cea bruyères-le-châtel kazimierz sept 200 5 , poland

31
CEA Bruyères-le-Châtel Kazimierz sept 2005, Poland Variational Multiparticle-Multihole Mixing with the D1S Gogny force N. Pillet (a) , J.-F. Berger (a) , E.Caurier (b) and M. Girod (a) (a) CEA, Bruyères-le-Châtel, France, (b) IReS, Strasbourg, France nathalie.pillet@c ea.fr

Upload: rane

Post on 13-Jan-2016

40 views

Category:

Documents


0 download

DESCRIPTION

V ariational M ultiparticle- M ultihole M ixing with the D1S Gogny force. N. Pillet (a) , J.-F. Berger (a) , E.Caurier (b) and M. Girod (a) (a) CEA, Bruyères-le-Châtel, France, (b) IReS, Strasbourg, France. [email protected]. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

CEA Bruyères-le-Châtel Kazimierz sept 2005, Poland

Variational Multiparticle-Multihole Mixing

with the D1S Gogny force

N. Pillet (a) , J.-F. Berger (a) , E.Caurier (b) and M. Girod (a)

(a) CEA, Bruyères-le-Châtel, France, (b) IReS, Strasbourg, France

[email protected]

Page 2: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

An unified treatment of correlations beyond the mean field

•conserving the particle number

•enforcing the Pauli principle

•using the Gogny interaction

•Description of pairing-type correlations in all pairing regimes

•Test of the interaction : Will the D1S Gogny force be adapted to describe all correlations beyond the mean field in this method ?

•Description of particle-vibration coupling

Aim of the Variational Multiparticle-Multihole Mixing

Examples of possible studies :

Page 3: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Trial wave function

Superposition of Slater determinants corresponding to

multiparticle-multihole (mpmh) excitations upon a ground state of HF type

{d+n} are axially deformed harmonic oscillator states

Description of the nucleus in axial symmetry

K good quantum number, time-reversal symmetry conserved

Page 4: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Some Properties of the mpmh wave function

• Simultaneous excitations of protons and neutrons

(Proton-neutron residual part of the interaction)

• The projected BCS wave function on particle number is a subset of the mpmh wave function

• specific ph excitations (pair excitations)

• specific mixing coefficients (particle coefficients x hole coefficients)

Page 5: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Variational Principle

• the mixing coefficients

• the optimized single particle states used in building the Slater determinants

•Definitions

•Total energy

•One-body density

•Energy functional minimization

•Correlation energy

•Hamiltonian

•Determination of

Page 6: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Mixing coefficients

Using Wick’s theorem, one can extract a mean field part and a residual part

Rearrangement termsSecular equation problem

Page 7: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

h1 h2p1 p2

p1 p2 h2h1

h1 p3p1

p2 p1 h3h2

h1

h1

h2

p1

p2 p1

p2

h2

h1

h4

h3p2

p1 p3

p4

h2

h1

|n-m|=2

|n-m|=1

|n-m|=0

npnh< Φτ |:V:| Φτ >mpmh

Page 8: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Optimized single particle states

•Iterative resolution selfconsistent procedure

h[ρ] (one-body hamiltonian) and ρ are no longer simultaneously

diagonal

•No inert core

•Shift of single particle states with respect to those of the HF-type solution

Page 9: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Preliminary results with the D1S Gogny force in the case of pairing-type correlations

• Pairing-type correlations : mpmh wave function built with pair excitations

(pair : two nucleons coupled to KΠ = 0+ )

• No residual proton-neutron interaction

Page 10: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Correlation energy evolution according to proton and neutron valence spaces

Ground state, β=0-Ecor (BCS) =0.124 MeV

-TrΔΚ ~ 2.1 MeV

-TrΔΚ

Page 11: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Correlation energy evolution according to neutron valence space and the harmonic oscillator basis size

-TrΔΚ

-TrΔΚ

Page 12: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

T(0,0) 89.87% 84.91%

T(0,1) 7.50% 10.98%

T(0,2) 0.24% 0.51%

T(2,0) 0.03% 0.04%

T(1,1) 0.17% 0.39%

T(1,0) 2.19% 3.17%

T(3,0) + T(0,3) + T(2,1) + T(1,2) = 0.0003%

Wave function components

Nsh=9 Nsh=11

Page 13: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Occupation probabilities

Page 14: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Self-consistency (SC) effects

• Correlation energy gain

• Wave function components

• Single-particle spectrum

Up to 2p2h ~ 340 keV

Up to 4p4h ~ 530 keV

T(0,0) T(0,1) T(1,0) T(0,2) T(1,1) T(2,0)

With SC 84.04 11.77 3.17 0.56 0.42 0.04

Without SC 89.87 7.50 2.19 0.24 0.17 0.03

Page 15: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Self-consistency effect on single-particle spectrum 22O

Δe (MeV)

HF mpmh

1s1/2

1p3/2

1p1/2

1d5/2

2s1/2

1d3/2

→ Single-particle spectrum compressed in comparison to the HF one

18.870 18.820

4.669 4.790

11.370 11.177

3.444 3.373

4.331 4.322

17.203 16.879

6.065 6.014

9.852 9.868

5.622 5.470

3.435 3.393

proton neutron

Δe (MeV)

HF mpmh

Page 16: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

• derivation of a self-consistent method that is able to treat correlations beyond the mean field in an unified way.

Summary

•treatment of pairing-type correlations

for 22O, Ecor~ 2.5 MeV

BCS → Ecor ~ 0.12 MeV

•Importance of the self-consistency

for 22O, correlation energy gain of 530 keV

Self-consistency effect on the single particle spectrum

Page 17: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Outlook

•more general correlations than the pairing-type ones

•connection with RPA

•excited states

•axially deformed nuclei

.........

Page 18: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Projected BCS wave function (PBCS) on particle number

BCS wave function

Notation

PBCS : • contains particular ph excitations

• specific mixing coefficients : particle coefficients x hole coefficients

Page 19: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Rearrangement terms

Page 20: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Richardson exact solution of Pairing hamiltonian

Picket fence model

(for one type of particle)

g

The exact solution corresponds to the MC wave function including all the configurations built as pair excitations

Test of the importance of the different terms in the mpmh wave function expansion : presently pairing-type correlations (2p2h, 4p4h ...)

εi

εi+1

d

R.W. Richardson, Phys.Rev. 141 (1966) 949

Page 21: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

N.Pillet, N.Sandulescu, Nguyen Van Giai and J.-F.Berger , Phys.Rev. C71 , 044306 (2005)

Ground state Correlation energy

gc=0.24

ΔEcor(BCS) ~ 20%

Ecor = E(g0) - E(g=0)

Page 22: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Ground state

Occupation probabilities

Page 23: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Ground state Correlation energy

Page 24: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

R.W. Richardson, Phys.Rev. 141 (1966) 949 Picket fence model

Page 25: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Ground state, β=0-Ecor (BCS) =0.588 MeV

-TrΔΚ ~ 6.7 MeV

Correlation energy evolution according to neutron and proton valence spaces

-TrΔΚ

Page 26: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Correlation energy evolution according to neutron and proton valence spaces

Page 27: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

T(0,0)= 82.65%

T(0,1)= 10.02%

T(0,2)= 0.56%

T(0,2)= 0.23%

T(1,1)= 0.54%

T(1,0)= 5.98%

T(3,0) + T(0,3) + T(2,1) + T(1,2) = 0.03% ~ 15 keV

Wave function components

Nsh=9 Nsh=11

Page 28: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Occupation probabilities

Page 29: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

-Ecor (BCS) =0.588 MeV

-TrΔΚ ~ 6.7 MeV

(D1S Nsh=9 )

Page 30: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

-TrΔΚ

Correlation energy evolution according to neutron and proton valence spaces

Ground state, β=0-Ecor (BCS) =0.124 MeV

-TrΔΚ ~ 2.1 MeV

Page 31: CEA Bruyères-le-Châtel Kazimierz  sept 200 5 ,  Poland

Ground state, β=0

(without self-consistency)

-Ecor (BCS) =0.588 MeV

-TrΔΚ ~ 2.1 MeV