 106: 393 -398.

Mesquta, M.E., Goncalves, M.C., Goncalves, A.R., and Neves, M.J. (2005). Effect of electrolyte concentration on sodium adsorption: Application of competitive extended Freundlich isotherms. Arid Land Research and Management.19,161-172.

Nadler, A. and Margaritz, M. (1981).Expected derivations from the ESP-SAR empirical relationships in calcium- and sodium-carbonate-containing arid soils:Field evidence.Soil Sci. 131, 220-225.

Nelson, D.W., and Sommers, L.E.( 1982).Total carbon, organic carbon, and organic matter. In A.L.Page et al.(Eds) Methods of Soil Analysis. SSSA. Madison, WI.

Oster, J.D., and Sposito, G. (1980). The Gapon coefficient and the exchangeable sodium percentage- sodium adsorption ratio relations. Soil Sci. Soc. Am. J.44:258-260.

Paliwal, K.V., and Gandhi, A.P. (1976). Effect of salinity ,SAR, Ca:Mg ratio in irrigation water and soil texture on the predictability of exchangeable sodium percentage. Soil Sci. 122, 85-90.

Paliwal, K.V., and Maliwal, G.L. (1971). Prediction of exchangeable sodium percentage from cation exchangeable equilibria.Geoderma. 6 (1),75-78.

Patruno, A., Cavazza, L., and Cirillo, E.(2002). Experiments on soil sodication .Ital. J. Agron.6 (1),3-13.

Poonia, S.R., Mehta, S.C., and Pal, R. (1984). The effects of electrolyte concentrations on calcium- sodium exchange equilibria in two soil samples of India.Geoderma. 32,63-70.

Poonia, S.R., and Pal, R.( 1979). The effect of organic manuring and water quality on water transmission parameters and sodication of a sandy loam soil. Agric. Water Mang.2,163-175.

Poonia, S.R and Talbudeen, O.(1977). Sodium-calcium exchange equilibria in salt-affected and normal soils. J. Soil Sci. 28, 276 - 288.

Pratt, P. F., Whitting, L. D., and Grover B. L.(1962).Effect of pH on the sodium-calcium exchange equilibria in soils. Soil Sci .Soc. Am. Proc. 26,227-230.

Rahman W.A., and Rowell, D.L.(1979).The influence of magnesium in saline and sodic soils:A specific effect or a problem of cation exchange?J.Soil Sci. 30,535-546.

Rao, T.S., Page, A.L., and Coleman, N.T.(1968). The influence of ionic strength and ion pair formation between alkaline-earth metals and sulfate on Na- divalent cation exchange equilibria. Soil Sci .Soc. Am. J. 32:639-643.

Rhoades,J.D.(1982).Cation exchange capacity.In A.L.Page et al.(Eds) Methods of Soil Analysis. SSSA. Madison,WI.

Richards L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agric. Hand book 60, USDA, Washington, DC.

Page 10: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

Rieu, M.(1980). Sodium adsorption ratio and estimation

of the alkalization of waters. Pedol. 18,123-128. Rieu, M., Touma, J., and Gheyi, H. R.(1991). Sodium-

calcium exchange on Brazilian soils: Modeling the variation of selectivity coefficients. Soil Sci. Soc. Am. J.55,1291-1300.

Szabolcs, I., and Darab, K. (1966). The effect of the kind of anions on the calcium- sodium ion-exchange in soils. Agrochemica.10,344-353.

Shainberg, I., Oster, J. D. , and Wood J. D.(1980). Na-Ca exchange in montmorilonite and illite illite

suspensions. Soil Sci. Soc. Am. J. 44,960-964. Sparks D. L.(1995).Environmental Soil Chemistry.CRC

Press. Sposito, G., and Mattigod, S.V.(1977).On the chemical

foundation of the sodium adsorption ratio.Soil Sci. Soc.Am. J.41:323-329.

Van-Bladel, R., Gaviria, G., and Lawdelovt, H. (1972). A comparison of the thermodynamic double layer theory and empirical studies of the Na-Ca exchange equilibria in clay water systems. In Proceeding of International Clay Conference,pp. 385

395.

Page 11: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

Estimation of Gapon selectivity coefficient for Na/Ca+Mg exchange in some salt-affected soils of

Tabriz plain

Anvar Farahmand1, Shahin Oustan2 , AliAsghar Jafarzadeh3 and Naseer Aliasgharzad4

1Former graduate student, 2Assistant Prof., 3Professor and 4Associate Prof. Soil Science Department, Faculty of Agriculture, University of Tabriz

Abstract

Studies by the US Salinity Laboratory using Gapon rule led to the value of 0.01475 (mmol L-1)-0.5for the modified Gapon selectivity coefficient (K'

G). Nevertheless, the results of subsequent researches reveled that K'

G isn t a constant value and thus could take on a wide range of values depending on soil properties. The aim of this study was to determine the relationship between exchangeable sodium ratio (ESR) and sodium adsorption ratio (SAR) in some salt-affected soils of Tabriz plain. To this purpose, thirty composite soil samples were taken from the area. For the soils in the study area (with SAR < 100 (mmol L-1)0.5 the ESR-SAR relationship was of the form: ESR=0.011+0.0072 SAR( r2=0.86) which didn t follow the traditional USSL equation. After correction of the data for anion exclusion, this relationship was modified as follows: ESR=-0.041+0.0120 SAR( r2=0.90). As a result, taking into account the anion exclusion increased K'

G value considerably. However, K'

G value was still lower than 0.01475(mmol L-1)-0.5.This may be attributed to the high salinity level of the investigated soils which can lead to an increase in affinity of clay minerals for calcium and magnesium by other mechanisms (compression of DDL and or the formation of quasicrystals) in addition to anion exclusion. In a multiple regression procedure, ECe was negatively and ESP was positively associated with K'G (r

2=0.73). After correction of the data for anion exclusion the association was only with ESP (r2=0.49).

Keywords: exchange equation, sodicity, anion exclusion, ESP, SAR, ESR2

2 Corresponding author s Email: [email protected]

Page 12: CEC ESP ESP CECjournals.ut.ac.ir/article_19901_061bf7b11b6cbc5971... · 0.3I)(Davies, 1962) 1+I I log=AZ(0.50.5 2 i i B BI(Helgeson, 1969) aBI I i AZi 0.5 0.5 2 1 log CB° L-mol1

This document was created with Win2PDF available at http://www.daneprairie.com.The unregistered version of Win2PDF is for evaluation or non-commercial use only.